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Abstract

We introduce a family of generalized-method-of-moments estima-
tors of the parameters of a continuous-time Markov process observed
at random time intervals. The results include strong consistency,
asymptotic normality, and a characterization of standard errors. Sam-
pling is at an arrival intensity that is allowed to depend on the under-
lying Markov process and on the parameter vector to be estimated.
We focus on financial applications, including tick-based sampling, al-
lowing for jump diffusions, regime-switching diffusions, and reflected
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diffusions. Keywords: Method of moments, parameter estimation,
Markov process, continuous-time.

1 Introduction

We introduce a family of generalized-method-of-moments (GMM) estimators
for continuous-time Markov processes observed at random time intervals.
The results, in parallel with GMM estimation in a discrete-time setting, in-
clude strong consistency, asymptotic normality, and a characterization of
standard errors. We allow for a range of sampling schemes. A special case is
sampling at the event epochs of a Poisson process. More generally, we allow
for the arrival of observations at an intensity that varies with the underlying
Markov process. The unknown statistical parameters may determine the ar-
rival intensity that governs the sampling times. Our approach is motivated
by (i) the fact that certain financial data, particularly intra-day, are sampled
at random times, (ii) by the fact that it offers structural econometric iden-
tification, and (iii) by its computational advantages in calculating moment
conditions. The approach does not apply if the sampling times are deter-
ministic unless the model assumptions apply after a random time change
induced, for example, by variation in the arrival rate of market information.

We are particularly interested in applications to financial time series,
including tick-based sampling, allowing for jump diffusions, regime-switching
diffusions, and reflected diffusions. A companion paper, Dai, Duffie, and
Glynn [1997], gives a fully worked example, with explicit solutions for the
asymptotic variances associated with “typical” moment conditions suggested
by our approach, including maximum-likelihood estimation, for Ornstein-
Uhlenbeck processes sampled at Poisson times.

The goal is to estimate the parameters governing the probabilistic behav-
ior of a time-homogeneous continuous-time Markov process X. We defer to
Section 3 a more careful and complete description of the problem setting. For
informal purposes, we define X in terms of its state space S (for example,
a subset of R

k for some k ≥ 1) and its infinitesimal generator A. At each
appropriately well behaved G : S → R, the function AG : S → R is defined
by

AG(x) =
d

dt
Ex[G(X(t))]∣

∣t=0+
, x ∈ S, (1.1)

where Ex denotes expectation associated with a given initial condition x for
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X. The transition probabilities of X are determined by its generator A.
In our setting, the generator A is unknown, and assumed to be one of a
family {Aθ : θ ∈ Θ} of generators that is one-to-one with a set Θ ⊂ R

d of
parameters. (Some of our results apply to non-parametric settings.)

In many financial and other applications, the Markov process X cannot
be observed continuously. We propose an estimator of the unknown “true”
parameter θ∗ ∈ Θ based on observation of X at random times T1, T2, T3, . . ..
We assume, for later discussion and generalization, that Ti = inf{t : N(t) =
i}, the i-th event time of a doubly-stochastic counting process (Brémaud
[1981]) N driven by X, for some state-dependent arrival intensity function
λ : S → (0,∞). That is, conditional on {X(t) : t ≥ 0}, the counting
process N is distributed as a Poisson process with time-varying intensity
{λ(X(t)) : t ≥ 0}. The idea is roughly that, conditional on {(X(u), N(u)) :
0 ≤ u ≤ t}, the probability of an observation between t and t+∆t for small ∆t
is approximately λ(X(t))∆t. We allow for the possibility that the intensity
function λ( · ) is not “known.” That is, we suppose that λ(x) = λ(θ∗, x) for
all x, where λ : Θ× S → (0,∞). For example, N could be a Poisson process
of unknown intensity.

In some cases, we interpret the sampling times T1, T2, . . . as the times
at which observations are generated by the underlying economic process, for
example, the times of quotes or reported trades of a financial security whose
prices are determined by X. In other cases, an econometrician might simulate
times at which to sample X. An extension to the case of subordination of X
to a “market-time” process is discussed in Section 7.

Our objective is to estimate the “true” generator A = Aθ∗ based on
observation of Z0, Z1, Z2, . . . , Zn, where Zi = X(Ti), taking T0 = 0. In some
cases, we also assume observation of the arrival times T1, T2, . . . , Tn. The
basic idea of our approach is as follows. We choose some “test function” of
the form g : Θ× S × S → R. We suppose that g is measurable and, for each
state x in S and each θ in Θ, that Aθg

(θ,x)( · ) = Aθg(θ, x, · ) is well defined.
We show, under technical regularity, that

E

[

g(θ∗, Zi, Zi+1) −
Ag(θ∗,Zi)(Zi+1)

λ(θ∗, Zi+1)
− g(θ∗, Zi, Zi)

∣

∣

∣

∣

Zi

]

= 0. (1.2)

We therefore construct the sample-moment analogue

Γn(θ) =
1

n

n−1
∑

i=0

γ(θ, Zi, Zi+1),
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where

γ(θ, x, y) = g(θ, x, y)− Aθg
(θ,x)(y)

λ(θ, y)
− g(θ, x, x).

Assuming the positive recurrence of X and technical conditions provided
below, the sample moment Γn(θ) converges with n to its population counter-
part almost surely, uniformly in the parameter θ. From (1.2), in particular,
Γn(θ∗) → 0 almost surely. This suggests stacking together some number
m ≥ d = dim(Θ) of such moment conditions, so that Γn takes values in
R

m. Then, under identification conditions, the parameter θn that minimizes
‖Γn(θ)‖ converges to θ∗. (Here, we could take ‖ · ‖ to be the usual Eu-
clidean norm, but for reasons of efficiency some other norm that may depend
on the data is often chosen.) This is standard for GMM estimation (Hansen
[1982]). Efficiency and identification are influenced by the number and choice
of different such test functions g, by the use of instrumental variables, and
by suitable “weighting” of different moment conditions, as explained in Ap-
pendix B. In principle, maximum-likelihood estimation (MLE) is included
as a special case, but may be computationally intractable. In such cases, it
may be reasonable to use moment conditions based on the first-order condi-
tions for MLE associated with a related model for which MLE is tractable.
We do not, however, have any theory showing that this would achieve “near
efficiency” if the related model is “sufficiently near.”

Section 2 gives some motivation for our approach. Section 3 provides a
more careful problem statement and defines our class of estimators. Section
4 shows that there exist test functions that identify the “true” parameter.
Section 5 summarizes the use of our approach to estimation. Section 6 gives
some illustrative examples. Section 7 discusses some alternative formulations
for random sampling times, including subordination to “market time,” par-
ticularly with an eye toward financial time series. Appendices A through E
contain proofs and supporting technical results.

2 Motivation and Alternative Approaches

This section is an informal introduction to our approach, and offers some
comparison with other approaches.

We are partly motivated by the computational difficulties associated with
traditional moment conditions that are based on deterministic sampling times.1

1See, for example, Bibby and Sorensen [1995], Bibby and Sorensen [1997], Broze, Scail-
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In this previous work, the general idea is to obtain moment conditions for
inference based on some function f : Θ×S ×S → R

m, for some m ≥ d, such
that h : Θ × S → R

m is well defined by

h(θ, x) = Eθ
x[f(θ, x, Z1)], (2.1)

where Eθ
x denotes expectation under the assumption that X has infinitesimal

generator Aθ and initial condition x. One then considers an estimator θn that
minimizes a sample-moment criterion such as

∥

∥

∥

∥

n−1
∑

i=0

f(θ, Zi, Zi+1) − h(θ, Zi)

∥

∥

∥

∥

. (2.2)

A difficulty with this traditional approach is that h(θ, · ) is typically dif-
ficult to compute from (2.1), whether or not T1 is a random time. We now
consider this computational issue.

Under the model with parameter θ, the density p( · ) of T1 conditional on
{X(t) : t ≥ 0} is that of a Poisson arrival time with time-varying intensity
λ(θ, X(t)) (Brémaud [1981]), so that

p(t) = exp

(
∫ t

0

−λ(θ, X(s)) ds

)

λ(θ, X(t)), t ≥ 0.

The definition (2.1) of h and the law of iterated expectations then imply that

h(θ, x) = Eθ
x

[

Eθ
x

(

f(θ, x, X(T1))
∣

∣ {X(t) : t ≥ 0}
)]

(2.3)

= Eθ
x

[
∫ ∞

0

p(t)f(θ, x, X(t)) dt

]

= Eθ
x

[
∫ ∞

0

exp

(
∫ t

0

−λ(θ, X(s)) ds

)

λ(θ, X(t))f(θ, x, X(t)) dt

]

.

Provided technical conditions are satisfied, it follows that h(θ, x) = g(θ, x, x),
where g : Θ × S × S → R

m solves

λ(θ, y)g(θ, x, y)−Aθg
(θ,x)(y) = λ(θ, y)f(θ, x, y). (2.4)

let, and Zaköıan [1998], Clement [1995], Gallant and Long [1997], Gallant and Tauchen
[1996], Gallant and Tauchen [1997], He [1990], Kessler [1997], Kessler [1996], Kessler [2000],
Kessler and Sorensen [1999], and Stanton [1997].
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(We apply Aθ to R
m-valued functions, component-wise.) For the case of

constant λ, (2.4) follows from the fact that g(θ, x, · ) is seen from (2.4) to be
the λ-potential of λf(θ, x, · ). (See Ethier and Kurtz [1986], Proposition 2.1,
page 10.) More generally, (2.4) is established later in Proposition 3.

For example, if X is a diffusion process, then (2.4) is the probabilistic
“Feynman-Kac” solution of the elliptic partial differential equation (PDE)
(2.4). In this case, X satisfies a stochastic differential equation of the form

dX(t) = µ(θ∗, X(t)) dt + σ(θ∗, X(t)) dBt, (2.5)

where B is a standard Brownian motion in R
k for some integer k ≥ 1,

and where µ and σ are measurable functions on Θ × R
k into R

k and R
k×k,

respectively, such that there is a unique (strong) solution2 to (2.5) for each
θ in Θ and each initial condition x in the state space S ⊂ R

k. With (2.5)
and any twice continuously differentiable G : S → R such that AθG is well
defined,

AθG(x) = ∂xG(x)µ(θ, x) +
1

2
trace

[

∂2
xxG(x)σ(θ, x)σ(θ, x)>

]

. (2.6)

The PDE (2.4) for this generator Aθ could typically be solved numerically,
say by finite-difference methods, except for special cases that admit explicit
solutions. The computational burden of numerical solutions to (2.4), how-
ever, is an impediment. In any case, this introduces a source of approximation
that, while potentially negligible with a sufficient computational budget, is
difficult to treat theoretically.

An alternative numerical approach is Monte Carlo simulation of X, us-
ing the distribution associated with θ, for each candidate parameter θ. In
some cases, one can directly simulate from the distribution of X(T1) = Z1

given X(0). Because Z1, Z2, . . . is a discrete-time time-homogeneous Markov
process, moment conditions developed in this fashion amount to simulated-
method-of-moments estimation. (See Duffie and Singleton [1993] or Ingram
and Lee [1991].) If one assumes, for example, that λ is constant, then in order
to simulate X(Ti+1) given X(Ti) it would be enough to simulate Ti+1 − Ti

with the exponential (λ) density, and then to simulate the outcome of the
increment of X associated with a deterministic time period whose length is
the outcome of Ti+1 − Ti. For related econometric methods, see Corradi and

2For sufficient technical conditions, see for example Karatzas and Shreve [1988]. It is
enough that µ and σ are Lipschitz with respect to x.

5



Swanson [2001], Gallant and Tauchen [1996], Gallant and Tauchen [1997],
and Gourieroux, Monfort, and Renault [1993]. Simulation with a stochastic
arrival intensity driven by X is outlined in Section 7. For cases in which sim-
ulation directly from the distribution of the increments of X is unavailable,
one could simulate a discrete-time approximation of X. For example, the Eu-
ler approximation of a stochastic differential equation, or the approximations
of Milshtein [1978] and Milshtein [1985], have weak convergence properties
that have been characterized and extended.3 Simulated method-of-moments
estimation has been based on the assumption that the approximation error
associated with time discretization is negligible, at least asymptotically, as
the length of a time increment shrinks to zero. (See, for example, Clement
[1995], Gallant and Long [1997], Gallant and Tauchen [1996], Gallant and
Tauchen [1997], Lesne and Renault [1995].)

Even simulation based on the exact probability distribution of increments
of X involves loss of efficiency over explicitly given moments, and an associ-
ated computational burden. With time discretization, one is also faced with
the theoretical issue of joint convergence, with both discretization interval
and sample size, that is uniform over the parameter space.

Yet another computational alternative, proposed by Stanton [1997] and
Äıt-Sahalia [2002], for deterministic observation times, is to approximate
the transition operator that maps f to h defined by (2.1) through an an-
alytic expansion of the infinitesimal generator A. This is relatively more
effective for small time periods, and provides straightforward approximate
non-parametric estimators for the drift and diffusion functions associated
with stochastic differential equations. In another non-parametric estimation
approach, Äıt-Sahalia [1996] uses a mixed procedure involving transition mo-
ment conditions for a parametrized drift function, as well as a non-parametric
estimator for the diffusion in terms of the estimated drift and estimated sta-
tionary density of the process.

Our approach is to fix some judiciously chosen test function g : Θ × S ×
S → R

m such that Aθg
(θ,x) is well defined, and only then to define f via

(2.4). That is, we let

f(θ, x, y) = g(θ, x, y) − Aθg
(θ,x)(y)

λ(θ, y)
, (θ, x, y) ∈ Θ × S × S. (2.7)

3See Bally and Talay [1996], Duffie and Glynn [1995], Klöden and Platen [1992], Protter
and Talay [1997], and Talay and Tubaro [1990].
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Proposition 3, to follow, gives technical conditions under which

g(θ, x, x) = Eθ
x[f(θ, x, Z1)]. (2.8)

We emphasize that, by first selecting g and only then evaluating f from (2.7),
we avoid the difficult numerical step of computing Eθ

x[f(θ, x, Z1)]. Applying
the law of iterated expectations to (2.8), we can therefore base our estimating
equations on the moment condition

Eπ [f(θ∗, Zi, Zi+1) − g(θ∗, Zi, Zi)] = 0, (2.9)

where π is the invariant probability measure for {Z1, Z2, . . .}, to be estab-
lished in Proposition 3 under recurrence conditions on X.

Fixing a test function g, our estimator θn for θ∗ given {Z0, . . . , Zn} is an
element of Θ that minimizes the norm (possibly after applying a weighting
matrix) of

Γn(θ) =
1

n

n−1
∑

i=0

γ(θ, Zi, Zi+1), (2.10)

where γ : Θ × S × S → R
m is defined by

γ(θ, x, y) = f(θ, x, y) − g(θ, x, x). (2.11)

Appendix B offers a typical extension with instrumental variables based on
lagged values of Zi. We are exploiting the fact that, under stationarity
conditions given in Proposition 3,

lim
n

Γn(θ∗) = Eπ[γ(θ∗, Zi, Zi+1)] = 0 a.s. (2.12)

A comparison of the estimator proposed here with that of Hansen and
Scheinkman [1995] is provided in Appendix E.

3 Basic Moment Condition

We now give a more complete statement of the econometric setting and
justification of our class of moment conditions.
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3.1 Setup: Time-Homogeneous Markov Processes

The following definitions are typically found in any basic source treating
continuous-parameter Markov processes. [See, for example, Dellacherie and
Meyer [1988], Ethier and Kurtz [1986], Meyer [1966], and Sigman [1990].]

We fix a probability space (Ω,F , P ) and a filtration {Ft : t ≥ 0} of sub-
σ-algebras of F satisfying the usual conditions.4 For our purposes, a state
process X is defined to be a progressively measurable5 time-homogeneous
Harris-recurrent Markov process valued in a complete separable metric space
S, with transition function P : S×[0,∞)×B(S) → [0, 1], where B(S) denotes
the Borel subsets of S. In particular, for any t and u ≥ 0, and any measurable
subset B of the state space, the Ft-conditional probability that X(t + u) is
in B is P(X(t), u, B). We let Px denote the associated distribution of the
sample paths of X determined by6 initial condition x.

Because of its Harris-recurrence, X has a unique (up to constant multi-
ples) non-trivial σ-finite invariant measure η, with the property that η(B) > 0
if and only if, for any x in S,

Px

(
∫ ∞

0

I(X(t) ∈ B) dt = +∞
)

= 1,

where I( · ) denotes the indicator function. We let L be the space of bounded
measurable f : S → R, endowed with the norm ‖ · ‖ defined by

‖f‖ = η−ess sup
x∈S

|f(x)|.

This implies that we equate two functions in L if they agree almost every-
where with respect to the invariant measure of X. The transition function
P has a transition semi-group T = {T (t) : L → L : t ≥ 0} defined by

[T (t)f ](x) = Ex[f(X(t))] =

∫

S

f(y)P(x, t, dy),

4See, for example, Ethier and Kurtz [1986] for technical definitions not given here.
5For progressive measurability, it is enough that X has right- or left-continuous sample

paths.
6For each probability measure ν on S (endowed with the σ-algebra of its Borel sets),

the transition function P determines a unique probability distribution, denoted Pν , on the
space S[0,∞) of sample paths of X , endowed with the product σ-algebra, such that the
distribution of X(0) under Pν is ν. See Ethier and Kurtz [1986], page 157. For any given
x in S, we let Px denote the distribution Pν for the case of ν = δx, the Dirac measure at
x.
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where Ex denotes expectation with respect to Px. We always assume that
{T (t) : t ≥ 0} is strongly continuous.7

The generator A of the semi-group {T (t) : t ≥ 0} is defined at some g in
L if Ag is well defined in L by

Ag(x) = lim
t↓0

[T (t)g](x) − g(x)

t
, x ∈ S.

The set of such g is the domain of A, denoted D(A). In some applications,
we might consider Ag, defined by (1.1), even if g or Ag are not in L, and
treat integrability as a separate issue.

Given a constant ρ ∈ (0,∞), the ρ-resolvent operator Uρ : L → L of X is
defined by

[Uρf ](x) = Ex

[∫ ∞

0

e−ρtf(X(t)) dt

]

=

∫ ∞

0

e−ρt[T (t)f ](x) dt.

With no further assumptions, for any f in L, we have Uρf in D(A) and

f = (ρI −A)[Uρf ], (3.1)

where I is the identity operator. [See Ethier and Kurtz [1986], Proposition
1.2.1.] For constant observation arrival intensity, (3.1) justifies our basic
moment condition (2.8), using the calculation (2.4).

For some integer d ≥ 1, a measurable set Θ ⊂ R
d parameterizes a family

{Pθ : θ ∈ Θ} of transition functions on the same state space S, with strongly
continuous semi-groups. For each θ in Θ, we let P θ

x , Eθ
x, T θ, Uθ

ρ ,Aθ, and
D(Aθ) be defined in relation to Pθ just as Px, Ex, T , Uρ,A, and D(A) were
defined8 in relation to P. The “true” parameter is some θ∗ in Θ, so that
P θ∗

x = Px, Eθ∗

x = Ex, and so on.

7Strong continuity means that for each bounded measurable f : S → R, we have
limt→0 ‖T (t)f − f‖ = 0. Hansen and Scheinkman [1995] propose, for the domain of T ,
the space of functions that are square-integrable with respect to η. They establish the
analogous notion of strong continuity under weak conditions. A similar approach could
be used here.

8The fact that D(Aθ) is treated as a subset of L, in which two functions are the same
if equal η-almost everywhere, is a limitation of this modeling approach that can perhaps
be relaxed.
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3.2 The Data-Generating Process

For our purposes, a data-generating process is a pair (X, N) consisting of a
state process X and a counting process N whose i-th jump time Ti = inf{t :
N(t) = i} is the i-th time at which X is sampled. Provisionally, with a
generalization adopted below, we take it that N is a doubly-stochastic point
process driven by X. (See, for example, Daley and Vere-Jones [1988].) That
is, conditional on {X(t) : t ≥ 0}, N has the law of a Poisson process with
time-varying intensity {λ(X(t)) : t ≥ 0}, for some measurable λ : S →
(0,∞).

For each parameter θ, we let λ(θ, · ) : S → (0,∞) denote the inten-
sity associated with θ. In particular, λ( · ) = λ(θ∗, · ). The data available
for inference are {Z0, Z1, Z2, . . .}, where Zi = X(Ti), with T0 = 0. We al-
ways take it that there is a unique parameter vector θ associated with each
generator-intensity pair (Aθ, λ(θ, · )), because the probability distribution of
a data-generating process (X, N) is uniquely determined by its generator-
intensity pair (once the distribution of the initial stae X0 is fixed).

If the sampling times T0, T1, T2, . . . , Tn are observable, and thus available
for purposes of forming moment conditions, we can assume without loss of
generality that the inter-sampling times are “part of” of the state vector
in the sense of the above definition. That is, we can take it that X(t) =
(Y (t), t−T (t)), where T (t) = t−maxi{Ti : t > Ti}, that Y is a state process
with some generator AY and state space SY , and that the point process N
is doubly stochastic driven by Y , with an intensity λY (Yt). Then, for X, we
take the state space S = SY × (0,∞) and the generator A defined by

[Ag(y, t) = AY g( · , t)](y) + λY (y)[g(y, 0)− g(y, t)] +
∂

∂t
g(y, t).

We thus use the following definitions to distinguish cases in which sam-
pling times are observable or not, for purposes of inference.

Definition 1 For a given data-generating process (X, N), sampling times
are not observable if N is a doubly-stochastic point process driven by X with
intensity {λ(Xt) : t ≥ 0}. Sampling times are observable if there is a state
process Y such that Xt = (Yt, t− T (t)), and N is doubly stochastic driven by
Y .

If sampling times are observable, then, by definition, the intensity λ(Yt, t −
T (t)) does not depend on its second argument. These definitions allow us
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to treat most of the theory with results that apply whether or not sampling
times are observable.

3.3 The Law of Large Numbers

In order to obtain the effect of the law of large numbers for our sequence
of observations of X over time, we require X to be positive-recurrent, so
that its invariant measure η may be taken to be a probability measure. Suf-
ficient conditions for this can be based, for example, on the conditions of
Meyn and Tweedie [1994] for geometric ergodicity. For the case of diffusions,
Has’minskǐi [1980] has sufficient conditions.

We are concerned with the stationary behavior of the observed discrete-
time process Z = {Z0, Z1, Z2, . . .}. Proofs of the following are found in
Appendix A.

Proposition 1 Suppose that X is Harris-recurrent with invariant probability
measure η. If

∫

S
λ(x) η(dx) > 0, then Z is a Harris-recurrent Markov chain

in discrete time.

Proposition 2 Suppose X is Harris-recurrent with invariant probability mea-
sure η and 0 <

∫

S
λ(x) η(dx) < ∞. Then Z is a Harris-recurrent Markov

process in discrete time with invariant probability measure π defined by

π(B) =

∫

B
λ(x) η(dx)

∫

S
λ(x) η(dx)

.

In order to address the case in which sampling times are observable, we
also establish Harris-recurrence for the augmented state process (Z, τ) =
{(Zi, τi) : i ≥ 0}, with τi = Ti − Ti−1 and τ0 = 0.

Corollary 1 Suppose the conditions of Proposition 2 apply. Then (Z, τ) is
a Harris-recurrent Markov chain in discrete time, with invariant probability
measure π̂ defined by π̂(B) = Eπ (I[(Z1, τ1) ∈ B]) , where I[ · ] is the event-
indicator function. In particular, for any measurable f : S× [0,∞) → R that
is integrable with respect to π̂, and for any x in S,

lim
n→∞

1

n

n
∑

i=1

f(Zi, τi) = Eπ[f(X(T1), T1)] Px −a.s.
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3.4 Generic Moment Condition

Our basic moment condition (2.12) is a consequence of the following result.
The proof of the first assertion is in Appendix A; the remainder then follows
from Corollary 1. We call a measurable g : Θ × S × S → R

m a test function
if, for each x and θ, we have g(θ,x) = g(θ, x, · ) in D(Aθ) and if f(θ, x, Z1),
defined by (2.7), is integrable with respect to P θ

x .

Proposition 3 Let g be a test function. Then, for each θ, we have g(θ, x, x) =
Ex[f(θ, x, Z1)]. Suppose, moreover, that the conditions of Proposition 2 ap-
ply. Let γ(θ, x, y) = g(θ, x, y) − f(θ, x, y). If γ(θ, Zi, Zi+1) is integrable with
respect to π, then, for any x in S,

lim
n→∞

1

n

n−1
∑

i=0

γ(θ, Zi, Zi+1) = Eπ[γ(θ, Z1, Z2)] Px−a.s.

4 Identification

Following Definition 3.10 of Gourieroux and Monfort [1995], we describe our
model as “identified” if there is a one-to-one mapping between the parameter
θ and the probability distribution of the data {Z0, Z1, Z2, . . .}. Identifica-
tion may be impossible if the observation times are not observable and the
sampling intensity λ(θ, Xt) depends non-trivially on the unknown parame-
ter vector θ. For example, suppose that Y is a Brownian motion with drift
parameter µ and variance parameter σ2, and suppose that the sampling in-
tensity is an unknown constant λ(θ, x) = ρ ∈ (0,∞). The parameter vector
may then be taken to be θ = (µ, σ2, ρ). From Definition 1, to say that the
sampling times are not observable means that we observe Zi = Y (Ti), but not
Ti. In this case, the model is clearly not identified, for (from the scaling prop-
erty of Brownian motion) the distribution of {Y (T1), Y (T2), . . .} is the same
for all parameter vectors in a set of the form {(kµ, kσ2, kρ) : k ∈ (0,∞)}.
For instance, it would be impossible to tell from observing the data if the
parameters were doubled. On the other hand, as we shall show, it is possible
(quite generally) to identify the model if the sampling times are observable.

It is not immediately obvious whether a model that admits identification
can actually be identified by using moment conditions of the test-function
type that we propose. We show, however, that this is indeed the case. That
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is, suppose φ 6= θ∗. The two propositions in this section show that, provided
the sampling times are observable or the intensity function λ(θ, · ) is known
(that is, does not depend on θ), then there is a test function g such that the
associated moment condition Γn(θ∗) converges to 0 (under the usual technical
conditions) as required by (2.12), but Γn(ϕ) converges to something non-zero.
That is, we can tell the two models apart with a moment condition of the test-
function type. We do not, however, propose a recipe for finding such a test
function; we merely show that it exists. This is not an unusual shortcoming
of GMM estimation theory, which rarely provides a practical method for the
selection of moment conditions. In practice, GMM moment conditions are
typically ad hoc.

The fact that our moment conditions can distinguish, in this sense, be-
tween distinct underlying continuous-time models depends in part on the
randomness of the sampling times. The well known “aliasing problem” im-
plies that the same probability distribution may apply to observations at
fixed deterministic time intervals of two distinct continuous-time Markov
processes, despite the fact that the two processes have different probability
transition functions in continuous-time.9 In our setting, the aliasing problem
is avoided because random sampling at an intensity effectively captures infor-
mation regarding transition behavior over arbitrarily short time intervals.10

Definition 2 The model is is identified by test functions if, whenever ϕ 6= θ∗,
there is some test function g satisfying

Eπ [f(θ∗, Zi, Zi+1) − g(θ∗, Zi, Zi+1)] = 0 (4.1)

and
Eπ [f(ϕ, Zi, Zi+1) − g(ϕ, Zi, Zi+1)] > 0, (4.2)

where f is defined by (2.7).

Under the recurrence conditions of Proposition 3, we could equally well have
replaced (4.1) and (4.2) with their asymptotic sample counterparts.

9See Bergstrom [1990], Harvey and Stock [1985], Phillips [1973], and Robinson [1976]
for Gaussian vector-autoregressive processes, and Banon [1978] for more general aliasing
issues.

10Masry [1983] and Solo [1983] have previously noted that random sampling times may
defeat the aliasing problem.
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Proposition 4 Suppose λ is bounded away from zero. If λ(θ, · ) does not
depend on θ, then the model is identified by test functions.

The condition that λ is bounded away from zero is used only to ensure
that a strongly continuous semi-group is associated with the “time-changed”
generator A/λ. Weaker technical conditions would suffice.

The idea of the proof is roughly that, under technical conditions, for any
fixed ρ ∈ (0, 1), two state processes have the same generator if and only if
they have the same ρ-resolvent operators. That is, A = Aϕ if and only if
Uρ = Uϕ

ρ . This would be enough if the observation arrival intensity function
λ is some constant, say ρ, for in this case g(θ, · ) = ρ[Uθ

ρ f(θ, · )]. We can,
however, reduce to the case of constant arrival intensity by a random time
change. A complete proof is found in Appendix A.

For the general case of an arrival intensity λ(θ, X(t)) that depends on θ,
we consider the “speed-corrected” generators

B ∆
=

A
λ(θ∗, · ) and Bϕ ∆

=
Aϕ

λ(ϕ, · ) . (4.3)

If the sampling times are not observable, it may be that any difference be-
tween the two underlying generators A and Aϕ is precisely offset by the
associated arrival intensities, in that B = Bϕ. For example, if A = 2Aϕ

and λ(θ∗, x) = 2λ(ϕ, x), then the distribution of Z1, Z2, . . . could be identical
under Px and under P ϕ

x , although we will collect data at twice the average
speed that we would under the “incorrect” generator Aϕ. Without use of the
sampling-time data, there might be no way to distinguish whether A or Aϕ

is the correct generator.

Proposition 5 Suppose, for each θ, that λ(θ, · ) is bounded away from zero.
If sampling times are observable, then the model is identified by test functions.

5 Estimation

With the results at hand, we have reduced the problem of estimation to
that of a relatively standard GMM setting. The data {Z0, Z1, Z2, . . .} form a
Harris-recurrent Markov chain under the technical conditions of Proposition
2, for the case without observation of sampling times, and by its Corollary 1,
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for the case with observation of sampling times. Thus, under integrability,
sample moments converge to their population counterparts (Proposition 3),
and it is a question of selecting moments. The test-function moments of our
approach can in principle identify the model provided the sampling times
are observable (Proposition 5), or if the sampling intensity function is known
(Proposition 4). At this point, one can bring in standard GMM theory
(Hansen [1982]) for consistency and asymptotic normality of the estimators.
Because GMM estimation theory is relatively well known, we relegate typical
conditions for consistency and asymptotic normality, as well as the use of
instrumental variables, to Appendix B. Some of the integrability conditions
for this theory are treated for our setting in Appendix D.

Under technical conditions, maximum-likelihood estimation (MLE) is in-
cluded as a special case of our estimation approach, as shown in Appendix
C, by using a special test function g( · ), which solves

Aθg(θ, x, y)− λ(θ, x)g(θ, x, y)− fX(θ, x, y) = 0, (5.4)

where fX is defined by Appendix Equation (C.1) in terms of the log-likelihood
gradient. Computation of this likelihood gradient, however, is often difficult
in practice.11 On the other hand, there may be a Markov process W on
the same state space S whose dynamics are “similar” to those of X, but
parameterized by a different family {AW

θ : θ ∈ Θ} of generators, for which one
can more easily (or explicitly) compute the log-likelihood gradient fW . This
is related to the idea of “quasi-maximum-likelihood estimation” of Gallant
and Tauchen [1996] and Gallant and Tauchen [1997].

In our setting, for example, it would be useful to choose the process W
so that we can solve for gW the analogue of (5.4),

AW
θ gW (θ, x, y) − λ(θ, x)gW (θ, x, y) − fW (θ, x, y) = 0.

With this, one can evaluate

fXW (θ, x, y) = gW (θ, x, y) − Aθg
(θ,x)
W (y)

λ(θ, y)
.

A moment condition for estimation of X is obtained from the fact that

Eπ[gW (θ∗, Zi, Zi+1) − fXW (θ∗, Zi, Zi+1)] = 0.

11See, for example, Chuang [1997], Durham and Gallant [2002], Pedersen [1995b], and
Pedersen [1995a].
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This moment condition may (or, perhaps, may not) capture some of the
benefits of maximum-likelihood estimation, to the extent that the transition
behaviors of W and X are indeed similar. We provide an illustration of
this concept as Example 6, at the end of the next section. One can of course
exploit instrumental variables with this approach, and append (possibly over-
identifying) restrictions based on other moment conditions.

Unfortunately, we have no theory providing conditions under which the
test functions associated with MLE for a “nearby” model provide “near effi-
ciency” when used as test functions for the actual target model.

6 Examples

A few examples are considered in this section. In all cases, twice-continuously
differentiable functions with compact support can be considered as test func-
tions.

Example 1: Continuous-Time Markov Chains. For finite or countably
infinite S, under quite general conditions, we have

Aθg(i) =
∑

j

R(θ)ij [g(j) − g(i)],

where R(θ)ij is the intensity of transition from state i to state j for parameter
θ.

Example 2: Diffusions without Boundaries. For θ ∈ Θ, suppose that
X satisfies the SDE (2.5), and that Aθ is specified by (2.6) on the sub-
set of twice-continuously differentiable functions in its domain. One cannot
identify the “speed measure” of X without observation times. It would be
sufficient for identification to choose an instrumental variable of the form
∂
∂x

f(θ, x)
∆
= H(θ, x) such that Eπ(θ)[H(θ, X(t))2] < ∞.

Example 3: Jump Diffusions. Consider a jump-diffusion whose genera-
tor Aθ takes the form (for smooth g)

Aθg(x) = Aµ,σg(x) +

∫

S

[g(x + y) − g(x)] ν(θ, x, dy),

where Aµ,σ is the diffusion generator defined by the right-hand side of (2.6),
and ν(θ, x, · ) is the jump measure, which controls both the arrival intensities
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and probability distribution of jumps of various types.12 (This is not the
most general form of jump-diffusion.) If the Laplace transform of the jump
distribution ν(θ, x, · ) is known, it may be useful to consider a test function
g of the form g(x) = eα·x, for some coefficient vector α ∈ R

k. Barndorff-
Nielsen, Jensen, and Sorensen [1998] characterize the stationary distributions
of special cases of Ornstein-Uhlenbeck processes driven by homogeneous Lévy
processes. This class generalizes the usual Ornstein-Uhlenbeck process and
may be suitable for applications in finance.

Example 4: Diffusion with Reflection. For certain applications, such as
the former European Exchange Rate Mechanism (see, for example, Krug-
man [1991] and Froot and Obstfeld [1991]), the case of a diffusion process
with reflection has been considered. To illustrate, suppose that X is a 1-
dimensional Brownian motion “reflecting” at zero, with constant drift and
variance coefficients µ and σ, respectively. That is,

dX(t) = µ dt + σ dBt + dUt,

where B is a standard Brownian motion and U increases only “when” X(t) =
0, so that X is non-negative. Then, for twice continuously differentiable G
in D(A) with G′(0) = 0, Ito’s Formula implies that

AG(x) = G′(x)µ +
σ2

2
G′′(x),

supplying a family of useful test functions. A similar approach applies to
more general stochastic differential equations with reflection (or other bound-
ary conditions, for that matter). For approximate computation of the likeli-
hood function, see Äıt-Sahalia [2002] and Chuang [1997].

Example 5: MLE without observation of sampling times. Suppose that
we observe a Brownian motion with variance parameter σ2 > 0 at the event
times T1, T2, . . . of an independent Poisson process with rate λ. In other
words, we observe (Zn : n ≥ 0), where Zn = X(Tn) = σB(Tn), for a standard
Brownian motion B, with a goal of estimating σ2. Then, the likelihood
function for {Z0, . . . , Zn} is

n−1
∏

i=0

p(σ, Zi, Zi+1),

12See Gihman and Skorohod [1972] and Protter [1990].
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where

p(σ, x, y) =

∫ ∞

0

λe−λt 1√
2πσ2t

exp

(

− (y − x)2

2σ2t

)

dt

=

√

λ

2

1

σ
exp

(

−|y − x|
√

2λ

σ

)

.

The MLE first-order condition from from which σ2 can be estimated is there-
fore

n−1
∑

i=0

∂

∂σ
log p(σ, Zi, Zi+1)

∣

∣

∣

σ=σn

=
n−1
∑

i=0

f (σn, X(Ti), X(Ti+1)) = 0, (6.1)

where

f(σ, x, y) =
−1

σ
+ |x − y|

√
2λ

σ2
.

In order to establish that MLE can be recovered as a special case of our
framework, we therefore want a function gx( · ) for which

(Agx)(y) − λgx(y) =
−1

σ
+ |x − y|

√
2λ

σ2
,

where A is the infinitesimal generator associated with Brownian motion hav-
ing variance parameter σ2, namely A = (σ2/2)d2/dx2. In order that the
solution gx can be represented as the expectation

gx(y) =
−1

λ
Ey

[

f(σ, x, X(T1))
]

,

gx and g′
x must be continuous at y = x, and gx( · ) must grow slowly enough

at infinity in order that appropriate martingale arguments can be invoked.
Subject to these boundary conditions,

gx(y) =
1

σλ
− 1

σλ
exp

(

−
√

2λ

σ
|y − x|

)

−
√

2/λ

σ2
|y − x|.

As expected, gx(x) = 0, so the moment condition (2.9) does indeed therefore
coincide with the maximum-likelihood estimating equation.

Example 6: Using MLE test functions from an auxiliary model.
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Now, suppose that X is an Ornstein-Uhlenbeck process, with dXt =
−µXt dt+σ dBt, for a standard Brownian motion B, and that X is observed
at the event times (Tn : n ≥ 0) of an independent Poisson process with rate
λ > 0. If the mean-reversion rate µ is small, X has a transition distribution
close to that of Brownian motion, at least perhaps over time scales of the
order of the Poisson inter-event times. In Example 5, we computed the
function gx( · ) that corresponds to maximum likelihood estimation in the
Brownian setting. If we use this test function gx in the Ornstein-Uhlenbeck
context, then we obtain the estimating equation

0 =

n−1
∑

i=0

[

λ − |X(Ti) − X(Ti+1) |
√

2
λ

3

2

σ̂n
− µX(Ti+1)

√
2λ

σ̂n

·
(

exp

(

−
√

2λ

σ̂n

(X(Ti+1) − X(Ti − 1) − 1

)

· sign[X(Ti+1) − X(Ti)]
)

]

,

from which the estimator σ̂2
n for the parameter σ2 can be compared.

7 Data Arrival

This section describes some issues related to observation times and incom-
pletely observed state information.

7.1 Market-Time Subordination

It has been noted that transactions frequency and volume are related to the
distribution of asset returns. One may think in terms of a measure of “market
time,” differing from calendar time, under which returns are stationary. For
example, one’s intuition may be that trading frequency (or volume) is higher
during periods of faster information arrival. Mandelbrot and Taylor [1967]
and Clark [1973] have proposed influential subordination models, based on
a “random time change” under which stationarity applies. Recent work in-
cludes that of Conley, Hansen, Luttmer, and Scheinkman [1997], Geman,
Madan, and Yor [2001], Ghysels and Jasiak [1994], Ghysels, Gourerioux, and
Jasiak [1997], Ghysels, Gourerioux, and Jasiak [2004], Gourieroux, Jasiak,
and Fol [1999], Jasiak [1998], Redekop [1995], and Russel and Engle [1998].

In that spirit, we could suppose that the arrival intensity of data is con-
trolled in part by a strictly increasing continuous adapted random market-
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time process `, with `(0) = 0, so that `(t) represents the amount of market
time that has transpired after t units of real time. The underlying state
process X = {X(t) : t ≥ 0}, in real time t, can be viewed in market time
as the process Y defined by Y (s) = X(`−1(s)). Then, the number of data
points by real time t is N(`(t)), where {N(s) : s ≥ 0} is assumed to be a
doubly-stochastic counting process driven by Y , with market-time intensity
{λ(Y (s)) : s ≥ 0}. (Our base case is equivalent to `(t) = t.) In this case, we
could also suppose that the state process Y , measured in market time, is a
time-homogeneous state process, in the sense assumed in our basic results.

7.2 Observation at Fixed Deterministic Time Intervals

In the spirit of Conley, Hansen, Luttmer, and Scheinkman [1997], we might
even rely on the notion of random time subordination to allow for real-time
sampling at fixed intervals (say, hourly).

Specifically, suppose that we observe the underlying state process X at
integer real times 1, 2, . . .. We let Ui = `(i) − `(i − 1) denote the amount of
market time that passes between real times i− 1 and i. It is conventional to
measure market time via some observable process, such as volume of trade.
We have some reservations about this interpretation, although one can cer-
tainly take it as a definition of market time. We proceed in any case with
the assumption that Ui is observable, a common assumption in the market-
time literature, and defer a discussion of the treatment of unobserved state
variables until later in this section.

We let Y (s) = X(`−1(s)) define the state process, in market time, with
generator A. Conditional on the state path Y = {Y (s) : s ≥ 0}, we suppose,
for each integer i, that the amount Ui = `(i) − `(i − 1) of market time that
transpires between real times i − 1 and i has a density pi( · | Y ) : (0,∞) →
(0,∞). The assumption that this conditional density is strictly positive im-
plies that there is no upper bound on the expected rate of passage of market
time, per unit of real time. Then we can define the conditional hazard rate
hi for Ui given Y by

hi(u) =
pi(u | Y )

P (Ui > u | Y )
, u ∈ (0,∞). (7.1)

It is not unreasonable in a stationary setting to suppose that hi(u) depends
only on the amount u of market time that has passed since the last observa-
tion and on the current state Y (`(i− 1) + u), so that we could define a fixed
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λ : S × (0,∞) → (0,∞) by λ(Y (`(i − 1) + u), u) = hi(u). It follows from
(7.1) that, for a given u > 0, conditional on Y and Ui ≥ u, the density of Ui

at any s > u is

exp

(

−
∫ s

u

λ(Yr, r) dr

)

λ(Ys, s). (7.2)

For a given bounded measurable f : S × (0,∞) → R, if we let

g(Y (`(i − 1) + u), u) = E[f(Y (`(i)), Ui) | Y (`(i − 1) + u), Ui ≥ u],

then it follows from iterated expectations and the form (7.2) of the condi-
tional density that

g(Y (`(i − 1) + u), u) = E

[
∫ ∞

u

δu,sλ(Ys, s)f(Y (s), s) ds

∣

∣

∣

∣

Y (`(i − 1) + u)

]

,

where δu,s = exp
(

−
∫ s

u
λ(Yr, r) dr

)

. Therefore, by the same arguments used
in Appendix A,

Ag(y, u) +
∂g(y, u)

∂u
− λ(y, u)g(y, u) = f(y, u)λ(y, u), (7.3)

for (y, u) in S × (0,∞).
Now, if we let Zi = (Xi, Ui), then Z = {Z1, Z2, . . .} is a time-homogeneous

Markov chain. Following our established line of attack, for a given g such
that the lefthand side of (7.3) is well defined, we can use (7.3) to define f .
Then, under integrability,

g(Xi, 0) = E[f(X(i + 1), Ui+1) |Xi].

Under positive recurrence, this defines a moment condition that can be used
for estimation and inference, as we have shown. We omit the details.

7.3 Latent States and Simulated Method of Moments

Clark [1973] estimates a latent-factor model, in which, effectively, one can-
not observe the market time process driving the observation point process
N . In some cases, latent state variables can be observed up to parameters,
and method-of-moments can be applied directly, with care, as in Dai and
Singleton [2000].
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Simulated-method-of-moment estimators can in principle deal quite gen-
erally with latent state variables (as, for example, in Duffie and Singleton
[1993]). One would want, however, a tractable method by which to simu-
late data. In our random-sampling-time setting, this can be done, in certain
cases, as follows.

Let (X, N) be a data-generating process, with stochastic arrival inten-
sity {λ(Xt) : t ≥ 0}. We can simulate Ti+1 given X(Ti) by inverse-CDF
simulation from a uniform-[0, 1] simulated random variable, using the fact
that

ζ(t |X(Ti))
∆
=P (Ti+1−Ti > t |X(Ti)) = E

[

exp

(
∫ Ti+t

Ti

−λ(Xs) ds

) ∣

∣

∣

∣

X(Ti)

]

.

For example, in setting of affine jump diffusions, as explained by Duffie and
Kan [1996], ζ(t | x) is explicit in many cases, or easily obtained numerically
by solving an ordinary differential equation that does not depend on x.

Then, under technical regularity, the density q( · |X(Ti), Ti+1 − Ti) of
X(Ti+1) given (X(Ti), Ti+1) is given by

q(y | x, t) =
ξ(y | x, t)λ(y, t)ζ(t | x)

ζt(t |x)
,

where ξ(y | x, t) is the transition density of X and ζt is the conditional density
of Ti+1 − Ti given X(Ti). This follows from Bayes’ Rule and the likelihood
calculations in Appendix C.

If ξ and ζt are known explicitly, then simulated method of moments may
be computationally feasible. For example, if simulation directly from the
density q( · |x, t) is intractable, one can nevertheless use importance sam-
pling and simulate from alternative distributions (with the same support)
for which simulation is tractable. For example, in the affine jump-diffusion
setting, both ζt and the Fourier transform ξ̂( · | x, t) of ξ( · | x, t) are known
analytically. We can thus simulate X(Ti+1) from an alternative distribu-
tion with a conditional density η( · |X(Ti), Ti+1 − Ti), and correct for use of
the “wrong” density by scaling the candidate test function by the Radon-
Nikodym derivative

q(X(Ti+1) |X(Ti), Ti+1 − Ti)

η(X(Ti+1) |X(Ti), Ti+1 − Ti)
.

Evaluation of ξ(X(Ti+1 |X(Ti), Ti+1−Ti) can be done, for example, by Fourier
transform from ξ̂( · | x, t).
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7.4 Asynchronously Observed Coordinate Processes

Our approach cannot be applied directly to cases in which the state vector is
of the form X = (X(a), X(b)), with component processes X(a) and X(b) (each
possibly multi-dimensional) that are asynchronously observed. One can treat
this with two-stage procedures if one of the component processes, say X(a),
is autonomous (that is, X(a) is a Markov process on its own). One can also
treat this problem by approximation. In Duffie and Glynn [1997], we provide
somewhat more complicated results for the general case of asynchronous
arrival, relying to some degree on observation of sampling times.

Appendices

A Proofs

Throughout, we treat the cases of observable and unobservable sampling
times simultaneously by letting Q(Xt) = Xt if sampling times are not ob-
servable, and, for observable sampling times, as defined in Section 3.2, by
letting Q((Yt, t − T (t))) = Yt. Then, after conditioning on {Q(Xt) : t ≥ 0},
the observation counting process N is Poisson with intensity {λ(Xt) : t ≥ 0}.

Proposition 1.

We must show that there is a non-trivial σ-finite reference measure η̃ on S
such that if η̃(B) > 0, then for any x in S, Px (min{n ≥ 0 : Zn ∈ B} < ∞) =
1. The strong law of large numbers for Harris-recurrent Markov processes
(see Sigman [1990]) guarantees that, for any measurable B ⊂ S and any x
in S,

lim
t→∞

1

t

∫ t

0

I(X(s) ∈ B)λ(X(s)) ds = η̃(B)
∆
=

∫

B

λ(y) η(dy) Px−a.s.

Thus, whenever η̃(B) > 0, for any x in S,

Px

(
∫ ∞

0

I(X(t) ∈ B)λ(X(t)) dt = +∞
)

= 1.
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For each x in S, however, using the assumption in Section 3.2 on the distri-
bution of Ti,

Px (min{n ≥ 0 : Zn ∈ B} = ∞)

= Ex

[

Px

(

min{n ≥ 0 : Zn ∈ B} = ∞
∣

∣ {Q(X(t)) : t ≥ 0}
)]

= Ex

[

exp

(

−
∫ ∞

0

λ(X(t))I(X(t) ∈ B) dt

)]

= 0,

completing the proof.

Proposition 2.

Suppose f : S → R is measurable, non-negative, and bounded. Then, for
any x in S,

Ex





N(t)
∑

i=1

f(Zi)



 = Ex



Ex





N(t)
∑

i=1

f(Zi)

∣

∣

∣

∣

{Q(X(t)) : t ≥ 0}









= Ex

[
∫ t

0

f(X(s))λ(X(s)) ds

]

.

Because f is non-negative,

lim
t→∞

1

t

∫ t

0

Ex[f(X(s))λ(X(s))] ds =

∫

S

λ(y)f(y) η(dy).

For this fact, see Sigman [1990] and Glynn and Sigman [1998]). Furthermore,
we can represent N in the form N(t) = Ñ(Λ−1(t)), where Ñ is a unit-rate
Poisson process independent of X and

Λ(t) =

∫ t

0

λ(X(s)) ds.

We fix some x in S. By the strong law for Harris-recurrent Markov processes,

lim
t→∞

1

t
Λ(t) =

∫

S

λ(y) η(dy) Px−a.s.,

so that

lim
t→∞

1

t
Λ−1(t) =

1
∫

S
λ(y) η(dy)

Px−a.s.,
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and hence

lim
t→∞

1

t
N(t) =

∫

S

λ(y) η(dy) Px−a.s.

Because n = N(Tn), this ensures that

lim
n→∞

Tn

n
= κ

∆
=

1
∫

S
λ(y) η(dy)

Px−a.s.

Now, because f is non-negative and bounded, for any ε > 0, we have

lim
n→∞

1

n
Ex

[

n
∑

i=1

f(Zi)

]

= lim
n→∞

1

n
Ex





N(Tn)
∑

i=1

f(Zi)





≤ lim
n→∞

1

n
Ex





N(n(κ+ε))
∑

i=1

f(Zi)



+ lim
n→∞

sup
y∈S

|f(y)|Px

(

Tn

n
≥ κ + ε

)

= (κ + ε)

∫

S

λ(y)f(y) η(dy),

using the fact that Px (Tn/n ≥ κ + ε) → 0 as n → ∞. Because ε was arbi-
trary,

limn→∞
1

n

n
∑

i=1

Ex[f(Xi)] ≤
∫

S
λ(y)f(y) η(dy)
∫

S
λ(y) η(dy)

.

Similarly, we can show that

limn→∞

1

n

n
∑

i=1

Ex[f(Xi)] ≥
∫

S
λ(y)f(y) η(dy)
∫

S
λ(y) η(dy)

.

Hence,

limn→∞
1

n

n
∑

i=1

Ex[f(Xi)] =

∫

S
λ(y)f(y) η(dy)
∫

S
λ(y) η(dy)

.

As x was chosen arbitrarily, the result follows from Glynn [1994].

Corollary to Proposition 2.
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We note that (Z, τ) is a Markov chain, because, for any measurable B ⊂
S × [0,∞),

P
(

(Zn+1, τn+1) ∈ B
∣

∣ (Z0, τ0), . . . , (Znτn)
)

= P
(

(Zn+1, τn+1) ∈ B
∣

∣ Zn

)

.

Furthermore, for f : S×[0,∞) → R bounded, measurable, and non-negative,

lim
n→∞

1

n
Ex

[

n
∑

i=1

f(Zi, τi)

]

= lim
n→∞

1

n

n
∑

i=1

Ex

(

Ex

[

f(Zi, τi)

∣

∣

∣

∣

Zi−1

])

= lim
n→∞

1

n

n−1
∑

i=1

Ex

[

f̃(Zi)
]

=

∫

S
f̃(y)λ(y) η(dy)
∫

S
λ(y) η(dy)

Px−a.s.,

where f̃(x) = Ex[f(Z1, τ1)]. Appealing to Glynn [1994], this establishes that
(Z, τ) is a Harris-recurrent Markov chain with invariant probability measure
π̂ as defined, recalling that π is the invariant measure of Z.

Proposition 3.

We will show that g(θ, x, x) = Eθ
x[f(θ, x, X(T1))]. The remainder of the

result then follows by Proposition 2, and its Corollary. It is enough to take the
case of θ = θ∗, and for some g in D(A), to let f(x) = g(x)−Ag(x)/λ(x). As-
suming that Ex[|f(X(T1))|] < ∞, we need to show that g(x) = Ex[f(X(T1))].

As with (2.4),

Ex[f(X(T1))] = Ex

[
∫ ∞

0

λ(Xt) exp

(
∫ t

0

−λ(Xs) ds

)

f(Xt) dt

]

. (A.1)

Let V be the process defined by Vt = g(X(t)). Then V is a semi-
martingale with dVt = Ag(X(t)) dt + dMt, where M is a martingale. [For
this, see Ethier and Kurtz [1986], Proposition 1.7, page 156.] Let Ut =

exp
(

∫ t

0
−λ(X(s)) ds

)

Vt. Then, by Ito’s Formula for semimartingales,

UT = U0 +

∫ T

0

−λ(X(t))Ut dt +

∫ T

0

δ0,t dVt

= g(X(0)) +

∫ T

0

−λ(X(t))δ0,t

[

g(X(t)) − Ag(X(t))

λ(X(t))

]

dt

+

∫ T

0

δ0,t dMt,
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where δ0,t = exp
(

∫ t

0
−λ(X(u)) du

)

. Because λ is positive, the last term is a

martingale. It follows that, for all t,

g(x) = Ex

[

UT −
∫ T

0

dUt

]

= Ex [δ0,T g(X(T ))]

+Ex

[
∫ T

0

λ(X(t))δ0,t

[

g(X(t)) − Ag(X(t))

λ(X(t))

]

dt

]

.

From the fact that g is in L and from the condition in Proposition 2 that
∫

S
λ(x) dη(x) > 0, we have limt→+∞

∫ t

0
λ(X(s)) ds = +∞ almost surely. We

can therefore let T go to infinity and use dominated convergence to get
g(x) = Ex[f(X(T1))] from (A.1). This completes the proof.

Propositions 4 and 5.

Suppose that ϕ 6= θ∗. Because, by definition, each parameter defines a
unique generator-intensity pair, we have (A, λ(θ∗, · ) 6= (Aϕ, λ(ϕ, · )). Be-
cause λ(θ∗, · ) and λ(ϕ, · ) are bounded away from zero,13 B and Bϕ are
generators for strongly continuous contraction semi-groups.

There are two cases to consider. The first case is that with B 6= Bϕ.
By the Hille-Yosida Theorem (we use only the part of it in Proposition 2.1,
Ethier and Kurtz [1986], page 10), both I − B : D(B) → L and I − Bϕ :
D(Bϕ) → L are one-to-one and onto. It follows that (I − B)−1 : L → D(B)
and (I − Bϕ)−1 : L → D(Bϕ) are not the same maps.14 Thus, there is some
F in L such that

(I − B)−1F 6= (I − Bϕ)−1F.

We let G(ϕ, · ) = (I − Bϕ)−1F and G(θ∗, · ) = (I − B)−1F . For both θ = θ∗

and θ = ϕ, we have

G(θ, x) − AθG(θ, x)

λ(θ, x)
= F (x).

Because two functions in L are the same, by definition, if they are equal
η-almost surely, and therefore π-almost surely, there is some measurable set
C ⊂ S with π(C) > 0, such that

G(θ∗, x) = Ex[F (X(T1))] 6= G(ϕ, x) = Eϕ
x [F (X(T1))], x ∈ C.

13We are grateful to Tom Kurtz for suggesting a time change by λ.
14If they were the same maps, they would have the same image, and as they are both

one-to-one and onto, we would have D(B) = D(Bϕ), contradicting the fact that B 6= Bϕ.
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Letting

g(θ, x, y) = G(θ, y) for G(θ∗, x) > G(ϕ, x),

= −G(θ, y), otherwise,

Proposition 4 follows.
Suppose the other case is true, and B∗ = B. If sampling times are ob-

servable, we can define h : S → [0,∞) by h(Xt) = t − T (t), the time since
the previous observation. Let q : S → R be defined by q(x) = e−h(x). We
can calculate that q ∈ D(A) ∩ D(Aϕ) and that

Aq(x) = (1 − λ(θ∗, x))q(x); Aϕq(x) = (1 − λ(ϕ, x))q(x), x ∈ S. (A.2)

From division of the first expression in (A.2) by λ(θ∗, x) and the second by
λ(ϕ, x), and using the fact that B = Bϕ, we see that λ(θ∗, · ) = λ(ϕ, · )
π-a.s. Thus A = Aϕ. Thus, if sampling times are observable, it must be
the case that B 6= Bϕ unless λ(θ∗, · ) = λ(ϕ, · ) π-a.s., and we therefore have
identification, proving Proposition 5.

B Consistency and Asymptotic Normality

In this appendix, we summarize conditions, adapted to our setting, for con-
sistency and asymptotic normality. As this material is relatively standard
for GMM estimation, once we have reduced the inference problem to that of
a stationary Markov process in discrete time, we are brief, and defer to basic
sources, such as Hansen [1982], for details and extensions.

B.1 Consistency

For some integer ` ≥ 1, we let Zi,` = (Zi, Zi−1, . . . , Zi−`−1), a vector of lagged
states on which we allow instrumental variables to depend.

Motivated by Proposition 3, we take as given some measurable γ : Θ ×
S` × S → R

m, for some positive integers ` and m, such that

Eπ

[

‖γ(θ∗, Zi,`, Zi+1)‖2
]

< ∞, (B.1)

with
Eπ [γ(θ∗, Zi,`, Zi+1) |Zi,`] = 0. (B.2)
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For our application, we have in mind that, for some test function g and
some f defined by (2.7), we would take H(θ, Zi,`) to be an instrumental
variable and

γ(θ, Zi,`, Zi+1) = H(θ, Zi,`)[f(θ, Zi, Zi+1) − g(θ, Zi, Zi)]. (B.3)

Condition (B.1) is a technical integrability condition. Condition (B.2)
is a moment condition for estimation, which is satisfied in our setting for
γ as constructed in Proposition 3, and more generally. Our identification
condition is that

Eπ [γ(θ, Zi,`, Zi+1)] 6= 0, θ 6= θ∗. (B.4)

For each integer n ≥ `, we let

Γn(θ) =
1

n

n−1
∑

i=`−1

γ(θ, Zi,`, Zi+1),

let Wn be an Fn-measurable R
m×m-valued positive-definite symmetric “weight-

ing” matrix converging almost surely to a positive-definite symmetric matrix
measurable with respect to σ(Z0, Z1, . . .), and let

θn ∈ arg min
θ∈Θ

Γn(θ)>WnΓn(θ), (B.5)

taking a measurable selection from the arg min( · ), which is possible, for
example, if γ is continuous and Θ is compact.15 Newey and West [1987] have
developed asymptotic covariance estimators that allow “optimal” choice of
the weighting matrices {Wn}, from the viewpoint of asymptotic efficiency.

Strong consistency depends on technical conditions, such as those of
Hansen [1982], appropriate for the uniform strong law of large numbers. For
example, with (B.1)-(B.4), we need only add some variation of first-moment
continuity, in the sense of Hansen [1982]. For example, consider the “Lips-
chitz” assumption:

Definition 3 (First-Moment Continuity). There is some measurable K :
S` × S → R+ satisfying Eπ[K(Zi,`, Zi+1)] < ∞ such that, for each (z, z1) ∈
S` × S and (θ, ϕ) ∈ Θ2,

‖γ(θ, z, z1) − γ(ϕ, z, z1)‖ ≤ K(z, z1)‖θ − ϕ‖.
15See Hildenbrand [1974].
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For example, it is enough for First-Moment Continuity, when Θ is com-
pact and γ is continuously differentiable with respect to θ, that

Eπ

(

max
θ∈Θ

∥

∥

∥

∥

∂γ

∂θ
(θ, Zi,`, Zi+1)

∥

∥

∥

∥

)

< ∞. (B.6)

Theorem 1 Suppose (X, N) is a data-generating process satisfying the con-
ditions of Proposition 2. Suppose γ satisfies (B.1)-(B.4) and First-Moment
Continuity, for a compact parameter set Θ. Let θn be defined by (B.5). Then
θn → θ∗ Px-a.s. for each x ∈ S.

Proof. It suffices to establish the result under Pπ, and then to use shift
coupling, obtaining the result under Px, as in Glynn and Meyn [1995]. In
order to invoke our version of the uniform strong law in Theorem 2 below,
we let S = S` × S, let Yi = (Zi,`, Zi+1), and set ϕ(r) = r. We have, by
Cauchy-Schwarz,

Eπ (‖γ(θ, Zi,`, Zi+1)‖) ≤ E1/2
π

(

‖γ(θ∗, Zi,`, Zi+1)‖2
)

+‖θ∗ − θ‖Eπ[K(Zi,`, Zi+1)] < ∞,

for θ ∈ Θ. We can now use the identification hypothesis (B.4) to finish,
noting that Γn(θ)/(n− `− 1) → Eπ[γ(θ, Zi,`, Zi+1)] uniformly Pπ-a.s., by the
following slightly more general result.

In order to state a general version of the uniform strong law suitable for
this setting, let Y = {Y1, Y2, . . .} be a positive Harris-recurrent Markov chain
with stationary distribution π, living on a state space S. Let F : Θ×S → R

satisfy, for some relatively compact Θ, some measurable K : S → R+ with
Eπ[K(Y1)] < ∞, and some ϕ : [0,∞) → [0,∞), with ϕ(r) ↓ 0 as r ↓ 0:

(i) |F (θ1, y) − F (θ2, y)| ≤ K(y)ϕ(‖ θ1 − θ2 ‖), for all y ∈ S and θ1, θ2 ∈ Θ.

(ii) Eπ[F (θ, Y1)] < ∞ for all θ ∈ Θ. (It suffices that this condition holds for
one θ ∈ Θ.)

Theorem 2 Under the above conditions,

lim
n→∞

sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

n−1
∑

j=0

F (θ, Yj) − Eπ[F (θ, Y0)]

∣

∣

∣

∣

∣

= 0 a.s.
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Our proof is conventional. Fix ε < 0 and choose δ = δ(ε) > 0 so that
ϕ(δ) < ε. Then, cover Θ by a finite number m = m(ε) of δ-balls having
centers θ1, θ2, . . . , θm lying in Θ. Then, any θ ∈ Θ lies in one of the m
δ-balls, say the ith, so that
∣

∣

∣

∣

∣

1

n

n−1
∑

j=0

F (θ, Yj) − EπF (θ, Y0)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

n

n−1
∑

j=0

F (θ, Yj) − F (θi, Yj)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

n

n−1
∑

j=0

F (θi, Yj) − EπF (θi, Y0)

∣

∣

∣

∣

∣

+ | Eπ F (θi, Y0) − Eπ F (θ, Y0) |

≤ 1

n

n−1
∑

j=0

| F (θ, Yj) − F (θi, Yj) |

+ max
1≤i≤m

∣

∣

∣

∣

1

n

n−1
∑

j=0

F (θi, Yj) − EπF (θi, Y0)

∣

∣

∣

∣

+Eπ | F (θi, Y0) − F (θ, Y0) |

≤ ε · 1

n

n−1
∑

j=0

K(Yj)

+ max
1≤i≤m

∣

∣

∣

∣

1

n

n−1
∑

j=0

F (θi, Yj) − EπF (θi, Y0)

∣

∣

∣

∣

+ ε Eπ K (Y0).

That is,

sup
θ∈Θ

∣

∣

∣

∣

1

n

n−1
∑

j=0

F (θ, Yj) − EπF (θ, Y0)

∣

∣

∣

∣

≤ ε

(

1

n

n−1
∑

j=0

K(Yj) + Eπ K(Y0)

)

+ max
1≤i≤m

∣

∣

∣

∣

1

n

n−1
∑

j=0

F (θi, Yj) − EπF (θi, Y0)

∣

∣

∣

∣

.

Sending n → ∞, we find that

limn→∞ sup
θ∈Θ

∣

∣

∣

∣

1

n

n−1
∑

j=0

F (θ, Yj) − EπF (θ, Y0)

∣

∣

∣

∣

≤ 2ε EπK(Y0).
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Since ε was arbitrary, this finishes the proof.

Remark: The condition that Eπ[K(Y0)] is finite can easily be checked via
a Lyapunov function of the form: Find a non-negative h : S → R and a
compact A, with h bounded on A, such that

Ey[h(Y1)] ≤ h(y) − K(y), y ∈ Ac,

where Ey denotes expectation over the distribution on Y1 induced by the
initial condition Y0 = y. (See page 337 of Meyn and Tweedie [1993a] for
details.)

B.2 Asymptotic Normality

As with consistency, one can treat asymptotic normality and calculation of
the asymptotic covariance as in a standard GMM framework. The following
result is merely for illustration in the case of a one-dimensional parameter-
ization. We refer to Hansen [1982] for typical conditions for more abstract
cases.

Theorem 3 Suppose (X, N) is a data-generating process satisfying the con-
ditions of Proposition 2. Suppose γ satisfies (B.1)-(B.4) and First-Moment
Continuity, for a compact interval of parameters Θ ⊂ R. Let θn be defined by
(B.5). Suppose also that γ, of the form (B.3), is continuously differentiable
with respect to θ, (B.6) holds, and that

Eπ

[

∂γ

∂θ
(θ∗, Zi,`, Zi+1)

]

∆
= a 6= 0.

Then, for each x ∈ S,

n1/2(θn − θ∗) ⇒ N(0, σ2) Px−weakly,

as n → ∞, where N(0, σ2) denotes the normal distribution with mean zero
and variance

σ2 =
1

a2
Eπ[γ(θ∗, Zi,`, Zi+1)

2].
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Proof. As with the proof of Theorem 1, it suffices to establish the result
under Pπ. Let γθ denote the partial derivative of γ with respect to its first (θ)
argument. Note that, for any ε > 0 sufficiently small and any (z, z1) ∈ S`×S,

∣

∣

∣

∣

γ(θ∗ + ε, z, z1) − γ(θ∗, z, z1)

ε

∣

∣

∣

∣

≤ sup
θ∈Θ

|γθ(θ, z, z1)|.

The Dominated Convergence Theorem and (B.6) then imply that

Eπ [γθ(θ
∗, Zi,`, Zi+1)] =

d

dθ
Eπ [γ(θ, Zi,`, Zi+1)]

∣

∣

∣

∣

θ=θ∗
.

Since a 6= 0, it follows that there exists ε > 0 such that

Eπ [γ(θ∗ − ε, Zi,`, Zi+1)] < 0 = Eπ [γ(θ∗, Zi,`, Zi+1)] < Eπ [γ(θ∗ + ε, Zi,`, Zi+1)] .

Hence, for n sufficiently large,

Γn(θ∗ − ε) < 0 < Γn(θ∗ + ε),

so it follows that {θ ∈ Θ : Γn(θ) = 0} 6= ∅. Thus, for sufficiently large n, we
have Γn(θn) = 0, and

Γn(θn) − Γn(θ∗) = −Γn(θ∗).

So, there exists ξn → θ∗ Pπ-a.s. such that Γ′
n(ξn)(θn − θ∗) = −Γn(θ∗). Now,

for n sufficiently large and ε > 0,

∣

∣

∣

∣

Γ′
n(ξn) − Γ′

n(θ∗)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

n

n−1
∑

i=0

(

γθ(ξn, Zi,`, Zi+1) − γθ(θ
∗, Zi,`, Zi+1)

)

∣

∣

∣

∣

≤ 1

n

n−1
∑

i=0

Ri(ε),

where
Ri(ε) = sup

|θ−θ∗|<ε

∣

∣γθ(θ, Zi,`, Zi+1) − γθ(θ
∗, Zi,`, Zi+1)

∣

∣.

It follows that

limn→∞

∣

∣Γ′
n(ξn) − Γ′

n(θ∗)
∣

∣ ≤ Eπ[Ri(ε)].
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Since γθ is continuous by assumption, limε→0 Ri(ε) = 0, Pπ-a.s., and

Ri(ε) ≤ 2 sup
θ∈Θ

|γθ(θ, Zi,`, Zi+1)|.

The Dominated Convergence Theorem therefore implies that limε→0 Eπ (Ri(ε)) =
0. Thus,

lim
n→∞

Γ′
n(ξn) = Eπ[γθ(θ

∗, Zi,`, Zi+1)] = a, Pπ−a.s.

Also,
n1/2Γn(θ∗) ⇒ N(0, β2) Pπ−weakly,

as n → ∞, under the Martingale Central Limit Theorem (see Billingsley

[1968], p. 206), where β2 = Eπ[γ2(θ∗, Zi,`, Zi+1)]/a
2. The proof is then

complete upon application of the converging-together proposition.

Remark: This particular proof becomes harder when Θ is multi-dimensional.
In particular, one needs to show that there exists θn such that Γn(θn) = 0, in
order that the current argument goes through. For a more general approach,
see Hansen [1982].

With γ defined by (2.11), we would compute the partial derivative ∂θγ =
∂γ
∂θ

by calculating ∂θf , ∂θλ, and ∂θg. While g and λ are given functions,
computation of ∂θf from the definition (2.7) of f calls for differentiation of
Aθg

(θ,x)(y) with respect to θ. Under technical regularity,

∂θ[Aθg
(θ,x)( · )] = (∂θAθ)g

(θ,x)( · ) + Aθ∂θg
(θ,x)( · ),

where, for G in D(Aθ), provided the derivative exists, we have

[(∂θAθ)G](y) = ∂θ[AθG](y),

a vector in R
d. For the case in which X satisfies the stochastic differential

equation (2.5), under smoothness conditions on µ and σ given in Nualart
[1995], Chapter 2, the solution Xθ of (2.5) is differentiable with respect16 to
θ, and for a C2 function G in D(Aθ), we have

[(∂θAθ)G](x) = ∂xG(x)∂θµ(θ, x) +
1

2

∑

i,j

[

∂xi
∂xj

G(x)∂θC(θ, x)
]

,

16For this purpose, we can treat θ as a (degenerate) part of the state vector.
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where C(θ, x) = σ(θ, x)σ(θ, x)>. For other examples given in Section 6,
one can also explicitly compute ∂θAθ under technical regularity, provided
the parameter-dependent functions defining Aθ are smooth with respect to
θ. Thus computation of “optimal” weighting matrices can be carried out
relatively explicitly in many applications.

C Maximum-Likelihood Estimation

We take the case in which sampling times are observable.17 A similar result
holds when observation times are not observable.

Our data at time Ti is Zi = (Y (Ti), Ti), with typical outcome denoted
(yi, ti) ∈ S. We first calculate the relevant likelihood function. We fix some
θ in Θ and some initial state (Y (T0), 0) = x. Suppose, for each t, that the
transition measure Pθ(t, x, · ) has a density18 denoted p(θ, t, x, · ). Under
Pθ, the joint density of (Y (T1), T1, Y (T2), T2, . . . , Y (Tn), Tn), evaluated at
some (y1, t1, y2, t2, . . . , yn, tn), is denoted Ln(y1, t1, y2, t2, . . . , yn, tn | θ). For
notational ease, we let

Y (n) = (Y (T1), . . . , Y (Tn))

T (n) = (T1, . . . , Tn)

y(n) = (y1, . . . , yn)

t(n) = (t1, . . . , tn)

dt(n) = dt1 dt2 · · · dtn

dy(n) = dy1 dy2 · · · dyn

δi = exp

(

−
∫ ti

ti−1

λ(θ, Y (u)) du

)

.

17Maximum-likelihood estimation, with integer sampling times, is treated by Aı̈t-Sahalia
[2002], Chuang [1997], Clement [1995], Durham and Gallant [2002], Göing [1996], Lo [1988],
Pedersen [1995a], Pedersen [1995b], Brandt and Santa-Clara [2002], and Sørensen [2001],
using various numerical procedures to esimate the likelihood function.

18For the stochastic differential equation (2.5), conditions for existence of the density
function p are given in Nualart [1995].
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Using the usual abuse of notation for measures with a density,

L(y1, t1, y2, t2, . . . , yn, tn | θ) dy(n)dt(n)

= P θ
x

(

Y (n) ∈ dy(n), T (n) ∈ dt(n)
)

= Eθ
x

(

P θ
x

[

Y (n) ∈ dy(n), T (n) ∈ dt(n)
∣

∣ {Y (t) : t ≥ 0}
])

= Eθ
x

(

Eθ
x

[

I
(

Y (n) ∈ dy(n)
)

P θ
x

[

T (n) ∈ dt(n)
∣

∣ {Y (t) : t ≥ 0}
]])

= Eθ
x

[

I
(

Y (n) ∈ dy(n)
)

n
∏

i=1

λ(θ, Y (ti))δi dt(n)

]

= Eθ
x

[

Eθ
x

(

I
(

Y (n) ∈ dy(n)
)

n
∏

i=1

λ(θ, Y (ti))δi

∣

∣

∣

∣

Y (n)

)]

dt(n)

=
n
∏

i=1

λ(θ, yi)E
θ
x

(

I
(

Y (n) ∈ dy(n)
)

Eθ
x

[

n
∏

i=1

δi

∣

∣

∣

∣

Y (n)

])

dt(n)

=

n
∏

i=1

λ(θ, yi)p(θ, ti − ti−1, yi−1, yi)β(θ, ti − ti−1, yi−1, yi) dy(n) dt(n),

where y0 = x and

β(θ, t, x, y) = Eθ
x

[

exp

(

−
∫ t

0

λ(θ, Y (u)) du

) ∣

∣

∣

∣

Y (t) = y

]

.

(The event “Y (t) = y” may have zero probability, but we use this condition-
ing notation informally, in the usual sense.)

At points of strict positivity of the likelihood, the logarithm of the likeli-
hood is then

log Ln(y1, t1, y2, t2, . . . , yn, tn | θ) =

n
∑

i=1

ξ(θ, τ i, yi−1, yi),

where τ i = ti − ti−1 and

ξ(θ, τ i, yi−1, yi) = log λ(θ, yi) + log p(θ, τ i, yi, yi−1) + log β(θ, τ i, yi−1, yi).

Assuming differentiability19 of λ, β, and p with respect to θ, the first-order

19For the case of the stochastic differential equation (2.5), smoothness conditions on
µ and σ given in Nualart [1995], Chapter 2, ensure the existence and smoothness of the
transition density with respect to both x and θ, using the theory of stochastic flows. One
can apply Nualart’s Lemma 2.1.5 and integration by parts, treating θ as a (degenerate)
part of the state vector.
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necessary condition for the maximum-likelihood estimator θn is

0 =

n
∑

i=1

F (θn, τi, Y (Ti−1), Y (Ti)),

where

Fi(θ, τ i, yi−1, yi) =
∂

∂θi
λ(θ, yi)

λ(θ, yi)
+

∂
∂θi

β(θ, τ i, yi−1, yi)

β(θ, τ i, yi−1, yi)
+

∂
∂θi

p(θ, τ i, yi−1, yi)

p(θ, τ i, yi−1, yi)
.

Recalling that that the i-th state observation is X(Ti) = (Y (Ti), Ti−Ti−1),
with generic outcome denoted xi = (yi, τ i) ∈ S, we define f : Θ×S×S → R

d

from F ( · ) by
f(θ, xi−1, xi) = F (θ, τ i, yi−1, yi). (C.1)

Maximum-likelihood estimation is then obtained within our general set of
moment conditions with the test function g : Θ × S × S → R

d defined by

Ag(θ, xi−1, xi) − λ(θ, xi−1)g(θ, xi−1, xi) − f(θ, xi−1, xi) = 0. (C.2)

Indeed, under technical integrability conditions, the fact that

Eθ[ξ(θ, T1, Y (T0), Y (T1)) | Y (T0)] = 1

for all θ allows one to differentiate through the expectation with respect to θ
and find, as usual for maximum-likelihood estimation, that g(θ, x, x) = 0, so
for maximum-likelihood estimation we can ignore the role of g in our generic
moment condition (2.9).

D Integrability Assumptions

The integrability assumptions (B.1) and (B.6) can be based on primitive
assumptions on H , g, and f . For example, with m = 1 and differentiability
of f, g, and H with respect to θ, consider

Condition 3.

(i) Eπ

[

H(θ, Zi,`)
4 + f

(

θ, Zi

)4
+ g
(

θ, Zi

)4
]

< ∞, θ ∈ Θ.
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(ii) Eπ

[

supθ∈Θ

(

Hθ(θ, Zi,`)
2

)

+supθ∈Θ

(

fθ(θ, Zi)
2

)

+supθ∈Θ

(

gθ(θ, Zi)
2

)]

is finite.

Assumption (B.1) is implied by Condition 3 (i) and Cauchy-Schwarz. For
(B.6), we have

γθ(θ, z, z1) = Hθ(θ, z)[f(θ, z1) − g(θ, z)] + H(θ, z) [fθ(θ, z1) − gθ(θ, z)] .

Also, for some “intermediate” parameter ζ , taking Θ = [θ, θ], we have

sup
θ∈Θ

∣

∣ Hθ(θ, z) f(θ, z1)
∣

∣ = sup
θ∈Θ

∣

∣ Hθ(θ, z) [f(θ∗, z1) + (θ − θ∗) fθ(ζ, z1)]
∣

∣

≤ sup
θ∈Θ

∣

∣ Hθ(θ, z)
∣

∣ ·
∣

∣ f(θ∗, z1)
∣

∣

+
∣

∣ θ − θ
∣

∣ sup
θ∈Θ

∣

∣ Hθ(θ, z)
∣

∣ sup
θ∈Θ

∣

∣ fθ(θ, z1)
∣

∣,

and likewise for supθ∈Θ

∣

∣ Hθ(θ, z) g(θ, z0)
∣

∣.

We now apply Cauchy-Schwarz and Minkowski, as well as Condition 3
(i) and (ii), to obtain the finiteness of Eπ

[

supθ∈Θ

∣

∣ Hθ(θ, Zi,`)f(θ, Z1)
∣

∣

]

, and
similarly for the other terms in (B.6).

The integrability assumptions of Condition 3 are stated purely in terms of
the stationary distribution of Z. It turns out that we need not compute the
transition kernel of Z in order to verify Condition 3. Lyapunov methods exist
for this [see Meyn and Tweedie [1993a]]. For example, consider Condition 3
(ii) for the case in which ` = 1.

Set
r(x) = sup

θ∈Θ
Hθ(θ, x)2 + sup

θ∈Θ
fθ(θ, x)2 + sup

θ∈Θ
gθ(θ, x)2.

Proposition 2 ensures the finiteness of Eπ[r(Z0)] provided that we establish

r = Eη[r(X(0))λ(X(0))] < ∞.

The Lyapunov criterion for proving finiteness of r basically comes down to
finding a non-negative k in D(A) and a compact A ⊂ S such that

Ak(x) ≤ −r(x)λ(x), x ∈ Ac.

(See Theorem 4.2 of Meyn and Tweedie [1993b] for details.)
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For the case of the Cox, Ingersoll, and Ross [1985] model of the short
interest rate, a process introduced by Feller [1951], we have

dXt = κ
(

x − X(t)
)

dt + σ
√

X(t) dBt,

where B is a standard Brownian motion and κ, x, and σ are positive scalar
parameters. In this case,

A = κ(x − y)
d

dy
+

σ2y

2

d2

dy2
.

If we set k(y) = exp(εy), then there exists δ > 0 such that for y off a
compact set,

(Ak)(y) = κ(x − y)εeεy +
σ2y

2
ε2eεy ≤ −δyeεy,

provided we choose ε small enough that κ > σ2ε/2. Hence, according to
Lyapunov theory, we can expect that Eπ

[

X(0) exp
(

εX(0)
)]

< ∞, for such
an ε. Thus, so long as

sup
θ∈Θ

Hθ(θ, x)2 + sup
θ∈Θ

fθ(θ, x)2 = O
(

exp(εx)
)

,

we can expect Condition 3(ii) to be in force. Similarly, we can verify Condi-
tion 3(i).

E Hansen-Scheinkman Estimators

Hansen and Scheinkman [1995] base an estimator on observation of X at
integer times 1, 2, . . . and on an assumption that X is ergodic, with sta-
tionary distribution η. (Their work is extended by Hansen, Scheinkman,
and Touzi [1998], allowing random sampling time intevals, and by Conley,
Hansen, Luttmer, and Scheinkman [1997].) Hansen and Scheinkman use the
fact that, for any f such that Af(X(t)) is well defined and integrable,

Eη[Af(X(t))] = 0, (E.3)

where Eη denotes expectation under the stationary distribution η of X. This
relies on the simple fact that, under η, the rate of change of the expectation of
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any well-behaved function of the sample paths of X must be zero. This leads,
under technical conditions, to a family of moment conditions that assist in
estimating θ∗.

The Hansen-Scheinkman (HS) class of estimators, with Poisson inter-
arrival times, can be recovered from ours, asymptotically, as follows. Sup-
pose that g(θ, x, y) = g(y) and that we assume Poisson sampling, for some
constant intensity λ > 0. In this case, from telescopic cancellation in (2.10),

Γn(θ) =
1

n
[f(θ, Zn) − g(Z0)] −

1

nλ

n−1
∑

i=1

Aθg(Zi), (E.4)

which corresponds asymptotically to the moment condition (E.3).
Hansen and Scheinkman [1995] also use “reverse-time” moment condi-

tions.20 Reverse-time versions of our moment conditions can be developed
analogously.

Because Af(X(1)),Af(X(2)), . . . are generally correlated, computation
of the asymptotic standard errors associated with the HS moment conditions
(E.3)-(E.4) may be relatively intractable. On the other hand, because of
(2.8), the terms γ(θ∗, Zi, Zi+1) of the criterion proposed here are first differ-
ences of a martingale, and therefore uncorrelated. This makes computation
of asymptotic standard errors relatively tractable. (See Theorem 3 below.)
As remarked above, however, with Poisson sampling times, the HS estimators
can be viewed asymptotically as special cases of, and have the same asymp-
totic behavior as, the estimators presented here, including easily computed
asymptotic standard errors.

As opposed to the class of estimators proposed here, HS estimators do
not generally offer identification, as explained by Hansen and Scheinkman
[1995]. HS estimators do, however, have the advantage that they can be

20That is, the reverse-time process Y , defined by Y (t) = X(−t), has its own gen-
erator A∗, and under technical regularity we have a condition analogous to (E.3):
Eη[A∗f(X(t))] = 0. Combining this condition with (E.3), and applying the definition
of the adjoint, Hansen and Scheinkman propose a general moment condition of the form

Eη[g(X(t))Af(X(t + 1)) + f(X(t + 1))A∗g(X(t))] = 0.

In a general setting, computation of A∗ is difficult. Under reversibility conditions on X

[see for example Kent [1978] and Millet, Nualart, and Sanz [1989]], however, the infinites-
imal generator A∗ can be computed. The reversibility conditions are easily satisfied for
solutions of 1-dimensional versions of a stochastic differential equation of the form of (2.5).
Reversibility is generally a strong condition, however, for multivariate processes.
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based on both deterministic and random sampling time schemes, under con-
ditions. Section 7 discusses cases in which a modification of the moment
conditions proposed in this paper could be considered with deterministic
sampling schemes, after a time change.

The class of estimators associated with (2.10) can, in principle, be ap-
plied to arbitrary Markov processes, whether or not recurrent. In particular,
the methodology can be used to estimate parameters for transient and null-
recurrent Markov processes. The main difficulty is establishing the law of
large numbers, in the absence of ergodicity, for purposes of a proof of con-
sistency. In contrast, the HS moment conditions are meaningful only for
positive-recurrent processes.
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