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IMPLEMENTING ARROW-DEBREU EQUILIBRIA BY
CONTINUOUS TRADING OF FEW LONG-LIVED SECURITIES

By DARRELL DUFFIE AND CHI-FU HUANG'

A two-period (0 and T) Arrow-Debreu economy is set up with a general model of
uncertainty. We suppose that an equilibrium exists for this economy. The Arrow-Debreu
economy is placed in a Radner (dynamic) setting; agents may trade claims at any time
during [0, T]. Under appropriate conditions it is possible to implement the original
Arrow-Debreu equilibrium, which may have an infinite-dimensional commodity space, in
a Radner equilibrium with only a finite number of securities. This is done by opening the
“right” set of security markets, a set which effectively completes markets for the Radner
economy.

1. INTRODUCTION

FIGURE 1 DEPICTS A SIMPLE event tree information structure. Let’s momentarily
consider an exchange economy with endowments of and preferences for random
time T consumption, depending on the state w € {2 chosen by nature from the
final five nodes of this event tree. A competitive equilibrium will exist under
standard assumptions (Debreu [5, Chapter 7]), including markets for securities
whose time T consumption payoff vectors span R°>. This entails at least five
security markets, while intuition suggests that, with the ability to learn information
and trade during [0, T], only three securities which are always available for
trading, or long-lived securities [13], might be enough to effectively complete
markets. This is the maximum number of branches leaving any node in the tree.
The reasoning is given by Kreps [13] and in alternative more general form later
in this paper. An early precurser to this work is Arrow [1], which showed the
spanning effectiveness of financial securities when trade can occur twice in a
two-period model.

One major purpose of this paper is to verify this intuition for a very general
class of information structures, including those which cannot be represented by
event trees, such as the filtration generated by continuous-time *‘state-variable”
stochastic processes. In some cases, where an Arrow-Debreu style equilibrium
would call for an infinite number of securities, we show how a continuous trading
Radner [20] equilibrium of plans, prices and price expectations can implement the
same Arrow-Debreu consumption allocations with only a finite number of long-
lived securities. It is misleading, of course, to use the number of security markets
alone as a measure of the efficiency of the market structure; the number of
transactions which must be performed to achieve a given allocation must also
be considered. Largely for want of a reasonable model to study this tradeoff, we
have not addressed the issue of the efficiency of market structure.

A comparison of Event Trees A of Figure 1 and B of Figure 2, which are
intended to correspond to the same two-period Arrow-Debreu economy, obviates
the role of the information structure in determining the number of long-lived

! We would like to thank David Kreps, John Cox, Michael Harrison, and David Luenberger for
helpful comments. We are also grateful to Larry Jones, Donald Brown, and David Kreps for pointing
out an error in the earlier version of this paper. That and any remaining errors are our own.
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FIGURE 1.

securities required to dynamically ‘“‘span” the consumption space, or the spanning
number. We later give this term a more precise meaning. Since all uncertainty is
resolved at once in Event Tree B, the spanning number is five, instead of three
for Event Tree A. Intuitively speaking, the maximum number of ‘‘dimensions of
uncertainty” which could be resolved at any one time is the key determining
property. This vague notion actually takes a precise form as the martingale
multiplicity of the information structure, defined in the Appendix. A key result
of this paper is that the spanning number is the martingale multiplicity plus one.
The ““plus one” is no mystery; in addition to spanning uncertainty, agents must
have the ability to transfer purchasing power across time.

The notion that certain securities are redundant because their payoffs can be
replicated by trading other securities over time, yielding arbitrage pricing relation-
ships among securities, was dramatized in the Black-Scholes [2] option pricing

Time 0 Time T

ﬂ={w1,...,w5}

FIGURE 2.
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formula.? Provided the equilibrium price process for one security happens to be
a geometric Brownian Motion, and for another is a (deterministic) exponential
of time, then any contingent claim whose payoft depends (measurably) on the
path taken by the underlying Brownian Motion, such as a call option on the
risky security, is redundant and priced by arbitrage. This discovery curiously
preceded its simpler logical antecedents, such as the corresponding results for
event tree information structures. Only in the past few years have the implications
of the spanning properties of price processes (e.g., [13]), the connection between
martingale theory and equilibrium price processes (e.g., [8]), and the mathemati-
cal machinery for continuous security trading [9] been formalized.

In all of the above mentioned literature the takeoff point is a given set of
security price processes, implicitly imbedded in a Radner equilibrium. Our second
major goal is to begin more primitively with a given Arrow-Debreu equilibrium,
one in which trading over time is not of concern since markets are complete at
time zero. From that point we construct the consumption payoffs and price
processes for a set of long-lived securities in such a way that agents may be
allocated trading strategies allowing them to consume their original Arrow-
Debreu allocations within a Radner style equilibrium. In short, we implement a
given Arrow-Debreu equilibrium by continuous trading of a set of long-lived
securities which is typically much smaller in number than the dimension of the
consumption space. Merton [19; p. 666] recently predicted that results such as
ours would appear.

The paper unfolds in the following order. First we describe the economy
(Section 2) and an Arrow-Debreu equilibrium for it (Section 3). Section 4 provides
a constructive proof of a Radner equilibrium which implements a given Arrow-
Debreu equilibrium under stated conditions, based on a martingale representation
technique. Section 5 characterizes the spanning number in terms of martingale
multiplicity. Section 6 discusses the continuous trading machinery, some gen-
eralizations, and two examples of the model. Section 7 adds concluding remarks.

2. THE ECONOMY

Uncertainty in our economy is modeled as a complete probability space
(02, , P). The set £ constitutes all possible states of the world which could exist
at a terminal date T> 0. The tribe ¥ is the o-algebra of measurable subsets of
0, or events, of which agents can make probability assessments based on the
probability measure P. Events are revealed over time according to a filtration,
F={%, t€[0, T]}, aright-continuous increasing family of sub-tribes of &, where
Fr=% and %, is almost trivial (the tribe generated by 2 and all of the P-null
sets). We can interpret this by thinking of %, as the set of all events which could
occur at or before time t. The assumption that F is increasing, or %, < %, for
s> t, means simply that agents do not forget that an event has occurred once it

2 Merton [18] is also seminal in this regard. Similar results were obtained by Cox and Ross [3]
for other models of uncertainty.
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is revealed. The above descriptions of %, and %+ means that no information is
known at time 0, and all uncertainty is resolved at time T.

Each agent in the economy is characterized by the following properties: (i) a
known endowment of a perishable consumption good at time zero, (ii) a random,
that is, state-dependent, endowment of the consumption good at time T, and (iii)
preferences over consumption pairs (r, x), where r is time zero consumption and
x is a random variable describing time T consumption, x(w) in state w € (.

We will only consider consumption claims with finite variance. The consump-
tion space is thus formalized as V=R x L*(P), where L*(P) is the space of
(equivalence classes) of square-integrable random-variables on ({2, , P), with
the usual product topology on V given by the Euclidean and L* norms.

The agents, finite in number, are indexed by i=1,..., I The preferences of
agent i are modeled as a complete transitive binary relation, or preference order,
=; on V,< V, the ith agent’s consumption set.

The whole economy can then be summarized in the usual way by the collection

gz(‘/iaﬁi’zi;i=la""1)’

where 0, = (7, X;) € V; is the ith agent’s endowment. It is not important for this
paper whether or not one assumes positive consumption or endowments.

3. ARROW-DEBREU EQUILIBRIUM

An Arrow-Debreu equilibrium for & is a nonzero linear (price) functional
¥: V>R and a set of allocations (v¥e V;;i=1,...,I) satisfying, for all i,

Y (vF) < ¥(d),
(3.1) v>0F = Y(v)>¥(}) VveV,

We will assume that at least one agent i has strictly monotonic preferences.
Specifically, if ve V; and v'= v (in the obvious product order on V), then v'e V;
and v'>,v provided v # v'. This ensures that in equilibrium ¥ is a strictly positive
linear functional. Since V is a Hilbert lattice [21], this then implies that ¥ is a
continuous linear functional on V, which can therefore be represented by some
element (a, £) of V itself in the form:

V(r,x)= ar+I x(w)é(w) dP(w) V(r,x)eV.
N
Without loss of generality we can normalize ¥ by a constant so that the positive

random variable ¢ has unit expectation, in order to construct the probability
measure Q on ({2, ¥) by the relation

Q(B)= J 1p(w)é(w) dP(w) VBe Z.
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Equivalently, £ is the Radon-Nikodym derivative dQ/dP. This leaves the simple
representation

3.2) Y(r,x)=ar+E*(x) V(r,x)eV,

where E* denotes expectation under Q. Thus the equilibrium price of any random
consumption claim x € L*(P) is simply its expected consumption payoff under
Q. For this reason we call Q an equilibrium price measure.

For tractability we will want any random variable which has finite variance
under P to have finite variance under Q, and vice versa. A necessary and sufficient
condition is that P and Q are uniformly absolutely continuous, denoted Q=P
(Halmos [7, p. 100]), or equivalently, that the Radon-Nikodym derivative dQ/dP
is bounded above and below away from zero. Sufficient conditions for this can
be given when preferences can be represented by von-Neumann-Morgenstern
utility functions, in terms of bounds on marginal utility for time T consumption.
We do not pursue this here since we are taking £ as a primitive, rather than
deriving it from preferences.’

A second regularity condition which comes into play is the separability* of #
under P. This assumption should not be viewed as too restrictive. One can, for
example, construct Brownian Motion on a separable probability space. Given
Q=P it is then easy to show the separability of # under Q by making use of
the upper essential bound on dQ/dP.

Since uniform absolute continuity of two measures implies their equivalence
(that is, they give probability zero to the same events), we can use the symbol
a.s. for “almost surely” indiscriminately in this paper.

4. RADNER EQUILIBRIUM

A long-lived security is a consumption claim (to some element of L*(P))
available for trade throughout [0, T]. A price process for a long-lived security is
a semimartingale’ on our given probability space adapted to the given information
structure F. In general the number of units of a long-lived security which are
held by an agent over time defines some stochastic process 6. We will say 0 is
an admissible trading process for a long-lived security with price process S if it
meets the following regularity conditions:

(i) predictability, defined in the Appendix and denoted 6 € 2;

(ii) square-integrability,or 6 € L3[S]={¢ € P: E(J, ¢ d[S],) <oo}, where[S]
denotes the quadratic variation process for S (Jacod [11]); and

3 Work subsequent to this paper shows extremely general continuity assumptions which yield these
bounds [6].

4 Atribe & is said to be separable under P if there exists a countable number of elements B,, B,, . ..
in & such that, for any Be ¥ and & > 0 there exists B, in the sequence with P{BAB, }< ¢, where 4
denotes symmetric difference.

5 See Jacod [11], for example, for the definition of a semimartingale. This is not at all a severe
restriction on price processes if one is to obtain a meaningful model of gains and losses from security
trades.
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(iii) the gains process | 0 dS is well defined as a stochastic integral. We will
be dealing with price processes in this paper for which square-integrability (ii)
is sufficient for this condition. Memin [16] gives a full set of sufficient conditions
in the general case.

The stochastic integral j'f) 0(s) dS(s) is a model of the gains or losses realized
up to and including time ¢ by trading a security with price process S using the
trading process 6. Interpreted as a Stieltjes integral this model is obvious, but
the integral is generally well defined only as a stochastic integral. This model,
formalized by Harrison and Pliska [9], is discussed further in Section 6, as are
the other regularity conditions on 6.

Taking S=(S;,...,Sn), N=<o0, as the set of all long-lived security price
processes, any corresponding set of admissible trading processes 8 = (6, ..., Ox)
must also meet the accounting identity:

t

(4.1)  6(1)TS(1)= O(O)TS(O)+J 0(s)" dS(s) Vte[0,T] as.,
0

meaning that the current value of a portfolio must be its initial value plus any
gains or losses incurred from trading. The symbol " denotes the obvious shorthand
notation for summation from 1 to N. We’ll adopt the notation @(S) for the space
of trading strategies 6 =(60,, ..., O5) meeting the regularity conditions (i)-(ii)-
(iii) for each long-lived security and satisfying the “self-financing’restriction (4.1).

A Radner equilibrium for & is comprised of:

(1) a set of long-lived securities claiming d = (d,, ..., dn), d, € L*(P),1=n<
N <00, with corresponding price processes S=(S;,..., Sx);

(2) a set of trading strategies 6'c @(S), one for each agent i=1,...,I; and

(3) a price a € R, for time zero consumption;
all of these satisfying:

(4) budget constrained optimality: for each agent i,

(f,. ____0"(0)25(0), X+ Oi(T)Td>

is >;-maximal in the budget set:

{(Fi_g(())_;S(_O_)’ )?,-+6(T)Td> eV:0e @(S)},

and
(5) market clearing:

é 6'(t)=0 Vte[0, T].

The space of square-integrable martingales under Q, denoted #5; its multi-
plicity, denoted M(./“ZQ); and a corresponding orthogonal 2-basis of martingales,
m=(m,,..., my), where N = M(Até) < o0; are all defined in the Appendix. The
central concept is that any of the martingales associated with the given information
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structure can be represented as the sum of M(.#3) stochastic integrals against
the fixed 2-basis of martingales m, in the manner given by the following theorem.
This result is a direct consequence of the definition of martingale multiplicity.
The content of the result lies with specific examples in which martingale multi-
plicity is characterized. Details, beyond those in the Appendix, may be found in
the fourth chapter of Jacod [11]. Kunita and Watanabe [14] as well as Davis
and Varaiya [4] also include the essentials.

THEOREM 4.1: Forany X € M3, there exists 8 =(0,, ..., Ox), where 8, € L[ m,]
for all n, such that

X, = J, 0(s)" dm(s) Vte[0,T] as.

0

We should remark that when Q = P, the spaces L[ m, ] and L[ m, ] are identical
because of the bounds implied on dQ/dP. We also use the fact that a martingale
under Q is a semimartingale under P given the equivalence of P and Q. Thus
any element of M3 is a valid price process. This can be checked in Jacod [11,
Chapter 7], along with the existence of | 8, dm, as a stochastic integral under P
whenever 6, € L}[m,].

Now we have the main result.

THEOREM 4.2: Suppose (¥, v¥,i=1,...,1) is an Arrow-Debreu equilibrium
for &, where without loss of generality ¥ has the representation (a, Q) given by
relation (3.2). Provided Q= P and & is separable under P, there is a Radner
equilibrium for & achieving the Arrow- Debreu equilibrium allocations.

Proor: The proof takes four steps:

(1) Specify a set of long-lived securities.

(2) Announce a price for time zero consumption and price processes for the
long-lived securities.

(3) Allocate a trading strategy to each agent which generates that agent’s
Arrow-Debreu allocation and which, collectively, clears markets.

(4) Prove that no agent has any incentive to deviate from the allocated trading
strategy.

Step 1: Select the following elements of L*(P) as the claims of the available
long-lived securities:
dO = 103
d,=m,(T), 1<n<N=M(M}),

where 1, is the random variable whose value is identically 1 (the indicator
function on {2), and m=(m,, ..., my) is an orthogonal 2-basis for #35,. Since
Q= P, the final values of the martingales, m,(T), are elements of L*(P).
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STEP 2: For 0<n< N let S,(t), the price of d, at time ¢, be announced as
E*[d,| %.]. In other words, each long-lived security’s current price is the condi-
tional expectation under Q of its consumption value. For convenience we actually
take RCLL® versions of these price processes. There is obviously some forethought
here, for the result is So=1 and S, = m,, 1< n< N, implying that the last N price
processes are themselves an orthogonal 2-basis for /5, suggesting their ability
to “span” (in the sense of Theorem 4.1) all consumption claims not actually
available for trading. The first security serves as a “‘store-of-value”, since its price
is constant. We also announce the positive scalar a given in the statement of the
theorem as the price of time zero consumption.

Step 3: For any agent i, for 1<i<I—1, let ;= xf —X,. Then the process
(42) Xi(t)=E*(ei|‘-O}t)_E*(ei)’ te[o’ T],

is an element of M3, given Q = P, which can be reconstructed via Theorem 4.1 as

N t
(4.3) X (t)=Y J- 0.(s) dS,(s), Vte[0,T] as.,
n=1 0
for some 0, ¢e L3[S,],1=n<N.
In order to meet the accounting restriction (4.1), we set the following trading
process for the ‘‘store-of-value” security:

(44)  60(1)=E*(e)+ g J' 0,(s) dS,(s)—6,(1)S,(t), te[0, T].
n=1 J0

Of course | 6, dS,=0 since So= 1. A technical argument showing 65€ 2 is given
as Appendix Lemma A.1, which then implies 6 L5[S,].
Substituting (4.4) into (4.3), noting that m,(0) =0 Vn, we then have

t

(4.5) 0i(t)TS(t)=0‘(0)TS(O)+I 0'(s)TdS(s) Vte[0,T], as.,

0

confirming (4.1). This yields the final requirement for claiming the trading strategy
is admissible, or 6'=(8,,..., )€ O(S). Evaluating (4.5) at times T and 0,
using the definitions of e; and X; yields:

0(T)'d+%=0(T)"S(T)+%x,=x* as.
and

0'(0)"S(0) = E*(x¥ — %)= W(0, x¥) — ¥(0, %) = (i — rf)a,

the last line making use of the budget constraint on the Arrow-Debreu allocation
for agent i. Thus by adopting the trading strategy 6', and faced with the time-zero
consumption price of a, agent i can consume precisely (r¥, x¥) = v¥.

The above construction applies for agents 1 through I —1. For the last agent,
agent I, let 8" = —Zf;: 6'. By the Kunita-Watanabe inequality [14], O(S) is a

¢ An RCLL process is one whose sample paths are right continuous with left limits almost surely.
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linear space, so 8’ € @(S). Market clearing is obviously met by construction. To
complete this step it remains to show that 8” generates the consumption allocation
(r¥, x¥) = v¥, but this is immediate from the linearity of stochastic integrals and
market clearing in the Arrow-Debreu equilibrium.

STEP 4: We proceed by contradiction. Suppose some agent j can obtain a
strictly preferred allocation (r, x)>;(r¥, xf) by adopting a different trading
strategy 6 € O(S). Then the Arrow-Debreu price of (r, x) must be strictly higher
than that of (r¥, x¥), or

ar+ E*(x) > arf+ E*(x}).
Substituting the Radner budget constraint for r and x,

ai;—6(0)"S(0)+ E* [fj +6(0)7S(0)+ J

0

o(1)7 dS(t)] > ar¥+ E*(x¥),

or
(4.6) ar;+ E*(X;) > arf+ E*(x}).

The last line uses the fact that E*[L,T 6(t)T dS(t)]=0 since |67 dS is a Q-
martingale for any 6 € @(S), from the fact that | ¢ dS, e #% V¢ e L5[S,] [11,
Chapter 4]. But (4.6) contradicts the Arrow-Debreu budget-constrained optimal-
ity of (rff, x¥). This establishes the theorem. Q.E.D.

Of course, under the standard weak conditions ensuring that an Arrow-Debreu
equilibrium allocation is Pareto optimal, the resulting Radner equilibrium alloca-

tion of this theorem is also Pareto optimal as it implements the Arrow-Debreu
allocation.

S. THE SPANNING NUMBER OF RADNER EQUILIBRIA

The key idea of the last proof is that an appropriately selected and priced set
of long-lived securities ‘“‘spans” the entire final period consumption space in the
sense that any x e L*(P) can be represented in the form

t

(5.1) E*[x|F]=06(1)"S(t)= 0(0)TS(0)+J 0(s)"dS(s) Vite[0,T] as.,

(]

where S =(S,,..., Sy) is the set of (N + 1) security price processes constructed
in the proof and 6€ ©(S) is an appropriate trading strategy. In particular,
E*[x| #r]=x a.s. As examples in the following section will show, this number
of securities, N+1, or the multiplicity of % plus one, can be considerably
smaller than the dimension of L?(P). But is this the “smallest number”” which
will serve this purpose, or the “spanning number” in some sense? To be more
precise, we will prove the following result, still assuming Q = P and the separabil-
ity of &.



1346 DARRELL DUFFIE AND CHI-FU HUANG

PROPOSITION 5.1: Suppose long-lived security prices for € are square-integrable
martingales under Q, the equilibrium price measure for €. Then the minimum number
of long-lived securities which completes markets in the sense of (5.1) is M(M3)+ 1.

Proor: That M(/M?)+1 is a sufficient number is given by construction in the
proof of Theorem 4.2. The remainder of the proof is devoted to showing that at
least this number is required.

If M(JMZQ) =00 we are done. Otherwise, suppose S=(S,,...,Sk), K<, isa
set of square-integrable Q-martingale security price processes with the representa-
tion property (5.1). By the definition of multiplicity it follows that K = M (M#3).
It remains to show that K =M (/ﬂzo) implies a contradiction, which we now
pursue.

Let x=k+1"S(T)e L*(P), where k is any real constant and 1 is a K-
dimensional vector of ones. If S has the representation property (5.1) there exists
some 6 ¢€ O(S) satisfying (5.1) for this particular x. Furthermore, since S is a
vector of Q-martingales,

(5.2) E*[x|#]=k+17S(t)=k+ lTS(0)+J 17dS(s) Vte[0,T] as.

(1]
Since 6(0)"S(0) = E*(x) = k+17S(0), equating the right hand sides of (5.1) and
(5.2) yields

I 0(s)" dS(s)= J” 17 dS(s) Vte[0,T] as.

Appendix Lemma A.2 then implies
Q{3te[0, T]: 6(t)=1}>0.

Since Q = P, the above event also has strictly positive P-probability, and equating
the second members of (5.1) and (5.2) yields

P{3te[0, T]:17S(t)=1"S(t)+ k} >0,

an obvious absurdity if k # 0. Q.E.D.

The reader will likely have raised two points by now. First, having shown that
the “spanning number” is M(.#5)+1 when long-lived securities are square-
integrable martingales under Q, what do we know about the spanning number
in general? From the work of Harrison and Kreps [8], we see that a “‘viable”
Radner equilibrium must be of the form of security price processes which are
martingales under some probability measure. Their framework, somewhat less
general than ours, was extended in Huang [10] to a setting much like our own.
Readers may wish to confirm that the same result can be proved in the same
manner for the present setting. We have chosen to announce prices as martingales
under Q, rather than some other probability measure, as this follows from the
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natural selection of a numeraire claiming one unit of consumption in every state,
the security claiming d, in Theorem 4.2. Other numeraires could be chosen; if a
random numeraire is selected then in equilibrium security prices will be martin-
gales under some other probability measure, say ﬁ, and the spanning number will
be M (M%) + 1, if the appropriate regularity conditions are adhered to. Does this
number differ from M(/MZQ)+ 1; that is, can the martingale multiplicity for the
same information structure change under substitution of probability measures?
Within the class of equivalent probability measures, those giving zero probability
to the same events, this seems unlikely. It is certainly not true for event trees.
We put off a direct assault on this question to a subsequent paper. We will show
later, however, that if the information is generated by a Standard Brownian
Motion, then M (M) = M (M3).

The second point which ought to have been raised is the number of securities
required to implement an Arrow-Debreu equilibrium in a Radner style model,
dropping the requirement for complete markets. For example, with only two agents,
a single security which pays the difference between the endowment and the
Arrow-Debreu allocation of one of the agents will obviously allow the two to
trade to equilibrium at time zero. This is not a very robust regime of markets, of
course. By fixing such agent-specific securities, any perturbation of agents’ endow-
ments or preferences which preserves Arrow-Debreu prices will generally pre-
clude an efficient Radner equilibrium. Agents will generally be unable to reach
their perturbed Arrow-Debreu allocations without a new set of long-lived
securities. A set of long-lived securities which completes markets in the dynamic
sense of relation (5.1) is constrastingly robust, although the selection still depends
endogenously on Arrow-Debreu prices. It remains a formidable challenge to
show how markets can be completed by selecting the claims of long-lived securities
entirely on the basis of the exogenous information structure F. (As an aside,
however, this is easily done for event trees. From this proof of the Proposition
it is apparent that a selection of consumption payoffs for long-lived securities
can be designed which (generically) completes markets for any Arrow-Debreu
equilibrium prices.) There are no economic grounds, of course, precluding the
selection of security markets from being an endogenous part of the equilibrium.
One would in fact expect this to be the case, an interesting problem for future
theoretical and empirical research.

Nothing precludes the fact that some of the martingale price processes in our
model may take negative values, even if a positive constant (which is innocuous)
is added. For a “spanning” set of positive price processes, one could split each
of the original spanning martingales into its positive and negative parts, for a set
of 2M (%) +1 price processes in all. The existence of the required stochastic
integrals follows easily.

6. DISCUSSION

In this section we discuss some definitional issues, generalizations of the model,
and some specific examples.
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6.1. The Gains Process and Admissible Trading Strategies

Why is L3[S] an appropriate restriction on trading strategies for a security
with price process S? Why is the stochastic integral | 6 dS, for 8 € L[ S], then
the appropriate definition of gains from such a strategy? These are questions
raised earlier by Harrison and Pliska [9].

Following Harrison and Pliska [9], we will say that a predictable trading
strategy is simple, denoted 6 € A, if there is a partition {0=to, t;, ..., t,_y, t,= T}
of [0, T] and bounded random variables {h,, ..., h,_;}, where h; is measurable
with respect to %,, satisfying

0(t)=h;, te(t,ti]

A simple trading strategy 6, roughly speaking, is one which is piecewise constant
and for which 6(t) can be determined by information available up to, but not
including, time t. The latter restriction is the basic content of predictability. This
is not an unreasonable abstraction of “‘real” trading strategies. The gains process
[ 6ds, for 8¢ A, is furthermore defined path by path as a Stieltjes integral. That
is, the gains at time ¢; are

J 9(s) dS(s) = if 0(5)[S(441)—S(5)],

0 Jj=0

simply the sum of profits and losses realized at discrete points in time.
We will give the space #5 the norm

Imll.«z =[E*(Im]1r)]"* Vme My,

and give L%[S] the semi-norm

60l 35y = [E (LT 6%(1) d[S],)]m.

PROPOSITION 6.1: For every trading strategy 6 € L%[S] there exists a sequence
(6,) of simple trading strategies converging to 6 in L[ S] (in the given semi-norm).
For any such sequence, the corresponding gains processes | 6, dS converge to | 6 dS
in MY in the given norm.

Proor: This is the way Ito originally extended the definition of stochastic
integrals. His theorem uses the fact that A is dense in L%,[S] and shows that
6| 6dS, 6 A, extends uniquely to an isometry of L5,[S] in #%. These facts
can be checked, for instance, in Jacod [11, Chapter 4]. Since dQ/dP is assumed
to be bounded above and below away from zero, the semi-norms |||/ ,(s; and
Il L3(sy are equivalent, and the result is proved. Q.E.D.

Interpreting this result: for any admissible strategy 6 € @(S) there is a sequence
of simple trading strategies converging (as agents are able to trade more and
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more frequently) to 6, with the corresponding gains processes converging to that
generated by 6. The sequence of simple trading strategies can also be chosen to
be self-financing (4.1) by using the same construction shown in the proof of
Theorem 4.2 for the “‘store-of-value” strategy. A store-of-value security, one
whose price is identically one for instance, is again called for. The minimal
requirements for a ‘“‘store-of-value” security price process have not been fully
explored.

In what way have we limited agents by restricting them to L%[S] trading
strategies? It is known, for instance, that by removing this constraint the so-called
“suicide” and “doubling” strategies may become feasible, as discussed by Har-
rison and Pliska [9] and Kreps [12]. A suicide strategy makes nothing out of
something almost surely, which no one would want to do anyway. A doubling
strategy, however, generates a ‘“free lunch,” which shouldn’t happen in equili-
brium. More precisely, an equilibrium can’t happen if doubling strategies are
allowed. There are no doubling strategies in L3:[S] since these strategies only
generate martingales (under Q). There is also some comfort in knowing that,
since L3[S] is a complete space, there is no sequence of simple or even general
L%[ S] strategies which converges to a doubling strategy in the sense of Proposition
6.1.

6.2. Some Generalizations

There is of course no difficulty in having heterogeneous probability assessments,
provided all agents’ subjective probability measures on ({2, ¥) are uniformly
absolutely continuous. This preserves the topologies on the consumption and
strategy spaces across agents.

As a second generalization we could allow the consumption space to be
R x L(P) for any g € [1, ), relaxing from g = 2. The allowable trading strategies
should be generalized to L$[S], as defined by Jacod [11, (4.59)], since there is
then no guarantee of an orthogonal g-basis for MP. 1t is a straightforward task
to carry out all of the proofs in this paper under both of these generalizations.
All interesting models of uncertainty we are aware of, however, are for g =2.

It is also easy, but cumbersome, to extend our results to an economy with
production and with a finite number of different consumption goods.

6.3. Example: Economies on Event Trees

If the information structure F is such that %, contains only a finite number of
events at each time ¢, then it can be represented in the form of an event tree, as
in Figure 1.

For finite horizon problems, the terminal nodes of the tree can be treated as
the elements of (2. They are equal in number with the contingent claims forming
a complete regime of Arrow-Debreu “simple securities.” Yet, as the following
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proposition demonstrates, a complete markets Radner equilibrium can be estab-
lished with far fewer securities, except in degenerate cases. Since integrability is
not a consideration when (2 is finite, we characterize martingale multiplicity
directly in terms of the “finite” filtration F, limiting consideration to probability
measures under which each w € (2 has strictly positive probability.

PROPOSITION 6.2: The multiplicity of a finite filtration F, under any of a set of
equivalent probability measures, is the maximum number of branches leaving any
node of the corresponding event tree, minus one.

The proof, given in the Appendix, presents an algorithm for constructing an
orthogonal martingale basis. Just as in Section 4, a complete markets Radner
equilibrium can be constructed from any given Arrow-Debreu equilibrium pro-
vided there are markets for long-lived securities paying the terminal values of
such a Q-martingale basis in time T consumption, and one store-of-value security
paying one unit of consumption at time T in each state w € (2.

By drawing simple examples of event trees, however, it soon becomes apparent
that many other choices for the spanning securities will work. This is consistent
with Kreps [13]. His Proposition 2 effectively states that a necessary and sufficient
condition for a complete markets Radner economy is that at any node of the
event tree the following condition is met: The dimension of the span of the
vectors of “‘branch-contingent” prices of the available long-lived securities must
be the number of branches leaving that node. Kreps goes on to state that the
number of long-lived securities required for implementing an Arrow-Debreu
equilibrium in this manner must be at least K, the maximum number of branches
leaving any node, consistent with our “spanning number” (the martingale multi-
plicity plus one), as demonstrated by the previous proposition. Kreps also obtains
the genericity result: except for a “sparse” set of long-lived securities, a set of
measure zero in a sense given in the Kreps article, any selection of K or more
long-lived security price processes admits a complete markets Radner economy.
(The economy needn’t be in equilibrium of course.) This result seems exceedingly
difficult to extend to a general continuous-time model.

One should beware of taking the “limit by compression” of finite filtrations
and expecting the spanning number to be preserved. For example, we have seen
statements in the finance literature to the following effect: ““In the Black-Scholes
option pricing model it is to be expected that continuous trading on two securities
can replicate any claim since Brownian Motion is the limit of a normalized
sequence of coin-toss random walks, each of which has only two outcomes at
any toss.” If this logicis correct it hides some unexplained reasoning. For example,
two simultaneous independent coin-toss random walks generate a martingale
space of multiplicity three (four branches at each node, minus one), whereas the
corresponding Brownian Motion limits (Williams [22, Chapter 1]) generate a
martingale space of multiplicity two. Somehow one dimension of ‘‘local uncer-
tainty” is lost in the limiting procedure.
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6.4. A Brownian Motion Example

This subsection illustrates an infinite dimensional consumption space whose
economy (under regularity conditions) has a complete markets Radner equili-
brium including only two securities!

Suppose uncertainty is characterized, and information is revealed, by a Stan-
dard Brownian Motion, W. To be precise, each w € {2 corresponds to a particular
sample path chosen for W from the continuous functions on [0, T], denoted
C[0, T], according to the Wiener probability measure P on %, the completed
Borel tribe on C[0, T]. The probability space, then, is the completed Wiener
triple ({2, %, P) and the filtration is the family F ={%, t€[0, T]}, where %, is
the completion of the Borel tribe on C[0, t]. For conciseness, we’ll call ({2, F, P)
the completed filtered Wiener triple. More details on this construction are given
in the first chapter of Williams [22].

To construct a complete markets Radner equilibrium from a given Arrow-
Debreu equilibrium, as in Section 4, we need an orthogonal 2-basis for 5,
where Q is an equilibrium price measure for the Arrow-Debreu economy. In
this case we can actually show that a particular Standard Brownian Motion on
(£, F, Q) is just such a 2-basis!

It is a well known result (e.g. [14]) that the underlying Brownian Motion W
is a 2-basis for #M%. Assuming Q= P, the process

dQ

Z(t)=E [d—P

gl], te[oy T]a

is a square-integrable martingale on ({2, F, P), with E[Z(T)]=1. Then, by
Theorem 4.1, there exists some p € L3[ W] giving the representation:

Z(t)= 1+j p(s)dW(s) Vite[0,T] as.
(1]
It follows from Ito’s Lemma that, defining the process n(t) = p(t)/Z(t), we have
the alternative representation:

t

Z(t)=exp{jtn(s) dW(s)—%J 7%(s) ds} Vte[0, T] as.

0 0

From this, the new process

t
(6.1) W*(t) = W(t)—J' n(s)ds, te[0,T],

0
defines a Standard Brownian Motion on ({2, F, Q) by Girsanov’s Fundamental
Theorem (Lipster and Shiryayev [15, p. 232]). It remains to show that W¥* is
itself a 2-basis for M3, but this is immediate from Theorem 5.18 of Liptser and
Shiryayev [15], using the uniform absolute continuity of P and Q. This construc-
tion is summarized as follows.
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PROPOSITION 6.3: Suppose W is the Standard Brownian Motion underlying the
filtered Wiener triple (0, F, P) and Q = P. Then W* defined by (6.1) is a Standard
Brownian Motion under Q which is a 2-basis for M3. In particular, M(M}) =
M(MpH)=1.

By a slightly more subtle argument, we could have reached the same conclusion
under the weaker assumption that P and Q are merely equivalent, but Q=P is
needed for other reasons in Theorem 4.1.

In short, by marketing just two long-lived securities, one paying W*(T) in
time T consumption, the other paying one unit of time T consumption with
certainty, and announcing their price processes as W*(¢) and 1 (for all ¢), a
complete markets Radner equilibrium is achieved.

This example can be extended to filtrations generated by vector diffusion
processes. Under well known conditions (e.g. [8]) a vector diffusion generates
the same filtration as the underlying vector of independent Brownian Motions.
An orthogonal 2-basis for .#% is then simply these Brownian Motions themselves
[14]. By generalizing the result quoted from Lipster and Shiryayev [15, Theorem
5.18], one can then demonstrate a vector of equally many Brownian Motions
under Q which form a martingale basis for .#3, in the sense of Theorem 4.1.
Since the manipulations are rather involved, and because the results raise some
provocative issues concerning the “inter-temporal capital asset pricing models”
(e.g., [17]) which are also based on diffusion uncertainty, we put off this develop-
ment to a subsequent paper. It is also known that the filtration generated by a
Poisson process corresponds to a martingale multiplicity of one [11].

7. CONCLUDING REMARKS

We are working on several extensions and improvements suggested by the
results of this paper.

The first major step will be to demonstrate the existence of continuous trading
Radner equilibria “from scratch,” that is, taking endowments and preferences
as agent primitives and proving the existence of an equilibrium such as that
demonstrated in Theorem 4.2. In particular, the existence of an Arrow-Debreu
equilibrium and the condition Q= P must be proven from exogenous assump-
tions, rather than assumed. A full-blown Radner economy is also being examined,
one with consumption occurring over time rather than at the two points 0
and T.

The Brownian Motion example of Section 6.4, as suggested there, is being
extended to the case in which uncertainty and information are characterized by
a vector of diffusion ‘“‘state-variable™ processes. This will allow us to tie in with,
and provide a critical evaluation of, the inter-temporal capital asset pricing models
popular in the financial economics literature.

We left off in Section 5 by characterizing the spanning number in terms of
(endogenous) Arrow-Debreu prices through the equilibrium price measure Q.
Our next efforts will be directed at showing that, subject to regularity conditions,
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martingale multiplicity is invariant under substitution of equivalent probability
measures. In that case the spanning number can be stated to be the exogenously
given number, M (#M7)+1.

Stanford University
and
Massachusetts Institute of Technology

Manuscript received December 1983; final revision received January, 1985.

APPENDIX
MARTINGALE MULTIPLICITY

What follows is a heavily condensed treatment, taken mainly from the fourth chapter of Jacod [11].

A square-integrable martingale on the filtered probability space ({2, F, P) is an F-adapted’ process
X ={X,; te[0, T]} with the properties: (i) E[ X (¢)*]<coforall t€ [0, T, and (ii) E[ X ()| #]= X (s)
a.s. forall t=s.

We will also assume without loss of generality for this paper that each martingale is an RCLL
process. The first property (i) is square-integrability, the second (ii) is martingale, meaning roughly
that the expected future value of X given current information is always the current value of X.

The space of square-integrable martingales on ({2, F, P) which are null at zero (or X(0)=0) is
denoted 2. The spaces #% and L*(P) are in one to one correspondence via the relationship,
between some X € #% and xe L*(P):

X(1)=E[x|#], te[0,T),

where all RCLL versions of the conditional expectation process are indistinguishable and therefore
identified.

An F-adapted process is termed predictable if it is measurable with respect to the tribe 2 on
2 %[0, T] generated by the left-continuous F-adapted processes. At an intuitive level, 6 is a predictable
process if the value of (¢) can be determined from information available up to, but not including,
time ¢, for each t€[0, T].

Two martingales X and Y are said to be orthogonal if the product XY is a martingale. From this
point we’ll assume that & is a separable tribe under P. In that case the path breaking work of Kunita
and Watanabe [14] shows the existence of an orthogonal 2-basis for M3, defined as a minimal set
of mutually orthogonal elements of % with the representation property stated in Theorem 4.1. By
“minimal,” we mean that no fewer elements of .#% have this property. The number of elements of
a 2-bazsis, whether countably infinite or some positive integer, is called the multiplicity of M2, denoted
M(M?).

The following lemma makes a technical argument used in the proof of Theorem 4.2.

LEMMA A.1: Suppose the process X is defined by

X(t)=§ [J’l0,.(5)115,.(3)-9,,(!)5,.(!)], tef0, T,

n=1 0

where | 6, dS, is the stochastic integral of a predictable process 6, with respect to a semi-martingale S,,,
for 1<n< N <co. Then X is predictable.

PrOOF: For any left-limits process Z, let Z(t—) denote the left limit of Z at 1€ [0, T], and denote
the “jump” of Z at t by AZ(t) = Z(t)— Z(t—), where we have used the convention that Z(0-)=Z(0).
Then we can write

N

X=X [JP 6,,(s) dS, (s)—6,(1)S, (1) +6,(1) AS,.(t)]
0

n=1

7 A stochastic process X ={X,;t€[0,T]} is adapted to a filtration F={%,;t€[0, T]} if X, is
measurable with respect to %, for all t€[0, T].
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since

A(Jl 6,.(s) dS,.(S)) =6,(1) 45, (1)
0

by the definition of a stochastic integral. Then, using
6, (1)S, (1) =6, (1)[S,(t—)+4S,(1)],

we have

X(0)= 7% U en(s)dsn(s>—en<r>sn(z—)], tefo, T1.
0

n=1

Since ](')' 6,dS, and S,(t-) are left-continuous processes, and therefore predictable, and 6, (1) is
predictable, we know X is predictable because sums and products of measurable functions are
measurable. Q.E.D.

For any two elements X and Y of #3, let (X, Y) denote the unique predictable process with the
property that XY —(X, Y) is a martingale and (X, Y),=0.

LEMMA A.2: Suppose (m,, ..., my) constitute a finite set of elements of/t{é with the representation
property given in the statement of Theorem 4.1, where N=M (./”%2). If 6, and ¢, are elements of
L%[m,], for 1< n< N, satisfying (with the obvious shorthand)

(a.1) J' OTdm=J ¢ dm Vite[0,T] as.,
0 0

then
Q{3te[0, T]: 6(t) = (t)}>0.

PROOF: Jacod [11] shows the existence of a predictable positive semi-definite N x N matrix valued
process ¢ and an increasing predictable process C with the property, for any «, and B, in Lzo[m,,],
1=sn=<N,

(a.2) <J a dm, j BT dm> = J‘[ a(s)Tc(s)B(s) dC(s) Vte[0, T] as.
t 4]

The process C also defines a Doléans measure (also denoted C) on (2 x[0, T], ?) according to

c<3)='[ '[ 15(w, s) dC(w, s) dQ(w) VBe P.
N J[0,T]

By (4.43) of Jacod [11], the matrix process ¢ reaches full rank, and is thus positive definite, on some
set B¥e @ of strictly positive C-measure. But, by (a.1) and (a.2),

(a.3) J' [6(w, s)— ¢(w, 5)] c(w, s)[0(w, s) — d(w, s)]dC(w,s)=0 Vte[0, T] as.
)

Ignoring without loss of generality the Q-null set on which (a.3) does not hold, this implies that
0(w, t) = ¢(w, t) for all time points of increase of C on B*, which have strictly positive Q-probability
since the projection of B* on 2 must have strictly positive Q-measure for B* to have strictly positive
C-measure. Q.E.D.

PROOF OF PROPOSITION 6.2—MULTIPLICITY OF AN EVENT TREE: Let N denote the maximum
number of branches leaving any node of the event tree, minus one. The proposition will be proved
by constructing an orthogonal martingale basis on this filtration consisting of the N processes
my,...,my.

Any martingale on a finite filtration is characterized entirely by its right-continuous jumps at each
node in the corresponding event tree. Denote the jump of m; at a generic node with L departing

branches by the vector 8, =(8;,, ..., ;). Thatis, 8, € R*" represents the random variable which takes
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the real number & if branch [ is the realized event at this node. Let p=(p;,...,p) € R* denote the
vector of conditional branching probabilities at this node.

The processes m,, ..., m, are then mutually orthogonal martingales if they satisfy the following
two conditions at each node:

(i) pTﬁj =0,j=1,..., N (zero mean jumps, the martingale property), and

(i) 87[p18, =0, V; # k, where [ p] denotes the diagonal matrix whose Ith diagonal element is p,
(mutually uncorrelated jumps, implying mutually orthogonal martingales).

We construct the processes my, ..., my by designing their jumps at each node of the event tree,
in any order, taking m;(0) =0 Vj. At a given node (with L branches), it is simple to choose nonzero
vectors 8,,...,8;,_, in RF satisfying

(a.4) 4,[p18;=0, 1<j<L-1,

where 4; is the j X L matrix whose first row is a vector of ones and whose kth row is, for k=2, 8 _,.
This cannot be done for j= L since 4,[p]'/? is a full rank L x L matrix (its rows are nonzero and
mutually orthogonal). Instead, let §,, ..., 85 each be zero vectors. One can quickly verify that this
construction meets the conditions (i)-(ii) for m,,..., my to be mutually orthogonal martingales.
They are nontrivial since there is at least one node with N +1 branches, by definition of N. They
form a basis (in the sense of Theorem 4.1) for all martingales since at each node the subspace
{6€ R"*: 8" p =0} has linearly independent spanning vectors 8, ..., 8, _,. That is, the jump of any
given martingale at this node is a linear combination of the jumps of the first L —1 martingales of
the set {m,,..., my}. At least N martingales are needed for a martingale basis since at some node
this subspace has dimension N, by definition of N. Q.E.D.

ExAMPLE: A MARKOV CHAIN: As a Simple example, consider a finite state-space Markov chain
information structure. Transition probabilities are given by the matrix

H:(ﬂ'aﬁ) l<sasn;1sB=n;

where 7,5 denotes the one-step transition probability from state « to state B. Let 7 denote the ath
row of IT and 87 € R" denote the vector of jumps of the process m; at any node corresponding to
state a, for 1<j<n—1. We will assume at least one row of IT has no zero elements. Then the
multiplicity of the space of martingales on this Markov chain is n — 1, and the processes m, ..., m,_;
form an orthogonal martingale basis provided, for a =1,...,n,

7785 =0, 1sjsn-1,
and
6;"T[1r"]5“ =0, j#k,

corresponding to conditions (i)-(ii) above, and & # 0 for all « and all j.
If, for instance,

03 03 04
I=103 03 04},
03 03 04

then the two martingales m, and m, are an orthogonal martingale basis, where, at any node, m,
jumps +2if state 1 follows, jumps +2 if state 2 follows, and jumps —3 if state 3 follows, or 8, = (2, 2, —3);
and similarly m, is characterized by jumps 8, = (1, —1, 0). To be even more explicit, if state 2 occurs
at time 1, state 3 at time 2, and the chain terminates at time 2.5, the sample path for m, is

m(t)=0, 0=<t<1,
m(t)=2, 1=<1<2,

m(t)=—1, 2=<t=<25.
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