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Abstract

Two-sided matching platforms, such as those for labor, accommodation, dating, and

taxi hailing, can control and optimize over many aspects of the search for partners. To

understand how the search for partners should be designed, we consider a dynamic model

of search by strategic agents with costly discovery of pair-specific match value. We find

that in many settings, the platform can mitigate wasteful competition in partner search

via restricting what agents can see/do. Surprisingly, simple restrictions can improve social

welfare even when screening costs are small, and agents on each side are ex-ante homogeneous.

In asymmetric markets where agents on one side have a tendency to be more selective (due

to smaller screening costs or greater market power), the platform should force the more

selective side of the market to reach out first, by explicitly disallowing the less selective side

from doing so. This allows the agents on the less selective side to exercise more choice in

equilibrium. When agents are vertically differentiated, forcing one side of the market to

propose results in a significant increase in welfare even in the limit of vanishing screening

costs. Furthermore, a Pareto improvement in welfare is possible in this limit; the weakest

agents can be helped without hurting other agents. In addition, in this setting the platform

can further boost welfare by hiding quality information.

Keywords: matching markets, market design, search frictions, stationary equilibrium, sharing

economy, platforms.

1 Introduction

During the last decade there has been rapid growth in the number of online platforms for two-

sided matching in the contexts of dating, labor markets, accommodation, and taxi services,

among others. Although these markets appear to fit a traditional supply-demand setting at first

glance, a key differentiating feature is that agents on both sides of the market (e.g. hosts and

guests in accommodation, workers and employers in online labor markets) have heterogeneous
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preferences over people/places/jobs they could match to in many of these marketplaces. Thus,

in sharp contrast to a traditional buyers-sellers setting in which sellers are typically indifferent

between buyers, accounting for the role of heterogeneous preferences on both sides of the market

becomes crucial when designing matching platforms.

Whenever it is possible to obtain or elicit adequate information regarding the agents’ prefer-

ences, the platform can use this information to determine matches centrally and save the agents

the effort needed to find a match. However, obtaining such information is not always possible as

there might be significant heterogeneity in agents’ preferences (a “beauty lies in the eye of the

beholder” component to preferences) which cannot be easily uncovered by the platform. In such

situations, the platform can instead provide agents with information about potential partners

based on which they can decide whether to interact and eventually match with them. However,

this flexibility comes at the cost of search and screening effort required on the part of market

participants. As an example, consider a guest looking to rent a place on Airbnb for a short

stay. The platform provides a few filters to help potential guests to narrow their search (such

as accommodation type, price range, etc.), but even after filtering, tens or hundreds of options

may remain. Guest preferences over these remaining options may involve guest and trip-specific

trade-offs between location, reviews, pictures, house rules, etc., that the platform may have

difficulty uncovering. Presumably this is why the platform allows guests to take a closer look at

the filtered listings before choosing, though this may be a costly exercise for guests.

In addition to allowing guests to screen options before requesting to book, a specific choice

Airbnb has made here is to require guests to browse listings by hosts, and not the other way

around. It is natural to ask whether this choice is consequential (evidence from TaskRabbit

suggests that it is [10]) and whether it is the right one. The current paper studies the question

of how a platform should choose its “search environment” design, i.e., the framework within

which agents can acquire more information about potential matches, contact them, and match

with them.

The “search environment” designs typically used in practice roughly fall into three categories:

centralized, one-sided search, and two-sided search. In a centralized matching design (as used

by Uber and Lyft), the marketplace chooses the matches and thus agents do not engage in

active search for partners. In a one-sided search design, the platform allows only one side to

search through available options and pick a suitable match. This match can then quickly be

secured, as agents on the other side play a passive role and do not exercise choice. Examples

in this category are “Instant Book” on AirBnb, and “Quick Assign” on TaskRabbit. Finally,

in a two-sided search design, agents on both sides of the market are able to screen potential

partners, and a match results only upon approval by both sides of the market. In this setting,

the platform may provide both sides of the market with the ability to reach out to potential

partners (e.g. OkCupid, Upwork), or implement directional search, in which one side of the

market is required to reach out/apply/request, leaving the other side of the market to accept or

reject the application (e.g., guests must “Request to Book” on Airbnb, and women must send

the first message on the dating platform Bumble).

The evidence strongly suggests that the choice of search design can be critical for the success
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of the platform in the presence of search frictions. In fact, the impact of search frictions has

been documented in the context of AirBnB [12], Upwork [18] and TaskRabbit [10]. [10] further

demonstrates the importance of search environment design; it finds a significant reduction of

search costs and increase in the number of matches formed (“match efficiency”) as a consequence

of re-design of TaskRabbit in the spring of 2014, a key component of which was a change from

taskers bidding on jobs, to clients inviting taskers. In this paper, we aim to provide a theoretical

framework to understand the impact that different design choices have on the overall welfare

of market participants, and hence guide platform design. In particular, we take the point of

view of a monopolistic platform that, given a set of market characteristics (i.e., volume of agents

on each side, screening costs, agent types, variation in preferences, etc.), chooses a design to

maximize welfare.1

Our model. Our first contribution is our model of two-sided matching without transfers,

mediated by a platform (Section 2). Our model, while stylized, captures two distinctive features

of these markets: dynamic arrivals and departures, and strategic agents on each side of the

market who have idiosyncratic values for matching which that can only be discovered after

incurring a cost; this allows us to capture agent-pair level heterogeneity in preferences (“beauty

lies in the eye of the beholder”) that the platform cannot uncover a priori, which is a key

feature of our model. Agents on both sides of the market can choose whether to issue proposals,

and can also choose whether to screen before issuing/accepting proposals. If a match occurs,

both agents leave the market. Agents unable to match over an extended period (exogenously)

leave the market. We consider stationary equilibria [17], where agent best responses are utility

maximizing solutions to their optimal stopping problem in the steady state of the market.

We study the welfare achieved under the equilibria that arise in this no platform intervention

setting, in which both sides are allowed to propose and uncover the idiosyncratic match values

via screening. Next, we consider the equilibria that arise under simple platform interventions

corresponding to the search environment designs discussed earlier. Specifically, we allow the

platform to block one or both sides from screening (leading to one-sided search or centralized

matching respectively), or to block a side from proposing (leading to a directional search design),

and ask if the platform can boost welfare via such interventions.

Main findings. We start by characterizing equilibria in the no intervention setting, and find

that three equilibrium regimes arise under no intervention: when screening costs are small

relative to idiosyncratic variation in match values, one side screens and proposes, and the other

side screens and accepts/reject incoming proposals; with medium-sized screening costs, one

side proposes without screening and the other side screens and accepts/rejects (similar to what

1We suppress issues of pricing and revenues here. If each agent (on either side) operates in a particular price
range (e.g., $25-30/hour on Upwork), it may be reasonable to think of the overall market as composed of a number
of submarkets, each corresponding to a relatively narrow price range, within which prices charged by agents do
not play a significant role. There may still be some tension between maximizing revenues and maximizing user
welfare, which we suppress, noting only that agent welfare is crucial even for a revenue maximizing platform,
since user retention depends on it.
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occurs under a one-sided search design); finally, with large screening costs, both sides of the

market propose and accept proposals without screening (equivalent to the outcome of centralized

matching).

Our main contribution is to show that, even with the simple interventions considered, suitable

interventions can significantly boost welfare in markets with asymmetries across the two sides

of the market, even if the agents on each side are ex-ante homogeneous. Externalities resulting

from selectivity by agents, both same-side and cross externalities, play an important role in

determining the welfare under different equilibria and designs. Selectivity by proposal recipients

can have a negative cross externality due to wasted screening effort by proposers. On the other

hand, selectivity in matching with scarce agents has a positive same-side externality because

it increases the effective availability of options on the same side. We next describe how the

interventions help in different settings.

In markets where agents on opposite sides of the market have different screening costs (Sec-

tion 3.1), but the two sides are otherwise identical, the platform is able to boost welfare by

selecting a high welfare equilibrium : (i) In a small screening cost regime, the platform should

block the side with higher screening costs from proposing, forcing the side with lower screening

costs to do so. This allows the side with higher screening cost to be somewhat selective, im-

proving their welfare, at a small cost to the lower-screening-cost side that now faces occasional

rejection, (ii) In a medium-sized screening costs regime, the platform should implement a one-

sided search design in which the side with lower screening costs chooses. The reason is that

the benefit to the higher-screening cost side of allowing it to screen is less than the consequent

negative externality on the the lower-screening cost side.

In unbalanced markets (Section 3.2), where the arrival rate of agents is faster on one side

(the long side) than the other side (the short side), but the two sides are otherwise identical,

we find (under mild assumptions) that the long side proposes in all equilibria. (This finding is

facilitated by our consideration of stationary equilibria in a setting with dynamic arrivals and

departures.) Proposals by agents on the long side are accepted only rarely, hence agents on the

long side cannot afford to be too selective, which hurts them in addition to the risk they face of

dying without matching. We find that the platform can significantly boost welfare by preventing

the long side from proposing. This creates new equilibria in which the long side is able be more

selective when considering incoming proposals, as the risk of rejection is eliminated (though the

risk of dying without matching remains). This intervention provides a significant welfare boost

to the long side at a small cost to the short side (which now faces infrequent rejection).

Finally, we study markets with vertical differentiation (Section 4) by allowing the long side of

the market (call them workers) to have two quality levels, top and bottom, where top workers are

fewer than employers (employers are ex ante identical). The platform knows the quality of each

worker and, under no intervention, makes this information visible to the employers. In the re-

sulting equilibrium, the bottom workers suffer low welfare due to two equilibrium features, which

hold even when screening costs vanish: bottom workers propose without screening since most of

their proposals are ignored by employers waiting for a dream match to a top worker, and further,

some of these employers who are waiting for a dream match end up leaving unmatched, reducing
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the number of employers available to match with bottom workers. Our dynamic model, with

populations of different agents who are present in the market being endogenously determined,

enables us to identify these phenomena. We next identify a number of different interventions

that the platform can employ to improve welfare. As in the case of unbalanced markets with no

vertical differentiation, the platform is able to boost to welfare by preventing the workers from

proposing, thus allowing bottom workers to be somewhat selective. The platform can further

increase welfare by hiding the types of workers from employers, because employers no longer

wastefully die while waiting to match with a top worker. Importantly, the boost in welfare

of bottom workers is possible without significantly hurting any other type of agent; a Pareto

improvement of welfare occurs in the limit of vanishing screening costs.

1.1 Related Literature

The present work draws inspiration from the literatures on search frictions in labor markets

(which motivates our model of search), work on two-sided platforms (which highlights the role of

externalities), and the stable marriage literature (which studies heterogeneous agent preferences

and market design concerns). We discuss each of these in turn.

The search frictions literature has traditionally focused on macro level job growth and unem-

ployment under search frictions, using relatively crude models of agent level behavior (e.g., see

[24]). In typical models, agents meet one another randomly (in direct proportion to their mass

in the unmatched pool). Each agent is assumed to have an inherent quality which represents her

desirability as a match partner, and this leads to assortative matching in equilibrium. Search

is costly due to the time it takes to meet a potential partner such that a match can occur. In

the current work, we incorporate agent qualities (Section 4) but focus on heterogeneity in agent

preferences, the key search cost being the cost of screening to learn the idiosyncratic utility

for a potential partner. We study not only the structure of the equilibria that arise, but also

what design a matching platform can deploy to improve the equilibrium welfare of agents, in

other words, we are focused on the impact of the matching technology (“search environment”)

on market performance.

The literature on platforms (e.g. [25, 15]) has focused on platform-level effects of features

like participation, and issues of attracting users and competition between platforms, and pricing.

This line of work zooms in on the role of externalities, particularly cross-side externalities, while

using crude agent-level models. In particular, it suppresses the search for partners, and does

not lend itself to understanding the role of search environment design.

The stable marriage literature [13, 28, 29, 2] has focused on two-sided heterogeneity in agent

preferences (“beauty lies in the eye of the beholder”) and market design issues, but suppressed

search related concerns. There has been some work on signaling in matching markets when there

is a constraint on the number of signals (e.g., [9, 8]). In contrast, we explicitly model search

costs.

The operations literature (including work on inventory management [30], revenue manage-

ment [31], dynamic programming [6] and queueing [3]) has built a deep understanding of dynam-
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ics and decision making, but has traditionally focused on cases in which units on one side of the

market (usually representing inventory/products/servers) do not have strategic considerations

(e.g., inventory units can be purchased and sold, whereas agents may decide whether to partici-

pate and whom to match with). Recent papers explore how operational decisions can be used by

a platform to improve its performance, e.g., [5, 14]. Perhaps the one most related to our work is

the paper by Allon et al [1]. They find that improving operational efficiency of a platform may

reduce market efficiency due to negative externalities, similar in spirit to some of our findings

albeit in a very different setting; while they consider a buyer-seller setting, where the seller sets

a price and is indifferent as to whom he is serving, we consider a two-sided matching market,

where agents on both sides have heterogeneous preferences over agents on the other side. Our

equilibrium concept draws upon the notion of mean field equilibrium which has been effectively

employed in the operations literature to study complex dynamic games involving many players

[19, 4].

One of the interventions we suggest in the current paper involves hiding information. Several

papers [23, 21] find that hiding information about market participants can serve to prevent the

market from unraveling or to reduce cherry-picking. A recent concurrent paper [27] also explores

the benefit of hiding information, albeit in a buyers-sellers setting. Our findings on the benefits

of hiding information are somewhat similar in spirit; we find that the platform can induce agents

to consider a larger set of potential partners by hiding tier information.

2 Model

We model a dynamic two-sided matching market without transfers, mediated by a platform,

with agents on each side being ex-ante homogeneous. (Later, in Section 4, we describe and

study a model with vertical differentiation, where the platform knows agent quality.)

We first informally describe a setting with discrete agents, describing events and actions at

the level of individual agents in Section 2.1. Section 2.2 specifies our formal model, which defines

the system level evolution of a continuum of agents based on the motivation in Section 2.1.

2.1 Informal motivation

We refer to the two sides of the market as workers and employers. Workers arrive at rate λw

and employers arrive at a rate λe. When a match forms, the concerned agents leave the market

immediately; we describe the dynamics of search and match formation below. Unmatched agents

leave due to “death” exogeneously at a (small) rate µ > 0, common across all agents.

Each agent i has an idiosyncratic match value uij for every agent j on the other side. (This is

different from uji, the value that j would derive if matched with i. In our benchmark model, uij

is independent of uji.) We assume that the uij ’s are independent identically distributed (i.i.d.)

with distribution F for workers over employers, and i.i.d. with distribution G for employers

over workers. For simplicity, we focus on the case where both F and G are Uniform(0, 1). We

assume that F and G are common knowledge among agents and the platform, whereas uij ’s are
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unknown a priori. Given the opportunity, an agent i can privately learn uij for any j on the

other side by spending a screening cost, which is cw if i is a worker and ce if i is an employer.

Dynamics of search and matching, and agents’ strategies. Each agent has a Poisson

“opportunity” clock of rate 1. Each time an agent i’s clock ticks, she can (costlessly) request to

view a “candidate” –an available agent on the other side, unexplored by i thus far–, in which case

the platform shows i a uniformly random candidate (recall agents are ex ante homogeneous), if

any is available. Agent i can spend the screening cost to learn her idiosyncratic valuation uij

for j, or not screen. Either way, agent i then decides whether to propose to j. If i proposes, her

proposal is conveyed to j. In turn, agent j decides whether to spend the screening cost to learn

uji, and then whether to accept i’s proposal. If j accepts, a match is formed and the pair leaves

the market, else both agents stay. All these events occur instantaneously after a clock ring.

An agent’s strategy is specified by: (i) Does she request a candidate when an opportunity

arises? Does she screen candidates? (ii) If she receives a proposal, does she consider it? Does

she screen the proposer? (iii) When she screens, what is her minimum acceptable match utility

(her “threshold”)?

Equilibrium concept. We study stationary equilibria (see Section 2.3), in which all agents

are playing best responses to the steady state volume of agents following each strategy.2 (In a

large market, all stationary equilibria can be captured by considering the case where individual

agents play deterministic time-invariant strategies, so we restrict attention to this subclass of

agent strategies. Also, any agent best response will involve an acceptability threshold equal

to the continuation value, and hence we restrict attention to agent strategies where a single

threshold is used post-screening: whether for proposing or for accepting/rejecting an incoming

proposal.) We further consider an equilibrium refinement (“evolutionary stability”) that rules

out implausible equilibria.

Platform interventions considered. We allow the platform to intervene by constraining

agents’ actions in specific ways:

• Shutting down screening : The platform can prevent agents on one or both sides of the

market from screening, which we term a one-sided search or a centralized matching design

respectively (see Section 1).

• Directional search: When agents on both sides of the market are allowed to screen, this

is a two-sided search design. Even here, the platform may constrain agents by preventing

agents on one side of the market from proposing.

In each setting considered, we characterize the equilibria that arise under no intervention,

and compare them with equilibria under each of the considered platform designs. We formally

2The positive death rate ensures that the market reaches a steady state. The clock speed of 1 and death
rate of µ together lead to each agent having a large number Geometric(µ/(µ + 1)) − 1 = Θ(1/µ) opportunities
during their lifetime. In the case of unbalanced markets, we will find that agents on the long side can see only
Geometric(βµ)− 1 where limµ→0 βµ = β > 0 candidates during their lifetime, due to unavailability on the other
side, leading to a probability of matching before dying that is bounded away from 0 and 1, as expected.
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define the model and the equilibrium concept next. (The initial part until Eq. (1) is most

significant.)

2.2 Formal description

There is a continuum of workers and employers, with arrival flow λw and λe respectively. Agents

select a deterministic strategy upon arrival, which is assumed to be fixed throughout their

lifetime (see Section 2.1).

Definition 1 (Agents’ strategies). We consider agent strategies s = (a, θ) defined by:

1. A deterministic selection a = (ai, ao), chosen from among 3× 3 = 9 possibilities:

(i) The selection ai ∈ {I,A, S+A/R} specifies how incoming proposals are handled: whether

the agent ignores them (I), accepted without screening (A), or screened and then ac-

cepted/rejected (S+A/R).

(ii) The selection ao ∈ {N,P w/o S, S+P} specifies how opportunities are handled: whether

the agent passes on the opportunity (N), or proposes without screening (P w/o S), or

screens and then proposes or not (S+P).

2. A deterministic threshold θ used to screen participants: the agent proposes/accepts a pro-

posal if and only if the match value she learns from screening exceeds θ.

That is, besides the choice of threshold, a strategy involves a choice a from a finite set of

options. Note that an intervention in our setting will result in a restriction on the allowed a’s

on one or both sides. We denote the finite sets of allowed a’s for workers and employers (under

the chosen platform intervention, if any) by Sw and Se respectively.

We next describe the dynamic evolution of the system. We assume up front that all agents

on the same of the market whose strategy involves screening (either to issue a proposal or to

accept one) will use the same threshold. (Again, we can do this because an agent’s threshold

should match her continuation value in any best response, cf. Section 2.1, and since agents on

a particular side are ex-ante symmetric, their continuation values must agree in any equilib-

rium.) We further find it convenient to fix θw and θe (the thresholds for workers and employers

respectively), and suppress the fact that θ is part of the strategy by identifying s with a. For

a pair of thresholds (θw, θe), for each sw ∈ Sw let fw(sw) denote the fraction of workers who

adopt strategy sw upon entering (this fraction does not change with time), and define fe(se)

analogously.

Dynamic evolution of the system. Let Nw(sw) be the mass of workers in the system

following strategy sw, and let Nw =
∑

sw∈Sw Nw(sw) denote the total mass of workers in the

system. Define Ne(se) and Ne analogously. Further, let N̄w = (Nw(sw))s∈Sw , N̄e = (Ne(se))s∈Se ,

and let N̄ = (N̄w, N̄e).
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The rate of change of Nw(sw) is given by

dNw(sw)

dt
= fw(sw)λw −Nw(sw)µ− ρw(sw; N̄) ∀sw ∈ Sw , (1)

where the first term on the right captures the arrival flow of agents following strategy sw, the

second term captures the departure-upon-death flow of such agents, and the last term, ρw(sw; N̄),

denotes the flow of matches formed involving such agents, which we describe next. (The rate of

change of Ne(se) in terms of ρe(se; N̄) is analogous.)

Matching formation rates. We define ηw(sw, se) to capture the probability that, when a

worker following sw is presented with a candidate employer following se, this results in a match.

ηw(sw, se) =
(
I(sw involves P)−F (θw)I(sw involves S+P)

)(
I(se involves A)−G(θe)I(se involves S+A/R)

)
.

(2)

The first term on the right captures the probability that, when presented with a candidate, a

worker following strategy sw proposes; the second term captures the probability that an employer

following se will accept such a proposal (recall that we have assumed uij independent of uji).

Let ρw(sw, se; N̄) denote the flow of matches formed between workers following sw and em-

ployers following se as a result of proposals issued by the workers; ρe(se, sw; N̄) is analogous.

Clearly ρw(sw; N̄) =
∑

se∈Se
(
ρw(sw, se; N̄) + ρe(se, sw; N̄)

)
, and similarly for ρe(se; N̄). We

now define ρw(sw, se; N̄) and ρe(se, sw; N̄). Consider the following cases:

1. Nw > 0 and Ne > 0: In this case, workers following sw collectively are offered opportuni-

ties (employers) following strategy se at flow rate Nw(s)Ne(se)Ne
(consistent with each agent

being presented with a candidate on the other side uniformly at random at a rate of 1),

and a fraction ηw(sw, se) of this flow results in matches. Therefore,

ρw(sw, se; N̄) = Nw(sw)
Ne(se)

Ne
ηw(sw, se), and similarly for ρe(se, sw; N̄) . (3)

2. Ne = 0: Suppose Ne = 0 (the case where Nw = 0 is analogous). Since Ne = 0, the

flow of opportunities to employers is 0 so the flow of matches formed due to proposals by

employers is 0, implying ρe(se, sw; N̄) = 0 for all se, sw.

Suppose that Ne remains zero for a non-zero interval of time. Then it must be that the

flow of employer candidates following se shown to workers is

λefe(se)/(Fraction of these occurrences leads to a match)

= λefe(se)
Nw∑

sw∈Sw Nw(sw)ηw(sw, se)
.
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Since a fraction Nw(sw)/Nw of this flow goes to workers following sw, we define

ρw(sw, se; N̄) = λef(se)
Nw(sw)ηw(sw, se)∑

sw∈Sw Nw(sw)ηw(sw, se)
⇒ ρe(se; N̄) = λef(se). (4)

Now, the overall flow of employer candidates to workers should not exceed Nw. Thus, the

necessary condition for Ne remaining zero is

∑
se

λefe(se)Nw∑
sw
Nw(sw)ηw(sw, se)

≤ Nw ⇔
∑
se

λefe(se)∑
sw
Nw(sw)ηw(sw, se)

≤ 1 . (5)

It is easy to check that this condition is also sufficient to ensure that Ne remains zero.

The complementary case
dNe

dt
> 0 arises if and only if condition (5) is violated. The

definition of ρw(sw, se; N̄) in this case is deferred to Appendix A.1.

Agents’ utilities. For every sw ∈ Sw, let Lw(sw) ≥ 0 denote the steady state mass of workers

in the system using strategy sw induced by these thresholds and fractions, and define Le(se)

similarly for employers. Further, let L̄w = (Lw(sw))s∈Sw , L̄e = (Le(se))s∈Se , and let L̄ =

(L̄w, L̄e). In other words, L̄ is a fixed point of Eq. (1).

We define expected utility Uw(sw; L̄) of workers following strategy sw ∈ Sw in steady-state

based on the informal model discussed in Section 2.1, in terms of the L’s and ρ’s. In particular,

the expected utility is defined based on:

• Expected benefit from matching : the expected match utility conditional on matching, times

the fraction of workers who match (as opposed to dying). We separately consider matches

due to incoming and outgoing proposals. The fraction of workers following strategy sw

who match as a result of issuing a proposal is
∑
se∈Se ρw(sw,se;L̄)

λwfw(sw) , and their expected match

utility (conditional on matching) is

γw(sw) = I(sw involves S + P)E[uwe|uwe ≥ θw] + (1− I(sw involves S + P))E[uwe],

That is, if they are screening and match, their expected utility is the expected value uwe

given that uwe exceeds the threshold; otherwise, it is just the expectation of uwe. On

the other hand, the fraction of workers following strategy sw who match as a result of

an incoming proposal is
∑
se∈S ρe(se,sw;L̄)

λwfw(sw) , and their expected match utility conditional on

matching is

γ̂w(sw) = I(sw involves S + A/R)E[uwe|uwe ≥ θw] + (1− I(sw involves S + A/R))E[uwe].

Then, the expected utility from matching is∑
se∈Se ρw(sw, se; L̄)

λwfw(sw)
γw +

∑
se∈S ρe(se, sw; L̄)

λwfw(sw)
γ̂w,
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i.e., the match utility contribution from outgoing proposals plus that of incoming proposals.

• Expected cost of screening : the mass of employers screened per unit mass of workers

during their lifetime in the system (notionally, the expected number of employers screened

by a worker during his lifetime), times the screening cost cw. We separately consider

costs incurred by screening opportunities from those due to incoming proposals. For each

match that resulting from an incoming proposal, workers screen 1
1−F (θw)I(sw involves S + A/R)

proposals in expectation. Further, workers following strategy sw match due to incoming

proposals at rate
∑

se∈S ρe(se, sw, L̄). Hence, a mass λwfw(sw) of workers following sw

will collectively screen a mass

υ̂w(sw) =

∑
se∈S ρe(se, sw, L̄)

1− F (θw)I(sw involves S + A/R)

of incoming proposals at a cost cw per unit. Thus, the expected cost of screening incoming

proposals for workers following strategy sw is cw
λwf(sw) υ̂w(sw).

We now consider the cost of screening candidates when opportunities arise. Let S ′e be the

set of employer strategies that consider incoming proposals. Note that since workers are

now proposing, each such match with an employer following strategy se ∈ S ′e requires a

worker to screen 1
ηw(sw,se)

opportunities in expectation. Therefore, the flow rate at which

workers following sw screen candidates who would consider their proposals is given by∑
se∈S′e

ρw(sw,se;L̄)
ηw(sw,se)

. However, workers might also waste search effort in screening employers

who ignore all incoming proposals. In fact, a fraction

∑
se∈Se\S′e

Le(se)

Le
of the proposals get

ignored, and the rate at which proposals are actually screened is then3

υw(sw) =

∑
se∈S′e

ρw(sw, se; L̄)

ηw(sw, se)

( Le
Le −

∑
se∈Se\S′e Le(se)

)
.

Overall, the expected cost for screening opportunities is cw
λwf(sw)υw(sw).

By the preceding discussion, the expected utility of workers following strategy sw ∈ Sw can

be formally defined as:

Uw(sw; L̄) =

∑
se∈Se ρw(sw, se; L̄)

λwfw(sw)
γw +

∑
se∈Se ρe(se, sw; L̄)

λwfw(sw)
γ̂w −

cw
λwf(sw)

(υw(sw) + υ̂w(sw))

(6)

Finally, average welfare in steady state, the performance metric used in the paper, is defined

as the average expected utility of arriving agents across the two sides.

Average welfare(L̄) =
λe
∑

se∈Se fe(se)Ue(se; L̄) + λw
∑

sw∈Sw fw(sw)Uw(sw; L̄)

λe + λw
. (7)

3If Le =
∑
se∈Se Le(se), all proposals are ignored and thus the workers’ match rate as a result of outgoing

proposals is zero. We then assume that, in that case, the whole expression is zero.
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2.3 Equilibrium concept: Evolutionarily Stable Stationary Equilibria

We draw upon the notions of mean field equilibrium (effectively employed in the operations

literature to study complex dynamical games involving many players [34, 19, 4, 7]), and sta-

tionary equilibrium, introduced by Hopenhayn [17], which considers game-theoretic equilibria

corresponding to dynamical steady state (again in a large market limit). These equilibrium no-

tions relax the informational requirements of agents, requiring them only to know the aggregate

description of the system, which makes them behaviorally appealing and tractable.

Definition 2 (Stationary equilibrium). Fix the distributions of agents’ strategies {fw(s)}s∈Sw
and {fe(s)}s∈Se and the thresholds θw and θe, and suppose L̄w = (Lw(sw))s∈Sw , L̄e = (Le(se))s∈Se,

L̄ = (L̄w, L̄e) is a steady state of Eq. (1). Then, {{fw(s)}s∈Sw , {fe(s)}s∈Se , θw, θe, L̄} con-

stitute a stationary equilibrium (SE) if for each sw ∈ S such that fw(sw) > 0, it holds

that sw is a best response for a worker assuming that the system is in steady state L̄, i.e.

sw ∈ arg maxs∈S Uw(sw; L̄), and similarly for employers.

Note that the definition requires a steady-state. Thus, each of our results claiming a sta-

tionary equilibrium characterizes the corresponding steady state as part of the proof.

We further refine our equilibrium concept to focus on the subset of stationary equilibria

that are evolutionarily stable (a classic reference is [26]). Intuitively, an evolutionary stable

equilibrium is robust in the sense that, if the mix of agents N̄ deviates slightly from the steady

state value of L̄ (slightly changing the utility derived from different strategies) and incoming

agents choose their strategies as a best response to the current environment, this reaction should

push the system back towards L̄. This refined rules out implausible equilibria under which both

sides of the market mix between proposing and not proposing (starting at such an equilibrium,

a tiny perturbation leading to an increase in the volume of workers who are proposing will make

it a best response for employers to not propose, which, in turn, will make it a best response for

workers to propose). We formalize the notion of evolutionary stability in Appendix A.2.

3 Ex ante homogeneous agents on each side

As per the model in Section 2, we consider ex-ante homogeneous agents on each side. Through-

out the rest of the section, we think about the agents’ strategies in equilibrium as a function of

the screening cost. For every fixed pair of screening costs, we consider the limit of small death

rate µ→ 0.

We first consider the equilibria in the fully symmetric market (same arrival rate λ, screening

cost c, and valuation distribution Uniform(0, 1) on both sides of the market) which allows us

to illustrate key features of our model. (In the interest of space, we defer the full discussion to

Appendix B and only summarize the main findings.)

• In each equilibrium (except when c is large), one side proposes and the other side waits for

incoming proposals. (The requirement of evolutionary stability rules out equilibria where

one or both sides mix between proposing and waiting for proposals.)
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• Both sides screen when the search cost is small, whereas only the side receiving proposals

screens for intermediate search costs. When screening costs are large, both sides propose

without screening and also accept incoming proposals without screening.

• The utility of the side proposing (say workers) is smaller than the utility of the side waiting

for proposals (employers). The reason is that, when proposing, there is a risk that the

proposal gets rejected if the other side is screening, i.e., there is a negative externality of

screening by recipients on proposers. The workers can internalize the impact of rejections

by considering an inflated effective screening cost, which is c times the expected number

of proposals that must be issued until one is accepted (see Lemma 1).

• In this setting, the platform cannot increase average welfare by implementing one of the

proposed interventions. If the platform blocks a side from issuing proposals, the equilib-

rium that arises is its symmetric counterpart, and due to market symmetry, the average

welfare is unchanged. If the platform blocks one side from screening, the welfare decreases

(if both sides were screening) or remains unchanged (if one side was not screening).

In the next subsections we see that, when markets are asymmetric, interventions can be useful

to either select the highest welfare equilibrium, or create equilibria with higher welfare.

3.1 Different screening costs on the two sides

We now consider the case where the two sides face different screening costs. Without loss of

generality, we assume that the screening cost for workers is greater than that for employers; let

cw = αce for some α ≥ 1. We assume a balanced market as before: workers and employers arrive

at the same rate λ, and match values are i.i.d. Uniform(0, 1) on both sides. As usual, we are

interested in the limiting description of the equilibria as µ → 0, for each fixed α and ce. Note

that as µ → 0, all workers and employers will leave the market matched. Hence, the difference

between equilibria is in which side proposes and whether each side screens or not.

As workers face a larger screening cost, all else being equal, they cannot afford to be as selec-

tive as employers. This is consistent with our finding (Corollary 1 below) that when screening

costs are small, the average welfare is higher if employers (and not workers) propose, as then

workers do not face the risk of rejection, allowing them to be at least somewhat selective, while

inflating the effective screening cost faced by employers by only a small factor. However, for

medium sized screening costs, the highest welfare equilibrium is one in which only the employers

screen (whereas the workers propose without screening).

The following theorem characterizes the equilibria for different values of screening cost ce

(holding α fixed). (In the interest of readability, we omit the characterization of the steady state

L̄ from the statements of our theorems and defer it to the proofs. Thresholds θw and θe are

identical to expected utility for workers and employers respectively.)

Theorem 1 (No intervention equilibria). Consider a market with λw = λe = λ and cw = αce

for some α ≥ 1. For agents on both sides, their valuations for potential partners are drawn i.i.d.
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Figure 1: Welfare of equilibria with unequal screening costs cw = 2ce, same arrival rate on both
sides, and i.i.d. U(0, 1) valuations on both sides of the market. In the legend, S+P=screen and
propose, S+A/R=screen and then accept or reject.

from a U(0,1) distribution. Fix α, and consider the limit µ → 0 for each fixed ce. Then, the

following are the stable stationary equilibria as a function of ce:

1. (employers screen + propose, workers screen + accept/reject) with thresholds θe = 1 −
(2ce/α)1/4 and θw = 1−

√
2αce. This is an equilibrium for ce ∈

(
0,min

(
1

8α ,
α
32

))
.

2. (employers propose w.o. screening, workers screen + accept/reject) with threshold θw =

1−
√

2αce. Employers get an expected utility of 1/2. This is an equilibrium for ce ∈
[
α
32 ,

1
8α

)
if the interval is non-empty (α < 2).

3. (employers screen + propose, workers accept w.o. screening) with threshold: θe = 1−
√

2ce.

Workers get expected utility 1/2. This is an equilibrium for ce ∈
[

1
8α ,

1
8

)
.

4. (workers screen + propose, employers screen + accept/reject) with thresholds: θw = 1 −
(2α2ce)

1/4 and θe = 1−
√

2ce. This is an equilibrium for ce ∈
(
0, 1

32α2

)
.

5. (workers propose w.o. screening, employers screen + accept/reject) with threshold: θe =

1−
√

2ce. Workers get expected utility 1/2. This is an equilibrium for ce ∈
[

1
32α2 ,

1
8

)
.

6. Agents on both sides propose without screening, and accept all incoming proposals without

screening. This happens when cw ≥ 1
8 . Workers and employers get expected utility 1/2.

The proof of Theorem 1 can be found in Appendix C. As a reference, Figure 1 illustrates

the average agent welfare under the different equilibria when α = 2.

When c is close to zero, the only equilibria are those in which one side proposes and both

sides screen. When both these equilibria exist, the average welfare is higher when employers play

the role of proposers. To see why, compare the thresholds of workers and employers when they

are the ones waiting for incoming proposals: employers use a higher threshold than workers, as

employers’ screening cost is smaller. Hence, when workers are proposing, not only do they face

a higher cost per opportunity screened, but also a smaller likelihood of their proposals being
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accepted. These two effects cause workers’ selectivity and expected utility to decline rapidly

with ce (recall that cw/ce is fixed) when they are proposing, and for ce ≥ 1/(32α2) workers

propose without screening.

For intermediate values of ce, in particular for ce ∈
[

1
32α2 ,min

(
1

8α ,
α
32

))
, equilibria 1 and

5 co-exist: (employers screen + propose, workers screen + accept/reject), and (workers pro-

pose w.o. screening, employers screen + accept/reject). For values of ce just above 1/(32α2),

the welfare is larger under the former equilibrium; workers screen incoming proposals and this

improves worker’s welfare (relative to not screening) more than it hurts employers (recall the

negative externality on proposers of selectivity by recipients). However, as ce increases, the neg-

ative externality on employers dominates and the equilibrium (workers propose w.o. screening,

employers screen + accept/reject) has a larger average welfare.4

From the previous discussion, it should be clear that for small and medium values of c and

α > 1, the platform can use an appropriate intervention to select a high welfare equilibrium.

Corollary 1 (Selecting good equilibria via design). Consider again the setting of Theorem 1

and the equilibria described there.

• For ce ≤ c∗, the welfare maximizing equilibrium is Equilibrium 1. The platform can elim-

inate other equilibria by preventing workers from proposing.

• For ce ∈ (c∗, 1/8), Equilibrium 5 maximizes welfare. The platform can implement one

sided search where only employers choose to obtain this welfare (and outcome) in the

unique resulting equilibrium.

• For ce ≥ 1/8, equilibrium 6 maximizes welfare. The platform can implement centralized

matching (agents do not choose) to obtain this welfare (and outcome).

Here c∗ is defined as

c∗ = c∗(α) =
1

32

(√
2 +

(
1− α−1/4

)2
+ 1− α−1/4

)4
(8)

Here, c∗ is chosen such that Equilibrium 1 and Equilibrium 5 have identical welfare when

ce = c∗. Note that implementing the suggested interventions never decreases the average welfare.

Furthermore, the improvement in average welfare can be substantial, for instance we get a 14.6%

average welfare improvement when α = 2 and ce = 1/16.

3.2 Unbalanced markets

We now study the effect of unequal arrival rates on the two sides of the market. Assume,

without loss of generality, that workers arrive faster than employers. We find that if the market

imbalance is not too small, workers (the long side) propose in all equilibria under no intervention.

4If α < 2, Equilibrium 2 coexists with Equilibrium 5 for ce ∈
[
α
32
, 1
8α

)
, but has smaller welfare. Further,

Equilibrium 3 coexists with Equilibrium 5 for ce ∈
[

1
8α
, 1
8

)
but has identical welfare. So Equilibrium 5 is the

highest welfare equilibrium for ce values all the way until 1/8.
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(We highlight that we are only able to capture this phenomenon due to the dynamic nature of

our model.) Therefore, workers face a higher effective screening cost, which results in them

not being able to be selective, in addition to the risk of not matching. However, the platform

can significantly alleviate this issue by preventing workers from proposing. This creates an

equilibrium where employers propose, allowing workers to be more selective and boosting worker

welfare significantly, at a small cost to employers.

We consider an unbalanced market that has identical screening costs and valuation distribu-

tions on the two sides.

Theorem 2 (No intervention equilibria). Consider a market with λe = 1 and λw = λ for

λ > 1. For agents on both sides, their valuations for potential partners are drawn i.i.d. from a

Uniform(0,1) distribution. Both sides face the same screening cost of c > 0. Then, the following

is the limiting description of a subset of stable stationary equilibria as a function of c (considering

µ→ 0 for each fixed c):

1. (workers screen + propose, employers screen + accept/reject) with thresholds θw = ξ(λ,
√

c
2)

and θe = 1−
√

2c. This is an equilibrium for c ∈ (0, 2c̄2).

2. (workers propose w.o. screening, employers screen + accept/reject) with threshold θe =

1−
√

2c. Worker expected utility is 1/(2λ). This is an equilibrium for5 c ∈
[
2c2, 1

8

)
.

3. Agents on both sides propose without screening, and accept all incoming proposals without

screening. This happens when c ≥ 1
8 . Employer expected utility is 1/2 and worker expected

utility is 1/(2λ), where

ξ(λ, c) =
λ−

√
λ2 − 2λ(1− 2c) + (1− 2c)

2λ− 1
=
λ−

√
(λ− 1)2 + 2c(2λ− 1)

2λ− 1
(9)

(the function ξ(λ, c) captures the equilibrium threshold for accepting a proposal used by the work-

ers when employers are proposing),

c̄ =
1

4

(
1− λ

1 +
√

1 + (λ− 1)2

)
, and c = 1/(8λ2) . (10)

Furthermore, if λ ≥ 1.25, there are no other stable equilibria.

The proof of Theorem 2 can be found in Appendix D. (We also state and prove Theorem 4,

that captures additional equilibria in this setting for λ < 1.25.) We describe the main findings

next. As a reference, Figure 2 illustrates the welfare under the different equilibria when λ = 2.

Under the equilibria described, the expected utility of employers is greater than the expected

utility of the workers. An obvious reason for this is that all employers match (as µ→ 0), while

only a fraction 1/λ of workers match. The risk a worker faces of dying without matching has

5Depending on λ and c, employers may or may not want to propose if they are given the chance. However,
this does not play a significant role because all but a vanishing fraction of employers will match due to incoming
proposals. In particular, as µ→ 0, employers would only propose if workers do not screen the incoming proposals.
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the additional consequence that even though both sides are allowed to propose, there is no

equilibrium where only employers propose for λ > 1.25. The intuition is that it is always a best

response for a worker to reach out to an employer if he gets the opportunity to propose, as

this would increase his chances of matching before dying. Given that workers are thus active,

employers would rather wait for incoming proposals than screen and propose. (We remark

that our approach that considers the endogenously determined steady state, as opposed to

an exogenously fixed ratio of workers to employers present as in flow economy models [22], is

instrumental in obtaining this result.) Second, competition for scarce employers prevents workers

from being too selective in equilibrium, which is further exacerbated by the fact that workers

are proposing and thus facing higher effective screening costs (see Lemma 1). As a result, for

all but very small values of c (in particular, for c ≥ 2c̄2) workers propose without screening and

get no better than a random employer when they are lucky enough to match.

We find that the platform is, in most settings, able to significantly boost the welfare via

intervention by blocking workers from proposing and thus forcing the employers to propose. In

contrast with the case with different screening costs, this intervention creates new equilibria if

the imbalance is not too small (λ ≥ 1.25). These new equilibria are characterized next.

Theorem 3 (Intervention equilibria). Consider the market described in the statement of Theo-

rem 2. If workers are not allowed to propose, the following are all the stable stationary equilibria

as a function of c (as µ→ 0 for each fixed c.):

1. (employers screen + propose, workers screen + accept/reject) with thresholds θw = ξ(λ, c)

and θe = 1−
√

2c/(1− θw). This is an equilibrium for c ∈ (0,min(c̄, ĉ)).

2. (employers screen + propose, workers accept w.o. screening) with threshold θe = 1−
√

2c.

Each worker earns expected utility 1/(2λ). This is an equilibrium for c ∈ [c, 1
8).

3. (employers propose w.o. screening, workers screen + accept/reject) with threshold θw =

ξ(λ, c). Each employer earns expected utility 1/2. This is an equilibrium for c ∈ [ĉ, c̄), and

only exists if ĉ < c̄ which occurs for λ < 1.46.

4. (employers propose w.o. screening, workers accept w.o. screening). This is an equilibrium

for c ≥ 1/8. Agents on both sides propose without screening, and accept all incoming

proposals without screening. Employer expected utility is 1/2 and worker expected utility

is 1/(2λ). This happens when c ≥ 1
8 .

where , c̄ and c are as per Eq. (10), ξ(λ, c) is defined in Eq. (9), and

ĉ =
8λ− 7

32(2λ− 1)
. (11)

However, it might not always be beneficial for the platform to implement the proposed

intervention of blocking workers from proposing. Based on Theorems 2 and 3, our design rec-

ommendation is as follows.
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Figure 2: Equilibria with symmetric screening cost c, workers arriving λ = 2 times as fast as
employers, and i.i.d. Uniform(0, 1) valuations on both sides of the market. (Left) Average agent
welfare, see (7) for the definition. (Top Right) Employers’ welfare. (Bottom Right) Workers’
welfare. In the legend, S+P = screen and propose, S+A/R = screen and then accept/reject,
and (I) denotes that the equilibrium only exists under the proposed intervention.

Corollary 2. The platform can boost average welfare by preventing workers from proposing

if Theorem 3 Equilibrium 1 exists when workers are blocked from proposing, and the average

welfare6under this equilibrium is larger than that under the equilibria that can exist under no

intervention (Theorem 2 Equilibria 1 and 2 are the candidates).

We characterize the pairs (c, λ) for which the intervention helps in Appendix D.1. However,

it is worth noting that the welfare of employers slightly decreases under our intervention, as they

must now propose and risk rejection. On the other hand, the welfare of the workers increases,

since their effective screening cost decreases and they can thus be more selective, which further

turns out to have a positive externality on other workers.

Remark 1. We find that selectivity by agents on the long side has a positive same-side ex-

ternality; when a worker rejects an employer, this makes the employer available to match with

other workers. This externality leads to virtuous cycle in which selectivity by other workers in-

creases the availability of options for a particular worker, and allows her to be more selective.

This boosts the benefit from our proposed intervention. Another consequence of this externality

is that Equilibria 1 and 2 in Theorem 2 (and similarly in Theorem 3) co-exist for some c’s, with

Equilibrium 1 where workers screen resulting in higher welfare for workers.

Again consider λ = 2. The utility loss incurred by employers is less than 8%, for all possible

c. On the other hand, workers’ utility increases by up to 31%, and average welfare increases by

up to 10%; both maxima being achieved at c = 2c̄2.

6We average over agents arriving to the system. In this case, since all agents on the same side use the same
strategy, the average welfare at a given equilibrium is

(
λUw(sw; L̄) + Ue(se; L̄)

)
/(λ+ 1).

18



4 Vertical differentiation

We now augment the model from Section 3.2 to study the impact of vertical differentiation

by considering the simplest case, in which we have ex-ante homogeneous employers, and two

quality tiers of workers: top (high-quality) workers, and bottom workers. We consider a setting

where employers arrive faster than top workers but slower than workers overall, and find that our

dynamic model allows us to uncover many interesting new features under vertical differentiation.

Again, we identify suitable platform interventions to boost agent welfare. We briefly describe our

main findings here (see Appendix E for a full description including formal results and proofs).

Match utility uij is now the sum of the quality qj of agent j and an idiosyncratic (i, j)-

specific i.i.d. Uniform(0, 1) term privately discoverable by i upon spending a screening cost.

Agent quality, assumed to be a ∈ (0, 1) for top workers and 0 for bottom workers and for

employers (thus an employer has a positive probability of preferring a particular bottom worker

over a particular top worker), is known to the platform, and to agent herself; further, in the

no intervention setting the platform reveals quality information of potential matches to agents

(including allowing an agent who has an opportunity to request a candidate, to indicate a

preference ranking over quality tiers on the other side as part of the request). The main change

to the model described in Section 2 is that employers must now (1) decide what to do with

incoming proposals from agents from each quality tier and, (2) decide which tiers of workers

they are interested in and in what order, and for each such tier, whether they will screen or

propose without screening. We formally describe the augmented model with tiers, as well as the

main changes to the equilibrium concept in Appendix E, Section E.1.

Under no platform intervention, we find a unique equilibrium (under reasonable assumptions)

where (i) bottom workers propose without screening, (ii) top workers do not propose, and screen

and accept/reject incoming proposals, (iii) employers do not propose to bottom workers but,

given the opportunity, they screen an available top worker, and propose to him with threshold

θe = 1 −
√

2c. Employers split into two types based on how they respond to proposals from

bottom workers: reachers –who ignore proposals from bottom workers, and instead wait in

the hope of matching with a top worker at risk of dying without matching– and settlers, who

screen and accept/reject incoming proposals from bottom workers with a threshold of θe, and

consequently match with bottom workers in all but a vanishing fraction of cases (as µ → 0).

Bottom workers have low welfare in this equilibrium, due to two inefficiencies which persist even

as screening costs go to zero. First, a positive fraction of reachers end up dying unmatched

because they wait for an ideal partner (top worker) while ignoring all proposals from bottom

workers. This is wasteful since it reduces the number of matches formed, hurting bottom workers

(top workers all get matched). Second, bottom workers have most of their proposals completely

ignored (as opposed to being rejected after screening, which also occurs). This is due to an

inspection paradox: reachers, who wait for dream matches, stay longer in the system and, as

a result, at any given time, a large majority of employers in the system are reachers, causing

most proposals from bottom men to be ignored. This prevents the bottom workers from being

selective even for small values of c. We characterize the equilibrium when no intervention is
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Intervention θtw θe θbw Employers die Bottom workers can
or not choose or not

No intervention 1 1 1/(2λδ) Die! Can’t choose!

Workers can’t propose 1 1 1/(2λδ − 1) Die! Can choose

Identify employers who 1 1 1/(2λδ − 1) Die! Can choose
consider b-workers

Hide quality of workers, and 1 1 1/(2λ− 1) Don’t die Can choose
workers can’t propose

Table 1: Welfare under different interventions in markets with vertical differentiation, parame-
terized by λt

w, λ
b
w, λe and a ∈ (0, 1) where λe ∈ (λt

w(1 + a/2), λt
w + λb

w); we consider µ→ 0 and
then c→ 0. We use λδ = λb

w/(λe − λt
w(1 + a/2)) and λ = λb

w/(λe − λt
w). Note that λδ > λ > 1.

present in Appendix E, Section E.2.

We can relate these results with the ones obtained in Section 3.2. The behavior of agents

under equilibrium in the top submarket (reachers and top workers) resembles that in Theorem 2

equilibrium 1, where the long side screens and proposes.7 In the bottom submarket (settlers

and bottom workers), the behavior resembles that in Theorem 2 equilibrium 2, where the long

side proposes without screening. However, there is a major difference between the present case

and an unbalanced market without vertical differentiation. Here, bottom workers do not know

who the settler employers are when proposing. Further, since µ → 0 (and µ/
√
c → 0), an

inspection paradox is created: most of the employers present in the market are reachers who

ignore proposals from bottom workers. This makes it highly unattractive for workers to screen

before proposing even when c → 0, resulting in the welfare being low for bottom workers even

in this limit.

Furthermore, the inefficiencies we find appear related to phenomena observed in real online

platforms (we do not pursue a detailed mapping between our model and reality at this point).

[12] finds that searchers on Airbnb often leave the market although they could have found a

suitable partner. A similar effect has been uncovered in the context of O-Desk [18]. Consider

also some empirical findings from Tinder [33]: a third of men on Tinder report that they casually

“like” most profiles, cf. the equilibrium behavior of bottom workers. Women are much more

selective, and 59% of women (as compared to just 9% of men) report that they like fewer than

10% of all profiles that they encounter, cf. the equilibrium behavior of reacher employers. Less

than 1% of likes by men result in match (a match occurs when two users like each other),

whereas the corresponding number is over 10% for women, cf. our equilibrium finding that most

proposals by bottom workers are ignored.

To mitigate these inefficiencies, we propose the following interventions, see Table 1 (we focus

on µ→ 0 and then c→ 0 for simplicity):

• Block workers from proposing, regardless of their tier : As in the case without intervention,

there is a unique equilibrium with two types of employers arising in equilibrium: reachers

7The small modification is that here, an employer’s utility for a worker is uniformly distributed in (a, a+ 1).
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and settlers. Reachers seek to match with a top worker; if none is available, they just

wait in the system. Settlers first request a top worker and, if none is available, request a

bottom worker (since bottom workers are not permitted to propose). All workers screen

and accept/reject. In particular, bottom workers are now able to be selective, because they

receive proposals instead of having to actively reach out to workers. Although for c > 0 the

expected utility of employers slightly decreases, as c→ 0, blocking workers from proposing

helps bottom workers without affecting other agents. However, this intervention does not

fix the inefficiency that some employers (reachers) are dying unmatched.

• Identifying employers who will consider bottom workers: Recall that, under no interven-

tion, bottom workers cannot afford to screen as most of their proposals go to reachers in

steady state, who ignore them. To alleviate this, suppose the platform is able to iden-

tify settlers, and direct bottom workers’ search efforts towards such employers exclusively.

Bottom workers’ proposals are no longer ignored, and they can hence afford to screen

before proposing, improving their expected utility somewhat (employers and top workers

are unaffected). Again, the problem of some employers dying without matching persists.

• Hiding quality information and blocking men from proposing: The platform now not only

blocks workers from proposing, but also does not reveal to employers whether a worker is

a top worker or a bottom worker. In equilibrium, employers screen and propose, and top

and bottom workers screen and accept/reject. The limiting utilities for both top workers

and employers remain unchanged, but bottom workers’ utility exceeds that of the other

interventions (and that under no intervention). Bottom workers are able to be selective,

but also almost all employers match in equilibrium as they are able to either find a top

worker, or a bottom worker they like, increasing the fraction of bottom workers who match.

We remark that the intervention of hiding information fits well with what many dating

platforms do already: for instance, Tinder learns the attractiveness of a user’s profile,

and encodes this internally –but does not publicly reveal– in a vertical “Elo” rating (that

it uses to guide its recommendations), but does not reveal this rating to its users. We

further remark that completely hiding information quality information may not always be

the best approach. When there are multiple quality levels, the platform may maximize

welfare by providing partial quality information, allowing users to prune the consideration

set somewhat, but not to differentiate between those whom she can realistically “reach”

and those whom she can settle for. The platform may simulate this partial revelation

of quality information by a combination of recommendation engine design and keeping

quality information invisible.

5 Discussion

We focus on average welfare across both sides of the market, and suggest platform interventions

to improve this metric. One argument in favor of optimizing overall welfare is that platforms
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often have tools as their disposal to transfer welfare roughly via “charging” one group of agents

while subsidizing another group [11]. However, this may not be possible in certain settings, and

a potential concern may be that for a platform to compete successfully with other platforms, it

may need to focus on the welfare of a subset of agents (e.g., scarce agents). A piece of suggestive

evidence here is provided by the dating app Bumble, which requires women to send the first

message, may actually benefit men and hurt women slightly (see Section 3). One might think

that their design would attract more men while inducing women to prefer other dating platforms,

yet Bumble has a more balanced set of users (about 50-50) relative to other platforms where

the majority of users (60-70%) are male, suggesting pitfalls in natural approaches that consider

platform competition (nevertheless this is an interesting aspect to study [16]). Further, user

welfare is a primary objective for any platform in terms of attracting and retaining users, even

if the ultimate goal is maximizing revenues (but again, this is of interest to study).

One may ask if we can obtain similar insights in a simpler setup such as synchronous matching

game [16] or a flow economy [22], instead of taking on the challenge of studying a dynamic steady

state. It would appear that such alternate approaches would yield some of our insights but not

others. The cause of this is an inspection paradox, which leads to (i) the steady state mix of

agents being very different from the arriving mix of agents in many of the settings considered,

allowing us to identify properties of equilibria that we would miss otherwise (e.g., the long

side proposes in all equilibria in Section 3.2); and (ii) the steady state mix of agents being

heavily dependent on platform design (despite no change in the arriving mix), which allows us

to identify good platform designs (e.g., we find benefits from hiding information when there is

vertical differentiation in Section 4).

In the interest of simplicity and tractability, we assumed idiosyncratic values are drawn

i.i.d from a Uniform(0,1) distribution, and that a worker i’s match value for an employer j is

independent of j’s match value for i. We expect our insights to be reasonably robust to these

assumptions. If values are strongly correlated within pairs, some equilibrium features may be

modified, but we expect that the welfare maximizing designs in the case of ex ante homogeneous

agents on each side will still be: (i) to have the side with lower screening cost go first/choose

(Section 3.1), and (ii) to have the short side go first (Section 3.2). The benefits from intervention

should be exacerbated when the distribution of valuations has negative values in the support, as

now search effort might be invested in candidates that provide negative match utility. Also, one

may ask what happens if proposal responses are not immediate. Such delays may increase the

welfare gains from intervention. The intuition is that our recommended interventions replace

proposals with low likelihood of being accepted with proposals with high likelihood of being

accepted (in particular in unbalanced markets, most proposals by agents on the long side will

be ignored if there is a delay in responding to proposals, causing an even lower likelihood of

acceptance under no intervention). Finally, it is natural to ask whether further improvements

are possible using other interventions, such as limiting the rate at which one or both sides of the

market are able to propose. We leave this question for future work, remarking that this relates

with the literature on signaling in matching markets (see Section 1.1).
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A Equilibrium concept and steady state characterization

A.1 Full description of the matching formation rates (Section 2.2)

When defining the matching formation rates for the case of Ne = 0, we only described the

matching formation rates for the case in which Ne remains zero for a non-zero interval of time.

For completeness, we now fully characterize the matching formation rates for the case where

Ne = 0.

There are two possibilities here. The first one is that Ne remains zero for a non-zero interval

of time, which was briefly sketched in the main text. The other possibility is that

dNe

dt
> 0 ⇒ dNe(se)

dt
> 0 ∀se ∈ Se with fe(se) > 0 . (12)

For simplicity, we first analyze these two cases for the a setting in which all employers

are following the same strategy s. First, consider the case where the second possibility arises

(Eq. (12) is satisfied). Then, there are always employers in the system and we can calculate the

flow rate of matching as before. We have

ρw(sw, s; N̄) = Nw(sw)ηw(sw, s) . (13)

The total rate of matching is then

ρe(s; N̄) =
∑
sw∈Sw

ρw(sw, s; N̄) =
∑
sw∈Sw

Nw(sw)ηw(sw, s)

and must satisfy

ρe(s; N̄) < λe

⇔
∑
sw∈Sw

Nw(sw)ηw(sw, s) < λe . (14)

It is easy to see that this is the necessary and sufficient condition for the case in Eq. (12) to

arise. In this case, we simply have

dNe

dt
= λe −

∑
sw∈Sw

Nw(sw)ηw(sw, s) . (15)

The complementary case arises when∑
sw∈Sw

Nw(sw)ηw(sw, s) ≥ λe . (16)

In this case, whenever there are employers in the system, they form matches with workers

following strategy sw at a rate proportional to Nwη(sw, s). It follows that the flow rates of
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match formation are given by

ρw(sw, s; N̄) = λe
Nw(sw)ηw(sw, s)∑

sw∈Sw Nw(sw)ηw(sw, s)
. (17)

We now generalize the discussion to the case where employers possibly use different strate-

gies.Suppose Ne does not remain 0 for any interval of time, i.e., Eq. (12) holds. Let

dNe(se)

dt
= αR(se) > 0 , (18)

where α > 0 be such that ∑
se

R(se) = 1 . (19)

Then, after a very short time, the relative masses of different se’s in the system will be pro-

portional to R(se), and hence employers following se will be shown as a potential option to a

worker with probability R(se). So we have

ρw(sw, se; N̄) = Nw(sw)ηw(sw, se)
R(se)∑
s′e
R(s′e)

.

Using Eq. (1) and (18) and Ne = 0, we have

αR(se) = λefe(se)− ρ(se; N̄)

⇒ R(se) =
λefe(se)

α+
∑

sw
Nw(sw)ηw(sw, se)

. (20)

Substituting in Eq. (19), we have

∑
se

λefe(se)

α+
∑

sw
Nw(sw)ηw(sw, se)

= 1 . (21)

Note that the left-hand side is decreasing in α for α > 0, and tends to zero as α tends to infinity.

In order for the equation to have a solution, it must be that

∑
se

λefe(se)∑
sw
Nw(sw)ηw(sw, se)

> 1 .

One can check that this condition is also sufficient to produce the case
dNe

dt
> 0. Suppose this

condition holds, then Eq. (21) implicitly specifies a unique value of α, which, in turn, determines

R(se)’s, ρw’s and ρe(se; N̄)’s.

27



The complementary case of Ne remaining zero arises if and only if

∑
se

λefe(se)∑
sw
Nw(sw)ηw(sw, se)

≤ 1 .

In this case, similarly to our prior argument, we have

ρw(sw, se; N̄) = λefe(se)
Nw(sw)ηw(sw, se)∑

sw∈Sw Nw(sw)ηw(sw, se)
.

and ρe(se; N̄) = λefe(se) as expected.

A.2 Evolutionarily stable equilibrium

As defined in Section 2, let

Nw(sw) = Mass of workers in the system following strategy sw. (22)

Define Ne(se) similarly. Further, let N̄w = (Nw(s))s∈Sw and Nw =
∑

s∈Sw Nw(s), and similarly

for employers. Let N̄ = (N̄w, N̄e).

When a new worker enters, he considers the continuation value Vw(sw; N̄) that would result

from using strategy sw assuming N̄ will remain unchanged over time. The worker chooses

strategy s∗w(N̄) = arg maxsw∈Sw Vw(sw; N̄). (When there are ties, we will allow them to be

broken arbitrarily, including possible mixing. This will ensure that all stationary equilibria will

be captured as fixed points of the differential equations below.) We think of the thresholds θw, θe

as being fixed.8 Agents do not change their strategy during their lifetime. This leads to the

following coupled ODEs capturing system evolution in the continuum limit

dNw(s)

dt
= I

(
s = s∗w(N̄)

)
λw −Nw(s)µ− ρm(s; N̄) ∀s ∈ S ,

dNe(s)

dt
= I

(
s = s∗e(N̄)

)
λe −Ne(s)µ− ρw(s; N̄) ∀s ∈ S (23)

We now characterize the matching rates and continuation values in the hard case of interest.

Suppose Nw = 0. (The case Ne = 0 is analogous.)

Then we have that the likelihood of an incoming worker almost immediately matching with

an employer following se is proportional to Ne(se)ηe(se, s
∗
w(N̄)), leading to

ρe(s; N̄) = Ne(se)ηe(se, s
∗
w(N̄)) min

(
λw∑

se∈Se Ne(se)ηe(se, s∗w(N̄))
, 1

)
,

and Ve(s; N̄) is the utility for an employer which results from being offered a potential match

8These thresholds are chosen to match the continuation value at the equilibrium/fixed point. We expect that
holding these thresholds fixed generally should not impact whether an equilibrium classifies as stable or not,
since the utility loss due to error in the choice of threshold should grow only quadratically with distance from
the equilibrium, whereas the difference between utilities of different strategies in S should grow linearly with the
distance from the equilibrium.
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(following strategy s∗w(N̄)) at a rate equal to the last term min( · , 1) above. For the workers,

Vw(sw; N̄) is the payoff from receiving proposals at rate ∞ with the proposer strategy being se

with likelihood proportional to Ne(se)
(
I(se involves P) − G(θe)I(se involves S+P)

)
, and (relevant

only if sw ignores incoming proposals) always being offered a potential match, the strategy of

the potential match being se with likelihood proportional to Ne(se). The rate of matching is

given by

ρw(s∗w(N̄); N̄) = min

(
λw,

∑
se∈Se

Ne(se)ηe(se, s
∗
w(N̄))

)
.

(The rates of matching for sw 6= s∗w(N̄) are irrelevant.) When the min is the second term, we

see that
dNw

dt
> 0 leading to Nw > 0 in future.

As mentioned in Section 2.2, all stationary equilibria correspond to fixed points of our dy-

namical system (23). We focus on the subset of stationary equilibria that are plausible from an

evolutionary/dynamical standpoint.

Definition 3. Each stationary equilibrium corresponds to a fixed point of the dynamical system

(23) when the threshold θw (and θe) is equal to the continuation value of the best response for

workers (employers) at the fixed point, and conversely. A stationary equilibrium is evolution-

arily stable if the corresponding fixed point is attractive. (An attractive/stable fixed point of a

dynamical system is a point such that if the state starts sufficiently close to the fixed point, it

remains close to the fixed point and converges to it.) We sometimes refer to this simply as a

stable equilibrium.

A.3 Dynamics when agents on each side follow a single strategy

We now analyze the system dynamics when all agents on the same side use the same strategy.

We will find that the corresponding dynamical system always has a unique steady state/fixed

point L, that is always stable. When the fixed strategies employed are the unique best responses

on each side of the market to L, they are also best responses in a neighborhood of L, hence the

system dynamics precisely matches the dynamics under best responses (Eq. (23)) in a neighbor-

hood of L, implying that L corresponds to a stable equilibrium. As we will argue later, in all

the settings consider in Section 3, in each stable equilibrium, all agents on the same side of the

market do, in fact, use the same strategy. In other words, there is no mixed stable equilibrium

that is stable.

Suppose all workers employ strategy sw and all employers use strategy se. Let ηw and ηe be

defined as:

ηw =
(
I(sw involves P)− F (θw)I(sw involves S+P)

)(
I(se involves A)−G(θe)I(se involves S+A/R)

)
i.e., the fraction of options shown to workers that result in matches, and similarly

ηe =
(
I(se involves P)−G(θe)I(se involves S+P)

)(
I(sw involves A)− F (θw)I(sw involves S+A/R)

)
.

(24)

Note that the expressions in Eq. (24) are special cases of the expressions defined in Eq. (2).
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We will show convergence to a limiting mass of workers and employers (i.e. Lw and Le respec-

tively9) and calculate the limits assuming that:

λw 6= ηeλe
µ+ηe

(25)

λe 6= ηwλw
µ+ηw

(26)

If ηe = 0 because the employers do not propose under se, then condition (25) holds auto-

matically. Suppose ηe > 0. We will find that the limiting values of Lw and Le resulting from

λw →
( ηeλe
µ+ηe

)
+

and λw →
( ηeλe
µ+ηe

)
−, holding everything else fixed, are identical. Though we omit

the details, a coupling argument can be used to establish that this pair of values matches the

Lw and Le that arise from λw =
( ηeλe
µ+ηe

)
.

Note that the mass of workers in the system in steady state is bounded above by λw/µ, since

agents die at rate µ > 0 (even if they don’t leave by matching), and similarly for employers.

Also, note that the only way agents can have a vanishing expected lifetime in the system is

if they receive incoming proposals at a rate tending to ∞. All other agents have a positive

expected lifetime in the system. We will argue that:

(i) All agents have a positive expected lifetime in the system if the left-hand side is greater

than the right in both conditions (25) and (26), and

(ii) If the left-hand side is smaller in (25), then workers will have a vanishing lifetime in the

system. Similarly, if the left-hand side is smaller in (26), then employers will have a

vanishing lifetime in the system.

To that end, suppose that the left-hand side is greater than the right-hand side in both

conditions (25) and (26). Note that, even if employers see potential options a rate equal to their

arrival rate, their likelihood of matching before dying is only ηe/(µ+ ηe). Hence, the maximum

rate at which workers match due to proposals by employers is λeηe/(µ + ηe). If the left-hand

side is larger in condition (25), then a positive fraction of workers do not match as a result of

proposals by employers; thus, the mass of workers in the system must be positive. Analogously,

if the left-hand side is larger in condition (25), then the mass of employers in the system is

positive. Therefore, agents have a positive expected lifetime in the system if the left-hand side

is more than the right in both conditions (25) and (26).

Next, suppose the left-hand side is smaller than the right-hand side in condition (25). Then,

we know that λe > λw, so a simple argument can be used to show that at any time, the mass of

employers in the system is positive (since employers die at rate at least (λe − λw) for all t ≥ t0,

for some t0). Also, employers must issue proposals at a slower rate than their arrival rate, which

means that limiting mass of workers in the systems is 0. Moreover, the number of workers will

stay at that level —if it starts to build up, then employers will be able to issue proposals at a

faster rate, and form matches at rate λeηe/(µ+ ηe) > λw, reducing the mass of workers. Hence,

in steady state, the mass of workers remains 0. Therefore, if the left-hand side is smaller than

9Here, we abused notation and suppressed the dependence on the strategy, as it is the same for all agents on
the same side.
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the right-hand side in condition (25), workers will never build up in the system. Note that the

analogous argument can be applied in the case in which the left-hand side is smaller than the

right-hand side in condition (26).

Limiting steady state when left-hand side is smaller than the right-hand side in

condition (25). In fact, we can precisely characterize the steady state as follows. Since the

mass of workers is 0, the rate at which workers die is 0, meaning that workers form matches at

rate λw (moreover, these matches occur at a steady pace). Hence, employers match with workers

at a rate λw, meaning that employers die at a rate of λe − λw, hence the mass of employers in

the system is (λe−λw)/µ, and in fact the mass of employers remains steady near this value since

matches occur in a steady fashion. It follows that the mass of employers concentrates around

the limiting value of Le = λe−λw
µ , whereas the mass of workers in the system is 0. Note that

λw < Leηe, consistent with the mass of workers remaining 0.

Note that as λw →
( ηeλe
µ+ηe

)
− we have Lw = 0 (in fact, this holds everywhere in this case) and

Le → λe
µ+ηe

.

Limiting steady state when the left-hand side is larger in both conditions (25) and

(26). Let Nw be the mass of workers in the system at time t. (Recall that all workers are using

the same strategy sw.) Define Ne similarly. The limiting dynamical system when the left-hand

side is larger in both conditions (25) and (26), is given by (refer to the definitions of the η’s in

Eq. (24))

dNw

dt
=AN̄ + b , for

N̄ =

[
Ne

Nw

]
, b =

[
λe

λw

]
, A =

[
−µ− ηe −ηw
−ηe −µ− ηw

]

This is a pair of coupled linear differential equations in Nw and Ne, and note that is a special

case of those defined in Eq. (23). Matches resulting from options shown to employers form at

rate Neηe and matches resulting from options shown to workers form at rate Nwηw. In addition,

individual agents die at rate µ, leading to the form of the equations.

The eigenvalues of A are −µ and −µ−ηe−ηw. Since the eigenvalues are negative, we deduce

[32] that

L =

λe(µ+ηw)−λwηw
µ(µ+ηe+ηw)

λw(µ+ηe)−λeηe
µ(µ+ηe+ηw)

 ,
which solves AN̄ + b = 0, is a stable fixed point of the dynamical system with a global basin of

attraction. Hence, the dynamical system converges globally to L.

Proposition 1. When agents on each side follow a single strategy the steady-state of the system

L = [Le, Lw] can be characterized as follows:
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1. When the left-hand side is smaller than the right-hand side in condition (25), the system

converges to a steady state of

L =

λe−λwµ

0

 . (27)

2. When the left-hand side is larger in both conditions (25) and (26), the system converges

to a steady state of

L =

λe(µ+ηw)−λwηw
µ(µ+ηe+ηw)

λw(µ+ηe)−λeηe
µ(µ+ηe+ηw)

 .
Note that as λw →

( ηeλe
µ+ηe

)
+

we have Lw → 0 and Le → λe
µ+ηe

. These limiting values of Lw

and Le match the limiting values that arise when λw →
( ηeλe
µ+ηe

)
−.
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B Appendix to Section 3: symmetric markets

The simplest case under our model occurs where arrival rates, screening costs, and the valuation

distributions are identical on both sides. While this case is a rather standard setting, it is still

useful to illustrate some of the main aspects of our model.

Given this market, the equilibria under no intervention can be described as follows. For

small or medium-sized search costs, one side takes the role of proposer and the other side waits

for proposals. Both sides screen when the search cost is small, whereas only the side receiving

proposals screens for intermediate search costs. When screening costs are large, both sides

propose without screening and also accept incoming proposals without screening. Formally:

Proposition 2. Consider a market with λw = λe = λ and cw = ce = c. For agents on both sides,

their valuations for potential partners are drawn i.i.d. from a U(0,1) distribution. Consider the

limit µ→ 0 for each fixed c. Then, the following are the stable stationary equilibria as a function

of cw:

1. (workers screen + propose, employers screen + accept/reject) with thresholds θw = 1 −
(2c)1/4 and θe = 1−

√
2c. This is an equilibrium for c ∈

(
0, 1

32

)
. In steady state, we have

Lw = Lm = λ/((1− θw)(1− θe)) = 1/(2c)3/4.

2. (workers propose w.o. screening, employers screen + accept/reject) with threshold θe =

1−
√

2c. Workers get an expected utility of 1/2. This is an equilibrium for c ∈
[

1
32 ,

1
8

)
. In

steady state, we have Lw = Lm = λ/(1− θe) = 1/
√

2c.

3. Agents on both sides propose without screening, and accept all incoming proposals without

screening. This happens when10 c ≥ 1
8 . Both sides earn expected utility 1/2. In steady

state, we have Lw = Lm = λ/(1− θe) = 1/2.

In addition to these equilibria, Equilibria 1 and 2 have symmetric counterparts where the roles

of workers and employers are reversed, and these represent all the stable stationary equilibria in

this setting. Agents who screen have expected utility identical to the threshold they employ.

Proposition 2 is a special case of Theorem 1 (hence it does not need a separate proof).

However, we include a sketch of proof for c ∈
(
0, 1

32

)
(Equilibrium 1), so as to familiarize the

reader with the reasoning behind the equilibria characterization.

Before proceeding to the sketch of proof, note that the utility of the side proposing (say

workers) is always (weakly) lower than the utility of the side waiting for proposals (employers).

The reason is that, when proposing, there is always a risk that the proposal gets rejected if the

other side is screening (in fact, it will get rejected with probability F (θe)), i.e., there is a negative

externality of screening by recipients on proposers. As a result, the workers must account for

the cost of rejection as part of their search costs. (This also explains why the proposing side

10Since in the limit when µ→ 0 all agents will match, this equilibrium achieves the same welfare as one where
only workers (or only employers) propose, and neither side screens. We omit these equilibria just to simplify the
discussion.
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stops screening at a smaller value of c than the side receiving proposals.) In fact, the workers

can internalize the cost imposed by the other side rejecting them by making decisions based on

what we call the effective screening cost. The following simple lemma (proved in Appendix B)

formalizes the idea of effective screening costs:

Lemma 1 (Effective screening cost). Consider the following two systems. In each case, the

death rate is µ, and the value of an item to an agent is drawn i.i.d. from some distribution F .

Any incoming option is screened (at some cost) revealing the true value of the option, and then

accepted/requested if this value exceeds a threshold θ.

• System 1: “Potential opportunities” arise according to a Poisson point process of rate η.

Each potential option is screened at a cost c, to reveal its value, and requested if the value

exceeds θ. The request is approved i.i.d. with probability q, in which case the agent obtains

the item and leaves. If there is no request or the request is denied, the agent remains

active.

• System 2: Options arise according to a point process of rate ηq. Each option is screened

at a cost c/q, to reveal its value. The agent chooses to obtain the item if the value exceeds

θ.

Then, the two systems produce the same expected value.

Proof. Consider the first system. Let q′ be the likelihood that a value exceeds θ. The probability

that a potential option is both requested and approved is qq′. Hence:

• The expected screening cost spent per obtained item is c/(qq′).

• The likelihood of obtaining an item before death is the likelihood that a Poisson clock of

rate ηqq′ rings before the death Poisson clock of rate µ.

It is easy to check that the two parts of this description each apply also to the second system,

since the probability of a value exceeding θ is again q′. Finally, the expected value of an obtained

item is just EX∼F [X|X > θ] in each system. Combining, we obtain the claim.

Lemma 1 allows us to relate the threshold strategies at the equilibria as follows. For a given c,

consider an equilibrium where (workers screen and propose, employers screen and accept/reject)

with strategies θw(c) and θe(c) respectively. Let θ∗w(c) be the threshold of workers at an equilib-

rium when the proposing side is reversed. Then, we have that θw(c) = θ∗w

(
c

1−θe(c)

)
. The reader

can verify that this is indeed the case by considering, e.g., Equilibrium 1 in Proposition 2 and

its symmetric counterpart.

We are now in a position to present the sketch of proof of Proposition 2.

Proof sketch of Equilibrium 1 in Proposition 2. We first take the agent strategies as given

and compute the steady state masses present on each side. These masses are always equal

(Nw = Ne) since arrival rates are equal, matching flows affect both sides equally, and the death
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rate is the same on both sides. In the case described in Equilibrium 1, the number of workers

Nw must be such that the flow rate at which workers see potential options (this is again Nw),

times the likelihood that a potential option leads to a match, is equal to the match formation

rate ρ, which is, in turn, equal to λ− µNw. Now a potential option leads to a match only if the

worker screens and finds that the option has match value exceeding θw, which causes the worker

to apply, and then the employer screens and finds that the worker has match value exceeding

θe. This occurs with probability (1 − θw)(1 − θe). Combining, in steady state we must have

Lw = Le and

Lw(1− θw)(1− θe) = ρ = λ− µLw

⇒ Lw =
λ

µ+ (1− θw)(1− θe)
µ→0−−−→ λ

(1− θw)(1− θe)
. (28)

We notice also that the equilibrium has a vanishing flow of agents dying (on both sides) as

µ → 0, consistent with each worker spending Lw/λw = O(1) expected time in the system, so

the likelihood that an agent dies without matching is vanishing, on both sides of the market.

Now, we argue that the strategies described induce an equilibrium. To that end, note that

if workers are proposing, for employers is optimal to use the threshold θe(c) = 1 −
√

2c. This

follows from the fact that θe must be equal to the continuation value of the employers. As µ→ 0

the fraction of employers that do not match vanishes, we then have that in the limit µ→ 0 the

continuation value for a fixed c if screening is given by

−c+ Pr(uew ≥ θe)E[uew|uew > θe] + (1− Pr(uew ≥ θe))θe = −c+ (1− θe)
1 + θe

2
+ θ2

e ,

that is, the cost of screening an opportunity (first term), plus the probability that a match

occurs times the expected match value if a match is formed (second term), plus the probability

that a match does not occur times the continuation value θe (third term). Therefore, θe must

satisfy

θe = −c+ (1− θe)
1 + θe

2
+ θ2

e .

Solving yields θe = 1 −
√

2c > 1/2. This also means that accepting or proposing without

screening, which would produce a utility at most E[uew] = 1/2, is not attractive. Furthermore,

employers do not have an incentive to propose (after screening) themselves —if they propose,

they will be screened by workers, and thus they risk a costly rejection whereas the distribution

of match values for potential options is the same as that for incoming proposals. Thus, we

have showed that employers are playing a best response. Now consider workers. Having fixed

the threshold of the employers, using Lemma 1 we can think of workers facing an effective

screening cost of ceff = c/
√

2c =
√
c/2, and hence by symmetry, their threshold will be θw(c) =

θe(
√
c/2) = 1 − (2c)1/4. Note that θw(c) > 1/2 for c < 1/32, which also means that workers

do not have any incentive to propose without screening, since that would produce a limiting

utility E[uwe] = 1/2. (Note how this changes for c ≥ 1/32, causing workers to propose without

screening.)
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Finally, we note that the steady state described in Eq. (28) also evolutionarily stable. (It

corresponds to attractive fixed points of the best response dynamics Eq. (23), which follows from

Proposition 1 since agents on each side are playing their unique best response at L̄, meaning

that the best responses remain unchanged in a neighborhood of L̄.)

Next, note that in all equilibria, all agents on the same side follow the same strategy and,

further, in each equilibrium, one side proposes and the other side waits for incoming proposals

(except for the no screening equilibrium where both sides propose). This feature is induced

by our equilibrium concept (evolutionarily stable stationary equilibrium), and will continue to

arise throughout the rest of the section. To see why, note that if one side was mixing between

issuing proposals and only waiting for incoming proposals, the other side must also be mixing

(for generic values of problem primitives). However, as soon as the fraction of agents who are

proposing is slightly changed, say, increased, agents on the other side will receive proposals at

a faster rate and thus have incentive to react by not proposing, which makes it beneficial for

agents on the first side to propose. Therefore, such an equilibrium cannot be stable.

To conclude, we note that in this setting, the platform cannot increase average welfare by

implementing one of the interventions described in Section 2. Intuitively, for a given fixed c, if

the platform blocks a side from issuing proposals, the equilibrium that arises is the one under

which the other side proposes, and due to market symmetry, this is welfare equivalent (in terms

of average welfare) to the no-intervention equilibrium under which the first side was proposing.

Similarly, if the platform blocks one side from screening and c < 1/32, there is a unique resulting

equilibrium where the blocked side proposes (without screening) and the other side screens and

accepts/rejects, whose welfare is smaller than equilibrium 1. On the other hand, the welfare at

equilibrium will be unaltered if c ≥ 1/32 as (at least) one side is not screening anyway. Though

welfare improvement is via intervention is thus impossible, the equilibria suggest the following

search designs: if c < 1/32, the platform should allow both sides to screen; if 1/32 ≤ c < 1/8,

the platform can implement a one-sided search where only one side screens (saving the other

side the effort of proposing, which one may argue is positive instead of zero in real settings);

finally, if c ≥ 1/8, the platform can opt for a centralized matching.

We will see in the next subsections that, as soon as some asymmetry is introduced in the

market, interventions can be useful to either select the highest welfare equilibria, or create

equilibria with higher welfare.
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C Appendix to Section 3.1

Proof of Theorem 1. First, note that in all equilibria listed in the statement of Theorem 1, agents

on each side of the market are using a unique strategy. Therefore, as argued in Section A.3, the

steady state will exist in each case, and can be characterized using Proposition 1. In particular,

for every equilibria we have Lw(ce) = Le(ce) = λ
µ+ηw(ce)+ηe(ce)

= Θ(1), when µ → 0, where ηw

and ηe are as defined by Eq. (24). We next argue that each of these is an equilibrium in the

proposed regime.

1. (employers screen + propose, workers screen + accept/reject). The limiting steady state

is Le = Lw = λ
µ+(2ce/α)1/4(2αce)1/2

. To argue that this is an equilibrium, note that, if

employers are proposing, is optimal for workers to use the threshold θw(ce) = 1−
√

2αce.

This follows from the fact that θw must be equal to the continuation value of the workers.

As µ→ 0 the fraction of workers who does not match vanishes, we have that in the limit

µ→ 0 the continuation value for a fixed ce if screening is given by

−αce+ Pr(uwe ≥ θw)E[uwe|uwe > θw] + (1−Pr(uwe ≥ θw))θw = (1− θw)
1 + θw

2
−αce+ θ2

w

that is, the cost of screening an opportunity (first term), plus the probability that a match

occurs times the expected value of an opportunity that results in a match (second term),

plus the probability that a match does not occur times the continuation value (third term).

Therefore, θw must satisfy

θw = (1− θw)
1 + θw

2
− αce + θ2

w.

Solving for θw yields the desired expression. Furthermore, they do not have an incentive

to propose themselves –they will be screened by employers, and thus they risk a costly

rejection. Therefore, having fixed the threshold of the workers, we can use Lemma 1 and

think of employers facing an effective screening cost of ceff = ce/
√

2αce =
√
ce/(2α), and

hence their threshold will be θe(c). In addition, note that workers don’t want to screen

beyond ce = 1
8α ; at this point, they would rather accept without screening. Also, employers

don’t want to screen beyond ce = α
32 ; at this point, it also becomes profitable for them to

stop screening.

2. (employers propose w.o. screening, workers screen + accept/reject), with steady state

given by Le = Lw = λ
µ+(2αce)1/2

. Note that this equilibrium occurs if employers stop

screening before workers in Equilibrium 1, that is, if 1
8α ≥

α
32 . This is the only equilibrium

whose existence depends on the value of α, and it occurs for some ce’s if α < 2. Note

that, again, if employers are proposing (regardless as to whether they are not screening),

for workers is still optimal to use the threshold θw = 1−
√

2αce.

3. (employers screen + propose, workers accept w.o. screening), with the corresponding

steady state given by Le = Lw = λ
µ+(2ce)1/2

. As argued in Equilibrium 1, if employers are
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proposing, workers will give up on screening only for ce ≥ 1
8α . Note that, once workers

decide not to screen, the effective screening cost for employers becomes ce, and using the

same arguments we used when describing Equilibrium 1, employers will use a threshold of

θe(ce) = 1 −
√

2ce. Noting that θe(ce) ≥ 1
2 (1/2 is the expected value that an employer

can get by not screening) as long as ce ≤ 1
8 , we conclude that this will be an equilibrium

for ce ∈
[

1
8α ,

1
8

)
.

4. (workers screen + propose, employers screen + accept/reject), with the corresponding

steady state given by Le = Lw = λ
µ+(2ce)1/2(2α2ce)1/4

. Here, if workers are proposing, it

is optimal for a employers to screen and accept/reject with threshold θe = 1 −
√

2ce.

Therefore, workers face an effective screening cost of ceff = αce/
√

2ce =
√
α2ce/2 (see

Lemma 1), which gives us θw. Note that, in this setting, employers will never stop screening

before workers, as they have a lower screening cost plus they are not facing rejection (i.e.

they are not proposing). Therefore, this will be an equilibrium as long as workers continue

to screen, which happens if ce <
1

32α2 .

5. (workers propose w.o. screening, employers screen + accept/reject), with the correspond-

ing steady state given by Le = Lw = λ
µ+(2ce)1/2

. This equilibrium occurs when workers

no longer want to screen, that is, when ce ≥ 1
32α2 . In addition, employers will have an

incentive to screen as long as ce ≤ 1
8 (see Equilibrium 3), which defines the range for which

this is an equilibrium.

6. Agents on both sides propose without screening, and accept all incoming proposals without

screening when ce ≥ 1/8. By our previous arguments, it can easily be seen that agents

will have an incentive to deviate and screen if ce < 1/8. The corresponding steady state

is given by Le = Lw = λ
µ+1 .

To conclude the proof, we note that there cannot be any mixed equilibria that is evolutionary

stable. If one side, say employers, mixes between proposing and not, then at least a fraction of

workers must be proposing; otherwise, employers who are not proposing will never get matched

and thus proposing is a profitable deviation. However, once the number agents on the other

side who are proposing is slightly perturbed, it will affect the number of employers who want to

propose, and thus this cannot be stable. Therefore, in this setting, we have that either all agents

on one side propose, or none agent does. The difference can then be in whether they screen or

not; however, at an equilibrium, all agents on the same side will have the same continuation value

and thus they must use the same θ’s if they screen, or none of them must screen.11 Finally, the

difference between the strategies of the agents on the same side can also be on how they handle

incoming proposals. However, as we argued before, one side takes the role of proposer and the

other one just receives proposals. For the proposers, the decision as to what to do with incoming

proposals does not play a role, so we can ignore differences in this. On the other hand, those

receiving proposals must either accept without screening or screen and accept/reject; ignoring

11Here, we assume that an agent only screens if θ > 0.
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proposals can never be an equilibrium strategy. However, as we argued before, all agents must

have the same utility, and thus must follow the same strategy.

Proof of Corollary 1. Recall that α ≥ 1. Equilibrium 1 exists whenever Equilibrium 4 exists

and has (weakly) higher welfare. Similarly, Equilibrium 5 exists whenever Equilibrium 2 exists

and has (weakly) higher welfare. Also, Equilibrium 5 exists whenever Equilibrium 3 exists and

has identical welfare. We deduce that, for all ce < 1/8, one of Equilibria 1 and 5 is a highest

welfare equilibrium.

Now, the difference between the average welfares of Equilibrium 5 and Equilibrium 1 is

1

2

(
−1

2
+

(
2ce
α

)1/4

+
√

2ce(
√
α− 1)

)
,

which is strictly increasing in ce, negative at ce = 1/(32α2) and positive at ce = α/32. Hence, c∗

is the unique value of ce such that the two equilibria have identical welfare. We also deduce that

Equilibrium 5 maximizes welfare for ce > c∗, and Equilibrium 1 maximizes welfare for ce < c∗.
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D Appendix to Section 3.2

We now prove the results which are stated in Section 3.2. Note that in all equilibria listed

in the statements of Theorems 2 and 3, agents on each side of the market are using a unique

strategy. Therefore, as argued in Section A.3, the steady state exists in each case, and can be

characterized using Proposition 1.

Semantic definition of c̄. Consider a setting where employers screen and propose, and work-

ers are not permitted to propose. When a proposal arrives, a worker must decide between

screening or accepting it without screening. We define c̄ to be the largest screening cost (as

µ→ 0) such that there exists a symmetric equilibrium between workers where they screen and

accept/reject based on a threshold of θw = ξ(λ, c) as given by Eq. (9).

Now, the expected value of a worker who uses strategy θw is identical to θw, since the process

of arrival of proposals/death as seen by a worker is memoryless when the system is steady state.

Let V be the expected value from participation, just after a worker w has received a proposal.

Let p be the likelihood that a worker receives a proposal before he dies.

Lemma 2. In the limit µ→ 0, we have

p =
1

θw + λ(1− θw)
=

1

1 + (λ− 1)(1− θw)
.

Proof. Employers make 1/(1− θw) proposals per unit time as µ→ 0, since a vanishing mass of

employers die without being matched. In comparison, a mass of λ workers arrive per unit time.

Hence, the expected number of proposals received by a worker (who uses strategy θw) during

his lifetime is

nw = 1/(λ(1− θw)) . (29)

Let p be the likelihood that a worker receives a proposal from an employer before he dies.

Checking for consistency when workers screen with threshold θw, we obtain

nw = p(1 + θwnw) . (30)

Combining Eqs. (29) and (30), we obtain

p =
1

θw + λ(1− θw)
=

1

1 + (λ− 1)(1− θw)
. (31)

(Notice that identical quantities appear in the analysis of the case where workers propose and

employers screen and accept. Now, nw is defined as the average number of opportunities that a

worker receives to propose to an employer who will accept him, during his lifetime, if he adopts

strategy θw. And p is the likelihood of receiving such an opportunity before he dies.)
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Remark 2. Lemma 2 also applies to the likelihood p that a worker will get an opportunity to

propose to an employer who will accept him, in the case where workers propose and employers

screen and accept.

Considering the possible cases —either a worker receives a proposal before he dies, or he

does not—, we obtain

θw = pV + (1− p) · 0 = pV . (32)

Note that if a worker simply accepts an incoming proposal, his expected value is 1/2. Hence,

if the worker is indifferent between accepting without screening, and using strategy θw, we have

V = 1/2. Using this together with Lemma 2 in Eq. (32), and making the dependence on c

explicit, we obtain 1/2 = θw(c̄)/p(c̄) = θw(c̄) (1 + (λ− 1)(1− θw(c̄))). Solving for θw(c̄) we

obtain that θw(c̄) =
λ−
√

(λ−1)2+1

2(λ−1) . Using the expression for ξ(·, c) in Eq. (9) we can solve for c̄

to obtain Eq. (10).

Semantic definition of c. We define c to be the smallest value of c (as µ→ 0), such that, if

the employers are proposing (and workers are not permitted to propose), there is a symmetric

equilibrium between workers where they accept incoming proposals without screening. Suppose

other workers are not screening (i.e., θw = 0). Using Lemma 2, we know that the likelihood

that a worker will receive a proposal before he dies, is p = 1/λ. Note that the value obtained by

accepting without screening is V ′ = p/2 = 1/(2λ). Now, suppose a worker receives a proposal.

By accepting without screening, he can earn V = 1/2. This is a best response if and only if the

worker cannot do better by screening the current proposal, accepting with a threshold of 1/(2λ)

(this threshold is exceeded with likelihood 1 − 1/(2λ), and the expected value of the match,

conditioned on the threshold being exceeded, is (1/2)(1 + 1/(2λ))), and if the value is below the

threshold, accepting the next proposal, if any, without screening (this follows from the idea of a

“rollout” in dynamic programming [6]). The value obtained from the latter strategy is

−c+ (1/2)(1 + 1/(2λ))(1− 1/(2λ)) + V ′/(2λ) .

Comparing with V = 1/2 and using V ′ = 1/(2λ), we find that the deviation does not increase

welfare if and only if

c ≥ 1/(8λ2) , (33)

leading to Eq. (10).

Semantic definition of ĉ. Again consider the setting where employers screen and propose

and workers screen and accept/reject. Workers are not permitted to propose. We define ĉ to

be the screening cost (as µ → 0) at which employers are indifferent between screening, and

proposing without screening, assuming workers are screening with threshold θw(c). (Employers

do not have any externality on each other, being on the short side.)
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Note that if workers are screening, then (using Lemma 1) the effective cost for employers is

equal to ceff = c/(1−θw(c)). Now the value and threshold for employers when they screen before

proposing is θe(c) = 1 −
√

2ceff. The value when employers don’t screen is 1/2. It follows that

1−
√

2ceff = 1/2 for c = ĉ, since employers are indifferent between screening and not screening

for c = ĉ. We deduce that θw(ĉ)− 1 + 8ĉ = 0, which yields Eq. (11).

Remark 3. It is easy to verify that c̄ > c.

One simply uses

√
1 + (λ− 1)2 = λ

√
1− 2(λ− 1)

λ2

> λ

(
1− (λ− 1)

λ2

)
= λ− 1 + 1/λ ,

to obtain

c̄ >
1

4(λ2 + 1)
>

1

8λ2
= c .

Proof of Theorem 2. We first establish that the following is a subset of equilibria, as a func-

tion of c, taking µ→ 0:

• (workers screen + propose, employers screen + accept/reject) with thresholds: θw =

θw(
√

c
2) and θe = 1 −

√
2c. This is an equilibrium for c ∈ (0, 2c̄2). The limiting steady

state L = [Le, Lw] is given by L = [0, (λ− 1)/µ].

• (workers propose w.o. screening, employers screen + accept/reject) with threshold: θe =

1−
√

2c. This is an equilibrium for c ∈
(
2c2, 1

8

)
. The limiting steady state L = [Le, Lw] is

given by L = [0, (λ− 1)/µ].

• Agents on both sides propose without screening, and accept all incoming proposals without

screening. This happens when c ≥ 1
8 . Again, the steady state L = [Le, Lw] is given by

L = [0, (λ− 1)/µ].

Suppose the workers are proposing. Then, it is clear that as µ→ 0, the value of the employers is

upper-bounded by max(1/2, 1−
√

2c) which is the value employers can get if they are guaranteed

not to die. We show that if employers wait for incoming proposals, then the value they obtain

approaches the upper bound as µ → 0. If c ≤ 1/8, the employers screen and accept/reject,

employing a threshold of 1 −
√

2c, and producing a utility which tends to 1 −
√

2c ≥ 1/2 for

employers, showing that this is a best response for employers. If c ≥ 1/8, employers accept

without screening. In this case, they will also propose if they are given the chance as, by

symmetry, workers will not screen either. It remains to characterize the symmetric equilibria

between workers in response to this behavior of employers. For c ≥ 1/8, it is clearly a best

response for workers to propose without screening, thus establishing the third bullet. Consider

c < 1/8. The effective screening cost faced by workers is ceff = c/
√

2c =
√
c/2, see Lemma 1.

42



Suppose other workers are not screening (i.e., θw = 0). Using Lemma 2, we know that the

likelihood that a worker will receive an opportunity to propose to an employer who will accept

him before he dies, is p = 1/λ. Using Lemma 1, it suffices to analyze an alternate situation where

a worker is receiving instead of making proposals, but screening costs are ceff and the likelihood

of getting a proposal before he dies is p. Consider this alternate situation, simultaneously for

all workers. Then the condition for existence of a symmetric equilibrium where workers accept

without screening is

ceff ≥ c ⇒ c ≥ 2c2.

Thus, we have established the second bullet.

For the first bullet, suppose there is a symmetric equilibrium between workers where they

screen, with a threshold of θw. If workers have incentive to screen, then clearly so do employers,

since the employers are not facing any possibility of rejection (with proposals being incoming)

and the employers have unlimited opportunities to match, being on the short side of the market.

Hence, we know that employers are screening, and using a threshold of 1−
√

2c. Thus, workers

again face an effective screening cost of ceff = c/
√

2c =
√
c/2. Using Lemma 2, we have

p = 1/(1 + (λ − 1)(1 − θe)). We again consider the alternate situation suggested by Lemma 1,

with proposals guaranteed to be accepted, screening cost ceff, and probability p of getting an

opportunity before death. Then the value obtained a by a worker if he screens and uses the

optimal threshold is12 ξ(ceff), cf. Eq. (9). In comparison, the value obtained by taking the first

proposal opportunity without screening is p(1/2) = p/2. The best response condition is thus

ξ(ceff) ≥ p/2, which yields ceff ≤ c̄ by definition of c̄. Plugging in ceff =
√
c/2, we obtain c ≤ 2c̄2,

yielding the first bullet.

Finally, we argue that there are no other stable equilibria if λ ≥ 1.25. We rule out the

possibilities one by one. Suppose both sides mix between proposing and don’t proposing. Then

if a few more workers start proposing, this will make less employers propose, since proposing

becomes relatively less attractive for employers. In turn, this will make more workers propose

and so on. Therefore, an equilibrium where both sides mix between proposing and not cannot

be stable.

Suppose one side mixes between proposing and don’t proposing, but the other side does

not propose. This is ruled out because all agents on the first side will want to propose. In

addition, suppose one side mixes between proposing and don’t proposing, but the other side

proposes. Suppose the workers (long side) are mixing. Compared to the case where all workers

are not proposing, some workers proposing makes things worse for the other workers. So the

stable situation can only be that the long side is either all proposing or none are proposing.

In addition, we can rule out the case in which employers are mixing, because if all workers

are proposing, then employers don’t want to propose. Therefore, we must have that either all

workers propose or all workers don’t propose, and similarly for employers. Furthermore, for

c < 1/8, it also can’t be that both sides propose. (For c ≥ 1/8, both sides proposing and

12Here we suppress dependence on λ.
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accepting without screening will be the unique equilibrium.) Hence, it must be that one side

proposes and the other side does not. When λ > 1.25, we argued that all workers will want to

propose as the unique best response, and thus employers will never propose. In addition, we can

rule out that workers will mix between screening and not screening in any stable equilibrium.

Therefore, workers’ best response will be to propose if λ ≥ 1.25.

Proof of Theorem 3. We want to prove that if workers are not allowed to propose, the fol-

lowing equilibria exist as a function of c, taking µ→ 0:

• (employers screen + propose, workers screen + accept/reject) with thresholds: θw = ξ(λ, c)

and θe = 1−
√

2c/(1− θw). This is an equilibrium for c ∈ (0,min(c̄, ĉ)]. The steady state

L = [Le, Lw] is given by L =

[
1

µ+
√

2c(1−ξ(λ,c))
, λµ −

√
2c(1−ξ(λ,c))

µ2+µ
√

2c(1−ξ(λ,c))

]
.

• (employers screen + propose, workers accept) with threshold: θe = 1 −
√

2c. This is an

equilibrium for c ∈ [ 1
8λ2

, 1
8 ]. The corresponding steady state L = [Le, Lw] is given by

L =
[

1
µ+
√

2c
, λµ −

√
2c

µ2+µ
√

2c

]
.

• (employers propose w.o. screening, workers screen + accept/reject) with threshold: θw =

ξ(λ, c). This is an equilibrium for c ∈ [ĉ, c̄], and only exists if ĉ < c̄ (might not exist at all).

The corresponding steady state L = [Le, Lw] is given by L =
[

1
µ+1−ξ(λ,c) ,

λ
µ −

1−ξ(λ,c)
µ2+µ(1−ξ(λ,c))

]
.

The first bullet follows from the fact that it is a best response for workers to screen and ac-

cept/reject with threshold ξ(λ, c) for c ≤ c̄, provided other workers are doing the same; and it

is a best response for employers to screen and propose if c ≤ ĉ.
The second bullet follows from the definition of c (hence accepting without screening is an

equilibrium among workers), and the fact that when the workers are not screening and c ≤ 1/8,

it is a best response for the employers to screen and propose, with a threshold of 1−
√

2c.

It is easy to see that if workers are screening with a threshold of ξ(λ, c), it is a best response

for employers to propose without screening if c > ĉ. (Employers do not exert any externality on

each other, hence fixing the way workers respond to proposals, exactly one of the two equilibria

exist between employers.) Combining with the definition of c̄ (implying that workers are playing

a best response), we deduce the third bullet.

Proof of Corollary 2. Theorem 3 equilibrium 1 exists for all c < min(c̄, ĉ).

• It may coexist with Theorem 3 equilibrium 2 (but not with the other two equilibria in

Theorem 3). If this is the case, Theorem 2 equilibrium 2 exists for the same market under

no intervention, and has welfare identical to Theorem 3 equilibrium 2.

• For the same market under no intervention, the possible equilibria are Theorem 2 equilibria

1 and 2. One or both of them may exist for the market under consideration.

It follows that if the stated condition holds, then preventing workers from proposing can only

increase (or leave unchanged) average welfare in equilibrium, relative to the case of no interven-

tion.
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Theorem 4. Consider the market defined in the statement of Theorem 2. Then, in addition to

those defined in Theorem 2, the following equilibria might also exist. (Here, the equilibria are

characterized by their limiting description as a function of c, considering µ → 0 for each fixed

c):

1. (employers screen + propose, workers screen + accept/reject) with thresholds: θw = θw(c)

and θe = 1−
√

2c/(1− θw). This is an equilibrium for c ∈ (c̄2,min(c̄, ĉ, c̄4)). Furthermore,

this equilibrium exists if and only if λ ≤ 1.25. The steady state L = [Le, Lw] is given by

L =

[
1

µ+
√

2c(1−ξ(λ,c))
, λµ −

√
2c(1−ξ(λ,c))

µ2+µ
√

2c(1−ξ(λ,c))

]
.

2. (employers propose w.o. screening, workers screen + accept/reject) with threshold: θw =

ξ(λ, c). This is an equilibrium for c ∈ [max(ĉ, c̄3),min(c̄, c̄4)]. Furthermore, this equilib-

rium exists if and only if λ ≤ 1.25. The corresponding steady state L = [Le, Lw] is given

by L =
[

1
µ+1−ξ(λ,c) ,

λ
µ −

1−ξ(λ,c)
µ2+µ(1−ξ(λ,c))

]
.

where ξ(·, ·) is as defined by Eq. (9), c̄ and ĉ are as defined by Eqs. (10) and (11) respectively,

and

c̄2 = 4(λ− 1)3 , (34)

c̄3 =
2(λ− 1)2

(4λ− 3)2
. (35)

c̄4 =
(3− 2λ)

8
. (36)

Furthermore, (employers screen + propose, workers accept) cannot be equilibrium unless

there is a system intervention.

Proof of Theorem 4. To prove when (employers screen + propose, workers screen + ac-

cept/reject) is an equilibrium, recall that in Theorem 3 we showed that, when workers are

not allowed to propose, (employers screen + propose, workers screen + accept/reject) with

thresholds θw = θw(c) and θe = 1 −
√

2c/(1− θw) is an equilibrium for c ∈ (0,min(c̄, ĉ)]. For

this to be an equilibrium without any intervention, we must make sure that, given a chance to

propose, a worker would prefer to ignore it.

To that end, suppose that all workers and employers follow the strategies described above,

and a single worker deviates from this strategy by proposing if he gets the chance to do so.

It is easy to see that an employer who receives this proposal will screen it with the same

threshold θe as this maximizes her value. Using Lemma 1, a worker will face an effective cost of

c/(1− θe) =
√

c
2(1− θw) to screen that opportunity and decide whether to propose. Given this

cost, if he decides to screen it, he will still do so with threshold θw. Then, he will only take the
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opportunity to screen and propose if:

−
√
c

2
(1− θw) + (1− θw)

1 + θw
2

+ θwθw ≥ θw.

The first term is the effective screening cost, the second term is the expected value if he likes

the employer times the probability of liking her, the third term is the continuation value times

the probability of not liking the proposed employer; this should exceed the continuation value

obtained by doing nothing (θw). Rearranging the terms, we obtain that the deviation is profitable

only if θw ≤ 1−(2c)1/3. Therefore, for this to be an equilibrium we need to have c ≥ c̄2 = 4(λ−1)3

(and c ≤ 1/2).

However, there is also the possibility that a worker would want to propose without screening.

In this case, his proposal will be accepted with probability 1 − θe, and if accepted he gets an

expected utility of 1/2. Hence, this will be a profitable deviation if

1

2
(1− θe) + θeθw ≥ θw,

or equivalently, θw ≤ 1/2, which occurs only if c ≥ c̄4 = (3 − 2λ)/8. Note that the interval

(c̄2,min(c̄, ĉ, c̄4)) will be non-empty only if λ ≤ 1.25. Furthermore, ĉ = min(c̄, ĉ, c̄4) when

λ ∈ [1, 1.25], which completes the proof of the first claim.

To prove the second equilibria, again note that in Theorem 3 we showed that, when workers

are not allowed to propose, (employers propose w.o. screening, workers screen + accept/reject)

with threshold θw = θw(c) is an equilibrium for c ∈ [ĉ, c̄]. As before, for this to be an equilibrium

in a no-intervention setting, it must be the case that a worker does not want to propose if he gets

the chance. To that end, suppose that all workers and employers follow the strategies described

above, and a single worker deviates from this strategy by proposing if he gets the chance to do so.

It is easy to see that an employer who receives this proposal will now screen it with a threshold

equal to 1/2. Hence, the worker will now face an effective cost of 2c, if he wishes to screen such

an opportunity. For him to choose not to screen and propose, and rather wait for a proposal, it

must be that θw ≥ 1 −
√

4c, which happens only if c ≥ c̄3 = 2(λ−1)2

(4λ−3)2
. As before, we must also

consider the possibility that a worker would rather propose without screening, which happens

if c ≥ c̄4. Therefore, (employers propose w.o. screening, workers screen + accept/reject) will be

an equilibrium only if c ∈ [max(ĉ, c̄3),min(c̄, c̄4)]. Noting that c̄ ≥ c̄4 completes the proof.

Finally, note that (employers screen + propose, workers accept) cannot be equilibrium unless

there is a system intervention. To see why, note that in the case a worker who gets an opportunity

to propose, will do so.

D.1 When does the intervention help

Numerics based on this Corollary 2 reveal (see Figure 3), that the platform should block workers

from proposing for all c less than a threshold, where the threshold is equal to c̄ for λ > 1.67

(including λ = 2, see Figure 2), and smaller than min(ĉ, c̄) for λ < 1.67. The intervention helps

when the benefit to workers exceeds the cost to employers (note that employers face some risk
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Figure 3: This figure shows the values of (λ, c) for which the average welfare increases/decreases
by blocking workers from proposing (see Corollary 2). The intervention will help if the param-
eters fall in the dark gray region (shown via squares above), will hurt in the light gray region
(shown via dots), and will not have an effect in the white area.

of rejection, and hence a raised effective screening cost).
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E Appendix to Section 4

We formally define our model in Section E.1. We formally capture the equilibrium that arises

under no intervention in Section E.2, and the equilibria that arise under the various interventions

suggested (see Section 4) in Section E.3.

E.1 Augmented model: one tier of employers, two tiers of workers

Employers are ex ante homogeneous as before, but there are two tiers of workers: “top” (t)

workers and “bottom” (b) workers. We now describe how the model introduced in Section 2 is

extended to this new setting.

Match utility and informal agent-level dynamics. Employers, top workers and bottom

workers arrive at exogenously specified rates λe, λ
t
w, λb

w respectively, and agents who are present

have a hazard rate of µ of dying without matching. An employer’s utility for matching with a

worker of quality/tier τ is aτ + Uniform(0, 1), independent across pairs. We fix the “quality”

terms at = a > 0 and ab = 0, and these values are common knowledge. An employer must spend

screening cost c to learn her “idiosyncratic” term (distributed as Uniform(0, 1)) for a particular

worker. The utility of a worker (belonging to either tier) for matching with an employer is i.i.d.

Uniform(0, 1), and again can be learned by the worker by spending a screening cost c.

When an employer receives a proposal, she learns, at no cost, whether it is from a top worker

or from a bottom worker. When an employer has an opportunity to request a potential match,

she can specify what tiers of workers she is interested in, and in what order of priority. The

platform will show her a uniformly random candidate from her most preferred tier of workers

that currently has workers available, or do nothing if there is no available worker of the tier(s)

desired by the employer. Again, the employer knows the tier of the potential partner she has

been presented with, and can accordingly decide whether she wants to screen, etc. Workers

who request a candidate when an opportunity arises are presented with a uniformly random

employer as before. As before, each agent (of any kind) has a Poisson opportunity clock of rate

1.

Augmented strategy space. Strategies of both bottom and top workers are still as defined

in Definition 1. However, the strategy space of employers is enlarged.

• Employers now decide what to do with incoming proposals by agents from each tier, and

the choices are as before: ignore the proposals, accept without screening, or screen and

accept/reject.

• Employer’s strategy for proposing: Each employer has a (possibly incomplete) preference

list over tiers of workers. If a tier is not listed, we assume that the employer is not interested

in that tier. For each tier in the list, the employer specifies whether to do nothing, propose

without screening, or to screen and propose if the match value is above the acceptability

threshold.
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• Each employer has a deterministic threshold θe used to screen participants. (Recall that,

at equilibrium, θe will be equal for all employers regardless of their strategy.)

Augmented dynamics. As in Section 2.2, fix the thresholds θt
w, θ

b
w and θe, and let St

w,

Sb
w and Se be the sets of possible strategies available to top workers, bottom workers and

employers respectively (again, these sets are finite). Fix the fractions (f t
w(s))s∈Stw , (fb

w(s))s∈Stw
and (fe(s))s∈Se . We want to study the evolution of the masses of employers and top and

bottom workers following each of the possible strategies in the system. Denote these masses by

Ne(s), N
t
w(s), and Nb

w(s) respectively, N̄ will denote the vector of such masses, and Ne, N
t
w, and

Nb
w denote the total mass of agents of the given type in the system. The rate of evolution of

these masses in the system is given by:

dN t
w(sw)

dt
= f t

w(sw)λt
w −N t

w(sw)µ− ρt
w(sw; N̄) ∀sw ∈ St

w ,

dNb
w(sw)

dt
= fb

w(sw)λb
w −Nb

w(sw)µ− ρb
w(sw; N̄) ∀sw ∈ Sb

w ,

dNe(se)

dt
= fe(se)λe −Ne(se)µ− ρt

e(sw; N̄)− ρb
e (sw; N̄) ∀se ∈ Se (37)

where ρτw(sw; N̄), denotes the flow rate at which workers of tier τ ∈ {t, b} following strategy sw

are matched and, similarly, ρτe(se; N̄) denotes the flow rate at which employers following strategy

se are matched to workers of tier τ ∈ {t, b}.

Match formation rates. The reasoning and definitions in Section 2.2 remain mostly un-

changed. However, now employers who want to propose specify a preference order over tiers

when they request a candidate, which introduces some subtleties that need to be accounted for.

We consider two cases that come up based on whether there is a positive mass of both worker

types or of just one of the worker types (the third case of N t
w = Nb

w = 0 cannot occur under our

assumption λe < λt
w + λb

w).

Nt
w > 0 and Nb

w > 0. Employers will be able to issue proposals to workers of their preferred

tier. Then analogs of Eq. (3) will capture the match flow resulting from proposals by employers.

For instance, for a strategy se that prefers top worker candidates over bottom ones, we have

ρt
e(se, s

t
w; N̄) = Ne(se)

N t
w(st

w)

N t
w

ηt
e(se, s

t
w) ∀st

w ∈ St
w and ρb

e (se, s
b
w; N̄) = 0 ∀sb

w ∈ Sb
w ,

where ηt
e(se, s

t
w) =

(
I(se involves P)−F (θe − at)I(se involves S+P to t)

)
·
(
I(st

w involves A)−G(θt
w)I(st

w involves S+A/R)
)
.

The match flows ρτw(sτw, se; N̄) arising due to proposals from workers (of each type) to employers

are captured by Eq. (3) if Ne > 0. If Ne = 0 and remains zero for a non-zero interval of time

(the complementary technical case of Ne = 0 for an instant will not come up), similar to Eq. (4),
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we have

ρτw(sτw, se; N̄) = λef(se)
N τ
w(sτw)ηw(sτw, se)∑

stw∈Stw N
t
w(st

w)ηw(st
w, se) +

∑
sbw∈Sbw N

b
w(sb

w)ηw(sb
w, se)

for τ ∈ {t, b}.
Nt

w = 0 and Nb
w > 0. Further, suppose N t

w = 0 persists for a non-zero interval of time.

(The complementary case of N t
w = 0 for an instant does not arise.) The flow of proposals to

bottom workers now depends on both the mass of employers who list top workers as the first

choice when they request a candidate, and also on the mass of the subset of these who ask to

see a bottom worker candidate as their second choice.

The match flows ρt
e(se, s

t
w; N̄) resulting from proposals by employers to top workers are given

by Eq (4) (with the sum in the denominator being only over strategies in Se that prefer to see

a top tier candidate). For se such that a bottom worker candidate is requested as a second

preference, the flow of bottom worker candidates seen by employers following se is then

Flow of opportunities− Flow of top worker candidates = Ne(se)−
∑
stw∈Stw

ρt
e(se, s

t
w; N̄)

ηe(se, st
w)

.

Multiplying this flow by Nb
w(sbw)ηbe (se,sbw)

Nb
w

yields the match flow ρb
e (se, s

b
w; N̄). For strategies se

that ask for a bottom worker candidate as the first preference, the match flows are given by

ρb
e (se, s

b
w; N̄) = Ne(se)

Nb
w(sbw)
Nb
w

ηb
e (se, s

b
w) as before.

The match flows due to proposals by top workers ρt
w(st

w, se; N̄) are all 0 since there are no

top workers in the system. The match flows ρb
w(sb

w, se; N̄) arising due to proposals by bottom

workers are given by Eq. (3) if Ne > 0. (The complementary case Ne = N t
w = 0 does not arise.)

Expected utilities. As before, the expected utilities can be easily described in terms of the

match flows and the steady state L̄ (see Eq. (6)). In particular, the expected utilities for both

bottom and top workers are again given by Eq. (6). The expected utilities for employers are

similarly defined, with four terms capturing interactions with each type of worker.

Stationary equilibrium and stability. The definitions of stationary equilibrium (Defini-

tion 2) and evolutionary stability remain analogous to those for the case of no tiers.

E.2 Equilibrium under no platform intervention

We now describe the equilibrium when no intervention is present. We find a low welfare equilib-

rium where bottom workers propose without screening, and employers screen and propose only

to top workers in all equilibria. Note that this is similar to the insights obtained in Section 3,

in the sense that agents propose to those with more market power. However, here, we find that

the equilibrium has poor welfare, in particular for bottom workers, even in the limit c→ 0.
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Fix a ∈ (0, 1). Define δt = λtwa/2 > 0 and assume13 λe ∈ (λtw + δt, λtw + λbw + δt). Then,

there is a stable equilibrium —unique if λbw ≥ 1.20(λe−λtw−δt)— with the following description

when we take µ→ 0 and then c→ 0:

• Bottom workers propose without screening.

• Top workers do not propose, and screen and accept/reject incoming proposals using a

threshold of θt
w = 1−

√
2c.

• Employers do not propose to bottom workers. When the opportunity arises, employers

screen an available top worker, and propose to him with the same threshold of14 θe =

1−
√

2c. The employers split into two types based on how they respond to proposals from

bottom workers.

– Reachers: A fraction λtw+δt

λe
of employers ignore proposals from bottom workers, and

instead wait in the hope of matching with a top worker.

– Settlers: All other employers screen and accept/reject incoming proposals from

bottom workers with a threshold of θe, as a result they typically match with bottom

workers.

In steady state, there is a mass δt/µ = Θ(1/µ) of reachers in the market (to leading order),

a mass
(λe − λtw − δt)δt

(λbw + λtw + δt − λe)
√

2c
= Θ(1/

√
c)

of settlers, and a mass (λbw + λtw + δt − λe)/µ = Θ(1/µ) of bottom workers, whereas the mass

of top workers in the system is always 0. In fact, there are effectively two (almost) independent

submarkets:

• “Top submarket”: Top workers very quickly match (typically to reacher employers) and

leave, earning expected utility θt
w → 1. A fraction 1/(1 + a/2) + o(1) of reacher employers

match with top workers (earning a utility that is Uniform(θe, 1 + a) whereas the rest die

without matching, consistent with their equilibrium utility of θe → 1).

• “Bottom submarket”: Settler employers earn the same expected utility of θe by typi-

cally matching with a bottom worker (whom they like). A fraction (λe − λtw − δt)/λbw of

bottom workers are lucky enough to match, earning expected match utility 1/2 each (they

like their partner no more than average), the rest die without matching. Thus, the overall

expected utility of bottom workers is (λe − λtw − δt)/(2λbw).

13This is the “interesting” range for λe. If λe < λtw + δt, then employers do not match with bottom worker
at all in equilibrium, and the interaction between top workers and employers is analogous to that captured in
Section 3.2. On the other hand, if λe > λtw + δt + λbw, then all bottom workers (and all top workers) match in
equilibrium and the situation again becomes similar to that in Section 3.2 with workers being on the short side.

14Note that, at an equilibrium, all employers will be using the same threshold θe, which is also equal to their
expected pay-off.
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Note that the death-rate of reacher employers (δt) is determined endogenously: in equilib-

rium, an employer must be indifferent between being a reacher or a settler. For instance as a

increases top workers become more attractive, and thus the fraction of reacher employers that

die in equilibrium must increase to maintain this indifference.

We now state our formal result, which applies to c ∈ (0, 1/32).

Theorem 5. Fix c ∈ (0, 1/32) and a satisfying

a ∈ ((2c)1/4 −
√

2c, 1− (2c)1/4 −
√

2c) . (38)

Define

δt = λt
w

a−√2c
(

1
a+
√

2c
− 1
)

2(1−
√

2c)

 > 0 (39)

(The lower bound on a ensures that δt > 0.) Assume λe ∈ (λt
w + δt, λt

w + λb
w + δt). Then, there

is an equilibrium with the following description in the limit µ → 0: Bottom workers propose

without screening. Top workers do not propose, screen incoming proposals from employers and

accept/reject using a threshold of θt
w = 1−

√
2c. Employers do not propose to bottom workers, and

a fraction 1 − λtw+δt

λe
of employers (we call these “settlers”) screen and accept/reject incoming

proposals from bottom workers (the remaining, “reacher”, employers ignore such proposals),

with a threshold of θe = 1 −
√

2c. When the opportunity arises, employers screen an available

top worker, and propose to him with the same threshold of θe. There is a flow λt
w of reacher

employers matching with top workers, a flow δt of reacher employers dying without matching,

whereas all settler employers match with bottom workers, producing a flow (λe − λt
w − δt) of

such matches. Top workers earn utility θt
w, employers earn utility θe and bottom workers each

earn utility (λe − λt
w − δt)/(2λb

w). This equilibrium is dynamically stable under a fixed mix of

agent strategies. It is also evolutionarily stable, i.e., it is a stable fixed point under dynamics

where incoming agents choose a best response to the current masses of agents in the system (see

Section A.2).15

If λb
w ≥ max(1.20(λe − λt

w − δt), λe − λt
w) this is essentially16 the only equilibrium.

Note that for small c the interval of allowed values for a approaches (0, 1), and limc→0 δ
t =

a/2. We can define an “effective arrival flow” of λ̃t = λt
w + δt for top tier workers. Then,

the equilibrium captured in the theorem has an incoming flow λ̃t
w of reacher employers, who

wait to propose and match to a top worker whom they like (or die waiting), and an incoming

flow of settler employers arriving at the residual rate of (λe − λ̃t) < λb
w, who consider incoming

proposals from bottom workers, and typically match with a bottom worker whom they like.

15Though we had formally defined ESSE in a model with no tiers, the definition carries over to the case with
tiers with no modification.

16There are always “equivalent” equilibria, where employers are not separated into the binary categories of
“considers bottom workers” and “does not consider bottom workers” but may mix between these categories in
some manner.
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There is effectively a “top submarket”, consisting of top workers and reacher employers with

imbalance λ̃t/λt
w and employers being on the long side; and a “bottom submarket”, consisting

of settler employers and bottom workers with imbalance λb/(λw − λ̃t) > 1 and bottom workers

being on the long side. The behavior of agents under equilibrium in the top submarket resembles

that in Theorem 2 equilibrium 1,17 and in the bottom submarket resembles that in Theorem 2

equilibrium 2.18

There are four categories of agents – top workers, bottom workers, reacher employers and

settler employers. We will first establish the existence of a fixed point with the given limiting

description, of the dynamical system under a fixed mix of agent strategies (the mix of strategies

will itself have the given limiting description) in Claim 1. This fixed point will have the additional

property that reacher and settler employers obtain exactly the same utility. Next, we will show

that the fixed point is stable in Claim 2. Third, we will show that each category of agent

is playing a best response in Claim 3. This will establish that we have found a stationary

equilibrium. Fourth, we will show that the equilibrium is also evolutionarily stable in Claim 5.

Finally, we will show uniqueness of the equilibrium found in Claim 6.

Fixed point of dynamical system. Top workers arrive at rate λt
w and bottom workers arrive

at rate λb
w. Employers arrive at rate λe. Let agent strategies be as per the theorem statement,

including thresholds such that limµ→0 θe = θt
w = 1−

√
2c, where θe will be specified below.

Claim 1. There exist ε > 0, an arrival rate of reacher employers λr
e = λr

e(µ) ∈ (λt
w + ε, λe − ε)

such that limµ→0 λ
r
e = λ̃t, and a threshold θe = θe(µ) ∈ (ε, 1− ε) such that limµ→0 θe = 1−

√
2c,

such that under this fixed mix of agent strategies, there is a steady state/fixed point for µ ∈ (0, ε)

with the following properties:

• Top workers match as soon as they arrive.

• The utility of reacher and settler employers is exactly the same, and equal to θe.

• The mass of reacher employers is δt/µ to leading order as µ→ 0.

• The mass of settler employers is δt(λe−λ̃t)√
2c(λbw+λ̃t−λe)

to leading order as µ→ 0.

• The mass of bottom workers is (λb
w + λ̃t − λe)/µ to leading order as µ→ 0.

The intuition for the claim is as follows. (We present a formal proof below.) For bullets 3

and 5, the numbers should be such that when multiplied by µ it gives the rate at which agents in

that category die. In turn, this gives the rate at which these categories (want to) propose to the

others. We expect that all top workers and settler employers match in the limit µ→ 0, so this

allows us to calculate their expected number in the system in order to achieve this rate, given

17The modification is that here, an employer’s utility for a worker is uniformly distributed in (a, a+ 1).
18The modification is that here, a bottom worker does not know who the settler employers are and in fact most

of the employers available at any time are reachers and ignore proposals from bottom workers, making it highly
unattractive for bottom workers to screen and propose.
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the rate of incoming proposals. Next, we verify that for the given masses the rate of top workers

and settler employers dying without matching is 0 as µ→∞, and in fact the top workers match

as soon as they arrive (bullet 1). Finally, we can choose λr
e such that incoming employers are

indifferent between been reachers and settlers (bullet 2), and in the limit µ→ 0, this condition

implies that a fraction δt/(λt
w + δt) of reacher employers must die without matching, leading to

bullet 3. The mass of settler employers is such as to ensure that the flow of matches is the same

as the arrival flow as µ→ 0, since there is an excess of bottom workers.

Proof of Claim 1. Let us write the DEs capturing system dynamics. Fix the incoming flow of

reacher employers λr
e ∈ (λt

w+ε, λe−ε) for any ε > 0. Settler employers arrive at rate λs
e = λe−λr

e.

Let N r
e be the mass of reacher employers in the market, let N s

e be the mass of settler employers,

Ne be the total mass of employers, and let Nb
w be the mass of bottom workers in the market. If

we begin with all three masses positive and a zero mass of top workers in the system, we have

the following dynamical equations

dNb
w

dt
= −

(
N s
eηb

Ne
+ µ

)
Nb
w + λb

w

dN r
e

dt
= −λt

w

N r
e

Ne
− µN r

e + λr
e

dN s
e

dt
= −λt

w

N s
e

Ne
− N s

eηbN
b
w

Ne
− µN s

e + λs
e (40)

where ηb = 1−θe =
√

2c+O(µ) is the fraction of bottom workers that employers find acceptable

(we will choose the O(µ) term later, for now our analysis will work for an arbitrary term of this

form). We used that matches form between top workers and employers at rate λtw (these matches

form with each type of employer in proportion to their respective mass present in the system).

Matches form between settler employers and bottom workers (as a result of bottom workers

proposing without screening) at rate

(Rate at which bottom workers propose) ×

(Fraction of proposals that go to settler employers)× (Fraction of proposals accepted)

= Nb
w

N s
e

Ne
ηb .

We now show that there is a (stable) fixed point whose limiting description as µ→ 0 is

Lb
w =

λb
w − λs

e

µ

Lr
e =

λr
e − λt

w

µ

Ls
e =

λs
e(λ

r
e − λt

w)

(λb
w − λs

e)
√

2c
. (41)

as claimed. Note that this fixed point has all three masses positive, and hence the dynamical
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equations (40) remain valid (including that top workers match as soon as they arrive, and hence

the mass of top workers in the system remains zero).

Define

z1 = µ(Nb
w − Lb

w)

z2 = µ(N r
e − Lr

e)

z3 = N s
e − Ls

e (42)

Substituting Eqs. (42) and (41) in Eq. (40), and considering ‖z‖ = O(1), we get

1

µ

dz1

dt
= −

(
1 +

λs
e

λb
w − λs

e

)
z1 +

λs
e

λr
e − λt

w

z2 −
ηb(λb

w − λs
e)

λr
e − λt

w

z3 +O(µ) ,

1

µ

dz2

dt
= −z2 +O(µ) ,

dz3

dt
= − λs

e

λb
w − λs

e

z1 +
λs
e

λr
e − λt

w

z2 −
ηb(λb

w − λs
e)

λr
e − λt

w

z3 +O(µ) . (43)

Here the O(µ) terms are, in fact, Lipschitz continuous in z and λs
e with a Lipschitz constant

that is O(µ). Let A be the coefficient matrix for the linear terms above. We have

A =

−1− ξ β −γ
0 −1 0

−ξ β −γ

 ,
where ξ =

λs
e

λb
w − λs

e

, β =
λs
e

λr
e − λt

w

, γ =
ηb(λb

w − λs
e)

λr
e − λt

w

. (44)

It is easy to verify that A has full rank with singular values bounded away from 0. Hence,

there is a fixed point z∗ of this set of equations satisfying

z∗ = O(µ) .

Thus, Eq. (41) gives the correct steady state to within O(µ) in relative terms (also, the relative

errors are Lipschitz with a Lipschitz constant that is O(µ)).

The steady state utility of reacher employers is decreasing in Lr
e since more of them die as

this value increases. In fact, this utility is a constant plus (λr
e − λt

w)/λr
e = constant − λt

w/λ
r
e

up to O(µ), which is decreasing in λr
e. In comparison, the settler employers have a fixed utility

in the limit that µ → 0. We deduce that there is a unique value of λr
e such that reacher and

settler employers have the same utility. Using Eq. (41) and ξb =
√

2c, yields that this uniquely

determined rate of arrival of reacher employers is λr
e = λt

w + δt + O(µ). We now need to set

θe appropriately; we had left the O(µ)-sized correction term ambiguous until now. Suppose we

start with θe = 1−
√

2c exactly and do the above process. Then we correct θe, for now holding

λr
e fixed, so that it matches the utility employers were getting. This correction in θe will be
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O(µ), because the utility of settler employers is 1−
√

2c−O(µ). This change in θe will change

the fixed point by O(µ). As a result λr
e will need to be adjusted by O(µ) to make utilities equal

again for reacher and settler employers. However, the change in (settler) employer utility is only

O
(
µ|(Change in steady state parameters)|+ (Change in θe)

2
)

= O(µ2) +O(µ2) = O(µ2)

So, the next time, when we again adjust θe, then λr
e and calculate the change in utility, all changes

will be a factor O(µ) smaller than the previous iteration. In other words, this iterative process

converges rapidly for small enough µ, and upon convergence, produces λr
e = λt

w + δt +O(µ) and

θe = 1 −
√

2c − O(µ) such that the utilities of reacher and settler employers are both exactly

equal to θe. As a quick check, note that the utility of top workers as µ→ 0 is

(Fraction who match)
(
(1 + a+ θe)/2− cE[Number of top workers screened per match]

)
=

λt

λt + δt

(
2 + a−

√
2c

2
− c√

2c(a+
√

2c)

)
= 1−

√
2c

Using Eq. (41) and ξb =
√

2c, yields that this uniquely determined rate of arrival of reacher

employers is λr
e = λt

w + δt + O(µ). Substituting in Eq. (41) and using λs
e = λe − λr

e yields the

claim.

The fixed point is stable.

Claim 2. The fixed point found in Claim 1 is stable under a fixed mix of agent strategies, i.e.,

if we start close to the fixed point |z(0)− z∗| < ε2, we remain close, |z(t)− z∗| < ε for all t, and

the dynamics converges to the fixed point, i.e., limt→∞ z(t) = z∗.

To check dynamical stability (under a fixed mix of agent strategies), we need to investigate

the eigenvalues of

A1 =

−µ(1 + ξ) µβ −µγ
0 −µ 0

−ξ β −γ

 ,
since

dz

dt
= A1z +

ε1(z)

ε2(z)

ε3(z)

 , (45)

where ε1 and ε2 are O(µ2) and Lipschitz continuous in z with constant that is O(µ2), whereas

ε3 is O(µ) and Lipschitz continuous in z with constant that is O(µ). Let the Lipschitz constants
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by denoted by L1, L2, and L3. The eigenvalues turn out to be

λ1 = − µ with eigenvector v1 =
[
0 1 0

]T
λ2 =

−φ+
√
φ2 − 4µγ

2
= −µ−O(µ2) with eigenvector v2 =

[
γ 0 −(λ2 + µ(1 + ξ))/µ

]T
=
[
γ 0 −ξ +O(µ)

]T
λ3 =

−φ−
√
φ2 − 4µγ

2
= −γ +O(µ) with eigenvector v3 =

[
µ 0 −

(
λ3 + µ(1 + ξ)

)
/γ
]T

=
[
µ 0 1−O(µ)

]T
where φ = µ(1 + ξ) + γ . (46)

(Note that all eigenvectors have been scaled to have magnitude of order 1.) Clearly, all eigen-

values have a negative real part. However, we still need to deal with the error terms in Eq. (48).

Notice that each of the three error terms is only order µ times the size of the corresponding

leading term (when the leading term is non-zero). Hence, we expect to obtain stability of the

fixed point for small µ. We formally prove this below.

Remark 4. The eigendecomposition of A1 admits an elegant interpretation in the context of

the dynamical system.

• The first eigenvalue corresponds to the mass of reacher employers in the system,19 and if

this number deviates, it returns to zero via the resulting imbalance between the arrival and

departure flows. Since arrival and matching flows are fixed, this imbalance per unit mass

of deviation is equal to µ (the death rate per unit mass), hence the value of λ1.

• The third eigenvalue corresponds to a short-lived imbalance in the arrival and matching

flow rate of settler employers (a vanishing flow of settler employers die without matching).

If such an imbalance occurs, it quickly disappears, since the matching flow rate increases

by nearly Lb
w/L

s
e = ηb(λbw − λbse )/(λr

e − λt
w) = γ per unit mass increase in z3, due to

more proposals by bottom workers going to reacher employers. There is a small effect

on the scaled mass of bottom workers present, hence the µ valued first coordinate of the

eigenvector.

• The second eigenvalue corresponds to a deviation in the mass of bottom workers, and how

it disappears. As per the above bullet, the mass of settler employers adjusts and settles at

a point such that the flow of matches is nearly identical to their arrival flow λr
e. Once the

flow of matches has equilibrated, there is a slow adjustment of the mass of bottom workers

in the system, similar to bullet 1, modulated by the death rate µ, since the arrival and

matching flows are nearly fixed in time, hence we have λ2 ≈ µ.

19The scaling in the definition of z2 does not affect the eigenvalue, since it affects both sides of the dynamical
equation by the same factor.
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Proof of Claim 2. Suppose we start at z(t) = z = z∗ + α1v1 + α2v2 + α3v3, where z∗ is a fixed

point of Eq. (48). Allowing the system to evolve for a (small) time ∆, we have that

z(t+ ∆) = z∗ +

3∑
i=1

αi(t+ ∆)vi ,

= z∗ +

3∑
i=1

αi(t)(1− λi∆)vi +

ε1(z(t))− ε1(z∗)

ε2(z(t))− ε2(z∗)

ε3(z(t))− ε3(z∗)

∆ +O(∆2) ,

Consider the expansion of the error term in terms of eigenvectors. The ε3(z(t))− ε3(z∗) term is

of order |z(t) − z∗|∆µ = |α(t)|∆µ, and when we express [0 0 µ]T in terms of eigenvectors, we

obtain a coefficient of order µ for v3 and a coefficient of order µ2 for v2. (Other error terms can

be handled similarly.) For each of the eigenvectors, we see that the ratio of the magnitude of

the coefficient (due to the error term) to the magnitude of the eigenvalue is order µ|α(t)|∆. We

deduce that the coefficient of v2 in the error term gets dominated by α2(t)λ2∆ provided α2(t)

is large compared to µ|α(t)|. The coefficient of v3 gets dominated by α3(t)λ3∆ provided α3(t)

is large compared to µ|α(t)|. The coefficient of v1 gets dominated by α1(t)λ1∆ provided α1(t)

is large compared to µ|α(t)|. In other words, we have

max(|αi(t+ ∆)|, ε) ≤ max(|αi(t)|, ε)− I(|αi(t)| > ε)|αi(t)||λi|∆/2 for i = 1, 2, 3

where ε = O(µ|α(t)|) .

for ∆ small enough. It follows that this condition remains valid for a fixed ε = O(µ|α(t)|) for

all subsequent times. Hence, it must be that eventually all |αi|’s are no more than ε. At this

point, we can reset the value of ε to a value that is O(µ) times the original value and repeat.

It follows that the system returns to the fixed point z∗. This argument goes through for all µ

smaller than some value µ0.

All agent categories are playing a best response.

Claim 3. For the choice of λr
e = λr

e(µ) > 0 and the fixed point/steady state in Claim 1, with

θt
w = 1−

√
2c and a suitable choice of θe = θe(µ) satisfying limµ→0 θe(µ) = 1−

√
2c the following

holds for µ ∈ (0, ε). Top workers, bottom workers and employers are all playing a best response.

Top workers earn expected utility θt
w, employers earn expected utility θe and bottom workers earn

limiting expected utility (λe − λt
w − δt)/(2λb

w) as µ→ 0.

Proof of Claim 3. We consider each category of agent in turn.

• Top workers: They are earning the highest possible utility of 1−
√

2c and cannot do any

better by proposing or using a different threshold. The threshold is optimal for any µ

without taking the limit, since top workers match instantly and depart, and hence a 0

fraction of them die.
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• Employers: Employers will want to consider a top worker if such an option is available.

Also, they will not want to propose to bottom workers if µ is small enough, since they

are better off waiting for (frequent) incoming proposals from them and avoiding wasted

screening effort. It remains to choose between being a reacher and a settler and to choose a

threshold. By Claim 1, reachers and settlers earn exactly the same utility, and θe matches

this utility, and is hence an optimal threshold. We deduce that employers, both reachers

and settlers, are playing a best response and earning utility θe.

• Bottom workers: They have no hope of matching unless they propose. Only a vanishing

fraction of employers who are present will even consider their proposal, hence the effective

screening cost they face, cf. Lemma 1, is diverging and it is a best response for them to

propose without screening. Bottom workers form matches only at a flow rate of λw− λ̃t as

µ→ 0, since almost all arriving settler employers match with them. Hence, the fraction of

bottom workers who match is (λw − λ̃t)/λb, and we compute the expected utility earned

by bottom workers as (λw − λ̃t)/(2λb).

Evolutionary stability. Evolutionary stability requires that when entering agents choose a

strategy that is a best response to the current mix of agents in the system (keeping the threshold

θ fixed), the equilibrium is a stable fixed point under the resulting system dynamics.

When the system deviates slightly from the fixed point z∗, the best response of the top work-

ers and the bottom workers remains unchanged, but for entering employers, being a reacher may

be more or less attractive than being a settler, the main determinant of the relative attractive-

ness being the mass of reachers presently in the system. When there are more reachers present,

this increases the likelihood of dying without matching for reachers, and hence makes being a

reacher less attractive. This reasoning leads us to the following dynamical equations under the

best response dynamics

dz

dt
= A1z +

 0

µ
(
I(z2 < ε6)λe − λr

e

)
−I(z2 < ε6)λe + λr

e

+

ε1(z)

ε4(z)

ε5(z)

 ,
where ε6 = ε6(z1, z3) = O(µ), ε5 = O(µ), ε4 = O(µ2), ε1 = O(µ2) . (47)

Again, each of the ε’s is, in fact, Lipschitz continuous (for |z| = O(1)) with Lipschitz constant

bounded as O(µ) for ε6 and ε5 and O(µ2) for ε4 and ε1. Recall that λr
e = λ̃t +O(µ). We call the

three terms above, in order, the linear term (unchanged from before), the best response term

and the error term.

To begin with, we show that for after an initial transient, the system will hit the boundary

z2 = ε6(z1, z3) and stay there.

Claim 4. Fix ε9 > 0. There exists µ0 > 0 such that for any µ ∈ (0, µ0) the following holds.

There exists ε7 > 0 and C > 0 (that can depend on all model primitives), such that for any
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starting point z(0) satisfying |z(0)− z∗| < ε7, after an initial transient of duration C|z(0)− z∗|,
the system will hit the best-response boundary z2 = ε6(z1, z3) and stay on the boundary thereafter.

Moreover, when it hits the boundary, |z(0)− z∗| < ε9.

Proof. Consider the following dynamical system that captures (48) in the region z2 < ε6.

dy

dt
= A1y +

 0

µλs
e

−λs
e

+

ε1(y)

ε4(y)

ε5(y)

 ,
where ε6 = ε6(y1, y3) = O(µ), ε5 = O(µ), ε4 = O(µ2), ε1 = O(µ2) . (48)

Suppose the system starts at y(0) = z(0) such that y2 < ε6. (The complementary case can

be handled via very similar argument.) Consider the evolution of y2. It increases at a rate of

µλs
e +

∂ε4
∂y1

dy1

dt
+
∂ε4
∂y3

dy3

dt
.

To hit the boundary, we need y2 = ε6. The initial distance from the boundary along the

y2 coordinate is bounded by 2|y(0) − y∗| for small enough µ, using the fact that ε6 is O(µ)-

Lipschitz continuous in y1 and y3, and that z∗ = y∗ is on the boundary (in fact, it is a fixed

point of Eq. (47). We claim that the time it will take to hit the boundary is bounded above by

τ = 2(2|y(0)− y∗|)/(µλs
e) = 4|y(0)− y∗|/(µλs

e). To establish this, it will suffice to show that

dε6
dt
− dε4

dt
=
∑
j=1,3

(
∂ε6
∂yj
− ∂ε4
∂yj

)
dyj
dt
≤ µλs

e/2 , (49)

holds for all t ≤ τ . Now, if ε7 is sufficiently small, then τ is sufficiently small. There exists ε8 > 0

such that while |y(t) − y∗| ≤ ε8 we have

∣∣∣∣dydt
∣∣∣∣ ≤ λe. It follows that |y(t) − y∗| ≤ ε7 + λet for

such times, and hence |y(t)− y∗| ≤ ε9 ≤ ε8 holds up to τ ′ = (ε9− ε7)/λe for any ε9 ∈ (0, ε8). By

choosing ε7 and hence τ sufficiently small, we can ensure that τ ′ ≥ τ . It follows that
∣∣∣dy
dt

∣∣∣ ≤ λe
and |y(t)− y∗| ≤ ε9 holds up to τ . We deduce that∣∣∣ ∂εi

∂yj

dyj
dt

∣∣∣ = O(µ2) ≤ µλr
e/6 for µ < µ0 and (i, j) ∈ {(4, 1), (4, 3), (6, 1)} .

For i = 4 and j = 1, 3 we used that ε4 is O(µ2)-Lipschitz continuous. For i = 6, j = 1, we used∣∣∣dy1

dt

∣∣∣ = O(µ) and |y1 − y∗1| = O(µ) for t ≤ τ and small enough ε7. The remaining term is

∂ε6
∂y3

dy3

dt
.

Note that
∂ε6
∂y3

> 0 since more settlers in the system makes it less attractive for an incoming

employer to be a settler, and is justified only at a higher value of y2. Also, observe from Eq. (48)
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that
dy3

dt
< 0 for t ≤ τ . We deduce that this term is negative. It follows that Eq. (49) holds for

all t ≤ τ . We deduce that the system hits the boundary for the first time at t = τ ′′ ≤ τ , and until

it hits the boundary, the distance between the y2 coordinate and ε6 is always decreasing. After

τ ′′ the system does not leave the boundary, since if it “tries”, the result we just derived implies

that the dynamics immediately pushes the system back to the boundary. Also, we observe that

|y(τ ′′)− y∗| < ε9.

We now write the equations for the two-dimensional dynamical evolution when the system

is on the best response boundary, and employ an argument similar to that we used to prove

Claim 2 (stability of the fixed point when there is a fixed mix of agent strategies), in order to

complete the proof of evolutionary stability.

Claim 5. The fixed point in Claim 1 is also a fixed point of the best response dynamics (47),

and is evolutionarily stable. In other words, it is an evolutionarily stable stationary equilibrium.

Proof. Claim 3 establishes that all agent categories are, in fact, playing a best response in the

fixed point in Claim 1. It follows that the fixed point is also a fixed point of the best response

dynamics (47). We will now show evolutionary stability.

Suppose the best response dynamics (47) begin from z(0) such that |z(0)− z∗| < ε7. Using

Claim 4 we know that the dynamics hits the best response boundary at a point that is at most

ε9 from z∗, at some time τ ′′. Thereafter, we can follow the proof of Claim 2 to control system

dynamics on the boundary. The dynamical system is now two-dimensional, in terms of z1 and

z3, since z2 = ε6 remains true. The dynamical equations are now

dx

dt
=

[
−µ(1 + ξ) −µγ
− ξ

1+ρ − γ
1+ρ

][
x1

x3

]
+

[
ε10(x)

ε11(x)

]
,

where ρ =
1

µ

∂ε6
∂x3

∣∣∣∣
x∗
> 0 (50)

Here, x(t) = [x1(t) x3(t)]T = [z1(t + τ ′′) z3(t + τ ′′)]T . We know |x(0)| ≤ ε9 and also have that

ε10(x) is O(µ2)-Lipschitz continuous and ε11(x) is O(µ) at x∗ and O(µ+ε9)-Lipschitz continuous.

The reason for this is as follows: Note that ρ = Θ(1). We expect
∣∣∣dx3

dt

∣∣∣ = Θ(|x(t)− x∗|). If this

holds, using Taylor expansion to control
∂ε6
∂x3

, we obtain that

dz2

dt
=
∂ε6
∂x3

dx3

dt
+O(µ2) = µρ

dx3

dt
+O(µ(µ+ ε29)) .

Since the best response term in (47) produces the leading order component of
dz2

dt
, it must

contribute an opposite push to z3 = x3 that is 1/µ times larger in magnitude, to leading order,
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by definition. This push is then −ρdx3

dt
+O(µ). It follows that

dx3

dt
=
[
−ξ −γ

]
x − ρ

dx3

dt
+ O(µ+ ε29)

Rearranging leads to the
dx3

dt
expression in Eq. (50). The best response of bottom workers

remains unchanged, hence there is no similar leading order “correction” to
dx1

dt
. The eigenvalues

of the 2x2 matrix capturing the linear part are, defining γ̃ = γ/(1+ρ), the same as the eigenvalues

λ1 and λ3 of A1, see (46), when γ is replaced by γ̃. In particular, the eigenvalues are negative.

As in the proof of Claim 2, we can now show that for ε9 and µ0 small enough, this implies

convergence to the fixed point x∗ and hence to z∗ for the overall system.

The equilibrium is unique. We now show uniqueness of the equilibrium found.

Claim 6. There is no other evolutionarily stable equilibrium besides the one described in Theo-

rem 5, if λb ≥ 1.20(λw − λt − δt) holds.

Proof. One can rule out equilibria where the top workers propose, with or without screening,

without imposing any additional conditions: The condition for employers wanting to screen and

propose to top workers is (1 + a + θe)/2 − c/[(1 − θt
w)(a + 1 − θe)] > θe which simplifies to

θe < 1+a− (2c)1/3, which always holds, irrespective of what is happening with bottom workers,

since in any equilibrium θe ≤ 1−
√

2c < 1+a−(2c)1/4 < 1+a−(2c)1/3, using a > (2c)1/4−
√

2c.

Hence, employers will want to screen and propose to top workers. So top workers will not want

to propose since proposals are coming in anyway.

We now consider the mix of strategies that employers and bottom workers may be employing,

knowing that all employers screen and propose to top workers. There must be at least (λt
w +

δt− ε)/λe fraction of reacher employers, who will look to screen and propose to top workers, and

ignore bottom workers. (If not, there will be less than (δt−ε)/µ mass of reacher employers in the

system in steady state, and it will be a unique best response to be a reacher and earn utility of

at least 1−
√

2c+ε′, a contradiction.) On the other hand, there cannot be all reacher employers.

(If this is the case, then bottom workers will want to propose w/o screening anyway, even if

there is a very small mass of settler employers in the system, resulting from a small perturbation

as per the notion of evolutionary stability we consider. Reachers will earn less than 1−
√

2c−ε′′,
so the utility from being a settler will be strictly higher, a contradiction.) So the fraction of

reachers must be in ((λt
w + δt + o(1))/λe, 1− ε). Now, we try to rule out different possibilities as

in Theorem 2. Suppose bottom workers propose, then settler employers definitely don’t want to

propose. Suppose bottom workers mix between proposing and not proposing. As before this is

not evolutionarily stable because bottom workers proposing has a negative externality on other

bottom workers; as in Theorem 3 the stable situation can only be that the long side (bottom

workers) is either all proposing or none are proposing. We already considered all proposing,

suppose none of the bottom workers propose. Then it must be that settler employers all propose

(else they would count as reachers). We rule out this case below.
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It remains to consider whether employers will propose to bottom workers in some equilibrium.

Note that the bottom submarket is always unbalanced in favor of employers, since λe−λt
w−δt <

λb, and the rate of employers dying is at least δt−o(1) as argued above (this rate can be higher if

θw < 1−
√

2c, which occurs if employers propose to bottom workers, meaning that more reacher

employers must die to make utilities equal), which means that the rate of employers participating

in the bottom market is less than λb
w. As a result, employers will always want to screen before

proposing since we have assumed 1 − (2c)1/4 > 1/2, and 1/2 is what an employers can earn

by proposing without screening. Such an equilibrium is ruled out if λb
w ≥ 1.20(λe − λt

w − δt),

drawing on the analysis in Theorem 4: Note that in any such equilibrium θe < 1−
√

2c, hence all

employers, including reacher employers will want to look at an incoming proposal from a bottom

worker. In fact, all employers will react to such proposals by screening and accepting based on a

threshold θw (with θw being a function of the imbalance in the bottom submarket, which is more

than λb
w/(λe−λt

w−δt)) which is the same as what happens in the analysis leading to Theorem 4

bullet 1. For any c < c̄2, cf. Eq. (34), it will be a best response for bottom workers to screen and

propose; consequently employers will not want to propose to bottom workers (they will receive

Ω(1/µ) = ω(1) proposals before they die, more than enough to find one they like before they die

with probability approaching 1). So it suffices to have c̄2 ≥ 1/32 to ensure that an equilibrium

with employers proposing to bottom workers does not exist for any c < 1/32. In turn, this is

ensured by the imbalance in the bottom submarket exceeding 1 + 1/27/3 = 1.1984 < 1.20, which

is ensured by λb
w ≥ 1.20(λw − λt − δt). It follows that bottom workers must be the only ones

proposing in the bottom submarket. Hence, settlers earn a utility of 1 −
√

2c − o(1), and this

then implies that the fraction of reacher employers is, in fact, (λt
w + δt − o(1))/λe, in order for

reachers and settlers to have the same utility. We obtain that the equilibrium in Theorem 5 is

the unique evolutionarily stable equilibrium.

Proof of Theorem 5. We can finally write a quick formal proof of the theorem.

Proof of Theorem 5. The existence and characterization part of the theorem follows combining

Claims 1, 2, 3 and 4. Claim 6 yields uniqueness of the equilibrium under the condition λb
w ≥

1.20(λw − λt − δt).

E.3 Interventions

Here we describe the equilibria obtained by the interventions discussed in Section 4.

E.3.1 Proposed intervention: block workers from proposing

Suppose all workers are disallowed from proposing, regardless of their tier. We start by describing

the equilibrium, and informally argue its existence. Again, we will have two types of employers:

reachers and settlers. Given the chance to see an opportunity, reachers will request a top worker;

if none is available, they’ll just wait in the system. Settlers will first request a top worker, and if

non available, they’ll request a bottom worker. As before, let λse λ
r
e denote the effective arrivals
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rates of the two types of employers, so that λse + λre = λe. Out of the λre employers, we have

that λtw will match to top workers, and δt will die. We need to determine the new values of

θtw, θ
b
w, θe, and δt (note that δt immediately fixes the values of λse = λe−λtw−δt). As before, this

will induce a bottom submarket and a top submarket. We start by focusing on the necessary

conditions such an equilibrium must satisfy.

1. Top workers will still use the socially optimal strategies, i.e. θtw(c) = 1 −
√

2c, as their

strategy is unaffected by the intervention.

2. Suppose δt is fixed. Then, the bottom submarket will have an imbalance of

λ =
λbw

λe − λtw − δt
. (51)

Given this imbalance, we can use the insights in Theorem 2; in particular, provided that

c is small and the imbalance is small enough, to determine that bottom workers will now

screen with threshold

θbw = ξ(λ, c) . (52)

Furthermore, this implies that the threshold used by employers must satisfy:

θe = 1−

√
2c

1− θbw
. (53)

3. In addition, noting that at equilibrium both reachers and settlers should derive the same

utility, we must then have:

θe =
λtw

λtw + δt

(
a+ 1 + θe

2
− c√

2c(a+ 1− θe)

)
This can be re-expressed as:

θe =
(a+ 1)λ

t
w+δt

λrw
−
√

(a+ 1)2
(
λtw+δt

λtw

)2
+ 4

(
λtw+δt

λtw
− 1

2

)(√
c
2 −

(a+1)2

2

)
2
(
λtw+δt

λtw
− 1

2

) (54)

We can solve Eqs. (51), (52), (53) and (53) for δt, λre, θ
s
e and θbw.

We highlight that these are necessary conditions. In addition, for this to be an equilibrium,

we must check that no agent has incentive to deviate:

1. Top workers will never have an incentive to deviate; this is easy to see, as they are screening

using the socially optimal threshold and thus their outcome cannot be improved.

2. Bottom workers should continue to screen. Using Theorem 3, this will happen as long as

c ≤ c̄, i.e., it will happen in the limit c→ 0.
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3. In addition, we must have that all employers screen and propose to top workers, and

settlers also propose to bottom workers. The condition for settlers to screen and propose

to bottom workers is c ≤ ĉ. We can rule out the possibility that employers want to propose

without screening to top workers. The reason is that there is a probability (1− a)/2 that

the worker will have a value less than (1 + a)/2 < 1, and the employer might as well

screen to avoid such workers, since she faces an effective screening cost (see Lemma 1) of√
c/2 → 0. A sufficient condition for employers to screen and propose to top workers is

δt ≥ 0 and θe ≥ a+ 1/2.

Therefore, we have argued that the setting described above is indeed an equilibrium. We

can now formally state the theorem, for which we just provided the sketch of proof.

Theorem 6. Suppose a ∈ (0, 1) and λe ∈ (λtw(1 + a/2), λtw + λbw). Define λ = λbw/(λe − λtw(1 +

a/2)). Then the following is an equilibrium along with the associated utilities earned by different

agents, if we consider µ→ 0 and then c→ 0:

• Top workers screen and accept/reject with threshold θtw(c) = 1 −
√

2c, and earn the same

amount as expected utility.

• A fraction
λtw(1 + a/2)

λe

(
1 + o(1)

)
of employers are reachers, meaning that they screen and propose to top workers, when

they get a chance. The rest of the employers are settlers, meaning that they are willing to

screen and propose to bottom workers but would first propose to a top worker if they get a

chance. Both kinds of employers use a threshold of

θe = 1−
√
c(2λ− 1)

λ− 1

(
1 + o(1)

)
.

Reachers die at a rate of
λtwa

2

(
1 + o(1)

)
.

• Bottom workers screen and accept/reject incoming proposals with a threshold of

θbw =
2(λ− 1)

2λ− 1

(
1− o(1)

)
,

and earn the same amount as expected utility.
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E.3.2 Proposed intervention: Identifying settler employers who will consider bot-

tom workers

Suppose the platform is able to identify employers who will consider proposals by bottom work-

ers. The platform can then reveal this to bottom workers, who can direct their search efforts

towards such settler employers exclusively. Whereas such a classification (“interested” or “not

interested” in bottom workers) may not be binary, here we optimistically assume it is, and study

the resulting welfare improvement for bottom workers. We remark that the welfare remains un-

changed for top workers and employers, as their strategies should remain unaltered.

Theorem 7. Let top workers arrive at rate λtw, bottom workers arrive at rate λbw and employers

arrive at rate λe. Fix c ∈ (0, 1/32) and a satisfying

a ∈
(

(2c)1/4 −
√

2c, 1− (2c)1/4 −
√

2c
)
. (55)

Define

δt = λtw

a−√2c
(

1
a+
√

2c
− 1
)

2(1−
√

2c)

 > 0 (56)

Assume λe ∈ (λtw + δt, λtw +λbw + δt). Furthermore, suppose λbw ≥ 1.20(λe−λtw − δt).20 Also

assume that each employer either always screens proposals from bottom workers (a settler), or

never screens proposals from bottom worker (a reacher) —the fraction of settlers and reachers

is part of the equilibrium description. Then, the following is a description of all equilibria in the

limit µ→ 0:

• Top workers do not propose; they screen incoming proposals from employers and ac-

cept/reject using a threshold of θtw = 1−
√

2c.

• Employers do not propose to bottom workers. A fraction 1 − λtw+δt

λe
of all employers will

screen and accept/reject incoming proposals from bottom workers, with a threshold of θe =

1 −
√

2c; all other employers ignore such proposals. When the opportunity arises, all

employers screen an available top worker, and propose to him with the same threshold of

θe.

• Bottom workers propose. For c ∈ (0, c̄2), there is an equilibrium where they (all) screen

and propose (considering only settler employers). For c ∈ [c, 1/32) there is an equilibrium

where they propose without screening to settler employers (they may or may not propose

to other employers, but such proposals are ignored anyway). We define c̄ and c below.

In any equilibrium, top workers each earn expected utility θtw, employers each earn expected

utility θe. If bottom workers screen and propose, they each earn expected utility θbw = ξ(λ,
√
c/2)

20Actually, λbw ≥ 1.20(λe − λtw − δt) is required solely for these equilibria to be the unique ones. If λbw is less
the proposed quantity, new equilibria can arise (see Theorem 4).
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as explained below, whereas if bottom workers propose without screening, they each earn expected

utility (λe − λtw − δt)/(2λbw).

Here c̄ and c are given by Eq. (10), and ξ(λ, ·) is given by Eq. (9), in each case substituting

λ =
λbw

λe − λtw − δt
. (57)

Sketch of proof. This result borrows heavily from Theorem 5. By making the assumption that

λbw ≥ 1.20(λe−λtw− δt) upfront, we can guarantee that the equilibrium behavior of top workers

and employers is (essentially) uniquely determined. Thereafter, we borrow from Theorem 2

to deduce the equilibrium among bottom workers. We use the effective λ for the bottom,

unbalanced, submarket.

We notice that identifying the settler employers allows bottom workers to be selective for

small values of c, but this benefit disappears if the value of c exceeds 2c̄2. For λ = 1.5, we have

2c̄2 = 0.011, whereas for λ = 2 we have 2c̄2 = 0.0037. The above theorem placed an upper

bound on the value that can be derived, in terms of gain in social welfare, if the platform is able

to distinguish between employers who are settlers and reachers.

E.3.3 Hiding information regarding top and bottom workers

Suppose the platform prevents workers from proposing and, further, does not reveal to employers

whether a worker is a top worker or a bottom one. In this case, we show that an equilibrium

arises in which (as c → 0) the social welfare per unit time accrues at a rate that is Ω(1) faster

than the case of no platform intervention.

Theorem 8. Suppose λe ∈ (λtw, λ
t
w +λbw). Consider µ→ 0 for fixed c and then consider c→ 0.

We have the following equilibria and corresponding utilities for agents of each type:

1. Employers screen and propose with threshold

θe = 1−Kec(1 + o(1)) ,

where Ke =
2(λe − λtw)

aλtw
· 2λ− 1

2(λ− 1)
.

2. Top workers screen and accept/reject with threshold

θt
w = 1−Kt

√
c (1 + o(1)) ,

where Kt =

√
4(λt

w + λb
w − λe)

a2λt
+ 2 ,

A fraction (Kt/2− 1/Kt)
√
c (1 + o(1)) of them die without matching.
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3. Bottom workers will screen and accept/reject

θb
w = ξ(λ, 0) (1 + o(1)) =

1

2λ− 1
(1 + o(1)) .

where λ = λbw/(λe − λtw) and ξ(·, ·) is as defined in Eq. (9).

Note that the limiting utilities are 1 each for top workers and employers (as has been the

case under all settings discussed so far), and 1/(2λ−1) for bottom workers, which is an improves

upon the utility they get under the other interventions.

Sketch of proof of Theorem 8. We first study the steady state of the system when agents follow

actions as described. Let ft be the fraction of workers in the system at any time, who are top

workers. Then, when an employer is presented with an option (which she then proceeds to

screen, not knowing whether it is a top or a bottom worker), it is a top worker with probability

ft. If it is a top worker, she proposes w.p. a+ o(1) and gets accepted w.p. Kt
√
c (1 + o(1)), so

the overall likelihood of the option resulting in a match with a top worker is

ftaKt

√
c (1 + o(1)) .

If the option is a bottom worker, she proposes w.p. cKe (1 + o(1)) and gets accepted w.p.

1− 1/(2λ− 1) + o(1), so the overall likelihood of the option resulting in a match with a bottom

worker is

(1− ft)cKe
2(λ− 1)

2λ− 1
+ o(1) .

Suppose ft is Ω(1). Then with likelihood 1 − O(
√
c), an employer forms a match with a top

worker, meaning that matches between employers and top workers are formed at a rate λe −
o(1) > λt

w, a contradiction. Hence, ft = o(1). Now, almost all employers form matches (a

vanishing fraction die without matching). It follows that workers die at a rate λwb +λt
w−λe+o(1),

and since ft = o(1), most of these are bottom workers. We deduce that the number of bottom

workers in the system in steady state is (λb
w + λt

w − λe + o(1))/µ. Also, employers match with

bottom workers at rate λe − λt
w + o(1), and with top workers at rate λt

w − o(1). Hence,

ftaKt
√
c(2λ− 1)

cKe2(λ− 1)
=

λt
w

λe − λt
w

+ o(1) ,

⇒ ft =
2
√
c

a2Kt
(1 + o(1)) =

λt
w(Kt/2− 1/Kt)

λt
w + λb

w − λe
√
c (1 + o(1)) .

This completes our understanding of the steady state of the system. Note that the fraction of

top workers who die is (Kt/2− 1/Kt)
√
c (1 + o(1)) as stated in the theorem.

We now need to check that each type of agent is playing a best response. First consider

employers. When they screen, they should use a threshold equal to their expected utility from

playing a best response (under steady state). This expected utility is the same for all employers.
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Call it θe. One can rule out values of θe that violate the estimate stated in the theorem because

the result rate of match formation with top workers will not be λt
w − o(1). This rate cannot

exceed λt
w since there are not enough top workers, and it cannot be λt

w − Ω(1) because in that

case, employers will be able to get utility exceeding 1 by matching only with top workers, a

contradiction.

It remains to show that there exists an equilibrium with employers earning expected utility

matching the stated estimate of θe. (We will provide a sketch of proof.) Suppose an employer

is presented with an option (which she then proceeds to screen, not knowing whether it is a top

worker or a bottom one). Based on the calculation above, the overall likelihood of the option

resulting in a match with a top worker is

λt
w(Kt/2− 1/Kt)

λt
w + λb

w − λe
aKtc (1 + o(1)) = Kec

2(λ− 1)λt
w

(2λ− 1)(λe − λt
w)

(1 + o(1)) ,

and if such a match is formed, it yields an expected match utility of 1 + a/2 − o(1) for the

employer.

The overall likelihood of the option resulting in a match with a bottom worker when an

employer uses a threshold of θe is

cKe
2(λ− 1)

2λ− 1
+ o(1) ,

and if such a match is formed, it yields an expected match utility of 1− o(1) for the employer.

Combining, the likelihood of a presented option leading to a match is

2(λ− 1)cKe

2λ− 1

(
1 +

λt
w

λe − λt
w

)
(1 + o(1)) =

2λec

aλt
w

(1 + o(1)) ,

leading to lifetime expected screening cost of

aλt
w

2λe
(1 + o(1)) .

There is likelihood ratio of λtw
λe−λtw

+ o(1) of an employer matching with a top worker versus a

bottom worker. Thus, the employer’s expected utility is

Expected match utility− Expected screening cost

=
λt
w

λe
(1 + a/2− o(1)) +

(
1− λt

w

λe

)
(1− o(1))− aλt

w

2λe
(1 + o(1))

= 1− o(1) .

Though we did not do the full calculation, one can check that the second order term in the

fraction ft of workers in the system who are top workers adjusts to produce θe = 1−Ke c(1+o(1))

as needed. (It is easy to check that the expected utility of an employer following any fixed

strategy is monotone increasing in ft.) Finally, it is easy to see that employers have no incentive
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to propose without screening as their expected utility will be 1/2 < θe

Bottom workers screen and accept/reject since c < c̄ (they would have accept without

screening if c > c, but here we are looking at c small).

It remains to show that top workers are playing a best response. Accepting without screening

is ruled out since it produced expected utility only 1/2 or less. Hence, they must screen and

accept/reject with threshold equal to their expected utility. It remains to show that when they

use a threshold of θt
w, they earn the same amount as expected utility. Now, the expected utility

of a worker is

Likelihood of matching · (Expected match utility− Expected screening cost per match)

=
(
1− (Kt/2− 1/Kt)

√
c (1 + o(1))

)(1 + θt
w

2
− c

1− θt
w

)
=
(
1− (Kt/2− 1/Kt)

√
c (1 + o(1))

) (
1− (Kt/2 + 1/Kt)

√
c (1 + o(1))

)
= 1−Kt

√
c (1 + o(1)) ,

which matches the estimate for θt
w.

Finally, we expect that the described equilibrium to be evolutionary stable. For instance,

suppose the fraction ft of workers in the system who are top workers falls below its steady state

value. Then employers’ expected utility will fall, they will lower their threshold for accepting a

match, form more matches with bottom workers, and as a result ft will rise towards its steady

state value.
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