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1 Introduction

In valuing �nancial securities in an arbitrage-free environment, one inevitably
faces a trade-o� between the analytical and computational tractability of
pricing and estimation, and the complexity of the probability model for the
state vector X. In light of this trade-o�, academics and practitioners alike
have found it convenient to impose suÆcient structure on the conditional
distribution of X to give closed- or nearly closed-form expressions for se-
curities prices. An assumption that has proved to be particularly fruitful
in developing tractable, dynamic asset pricing models is that X follows an
aÆne jump-di�usion (AJD), which is, roughly speaking, a jump-di�usion
process for which the drift vector, \instantaneous" covariance matrix, and
jump intensities all have aÆne dependence on the state vector. Prominent
among AJD models in the term-structure literature are the Gaussian and
square-root di�usion models of Vasicek [1977] and Cox, Ingersoll, and Ross
[1985]. In the case of option pricing, there is a substantial literature building
on the particular aÆne stochastic-volatility model for currency and equity
prices proposed by Heston [1993].

This paper synthesizes and signi�cantly extends the literature on aÆne
asset-pricing models by deriving a closed-form expression for an \extended
transform" of an AJD process X, and then showing that this transform
leads to analytically tractable pricing relations for a wide variety of valuation
problems. More precisely, �xing the current date t and a future payo� date
T , suppose that the stochastic \discount rate" R(Xt), for computing present
values of future cash 
ows, is an aÆne function of Xt. Also, consider the
generalized terminal payo� function (v0 + v1 � XT ) e

u�XT of XT , where v0 is
scalar and the n elements of each of v1 and u are scalars. These scalars may
be real, or more generally, complex. We derive a closed-form expression for
the transform

Et

�
exp

�
�
Z T

t

R(Xs; s) ds

�
(v0 + v1 �XT ) e

u�XT

�
; (1.1)

where Et denotes expectation conditioned on the history of X up to t. Then,
using this transform, we show that the tractability o�ered by extant, special-
ized aÆne pricing models extends to the entire family of AJDs. Additionally,
by selectively choosing the payo� (v0+ v1 �XT ) e

u�XT , we signi�cantly extend
the set of pricing problems (security payo�s) that can be tractably addressed
with X following an AJD. To motivate the usefulness of our extended trans-
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form in theoretical and empirical analyses of aÆne models, we brie
y outline
three applications.

1.1 AÆne, Defaultable Term Structure Models

There is a large literature on the term structure of default-free bond yields
that presumes that the state vector underlying interest rate movements fol-
lows an AJD under risk-neutral probabilities (see, for example, Dai and Sin-
gleton [1999] and the references therein). Assuming that the instantaneous
riskless short-term rate rt is aÆne with respect to an n-dimensional AJD
process Xt (that is rt = �0 + �1 � Xt) DuÆe and Kan [1996] show that the
(T � t)-period zero-coupon bond price,

E

�
exp

�
�
Z T

t

rs ds

� �� Xt

�
; (1.2)

is known in closed form, where expectations are computed under the risk-
neutral measure.1

Recently, considerable attention has been focused on extending these
models to allow for the possibility of default in order to price corporate
bonds and other credit-sensitive instruments.2 To illustrate the new pricing
issues that may arise with the possibility of default, suppose that, with re-
spect to given risk-neutral probabilities,X is an AJD, the arrival of default is
at a stochastic intensity �t, and upon default the holder recovers a constant
fraction w of face value. Then, from results in Lando [1998], the initial price
of a T -period zero-coupon bond is given under technical conditions by

E

�
exp

�
�
Z T

0

(rt + �t) dt

��
+ w

Z T

0

qt dt; (1.3)

where qt = E
h
�t exp

�
� R t

0
(ru + �u) du

�i
. The �rst term in (1.3) is the value

of a claim that pays 1 contingent on survival to maturity T . We may view qt
as the price density of a claim that pays 1 if default occurs in the \interval"
(t; t + dt). Thus the second term in (1.3) is the price of any proceeds from
default before T . These expectations are to be taken with respect to the

1The entire class of aÆne term structure models is obtained as the special case of (1.1)
found by setting R(Xt) = rt, u = 0, v0 = 1, and v1 = 0.

2See, for example, Jarrow, Lando, and Turnbull [1997] and DuÆe and Singleton [1999].
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given risk-neutral probabilites. Both the �rst term of (1.3) and, for each
t, the price density qt can be computed in closed form using our extended
transform. Speci�cally, assuming that both rt and �t are aÆne with respect
to Xt, the �rst term in (1.3) is the special case of (1.1) obtained by letting
R(Xt) = rt + �t, u = 0, v0 = 1 and v1 = 0. Similarly, qt is obtained as a
special case of (1.1) by setting u = 0, R(Xt) = rt + �t, and v0 + v1 �Xt = �t.
Thus, using our extended transform, the pricing of defaultable zero-coupon
bonds with constant fractional recovery of par reduces to the computation
of a one-dimensional integral of a known function. Similar reasoning can
be used to derive closed-form expressions for bond prices in environments
for which the default arrival intensity is aÆne in X along with \gapping"
risk associated with unpredictable transitions to di�erent credit categories,
as shown by Lando [1998].

A di�erent application of the extended transform is pursued by Piazzesi
[1998], who extends the AJD model in order to treat term-structure models
with releases of macro-economic information and with central-bank interest-
rate targeting. She considers jumps at both random and at deterministic
times, and allows for an intensity process and interest-rate process that have
linear-quadratic dependence on the underlying state vector, extending the
basic results of this paper.

1.2 Estimation of AÆne Asset Pricing Models

Another useful implication of (1.1) is that, by setting R = 0, v0 = 1, and
v1 = 0, we obtain a closed-form expression for the conditional characteristic
function � of XT given Xt, de�ned by �(u;Xt; t; T ) = E

�
eiu�XT jXt

�
; for real

u. Because knowledge of � is equivalent to knowledge of the joint condi-
tional density function of XT , this result is useful in estimation and all other
applications involving the transition densities of an AJD.

For instance, Singleton [1999] exploits knowledge of � to derive maximum
likelihood estimators for AJDs based on the conditional density f( � j Xt) of
Xt+1 given Xt, obtained by Fourier inversion of � as

f(Xt+1 jXt) =
1

(2�)N

Z
RN

e�iu�Xt+1�(u;Xt; t; t+ 1) du: (1.4)

Das [1998] exploits (1.4) for the speci�c case of a Poisson-Gaussian AJD to
compute method-of-moments estimators of a model of interest rates.
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Method-of-moments estimators can also be constructed directly in terms
of the conditional characteristic function. From the de�nition of �,

E
�
eiu�Xt+1 � �(u;Xt; t; t+ 1) jXt

�
= 0; (1.5)

so any measurable function of Xt is orthogonal to the \error" (eiu�Xt+1 �
�(u;Xt; t; t + 1)). Singleton [1999] uses this fact, together with the known
functional form of �, to construct generalized method-of-moments estimators
of the parameters governing AJDs and, more generally, the parameters of
asset pricing models in which the state follows an AJD. These estimators are
computationally tractable and, in some cases, achieve the same asymptotic
eÆciency as the maximum likelihood estimator. Jiang and Knight [1999]
and Chacko and Viceira [1999] propose related, characteristic-function based
estimators of the stochastic volatility model of asset returns with volatility
following a square-root di�usion.3

1.3 AÆne Option-Pricing Models

In an in
uential paper in the option-pricing literature, Heston [1993] showed
that the risk-neutral exercise probabilities appearing in the call option-pricing
formulas for bonds, currencies, and equities can be computed by Fourier in-
version of the conditional characteristic function, which he showed is known
in closed form for his particular aÆne, stochastic volatility model. Build-
ing on this insight,4 a variety of option-pricing models have been developed
for state vectors having at most a single jump type (in the asset return),
and whose behavior between jumps is that of a Gaussian or \square-root"
di�usion.5

Knowing the extended transform (1.1) in closed-form, we can extend this
option pricing literature to the case of general multi-dimensional AJD pro-

3Liu and Pan [1997] and Liu [1997] propose alternative estimation strategies that exploit
the special structure of aÆne di�usion models.

4Among the many recent papers examining option prices for the case of state variables
following square-root di�usions are Bakshi, Cao, and Chen [1997], Bakshi and Madan
[1999], Bates [1996], Bates [1997], Chen and Scott [1993], Chernov and Ghysels [1998],
Pan [1998], Scott [1996], and Scott [1997], among others.

5More precisely, the short-term interest rate has been assumed to be an aÆne function of
independent square-root di�usions and, in the case of equity and currency option pricing,
spot-market returns have been assumed to follow stochastic-volatility models in which
volatility processes are independent \square-root" di�usions that may be correlated with
the spot-market return shock.
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cesses with much richer dynamic inter-relations among the state variables
and much richer jump distributions. For example, we provide an analyti-
cally tractable method for pricing derivatives with payo�s at a future time
T of the form

�
eb�XT � c

�+
, where c is a constant strike price, b 2 R

n , X
is an AJD, and y+ � max(y; 0). This leads directly to pricing formulas
for plain-vanilla options on currencies and equities, quanto options (such as
an option on a common stock or bond struck in a di�erent currency), op-
tions on zero-coupon bonds, caps, 
oors, chooser options, and other related
derivatives. Furthermore, we can price payo�s of the form (b �XT � c)+ and
(ea�XT b �XT �c)+, allowing us to price \slope-of-the-yield-curve" options and
certain Asian options.6

In order to visualize our approach to option pricing, consider the price
p at date 0 of a call option with payo�

�
ed�XT � c

�+
at date T , for given

d 2 Rn and strike c, where X is an n-dimensional AJD, with a short-term
interest-rate process that is itself aÆne in X. For any real number y and any
a and b in Rn , let Ga;b(y) denote the price of a security that pays ea�XT at
time T in the event that b �XT � y. As the call option is in the money when
�d � XT � � ln c, and in that case pays ed�XT � ce0�XT , we have the option
priced at

p = Gd;�d(� ln c)� cG0;�d(� ln c): (1.6)

Because it is an increasing function, Ga;b( � ) can be treated as a measure.
Thus, it is enough to be able to compute the Fourier transform Ga;b( � ) of
Ga;b( � ), de�ned by

Ga;b(z) =
Z +1

�1

eizy dGa;b(y);

for then well-known Fourier-inversion methods can be used to compute terms
of the form Ga;b(y) in (1.6).

There are many cases in which the Fourier transform Ga;b( � ) ofGa;b( � ) can
be computed explicitly. We extend the range of solutions for the transform
Ga;b( � ) from those already in the literature to include the entire class of

6In a complementary analysis of derivative security valuation, Bakshi and Madan [1999]
show that knowledge of the special case of (1.1) with v0+v1 �XT = 1 is suÆcient to recover
the prices of standard call options, but they do not provide explicit guidance as to how to
compute this transform. Their applications to Asian and other options presumes that the
state vector follows square-root or Heston-like stochastic-volatility models for which the
relevant transforms had already been known in closed form.
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AJDs by noting that Ga;b(z) is given by (1.1), for the complex coeÆcient
vector u = a + izb, with v0 = 1 and v1 = 0. This, because of the aÆne
structure, implies under regularity conditions that

Ga;b(z) = e�(0)+�(0)�X0 ; (1.7)

where � and � solve known, complex-valued ordinary di�erential equations
(ODEs) with boundary conditions at T determined by z. In some cases,
these ODEs have explicit solutions. These include independent square-root
di�usion models for the short-rate process, as in Chen and Scott [1995],
and the stochastic-volatility models of asset prices studied by Bates [1997]
and Bakshi, Cao, and Chen [1997]. Using our ODE-based approach, we
derive other explicit examples, for instance stochastic-volatility models with
correlated jumps in both returns and volatility. In other cases, one can
easily solve the ODEs for � and � numerically, even for high-dimensional
applications.

Similar transform analysis provides a price for an option with a payo� of
the form (d �XT � c)+, again for the general AJD setting. For this case, we
provide an equally tractable method for computing the Fourier transform of
~Ga;b;d( � ), where ~Ga;b;d(y) is the price of a security that pays ed�XT a �XT at T
in the event that b �XT � y. This transform is again of the form (1.1), now
with v1 = a. Given this transform, we can invert to obtain ~Ga;b;d(y) and the
option price p0 as

p0 = ~Ga;�a;0(� ln c)� cG0;�a(� ln c): (1.8)

As shown in Section 3, these results can be used to price slope-of-the-yield-
curve options and certain Asian options.

Our motivation for studying the general AJD setting is largely empirical.
The AJDmodel takes the elements of the drift vector, \instantaneous" covari-
ance matrix, and jump measure of X to be aÆne functions of X. This allows
for conditional variances that depend on all of the state variables (unlike the
Gaussian model), and for a variety of patterns of cross-correlations among
the elements of the state vector (unlike the case of independent square-root
di�usions). Dai and Singleton [1999], for instance, found that both time-
varying conditional variances and negatively correlated state variables were
essential ingredients to explaining the historical behavior of term structures
of U.S. interest rates.
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Furthermore, for the case of equity options, Bates [1997] and Bakshi, Cao,
and Chen [1997] found that their aÆne stochastic-volatility models did not
fully explain historical changes in the volatility smiles implied by S&P500
index options. Within the aÆne family of models, one potential explanation
for their �ndings is that they unnecessarily restricted the correlations between
the state variables driving returns and volatility. Using the classi�cation
scheme for aÆne models found in Dai and Singleton [1999], one may nest
these previous stochastic-volatility speci�cations within an AJD model with
the same number of state variables that allows for potentially much richer
correlation among the return and volatility factors.

The empirical studies of Bates [1997] and Bakshi, Cao, and Chen [1997]
also motivate, in part, our focus on multivariate jump processes. They con-
cluded that their stochastic-volatility models (with jumps in spot-market
returns only) do not allow for a degree of volatility of volatility suÆcient
to explain the substantial \smirk" in the implied volatilities of index option
prices. Both papers conjectured that jumps in volatility, as well as in returns,
may be necessary to explain option-volatility smirks. Our AJD setting allows
for correlated jumps in both volatility and price. Jumps may be correlated
because their amplitudes are drawn from correlated distributions, or because
of correlation in the jump times. (The jump times may be simultaneous, or
have correlated stochastic arrival intensities.)

In order to illustrate our approach, we provide an example of the pricing
of plain-vanilla calls on the S&P500 index. A cross-section of option prices
for a given day are used to calibrate AJDs with simultaneous jumps in both
returns and volatility. Then we compare the implied-volatility smiles to those
observed in the market on the chosen day. In this manner we provide some
preliminary evidence on the potential role of jumps in volatility for resolving
the volatility puzzles identi�ed by Bates [1997] and Bakshi, Cao, and Chen
[1997].

The remainder of this paper is organized as follows. Section 2 reviews
the class of aÆne jump-di�usions, and shows how to compute some relevant
transforms, and how to invert them. Section 3 presents our basic option-
pricing results. The example of the pricing of plain-vanilla calls on the
S&P500 index is presented in Section 4. Additional appendices provide
various technical results and extensions.
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2 Transform Analysis for AJD State-Vectors

This section presents the AJD state-process model and the basic transform
calculations that will later be useful in option pricing.

2.1 The AÆne Jump-Di�usion

We �x a probability space (
;F ; P ) and an information �ltration7 (Ft), and
suppose that X is a Markov process in some state space D � Rn , solving the
stochastic di�erential equation

dXt = �(Xt) dt+ �(Xt) dWt + dZt ; (2.1)

where W is an (Ft)-standard Brownian motion in Rn ; � : D! Rn , � : D!
R
n�n , and Z is a pure jump process whose jumps have a �xed probability

distribution � on Rn and arrive with intensity f�(Xt) : t � 0g, for some
� : D ! [0;1). To be precise, we suppose that X is a Markov process
whose transition semi-group has an in�nitesimal generator8 D of the L�evy
type, de�ned at a bounded C2 function f : D ! R, with bounded �rst and
second derivatives, by

Df(x; t) = ft(x; t) + fx(x; t)�(x) +
1

2
tr
�
fxx(x; t)�(x)�(x)

>
�

+ �(x)

Z
Rn

[f(x+ z; t)� f(x; t)] d�(z); (2.2)

Intuitively, this means that, conditional on the path of X, the jump times
of Z are the jump times of a Poisson process with time-varying intensity
f�(Xs) : 0 � s � tg, and that the size of the jump of Z at a jump time T is
independent of fXs : 0 � s < Tg and has the probability distribution �.

For notational convenience, we assume that X0 is \known" (has a trivial
distribution). Appendices provide additional technical details, as well as
generalizations to multiple jump types with di�erent arrival intensities, and
to time-dependent (�; �; �; �).

7The �ltration (Ft) = fFt : t � 0g is assumed to satisfy the usual conditions, and X is
assumed to be Markov relative to (Ft). For technical details, see, for example, Ethier and
Kurtz [1986].

8The generator D is de�ned by the property that ff(Xt; t) �
R t
0
Df(Xs; s) ds : t � 0g

is a martingale for any f in its domain. See Ethier and Kurtz [1986] for details.
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We impose an \aÆne" structure on �, ��>, and �, in that all of these
functions are assumed to be aÆne on D. In order for X to be well de�ned,
there are joint restrictions on (D; �; �; �; �), as discussed in DuÆe and Kan
[1996] and Dai and Singleton [1999].

2.2 Transforms

First, we show that the Fourier transform ofXt and of certain related random
variables is known in closed form up to the solution of an ordinary di�erntial
equation (ODE). Then, we show how the distribution of Xt and the prices
of options can be recovered by inverting this transform.

We �x an aÆne discount-rate function R : D ! R. The aÆne dependence
of �, ��>, �; and R are determined by coeÆcients (K;H; l; �) de�ned by:

� �(x) = K0 +K1x; for K = (K0; K1) 2 R
n � R

n�n .

� (�(x)�(x)>)ij = (H0)ij+(H1)ij �x, for H = (H0; H1) 2 R
n�n�R

n�n�n .

� �(x) = l0 + l1 � x, for l = (l0; l1) 2 R � Rn .

� R(x) = �0 + �1 � x, for � = (�0; �1) 2 R � R
n .

For c 2 C n , the set of n-tuples of complex numbers, we let �(c) =R
Rn

exp (c � z) d�(z) whenever the integral is well de�ned. This \jump trans-
form" � determines the jump-size distribution.

The \coeÆcients" (K;H; l; �) of X completely determine its distribution,
given an initial condition X(0). A \characteristic" � = (K;H; l; �; �) cap-
tures both the distribution of X as well as the e�ects of any discounting, and
determines a transform  � : C n � D � R+ � R+ ! C of XT conditional on
Ft, when well de�ned at t � T; by

 �(u;Xt; t; T ) = E�

�
exp

�
�
Z T

t

R(Xs) ds

�
eu�XT

���� Ft

�
; (2.3)

where E� denotes expectation under the distribution of X determined by �.
Here,  � di�ers from the familiar (conditional) characteristic function of the
distribution of XT because of the discounting at rate R(Xt).

The key to our applications is that, under technical regularity conditions
given in Proposition 1 below,

 �(u; x; t; T ) = e�(t)+�(t)�x; (2.4)
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where � and � satisfy the complex-valued ODEs9

_�(t) = �1 �K>
1 �(t)�

1

2
�(t)>H1�(t)� l1 (�(�(t))� 1) ; (2.5)

_�(t) = �0 �K0 � �(t)� 1

2
�(t)>H0�(t)� l0 (�(�(t))� 1) ; (2.6)

with boundary conditions �(T ) = u and �(T ) = 0. The ODE (2.5)-(2.6)
is easily conjectured from an application of Ito's Formula to the candidate
form (2.4) of  �. In order to apply our results, we would need to compute
solutions � and � to these ODEs. In some applications, as for example in
Section 4, explicit solutions can be found. In other cases, solutions would be
found numerically, for example by Runge-Kutta. This suggests a practical
advantage of choosing a jump distribution � with an explicitly known or
easily computed jump transform �.

The following technical conditions will justify this method of calculating
the transform.

De�nition: A characteristic (K;H; l; �; �) is well-behaved at (u; T ) 2 C n�
[0;1) if (2.5)-(2.6) are solved uniquely by � and �; and if

(i) E
�R T

0
j
tj dt

�
<1, where 
t = 	t (�(�(t))� 1)�(Xt),

(ii) E

��R T
0
�t � �t dt

�1=2�
<1, where �t = 	t �(t)

>�(Xt); and

(iii) E (j	T j) <1;

where 	t = exp
�
� R t

0
R(Xs) ds

�
e�(t)+�(t)�X(t) .

Proposition 1. Suppose (K;H; l; �; �) is well-behaved at (u; T ). Then
the transform  � of X de�ned by (2.3) is given by (2.4).

Proof: It is enough to show that 	 is a martingale, for then 	t = E(	T j Ft),

and we can multiply 	t by exp
�R t

0
R(Xs) ds

�
to get the result. By Ito's

Formula,10

	t = 	0 +

Z t

0

	s�	(s) ds+

Z t

0

�s dWs + Jt ; (2.7)

9Here, c>H1c denotes the vector in C n with k-th element
P

i;j ci(H1)ijkcj .
10See Protter [1990] for a complex version of Ito's Formula.
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where, using the fact that � and � satisfy the ODE (2.5)-(2.6), we have
�	 = 0, and where

Jt =
X

0<�(i)�t

�
	�(i) � 	�(i)�

�� Z t

0


s ds;

with �(i) = infft : Nt = ig denoting the i-th jump time of X. Under
the integrability condition (i), Lemma 1 of Appendix A implies that J is a
martingale. Under integrability condition (ii),

R
� dW is a martingale. Thus

	 is a martingale and we are done.

Anticipating the application to option pricing, for each given (d; c; T ) 2
Rn �R�R+ , our next goal is to compute (when well de�ned) the \expected
present value"

C (d; c; T; �) = E�

�
exp

�
�
Z T

0

R(Xs) ds

��
ed�XT � c

�+�
: (2.8)

We have

C (d; c; T; �) =E�

�
exp

�
�
Z T

0

R(Xs) ds

��
ed�XT � c

�
1d�XT�ln(c)

�
=Gd;�d (� ln(c);X0; T; �)� cG0;�d (� ln(c);X0; T; �) ; (2.9)

where, given some (x; T; a; b) 2 D� [0;1)�Rn �Rn , Ga;b( � ; x; T; �) : R !
R+ is given by

Ga;b(y;X0; T; �) = E�

�
exp

�
�
Z T

0

R(Xs) ds

�
ea�XT1b�XT�y

�
: (2.10)

The Fourier-Stieltjes transform Ga;b( � ;X0; T; �) ofGa;b( � ;X0; T; �), if well
de�ned, is given by

Ga;b(v;X0; T; �) =

Z
R

eivy dGa;b(y;X0; T; �)

= E�

�
exp

�
�
Z T

0

R(Xs) ds

�
exp [(a+ ivb) �XT ]

�
=  �(a+ ivb;X0; 0; T ):
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We may now extend the L�evy inversion formula11 (from the typical case
of a proper cumulative distribution function) to obtain the following result.

Proposition 2 (Transform Inversion). Suppose, for �xed T 2 [0;1),
a 2 R

n , and b 2 R
n , that � = (K;H; l; �; �) is well-behaved at (a + ivb; T )

for any v 2 R, and thatZ
R

j �(a+ ivb; x; 0; T )j dv <1: (2.11)

Then Ga;b( � ; x; T; �) is well de�ned by (2.10) and given by

Ga;b(y;X0; T; �) =
 �(a;X0; 0; T )

2
� 1

�

Z 1

0

Im [ �(a+ ivb;X0; 0; T )e
�ivy]

v
dv ;

(2.12)

where Im(c) denotes the imaginary part of c 2 C :

A proof is given in Appendix A. For R = 0, this formula gives us the
probability distribution function of b �XT . The associated transition density
of X is obtained by di�erentiation of Ga;b. More generally, this provides the
transition function of X with \killing" at rate12 R.

2.3 Extended Transform

As noted in the introduction, certain pricing problems in our setting, for ex-
ample Asian option valuation or default-time distributions, call for the calcu-
lation of the expected present value of the product of aÆne and exponential-
aÆne functions of XT . Accordingly, we de�ne the \extended" transform
�� : Rn�C n�D�R+�R+ ! C of XT conditional on Ft, when well de�ned
for t � T by

��(v; u;Xt; t; T ) = E

�
exp

�
�
Z T

t

R(Xs) ds

�
(v �XT ) e

u�XT

���� Ft

�
: (2.13)

The extended transform �� can be computed by di�erentiation of the
transform  �, just as moments can be computed from a moment-generating

11See, for example, Gil-Pelaez [1951] and Williams [1991] for a treatment of the L�evy
inversion formula.

12A negative R is sometimes called a \creation" rate in Markov-process theory.
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function (under technical conditions justifying di�erentiation through the
expectation.) In practice, computing the derivatives of the transform calls for
solving a new set of ODEs, as indicated below. Speci�cally, under technical
conditions, including the di�erentiability of the jump transform �, we show
that

��(v; u; x; t; T ) =  �(u; x; t; T ) (A(t) +B(t) � x) ; (2.14)

where  � is given by (2.4), and where B and A satisfy the linear ordinary
di�erential equations

� _B(t) = K1(t)
>B(t) + �(t)>H1(t)B(t) + l1r� (�(t))B(t) (2.15)

� _A(t) = K0(t) �B(t) + �(t)>H0(t)B(t) + l0r� (�(t))B(t); (2.16)

with the boundary conditions B(T ) = v and A(T ) = 0, and where r�(c) is
gradient of �(c) with respect to c 2 C

n .

Proposition 3: Suppose � = (K;H; l; �; �) is \extended" well-behaved at
(v; u; T ), a technical condition stated in Appendix A. Then the extended
transform�� de�ned by (2.13) is given by (2.14).

One could further extend this approach so as to calculate higher-order mo-
ments, as in Pan [1998].

3 Option Pricing Theory

This section applies our basic transform analysis to the pricing of options.
In all cases, we assume that the price process S of the asset underlying
the option is of the form St =

�
�a(t) + �b(t) �Xt

�
ea(t)+b(t)�Xt , for deterministic

�a(t);�b(t); a(t); and b(t). This is the case for many applications in aÆne
settings, including underlying assets that are equities, currencies, and zero-
coupon bonds.

Two traditional formulations13 of the asset-pricing problem are:

13A popular variant was developed in a Gaussian setting by Jamshidian [1989]. In a
setting in which X is an aÆne jump-di�usion under the equivalent martingale measure
Q, one normalizes the underlying exponential-aÆne asset price by the price of a zero-
coupon bond maturing on the option expiration date T . Then, in the new numeraire, the
short-rate process is of course zero, and there is a new equivalent martingale measureQ(T ),

14



1. Model the \risk-neutral" behavior of X under an equivalent martingale
measure Q: That is, take X to be an aÆne jump-di�usion under Q with
given characteristic �Q. Then apply (2.9) and (2.12).

2. Model the behavior of X as an aÆne jump-di�usion under the actual
(that is, the \data-generating") measure P . If one then supposes that
the state-price density (also known as the \pricing kernel" or \marginal-
rate-of-substitution" process) is an exponential-aÆne form in X, then
X is also an aÆne jump-di�usion under Q, and one can either:

(a) calculate, as in Appendix C, the implied equivalent martingale
measure Q and associated characteristic �Q of X under Q, and
proceed as in the �rst alternative above, or

(b) simply apply the de�nition of the state-price density, which deter-
mines the price of an option directly in terms of Ga;b, computed
using our transform analysis. This alternative is sketched in Sec-
tion 3.2 below.

Of course the two approaches are consistent, and indeed the second formu-
lation implies the �rst, as indicated. The second approach is more complete,
and would be indicated for empirical time-series applications, for which the
\actual" distribution of the state process X as well as the parameters deter-
mining risk-premia must be speci�ed and estimated.

Applications of these approaches to call-option pricing are brie
y sketched
in the next two sub-sections. Other derivative pricing applications are pro-
vided in Section 3.3.

3.1 Risk-Neutral Pricing

Here, we take Q to be an equivalent martingale measure associated with
a short-term interest rate process de�ned by R(Xt) = �0 + �1 � Xt. This
means that the market value at time t of any contingent claim that pays an

often called the \forward measure," under which prices are exponential aÆne. Application
of Girsanov's Theorem uncovers new aÆne behavior for the underlying state process X
under Q(T ), and one can proceed as before. The change-of-measure calculations for this
approach can be found in Appendix C.
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FT -measurable random variable V at time T is, by de�nition,

EQ

�
exp

�
�
Z T

t

R(Xs) ds

�
V

���� Ft

�
; (3.1)

where, under Q, the state vector X is assumed to be an AJD with coeÆcients
(KQ; HQ; lQ; �Q). The relevant characteristic for risk-neutral pricing is then
�Q =

�
KQ; HQ; lQ; �Q; �

�
. It need not be the case that markets are complete.

The existence of some equivalent martingale measure and the absence of
arbitrage are in any case essentially equivalent properties, under technical
conditions, as pointed out by Harrison and Kreps [1979]. For recent technical
conditions, see for example Delbaen and Schachermayer [1994].

We let S denote the price process for the security underlying the option,
and suppose for simplicity14 that lnSt = X

(i)
t , an element of the state vector

X =
�
X(1); : : : ; X(n)

�
. Other components of the state process X may jointly

specify the arrival intensity of jumps, the behavior of stochastic volatility, the
behavior of other asset returns, interest-rate behavior, and so on. The given
asset is assumed to have a dividend-yield process f�(Xt) : t � 0g de�ned by

�(x) = q0 + q1 � x; (3.2)

for given q0 2 R and q1 2 R
n . For example, if the asset is a foreign currency,

then �(Xt) is the foreign short-term interest rate.
Because Q is an equivalent martingale measure, the coeÆcients KQ

i =
((KQ

0 )i; (K
Q
1 )i) determining15 the \risk-neutral" drift of X(i) = lnS are given

14The more general case of St = exp(at + bt � Xt) can be similarly treated. Possibly
after some innocuous aÆne change of variables in the state vector, possibly involving time
dependencies in the characteristic �, we can always reduce to the assumed case.

15Under (3.3)-(3.4), we have

St � S0 =

Z t

0

Su [R(Xu)� �(Xu)] du+

Z t

0

Su�
(i)(Xu)

> dWQ
u

+
X

0<u�t

Su�

�
exp(�X(i)

u )� 1
�
�
Z t

0

Su
�
�Q(�(i))� 1

�
(lQ0 + l

Q
1 �Xu) du;

where WQ is an (Ft)-standard Brownian motion in R
n under Q. (Here, �Xt = Xt�Xt�

denotes the jump of X at t.) As the sum of the last 3 terms is a local Q-martingale, this
indeed implies consistency with the de�nition of an equivalent martingale measure.
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by

(KQ
0 )i = �0 � q0 � 1

2
(HQ

0 )ii � lQ0
�
�Q(�(i))� 1

�
(3.3)

(KQ
1 )i = �1 � q1 � 1

2
(HQ

1 )ii � lQ1
�
�Q(�(i))� 1

�
; (3.4)

where �(i) 2 Rn has 1 as its i-th component, and every other component
equal to 0.

Unless other security price processes are speci�ed, the risk-neutral char-
acteristic �Q is otherwise unrestricted by arbitrage considerations. There
are analogous no-arbitrage restrictions on �Q for each additional speci�ed
security price process of the form ea+b�Xt .

By the de�nition of an equivalent martingale measure and the results of
Section 2.2, a plain-vanilla European call option with expiration time T and
strike c has a price p at time 0 which is given by (2.9) to be

p = G�(i);��(i) (� ln(c);X0; T; �Q)� cG0;��(i) (� ln(c);X0; T; �Q) : (3.5)

To be precise, we can exploit Propositions 1 and 2 and summarize this
option-pricing tool as follows, extending Heston [1993], Bates [1996], Scott
[1997], Bates [1997], Bakshi and Madan [1999], and Bakshi, Cao, and Chen
[1997].

Proposition 4. The option-pricing formula (2.9) applies, where G is com-
puted by (2.12), provided:

(a) � is well-behaved at (d� ivd; T ) and at (�ivd; T ), for all v 2 R+ , and

(b)
R
R
j �(d� ivd; x; 0; T )j dv <1, and

R
R
j �(�ivd; x; 0; T )j dv <1.

3.2 State-Price Density

Suppose the state vectorX is an aÆne jump-di�usion with coeÆcients (K;H; l; �)
under the actual (data-generating) measure P . Let � be an (Ft)-adapted
\state-price density," de�ned by the property that the market value at time
t of any security that pays an FT -measurable random variable V at time T
is given by

1

�(t)
E
�
V �(T )

�� Ft

�
:
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We assume for convenience that �t = ea(t)+b(t)�Xt , for some bounded measur-
able a : [0;1)! R and b : [0;1)! Rn . Without loss of generality, we take
it that �(0) = 1.

Suppose the price of a given underlying security at time T is ed�X(T ),
for some d 2 Rn . By the de�nition of a state-price density, a plain-vanilla
European call option struck at c with exercise date T has a price at time 0
of

p = E
�
ea(T )+b(T )�X(T )(ed�X(T ) � c)+

�
:

This leaves the option price

p = ea(T )Gb(T )+d;�d(� ln c;X0; T; �
0)� cea(T )Gb(T );�d(� ln c;X0; T; �

0);

where �0 = (K;H; l; �; 0). (One notes that the short-rate process plays no
role beyond that already captured by the state-price density.)

As mentioned at the beginning of this section, and detailed in Appendix C,
an alternative is to translate the option-pricing problem to a \risk-neutral"
setting.

3.3 Other Option-Pricing Applications

This section develops as illustrative examples several additional applications
to option pricing. For convenience, we adopt the risk-neutral pricing formu-
lation. That is, we suppose that the short rate is given by R(X), where R
is aÆne, and X is an aÆne jump-di�usion under an equivalent martingale
measure Q. The associated characteristic �Q is �xed. While we treat the
case of call options, put options can be treated by the same method, or by
put-call parity.

3.3.1 Bond Derivatives

Consider a call option, struck at c with exercise date T , on a zero-coupon
bond maturing at time s > T . Let �(T; s) denote the time-T market price
of the underlying bond. From DuÆe and Kan [1996], under the regularity
conditions given in Section 2.2,

�(T; s) = exp (�(T; s; 0) + �(T; s; 0) �XT ) ;

where, from this point, for any u we write �(t; T; u) and �(t; T; u) for the
solution to (2.5)-(2.6), adding the arguments (T; u) so as to indicate the
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dependence on the terminal time T and boundary condition u for �, which
will vary in what follows. At time T , the option pays

(�(T; s)� c)+ =
�
e�(T;s;0)+�(T;s;0)�X(T ) � c

�+
(3.6)

= e�(T;s;0)
�
e�(T;s;0)�X(T ) � e��(T;s;0)c

�+
: (3.7)

The value of the bond option can therefore be obtained from (2.9) and (2.12).
The same approach applies to caps and 
oors, which are simply portfolios of
zero-coupon bond options with payment in arrears, as reviewed in Appendix
D. This extends the results of Chen and Scott [1995] and Scott [1996].
Chacko and Das [1998] work out the valuation of Asian interest-rate options
for a large class of aÆne models. They provide numerical examples based on
a multi-factor Cox-Ingersoll-Ross state vector.

3.3.2 Quantos

Consider a quanto of exercise date T and strike c on an underlying as-
set with price process S = exp(X(i)). The time-T payo� of the quanto is
(STM(XT )� c)+, whereM(x) = em�x, for some m 2 Rn . The quanto scaling
M(XT ) could, for example, be the price at time T of a given asset, or the
exchange rate between two currencies. The initial market value of the quanto
option is then

Gm+�(i);��(i) (� ln(c); x; T; �Q)� cG0;��(i) (� ln(c); x; T; �Q) :

An alternative form of the quanto option pays M(XT )(ST � c)+ at T , and
has the price Gm+�(i);��(i) (� ln(c); x; T; �Q)� cGm;��(i) (� ln(c); x; T; �Q) :

3.3.3 Foreign Bond Options

Let exp(X(i)) be a foreign-exchange rate, R(X) be the domestic short in-
terest rate, and �(X) be the foreign short rate, for aÆne �. Consider a
foreign zero-coupon bond maturing at time s, whose payo� at maturity, in
domestic currency, is therefore exp(X

(i)
s ). The risk-neutral characteristic �Q

is restricted by (3.3)-(3.4). From Proposition 1, the domestic price at time t
of the foreign bond is �f(t; s) = exp(�(t; s; �(i)) + �(t; s; �(i)) �Xt):

We now consider an option on this bond with exercise date T < s
and domestic strike price c on the foreign s-year zero-coupon bond, pay-
ing (�f(T; s)� c)+ at time T , in domestic currency. The initial market value
of this option can therefore be obtained as for a domestic bond option.
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3.3.4 Chooser Options

Let S(i) = exp(X(i)) and S(j) = exp(X(j)) be two security price processes.

An exchange, or \chooser," option with exercise date T , pays max(S
(i)
T ; S

(j)
T ).

Depending on their respective dividend payout rates, the risk-neutral char-
acteristic �Q is restricted by (3.3)-(3.4), applied to both i and j. The initial
market value of this option is

G�(i);�(i)��(j)(0; x; T; �Q) +G�(j);0(0; x; T; �Q)�G�(j);�(j)��(i)(0; x; T; �Q):

3.3.5 Asian Options

Under the assumption of a deterministic short rate and dividend-yield pro-
cess, that is, �1 = q1 = 0, we may also use the extended transform analysis of
Section 2.3 to price Asian options. Let X(i) be the underlying price process
of an Asian option with strike price c and expiration date T . The option pays�

1
T

R T
0
X

(i)
t dt� c

�
at the expiration date T . If Q is an equivalent martingale

measure, we must have

dX
(i)
t = (R(Xt; t)� �(Xt; t))Xt dt+ dM

(i)
t ;

where M i is a Q-martingale. For any 0 � t � T , let Yt =
R t
0
X

(i)
s ds. For

short rate �0, we can let ~�0 = (�0; 0) and ~�1 = (0; 0) = 0; and see that,
under Q, ~X = (X; Y ) is an (n + 1)-dimensional aÆne jump di�usion with

characteristic ~� =
�
~K; ~H; ~l; ~�; ~�

�
that can be easily derived from using the

fact that dYt = X
(i)
t dt: We thus obtain the initial market value of the Asian

option, under technical regularity, as16

1

T
~G�(n+1);��(n+1);0

�
�cT ; ~X0; T; ~�

�
� cG0;��(n+1)

�
�cT ; ~X0; T; ~�

�
;

where G( � ) is given by (2.12) and where, for a; b, and d in Rn ,

~Ga;b;d(y; x; T; �) =
��(a; d; x; 0; T )

2
� 1

�

Z 1

0

Im [��(a; d+ ivb; x; 0; T )e�ivy]

v
dv:

(3.8)

16In this context, �(i) 2 Rn+1 has 1 as its i-th component, and every other component
equal to 0.
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This calculation of ~Ga;b;d and the Asian option price is in parallel with the
calculation (2.12) of Ga;b, using Fourier-inversion of the extended transform
��, and is justi�ed provided that ~� is extended well behaved at (a; d+ ivb; T )
for any v 2 R, and that

R
R
j�~�(a; d+ ivb; x; 0; T )j dv <1.

As zero-coupon bond yields in an AJD setting are aÆne, we can also apply
the extended-transform approach to the valuation of slope-of-the-yield-curve
options.

4 A \Double-Jump" Illustrative Model

As an illustration of the methodology, this section provides explicit trans-
forms for a 2-dimensional aÆne jump-di�usion model. We suppose that S
is the price process, strictly positive, of a security that pays dividends at a
constant proportional rate �, and we let Y = ln(S). The state process is
X = (Y; V )>, where V is the volatility process.

We suppose for simplicity that the short rate is a constant r, and that
there exists an equivalent martingale measure Q, under which17

d

�
Yt
Vt

�
=

�
r � � � ��� 1

2
Vt

�v(v � Vt)

�
dt+

p
Vt

�
1 0

��v
p
1� �2 �v

�
dWQ

t + dZt ;

(4.1)

where WQ is an (Ft)-standard Brownian motion under Q in R
2 , and Z is

a pure jump process in R2 with constant mean jump-arrival rate �, whose
bivariate jump-size distribution � has the transform �. A 
exible range of
distributions of jumps can be explored through the speci�cation of �. The
risk-neutral coeÆcient restriction (3.3) is satis�ed if and only if � = �(1; 0)�1.

Before we move on to special examples, we lay out the formulation for
option pricing as a straightforward application of our earlier results. At time
t, the transform18  of the log-price state variable YT can be calculated using
the ODE approach in (2.6) as:

 (u; (y; v); t; T ) = exp
�
��(T � t; u) + uy + ��(T � t; u)v

�
; (4.2)

17Unless otherwise stated, the distributional properties of (Y; V ) described in this section
are in a \risk-neutral" sense, that is, under Q.

18That is,  (u; (y; v)0; t; T ) =  �((u; 0)0; (y; v)0; t; T ), where � is the characteristic under
Q of X associated with the short rate de�ned by (�0; �1) = (r; 0).
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where, letting b = �v�u� �v, a = u(1� u), and19 
 =
p
b2 + a�2v , we have

��(�; u) = � a (1� e�
� )

2
 � (
 + b) (1� e�
� )
; (4.3)

��(�; u) = �0(�; u)� ��(1 + �u) + �

Z �

0

�(u; ��(s; u)) ds; (4.4)

where20

�0(�; u) = �r� + (r � �)u� � �vv

�

 + b

�2v
� +

2

�2v
ln

�
1� 
 + b

2

(1� e�
� )

��
;

and where the term
R �
0
�(u; ��(s; u)) ds depends on the speci�c formulation of

bivariate jump transform �( � ; � ).

4.1 A Concrete Example

As a concrete example, consider the jump transform � de�ned by

�(c1; c2) = �
�1

(�y�y(c1) + �v�v(c2) + �c�c(c1; c2)) ; (4.5)

where � = �y + �v + �c, and where

�y(c) = exp

�
�yc+

1

2
�2yc

2

�
;

�v(c) =
1

1� �vc
;

�c(c1; c2) =
exp

�
�c;yc1 +

1
2
�2c;yc

2
1

�
1� �c;vc2 � �J�c;vc1

:

What we incorporate in this example is in fact three types of jumps:

� Jumps in Y , with arrival intensity �y and normally distributed jump
size with mean �y and variance �2y ,

19To be more precise, 
 = j
2j1=2 exp
�
i arg(
2)

2

�
, where 
2 = b2 + a�2v : Note that for

any z 2 C , arg(z) is de�ned such that z = jzj exp(i arg(z)), with �� < arg(z) � �.
20For any z 2 C , ln(z) = ln jzj+ i arg(z), as de�ned on the \principal branch."
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� Jumps in V , with arrival intensity �v and exponentially distributed
jump size with mean �v,

� Simultaneous correlated jumps in Y and V , with arrival intensity �c.
The marginal distribution of the jump size in V is exponential with
mean �c;v. Conditional on a realization, say zv, of the jump size in V ,
the jump size in Y is normally distributed with mean �c;y + �Jzv, and
variance �2c;y.

In Bakshi, Cao, and Chen [1997] and Bates [1997], the SVJ-Y model,
de�ned by �v = �c = 0, was studied using cross sections of options data to
�t the \volatility smirk." They �nd that allowing for negative jumps in Y is
useful insofar as it increases the skewness of the distribution of YT , but that
this does not generate the level of skewness implied by the volatility smirk
observed in market data. They call for a model with jumps in volatility.
Using this concrete \double-jump" example (4.5), we can address this issue,
and provide some insights into what a richer speci�cation of jumps may
imply.

Before leaving this section to explore the implications of jumps for \volatil-
ity smiles," we provide explicit option pricing through the transform formula
(4.2), by exploiting the bivariate jump transform � speci�ed in (4.5). We
haveZ �

0

�(u; ��(s; u)) ds = �
�1

(�yf y(u; �) + �vf v(u; �) + �cf c(u; �)) ;

where

f y(u; �) = � exp

�
�yu+

1

2
�2yu

2

�
;

f v(u; �) =

 � b


 � b + �va
� � 2�va


2 � (b� �va)2
ln

�
1� (
 + b)� �va

2

(1� e�
� )

�
;

f c(u; �) = exp

�
�c;yu+ �2c;y

u2

2

�
d;

where a = u(1� u), b = �v�u� �v, c = 1� �J�c;vu, and

d =

 � b

(
 � b)c + �c;va
�� 2�c;va

(
c)2 � (bc� �c;va)2
ln

�
1� (
 + b)c� �c;va

2
c
(1� e�
� )

�
:
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Figure 1: \Smile curves" implied by S&P 500 Index options of 6 di�erent maturities.
Option prices are obtained from market data of November 2, 1993.

4.2 Jump Impact on \Volatility Smiles"

As an illustration of the implications of jumps for the volatility smirk, we
�rst select three special cases of the \double-jump" example just speci�ed,

SV: Stochastic volatility model with no jumps, obtained by letting � = 0.

SVJ-Y: Stochastic volatility model with jumps in price only, obtained by
letting �y > 0, and �v = �c = 0.

SVJJ: Stochastic volatility with simultaneous and correlated jumps in price
and volatility, obtained by letting �c > 0 and �y = �v = 0.
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In order to choose plausible values for the parameters governing these three
special cases, we calibrated these three benchmark models to the actual
\market-implied" smiles on November 2, 1993, plotted in Figure 1.21 For
each model, calibration was done by minimizing (by choice of the unrestricted
parameters) the mean-squared pricing error (MSE), de�ned as the simple av-
erage of the squared di�erences between the observed and the modeled option
prices across all strikes and maturities. The risk-free rate r is assumed to be
3.19%, and the dividend yield � is assumed to be zero.
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Figure 2: \Smile curves" implied by S&P 500 Index options with 17 days to expiration.
Diamonds show observed Black-Scholes implied volatilities on November 2, 1993. SV is
the Stochastic Volatility Model, SVJ-Y is the Stochastic Volatility Model with Jumps in
Returns, and SVJJ is the Stochastic Volatility Model with Simultaneous and Correlated
Jumps in Returns and Volatility. Model parameters were calibrated with options data of
November 2, 1993.

21The options data are downloaded from the home page of Yacine Ait-Sahalia. There
is a total of 87 options with maturities (times to exercise date) ranging from 17 days to
318 days, and strike prices ranging from 0.74 to 1.17 times the underlying futures price.
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Table 1 displays the calibrated parameters of the models. Interestingly,
for this particular day, we see that adding a jump in volatility to the SVJ-
Y model, leading to the model SVJJ model, causes a substantial decline
in the level of the parameter �v determining the volatility of the di�usion
component of volatility. Thus, the volatility puzzle identi�ed by Bates and
Bakshi, Cao, and Chen, namely that the volatility of volatility in the di�usion
component of V seems too high, is potentially explained by allowing for
jumps in volatility. At the same time, the return jump variance �2y declines
to approximately zero as we replace the SVJ-Y model with the SVJJ model.
The instantaneous correlation among the jumps in return and volatility in
the SVJJ model is �v�J(�

2
y + �2v�

2
J)
�1=2. Thus, one consequence of the small

�2y is that the jump sizes of Y and of V are nearly perfectly anti-correlated.
This correlation reinforces the negative skew typically found in estimation of
the SV model for these data,22 as jumps down in return are associated with
simultaneous jumps up in volatility.

In order to gain additional insight into the relative �t of the models to the
option data used in our calibration, Figures 2 and 3 show the volatility smiles
for the shortest (17-day) and longest (318-day) expiration options. For both
maturities, there is a notable improvement of �t with the inclusion of jumps.
Furthermore, the addition of a jump in volatility leads to a more pronounced
smirk at both maturities and one that, based on the relative values of the
MSE in Table 1, produces a better overall �t on this day.

Next, we go beyond this �tting exercise, and study how the introduction
of a volatility jump component to the SV and SVJ-Y models might a�ect
the \volatility smile," and how correlation between jumps in Y and V a�ects
the \volatility smirk." We investigate the following three additional special
cases:

1. The SVJ-V model: We extend the �tted SV model by letting �v = 0:1
and �y = �c = 0. We measure the degree of contribution of the jump
component of volatility by the fraction �v�2v=(�

2
vV0+�

v�2v) of the initial
instantaneous variance of the volatility process V that is due to the
jump component. By varying �v, the mean of the volatility jumps,
three levels of this volatility \jumpiness" fraction are considered: 0,
15%, and 30%. For each case, the time-0 instantaneous drift, variance,

22In addition to the \calibration" results in the literature, see the time-series results of
Chernov and Ghysels [1998] and Pan [1998]. For related work, see Poteshman [1998] and
Benzoni [1998].
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Table 1: Fitted Parameter Values for SV, SVJ-Y, and SVJJ Models

SV SVJ-Y SVJJ

� �0:70 �0:79 �0:82
v 0.019 0.014 0.008
�v 6.21 3.99 3.46
�v 0.61 0.27 0.14
�c 0 0.11 0.47
� n/a �0:12 �0:10
�y n/a 0.15 0.0001
�v n/a 0 0.05
�J n/a n/a �0:38p
V0 10.1% 9.4% 8.7%

MSE 0.0124 0.0071 0.0041

The parameters are estimated by minimizing mean squared
errors (MSE). A total of 87 options, observed on November
2, 1993, are used.

p
V0 is the estimated value of stochastic

volatility on the sample day. The risk-free rate is assumed
to be �xed at r = 3:19%, and the dividend yield at � = 0.
From \risk neutrality," � = �(1; 0)� 1.

and correlation are �xed at those implied by the �tted SV model by
varying �v, v, and �.

2. The SVJ-Y-V model: We extend the �tted SVJ-Y model by letting
�v = �y, �c = 0, and �y be �xed as given in Table 1. Again, the
volatility \jumpiness" is measured by the fraction of the instantaneous
variance of V that is due to the jump component. Three jumpiness
levels, 0, 15%, and 30% are again considered. For each case, the in-
stantaneous drift, variance, and correlation are matched to the �tted
SVJ-Y model.

3. Finally, we modify the �tted SVJJ model by varying the correlation
between simultaneous jumps in Y and V . Five levels of correlation are
considered: �1:0, �0:5, 0, 0.5, and 1.0. For each case, the means and
variances of jumps in V and Y are calibrated to the �tted SVJJ model.
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Figure 3: \Smile curves" implied by S&P 500 Index options with 318 days to expiration.
\Stars" show observed implied volatility of November 2, 1993. SV is the Stochastic Volatil-
ity Model, SVJ-Y is the Stochastic Volatility Model with Jumps in Returns, and SVJJ is
the Stochastic Volatility Model with Simultaneous and Correlated Jumps in Returns and
Volatility. Model parameters were calibrated with options data of November 2, 1993.

The implied 30-day \volatility smiles" for the above three variations are
plotted in Figures 4, 5, and 6.

The results for the SVJ-V model show that, for out-of-the-money (OTM)
calls, the introduction of a jump in volatility lowers Black-Scholes implied
volatilities. Bakshi, Cao, and Chen [1997] found that their SVJmodel (jumps
in returns, but not in volatility) systematically overpriced OTM calls. So our
analysis suggests that adding jumps in volatility may attenuate the overpric-
ing in the SVJ model, at least for options that are not too far out of the
money. The addition of a jump in volatility actually exacerbates the over
pricing for far-out-of-the-money calls.

Model SVJ-Y-V is one illustrative formulation of a model with jumps
in both Y and V . Figure 5 shows that the addition of a jump in V to
the SVJ model also attenuates the over-pricing of OTM calls. Whether our
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parameterization of the jump distributions is enough to resolve the empirical
puzzles relative to the SVJ model is an empirical issue that warrants further
investigation.

Finally, Figure 6 shows that, in the presence of simultaneous jumps, the
levels of implied volatilities for OTM calls depend on the sign and magnitudes
of the correlation between the jump amplitudes. From our calibration of
the SVJJ model, the data suggest that �J is negative (see Table 1). Thus,
for this day, simultaneous jumps tend to reduce the Black-Scholes implied
volatilities of OTM calls compared to the model with simultaneous jumps
with uncorrelated amplitudes.
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Figure 4: 30-day smile curve, varying volatility jumpiness, and no jumps in returns.

4.3 Multi-factor Volatility Speci�cations

Though our focus in this section has been on jump distributions, we are
also interested in multi-factor models of the di�usion component of stochas-
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Figure 5: 30-day smile curve, varying volatility jumpiness. Independent arrivals of jumps
in returns and volatility, with independent jump sizes.

tic volatility. Bates [1997] has emphasized the potential importance of more
than one volatility factor for explaining the \term structure" of return volatil-
ities, and included two, independent volatility factors in his model. Similarly,
the empirical analysis in Gallant, Hsu, and Tauchen [1998] of a non-aÆne,
3-factor model of asset returns, with two of the three state coordinates ded-
icated to volatility behavior, suggests that more than one volatility factor
improves the goodness of �t for S&P500 returns.

Our transform analysis applies directly to any aÆne formulation of multi-
factor stochastic volatility models, including Bates' model. Here, we also
propose an examination of multi-factor volatility models in which there is a
\long-term" stochastic trend component V t in volatility. For example, we
propose consideration of a three-factor model for X = (Y; V; V )>, given in
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Figure 6: 30-day smile curve, varying the correlation between the sizes of simultaneous
jumps in return and in volatility.

its risk-neutral form by

d

0
@YtVt
V t

1
A =

0
@r � � � 1

2
Vt

�(V t � Vt)
�0(v � V t)

1
A dt+

0
@

p
Vt 0 0

��
p
Vt �

p
1� �2

p
Vt 0

0 0 �0
p
V t

1
A dWQ

t ;

(4.6)

where WQ is an (Ft)-standard Brownian motion in R3 under Q.
A one-factor volatility model, such as the SV model, may well over-

simplify the term structure of volatility. In particular, the SV model has an
auto-correlation of returns (over successive periods of length �) of exp(��v�),
which decreases exponentially with �. For the estimated values of � typi-
cally found in practice, the autocorrelations of discretely sampled V decay
too quickly relative to what is found in the data. Bollerslev and Mikkelsen
[1996] argue, based on their analysis of LEAPs, for a \long memory" model
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of volatility to capture this slow decay. The correlation of (Vt; Vt+�) (with
respect to the ergodic distribution of (V; V )) implied by model (4.6) is

corr(Vt; Vt+�) = e��� +
�
e��0� � e���

� ��20=(�� �0)

(� + �0)�2=�+ ��20=�0
:

By suitable choice of the parameter values, this correlation decays more
slowly with � than the exponential rate in the one-factor model. In a dif-
ferent context, Gallant, Hsu, and Tauchen [1998] found that the correlogram
for V was well approximated, at least over moderate horizons, by their two-
factor volatility model, and we conjecture that the same is true of models
like (4.6). In subsequent work, we plan to further investigate multi-factor
volatility speci�cations.

Appendices

A Technical Conditions and Arguments

This appendix contains technical results and conditions used in the body of
the paper.

Lemma 1: Under the assumptions of Proposition 1, J is a martingale.

Proof: Letting Et denote Ft-conditional expectation under P , for 0 � t �
s � T , we have

Et

0
@ X

t<�(i)�s

�
	�(i) �	�(i)�

�1A = Et

0
@ X

t<�(i)�s

E

�
	�(i) � 	�(i)�

���� X�(i)�; �(i)

�1A

= Et

0
@ X

t<�(i)�s

	�(i)� (�(b(�(i))) � 1)

1
A

= Et

0
@ X

t<�(i)�s

Z �(i)

�(i�1)+

	u� (�(b(u))� 1) dNu

1
A

= Et

�Z T

t

	u� (�(b(u))� 1) dNu

�
:
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Because f	t� (�(b(t))� 1) : t � 0g is an (Ft)-predictable process, and the
jump-counting process N has intensity f�(Xt; t) : t � Tg, integrability con-
dition (i) implies that23

Et

�Z s

t

	u� (�(b(u))� 1) dNu

�
= Et

�Z s

t

	u (�(b(u))� 1)�(Xu; u) du

�
:

Hence J is a martingale.

Proposition 2 is proved as follows.
For 0 < � <1, and a �xed y 2 R,

1

2�

Z �

��

eivy �(a� ivb; x; 0; T )� e�ivy �(a + ivb; x; 0; T )

iv
dv

=
1

2�

Z �

��

Z
R

e�iv(z�y) � eiv(z�y)

iv
dGa;b(z; x; T; �) dv

= � 1

2�

Z
R

Z �

��

e�iv(z�y) � eiv(z�y)

iv
dv dGa;b(z; x; T; �);

where Fubini is applicable24 because

lim
y!+1

Ga;b(y; x; T; �) =  �(a; x; 0; T ) <1;

given that � is well-behaved at (a; T ).
Next we note that, for � > 0,Z �

��

e�iv(z�y) � eiv(z�y)

iv
dv = �sgn(z � y)

�

Z �

��

sin(vjz � yj)
v

dv

is bounded simultaneously in z and � , for each �xed y.25 By the bounded
convergence theorem,

lim
�!1

1

2�

Z �

��

eivy �(a� ivb; x; 0; T )� e�ivy �(a+ ivb; x; 0; T )

iv
dv

= �
Z
R

sgn(z � y) dGa;b(z; x; T; �)

= �  �(a; x; 0; T ) + (Ga;b(y; x; T; �) +Ga;b(y�; x; T; �));
23See, for example, page 27 of Br�emaud [1981]. We are applying the result for the real

and imaginary components of the integrand, separately.
24Here, we also use the fact that, for any u; v 2 R, jeiv � eiuj � jv � uj.
25We de�ne sgn(x) to be 1 if x > 0, 0 if x = 0, and �1 if x < 0.
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where Ga;b(y�; x; T; �) = limz!y;z�yGa;b(z; x; T; �): Using the integrability
condition (2.11), by the dominated convergence theorem we have

Ga;b(y; x; T; �) =
 �(a; x; 0; T )

2

+
1

4�

Z 1

�1

eivy �(a� ivb; x; 0; T )� e�ivy �(a+ ivb; x; 0; T )

iv
dv:

Because  �(a � ivb; x; 0; T ) is the complex conjugate of  �(a + ivb; x; 0; T ),

we have (2.12).

Proposition 3, regarding the extended transform, relies on the following
technical condition. For di�erentiability of � at u, it is enough that � is well
de�ned and �nite in a neighborhood of u.

De�nition: (K;H; l; �; �) is \extended" well-behaved at (v; u; T ), if (2.5)-
(2.6) are solved uniquely by � and �, if the jump transform � is di�eren-
tiable at �(t) for all t � T , if (2.15) is solved uniquely by B and A, and
if the following integrability conditions (i)-(iii) are satis�ed, where �t =
	t (A(t) +B(t) �Xt) :

(i) E
�R T

0
j~
tj dt

�
<1, where ~
t = �(Xt) (�t (�(�(t))� 1) + 	tr�(�(t))B(t)) :

(ii) E

��R T
0
~�t � ~�t dt

�1=2�
<1, where ~�t = �t

�
�(t)> +B(t)>

�
�(Xt):

(iii) E (j�T j) <1:

B Multiple Jump Types and Time Depen-

dence

We can relax the jump behavior of X to accommodate time dependencies
in the coeÆcients and di�erent types of jumps, each arrving with a di�erent
stochastic intensity.

We re-de�ne D to be a subset of Rn � [0;1), and treat the state process
X de�ned so that (Xt; t) is in D for all t. It is assumed that, for each
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t, fx : (x; t) 2 Dg contains an open subset of Rn . The time-dependent
generator is now de�ned by

Df(x; t) = ft(x; t) + fx(x; t)�(x; t) +
1

2
tr
�
fxx(x; t)�(x; t)�(x; t)

>
�

+
X
i

�i(x; t)

Z
Rn

[f(x+ z; t)� f(x; t)] d�it(z); (B.1)

for suÆciently regular f : D ! R. That is, jump type i has jump-conditional
distribution �it at time t, depending only on t, and stochastic intensity
f�i(Xt; t) : t � 0g, for i 2 f1; : : : ; mg, where �i : D ! R+ is de�ned by
�i(x; t) = li0(t) + lit(t) � x; for functions (l10; l

1
1); : : : ; (l

m
0 ; l

m
1 ) on [0;1) into

R � Rn . The jump transforms � = (�1; : : : ; �m) are de�ned by �i(c; t) =R
Rn

exp (c � z) d�it(z); c 2 C n . We take

�(x; t) = K0(t) +K1(t) x

�(x; t)�(x; t)> = H0(t) +
nX

k=1

H
(k)
1 (t) xk;

where for each t � 0, K0(t) is n � 1, K1(t) is n � n, H0(t) is n � n and
symmetric, and H1(t) is a tensor26 of dimension n� n� n, with symmetric
H(k)(t) (for k = 1; : : : ; n). The time-dependent coeÆcients K = (K0; K1),
H = (H0; H1), and l = (l0; l1) are assumed to be bounded continuous func-
tions on [0;1):

In this more general setting, Propositions 1, 2, and 3 apply after introduc-
ing these time-dependent coeÆcients into (2.5) and (2.6), and replacing the
last terms in the right-hand sides of these ODEs with

Pm
i=1 l

i
1(t) (�

i(c; t)� 1)
and

Pm
i=1 l

i
0(t) (�

i(c; t)� 1), respectively.
We can further extend to the case of an in�nite number of jump types by

allowing for a general L�evy jump measure that is aÆne in the state vector.
(See Theorem 42, page 32, of Protter [1990].)

C Change of Measure

This appendix provides the impact of a change of measure de�ned by a
density process or a state-price-density process that is of the exponential-
aÆne form in an aÆne jump-di�usion state process X.

26Let H be an n�n�n tensor, �x its third index to k, the tensor is reduced to an n�n
matrix H(k) with elements, H

(k)
ij = H(i; j; k).
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Fixing T > 0, suppose, under the measure P , that a given characteristic
� = (K;H; l; �; �) is well-behaved at (b; T ) for some b 2 Rn . Let

�t = exp

�
�
Z t

0

R(Xs; s) ds

�
exp (�(t; T; b) + �(t; T; b) �Xt) : (C.1)

Under the conditions of Proposition 1, � is a positive martingale. We may
then de�ne an equivalent probability measure Q by dQ

dP
= �T=�0 : In this

section, we show how to compute the transform of X after a change of mea-
sure with density process �. Many other densities could be considered, as in
B�uhlmann, Delbaen, Embrechts, and Shiryaev [1996]. We have chosen this
density as it preserves the aÆne behavior of X under the change of measure,
and because it arises naturally when re-normalizing prices by the price of a
zero-coupon bond maturing on a particular date. (This is sometimes called
\forward measure.") A more general way to choose an equivalent measure
Q� that would suÆce for our purposes would have

dQ�

dP
=

1

k

mX
i=1

exp

�
�
Z T

0

Ri(Xs; s) ds

�
exp (bi �X(ti)) ; (C.2)

where, for each i 2 f1; : : : ; mg, Ri(x; t) is aÆne in x, ti is a �xed time,
and bi 2 Rn ; and where k 2 (0;1) is a normalizing scalar chosen so that
E(dQ

�

dP
) = 1:

Proposition 5 (Transform under Change of Measure):
Let �(Q) =

�
KQ; HQ; lQ; �Q

�
be de�ned by

KQ
0 (t) = K0(t) +H0(t)�(t; T; b) ; KQ

1 (t) = K1(t) +H1(t)�(t; T; b); (C.3)

lQ0 (t) = l0(t)�(�(t; T; b); t) ; lQ1 (t) = l1(t)�(�(t; T; b); t); (C.4)

�Q(c; t) = �(c+ �(t; T; b); t)=�(�(t; T; b); t) ; HQ(t) = H(t); (C.5)

where H1(t)b(t) denotes the n� n matrix with k-th column H
(k)
1 (t)b(t). Let

RQ(x; t) = �Q0 (t) + �Q1 (t) � x, for some bounded measurable �Q0 : [0;1)! R

and �Q1 : [0;1)! Rn . Let �Q =
�
�Q0 ; �

Q
1

�
be such that �(Q) is well-behaved

at some (u; T ). Then, for t � T ,

EQ

�
exp

�
�
Z T

0

RQ(Xs; s) ds

�
exp (u �XT )

���� Ft

�
=  �(Q)(u;Xt; t; T );

(C.6)
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where  �(Q) is de�ned by (2.4).

Proof: Let

WQ
t = Wt �

Z t

0

�(Xs; s)
>�(s; T; b) ds ; t � 0: (C.7)

Lemma 2, below, shows that �WQ is a P -local martingale. It follows that
WQ is a Q-local martingale. Because

R t
0
�>(Xs; s)�(s; T; b) ds is a continuous

�nite-variation process, [WQ
i ;W

Q
j ]t = [W P

i ;W
P
j ]t = Æ(i; j) t; where Æ(�) is the

Kronecker delta. By L�evy's Theorem, WQ is a standard Brownian motion in
Rn under Q.

Next, we let

MQ
t = Nt �

Z t

0

�(�(s; T; b))�(Xs; s) ds ; t � 0: (C.8)

Lemma 3, below, shows that �MQ is a P -local martingale. It follows that
MQ is a Q-local martingale. By the martingale characterization of inten-
sity,27 we conclude that, under Q, N is a counting process with the intensity�
�Q(Xt; t) : t � 0

	
de�ned by �Q(x; t) = lQ0 (t) + lQ1 (t) � x:

Using the fact that, under Q, WQ is a standard Brownian and the jump
counting process N has intensity

�
�Q(Xt; t) : t � 0

	
, we may mimic the

proof of Proposition 1, and obtain (C.6), replacing in the proof of Lemma 1

Et

�P
t<�(i)�T

�
	�(i) � 	�(i)�

��
with

EQ
t

0
@ X

t<�(i)�T

�
	�(i) � 	�(i)�

�1A =
1

�t
Et

0
@ X

t<�(i)�T

��(i)
�
	�(i) � 	�(i)�

�1A :

This completes the proof.

Lemma 2: Under the assumptions of Proposition 1, �WQ is a P -local
martingale.

27See, for example, page 28 of Br�emaud [1981].
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Proof: By Ito's Formula, with 0 � s � t � T ,

�tW
Q
t = �sW

Q
s +

Z t

s

�u� dW
Q
u +

Z t

s

WQ
u� d�u

+
X
s<u�t

(�u � �u�)
�
WQ

t �WQ
t�

�
+

Z t

s

d[�;WQ]cu

= �sW
Q
s +

Z t

s

�u�
�
dWu � �>(Xu; u)b(u) du

�
+

Z t

s

WQ
u d�u +

Z t

s

�u�
>(Xu; u)b(u) du

= �sW
Q
s +

Z t

s

�u� dWu +

Z t

s

WQ
u d�u ;

where [�;WQ]c denotes the continuous part of the \square-brackets" pro-

cess [�;WQ]: As W and � are P -martingales, both
nR t

0
�u� dWu : t � 0

o
andnR t

0
WQ

u d�u : t � 0
o
are P -local martingales. Hence, �WQ is a P -local mar-

tingale.

Lemma 3: Under the assumptions of Proposition 1, �MQ is a P -local
martingale.

Proof: By Ito's Formula, with 0 � s � t � T ,

�tM
Q
t = �sM

Q
s +

Z t

s

�u� dM
Q
u +

Z t

s

MQ
u� d�u +

X
s<u�t

(�u � �u�)(Nu �Nu�)

= �sM
Q
s +

Z t

s

�u� dMu +

Z t

s

MQ
u� d�u + J�;

where Mt = Nt �
R t
0
�(Xs; s) ds; and where

J� =
X
s<u�t

(�u � �u�)�
Z t

s

�u(�(�(u; T; b); u)� 1)�(Xu; u) du:

AsM and � are P -martingales,
nR t

0
�u� dMu : t � 0

o
and

nR t
0
MQ

u� d�u : t � 0
o

are P -local martingales. By a proof similar to that of Lemma 1, and using
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the Integration Theorem (
) in Br�emaud [1981], we can show that J� is a

P -local martingale.

For the remainder of this appendix, we denote Q by Q(b), emphasizing
the role of b in de�ning the change of probability measure given by (C.1). We
let �(b) =

�
KQ(b); HQ(b); lQ(b); �Q(b); �

�
denote the associated characteristic.

The previous result shows in e�ect that, under Q(b), the state vector X is
still an aÆne jump-di�usion whose characteristics can be computed in terms
of the characteristics of X under the measure P . This result provides us
with an alternative approach to option pricing. We suppose that Q(0) is
an equivalent martingale measure. The price � (X0; a; d; c; T ) of an option

paying
�
ea+d�XT � c

�+
at T is given by

� (X0; a; d; c; T ) = EQ(0)

�
exp

�
�
Z T

0

R(Xs; s) ds

��
ea+d�XT � c

�+�

= eaEQ(0)

�
exp

�
�
Z T

0

R(Xs; s) ds

�
ed�XT1d�XT�ln(c)�a

�

� cEQ(0)

�
exp

�
�
Z T

0

R(Xs; s) ds

�
1d�XT�ln(c)�a

�
:

Provided the characteristic (K;H; l; �; �) is well-behaved at (d; T ) and (0; T ),
we may introduce the equivalent probability measure Q(d), and write

� (X0; a; d; c; T ) = ea exp (�(0; T; d) + �(0; T; d) �X0)E
Q(d)

�
1d�XT�ln(c)�a

�
� c exp (�(0; T; 0) + �(0; T; 0) �X0)E

Q(0)
�
1d�XT�ln(c)�a

�
:

Let �(1) =
�
KQ(d); HQ(d); lQ(d); �Q(d); 0

�
and �(0) =

�
KQ(0); HQ(0); lQ(0); �Q(0); 0

�
be de�ned by (C.3)-(C.5) for b = d and b = 0. We suppose that �(1) and
�(0) are well behaved at (ivd; T ) for any v 2 R. Then

EQ(d)
�
1d�XT�ln(c)�a

�
=

1

2
+

1

�

Z 1

0

Im
�
 �(1)(ivd; x; 0; T )e�iv(ln(c)�a)

�
v

dv ;

EQ(0)
�
1d�XT�ln(c)�a

�
=

1

2
+

1

�

Z 1

0

Im
�
 �(0)(ivd; x; 0; T )e�iv(ln(c)�a)

�
v

dv ;

provided
R
R
j �(1)(ivd;X0; 0; T )j dv <1 and

R
R
j �(0)(ivd;X0; 0; T )j dv <1:

These quantities may now be substituted into the previous relation in order
to obtain the option price.
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D Cap Pricing

A cap is a loan with face value, say 1, at a variable interest rate that is capped
at some level �r. At time t, let � , 2� , : : : , n� be the �xed dates for future
interest payments. At each �xed date k� , the �r-capped interest payment, or
\caplet," is given by � (R((k � 1)�; k�)� �r)+, where R((k � 1)�; k�) is the
� -year 
oating interest rate at time (k � 1)� , de�ned by

1

1 + �R ((k � 1)�; k�))
= � ((k � 1)�; k�) :

The market value at time 0 of the caplet paying at date k� can be expressed
as

Caplet(k) = EQ

�
exp

�
�
Z k�

0

R(Xu; u) du

�
� (R((k � 1)�; k�)� �r)+

�

= (1 + � �r)EQ

"
exp

 
�
Z (k�1)�

0

R(Xu; u) du

!�
1

1 + � �r
� �((k � 1)�; k�)

�+
#
:

Hence, the pricing of the k-th caplet is equivalent to the pricing of an in-
(k � 1)� -for-� put struck at 1=(1 + � �r), which can be readily obtained by
using Proposition 3 and put-call parity as Caplet(k) = (1 + � �r)C(k), where

C(k) = �

�
X0; ��; ��;

1

1 + � �r
; (k � 1)�

�
� �(0; k�) +

�(0; (k � 1)�)

1 + � �r
;

where � (X0; a; d; c; T ) is the price of a claim to (ea+d�X(T ) � c)+ paid at T ,
and where �� = �((k � 1)�; k�; 0) and �� = �((k � 1)�; k�; 0).
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