
Using Redundancies to Find Errors

Yichen Xie and Dawson Engler
Computer Systems Laboratory

Stanford University
Stanford, CA 94305, U.S.A.

ABSTRACT
This paper explores the idea that redundant operations, like
type errors, commonly flag correctness errors. We experi-
mentally test this idea by writing and applying four redun-
dancy checkers to the Linux operating system, finding many
errors. We then use these errors to demonstrate that re-
dundancies, even when harmless, strongly correlate with the
presence of traditional hard errors (e.g., null pointer derefer-
ences, unreleased locks). Finally we show that how flagging
redundant operations gives a way to make specifications “fail
stop” by detecting dangerous omissions.

Keywords
Extensible compilation, error detection.

General Terms
Reliability, Security, Verification.

Categories and Subject Descriptors
Software [Software Engineering]: Software/Program Verifica-
tion

1. INTRODUCTION
Programming languages have long used the fact that many

high-level conceptual errors map to low-level type errors.
This paper demonstrates the same mapping in a different
direction: many high-level conceptual errors also map to low-
level redundant operations. With the exception of a few styl-
ized cases, programmers are generally attempting to perform
useful work. If they perform an action, it was because they
believed it served some purpose. Spurious operations vio-
late this belief and are likely errors. For example, impossible
Boolean conditions can signal mistaken expressions; critical
sections without shared state can signal the use of the wrong

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2002/FSE-10, November 18–22, 2002, Charleston, SC, USA.
Copyright 2002 ACM 1-58113-514-9/02/0011 ...$5.00.

variable; variables written but not read can signal an unin-
tentionally lost result. At the least, these conditions signal
conceptual confusion, which we would also expect to corre-
late with hard errors – deadlocks, null pointer dereferences,
etc. – even for harmless redundancies.

We use redundancies to find errors in three ways: (1)
by writing checkers that automatically flag redundancies, (2)
using these errors to predict non-redundant errors (such as
null pointer dereferences), and (3) using redundancies to find
incomplete program specifications. We discuss each below.

We wrote four checkers that flagged potentially danger-
ous redundancies: (1) idempotent operations, (2) assignments
that were never read, (3) dead code, and (4) conditional
branches that were never taken. The errors found would
largely be missed by traditional type systems and checkers.
For example, as Section 2 shows, assignment of variables to
themselves can signal mistakes, yet such assignments will type
check in any language we know of.

Of course, some legitimate actions cause redundancies.
Defensive programming may introduce “unnecessary” opera-
tions for robustness; debugging code, such as assertions, can
check for “impossible” conditions; and abstraction bound-
aries may force duplicate calculations. Thus, to effectively
find errors, our checkers must separate such redundancies
from those induced by error.

We wrote our redundancy checkers in the xgcc extensible
compiler system [16], which makes it easy to build system-
specific static analyses. Our analyses do not depend on an
extensible compiler, but it does make it easier to prototype
and perform focused suppression of false positive classes.

We evaluated how effective flagging redundant operations
is at finding dangerous errors by applying the above four
checkers to the Linux operating system. This is a good test
since Linux is a large, widely-used source code base (we check
roughly 1.6 million lines of it). As such, it serves as a known
experimental base. Also, because it has been written by many
people, it is representative of many different coding styles and
abilities.

We expect that redundancies, even when harmless, strongly
correlate with hard errors. Our relatively uncontroversial hy-
pothesis is that confused or incompetent programmers tend
to make mistakes. We experimentally test this hypothesis by
taking a large database of hard Linux errors that we found in
prior work [8] and measuring how well redundancies predict
these errors compared to chance. In our tests, files that have
redundancy errors are roughly 45% to 100% more likely to

have hard errors compared to files drawn by chance. This
difference holds across the different types of redundancies.

Finally, we discuss how traditional checking approaches
based on annotations or specifications can use redundancy
checks as a safety net to find missing annotations or incom-
plete specifications. Such specification mistakes commonly
map to redundant operations. For example, assume we have
a specification that binds shared variables to locks. A missed
binding will likely lead to redundancies: a critical section with
no shared state and locks that protect no variables. We can
flag such omissions because we know that every lock should
protect some shared variable and that every critical section
should contain some shared state.

This paper makes four contributions:

1. The idea that redundant operations, like type errors,
commonly flag correctness errors.

2. Experimentally validating this idea by writing and ap-
plying four redundancy checkers to real code. The er-
rors found often surprised us.

3. Demonstrating that redundancies, even when harmless,
strongly correlate with the presence of traditional hard
errors.

4. Showing how redundancies give a way to make specifi-
cations “fail stop” by detecting dangerous omissions.

The main caveat with our approach is that the errors we
count might not be errors, since we were examining code
we did not write. To counter this, we only diagnosed errors
that we were reasonably sure about. We have had close to
two years of experience with Linux bugs, so we have reason-
able confidence that our false positive rate of bugs that we
diagnose, while non-zero, is probably less than 5%.

Section 2 through Section 5 present our four checkers.
Section 6 correlates the errors they found with traditional
hard errors. Section 7 discusses how to check for complete-
ness using redundancies. Section 8 discusses related work.
Finally, Section 9 concludes.

2. IDEMPOTENT OPERATIONS

System Bugs Minor False
Linux 2.4.5-ac8 7 6 3

Table 1: Bugs found by the idempotent checker in Linux
version 2.4.5-ac8.

The checker in this section flags idempotent operations
where a variable is: (1) assigned to itself (x = x), (2) divided
by itself (x / x), (3) bitwise or’d with itself (x | x) or (4)
bitwise and’d with itself (x & x). The checker is the simplest
in the paper (it requires about 10 lines of code in our system).
Even so, it found several interesting cases where redundancies
signal high-level errors. Four of these were apparent typos in
variable assignments. The clearest example was the following
code, where the programmer makes a mistake while copying
structure sa to structure da:

/* 2.4.1/net/appletalk/aarp.c:aarp_rcv */

else { /* We need to make a copy of the entry. */

da.s_node = sa.s_node;

da.s_net = da.s_net;

This is a good example of how redundant errors catch cases
that type systems miss. This code — an assignment of a
variable to itself — will type check in all languages we know
of, yet clearly contains an error. Two of the other errors
were caused by integer overflow (or’ing an 8-bit variable by a
constant that only had bits set in the upper 16 bits). The final
one was caused by an apparently missing conversion routine.
The code seemed to have been tested only on a machine
where the conversion was unnecessary, which prevented the
tester from noticing the missing routine.

The minor errors were operations that seemed to follow
a nonsensical but consistent coding pattern, such as adding 0
to a variable for typographical symmetry with other non-zero
additions.

Curiously, each of the three false positives was annotated
with a comment explaining why the redundant operation was
being done. This gives evidence for our belief that program-
mers regard redundant operations as somewhat unusual.

Macros are the main source of potential false positives.
They represent logical actions that may not map to a concrete
action. For example, networking code contains many calls
of the form “x = ntohs(x)” used to reorder the bytes in
variable x in a canonical “network order” so that a machine
receiving the data can unpack it appropriately. However, on
machines on which the data is already in network order, the
macro will expand to nothing, resulting in code that will
simply assign x to itself. To suppress these false positives, we
modified the preprocessor to note which lines contain macros
— we simply ignore errors on these lines.

3. REDUNDANT ASSIGNMENTS

System Bugs False Uninspected
Linux 2.4.5-ac8 129 26 1840
xgcc 13 1 0

Table 2: Bugs found by the redundant assignment checker
in Linux version 2.4.5-ac8 and the xgcc system used in this
paper. There were 1840 uninspected errors for variables as-
signed but never used in Linux — we expect a large number
of these will be actual errors given the low number of false
positives in our inspected results.

The checker in this section flags cases where a value as-
signed to a variable is not subsequently used. The checker
tracks the lifetime of variables using a simple global analy-
sis. At each assignment it follows the variable forward on all
paths. It emits an error message if the variable is read on
no path before either exiting scope or being assigned another
value. As we show, in many cases such lost values signal real
errors, where control flow followed unexpected paths, results
that were computed were not returned, etc.

The checker finds thousands of redundant assignments
in a system the size of Linux. Since it was so effective, we
minimized the chance of false positives by radically restricting
the variables it would follow to non-global variables that were
not aliased in any way.

Most of the checker code deals with differentiating the
errors into three classes, which it ranks in the following order:

1. Variables assigned values that are not read. Empirically,

these errors tend to be the most serious, since they flag
unintentionally lost results.

2. Variables assigned a non-constant that is then overwrit-
ten without being read. These are also commonly er-
rors, but tend to be less severe. False positives in this
class tend to come from assigning a return value from
a function call to a dummy variable that is ignored.

3. Variables assigned a constant and then reassigned other
values without being read. These are frequently due
to defensive programming, where the programmer al-
ways initializes a variable to some safe value (most com-
monly: NULL, 0, 0xffffffff, and -1) but does not read
it before use. We track the value and emit it when re-
porting the error so that messages using a common
defensive value can be easily suppressed.

Suppressing false positives. As with many redundant
checkers, macros and defensive programming cause most false
positives. To minimize the impact of macros, the checker
does not track variables killed or produced by macros. Its
main remaining vulnerability are to values assigned and then
passed to debugging macros that are turned off:

x = foo->bar;

DEBUG("bar = %d", x);

Typically there are a small number of such macros, which
we manually turn back on.

We use ranking to minimize the impact of defensive pro-
gramming. Redundant operations that can be errors when
done within the span of a few lines can be robust program-
ming practice when separated by 20. Thus we rank errors
based on (1) the line distance between the assignment and
reassignment and (2) the number of conditions on the path.
Close errors are most likely; farther errors become more ar-
guably defensive programming.

The errors. This checker found more errors than all the
other checkers we have written combined. There were two
interesting error patterns that showed up as redundant as-
signments: (1) variables whose values were (unintentionally)
discarded and (2) variables whose values were not used be-
cause of surprising control flow (e.g., an unexpected return).

Figure 1 shows a representative example of the first pat-
tern. Here, if the function signal pending returns true (a
signal is pending to the current process), an error code is
set (err = -ERESTARTSYS) and the code breaks out of the
enclosing loop. The value in err must be passed back to
the calling application so that it will retry the system call.
However, the code always returns 0 to the caller, no matter
what happens inside the loop. This will lead to an insidious
error: the code usually works but, occasionally, it will abort
but return a success code, causing the client to assume the
operation happened.

There were numerous similar errors on the caller side,
where the result of a function was assigned to a variable, but
then ignored rather than being checked. In both of these
cases, the fact that logically the code contains errors is readily
flagged by looking for variables assigned but not used.

The second class of errors comes from calculations that
are aborted by unexpected control flow. Figure 2 gives one ex-
ample: here all paths through a loop end in a return, wrongly

/* 2.4.1/net/decnet/af_decnet.c:dn_wait_run */

do {

...

if (signal_pending(current)) {

err = -ERESTARTSYS; /* BUG: lost value */

break;

}

SOCK_SLEEP_PRE(sk)

if (scp->state != DN_RUN)

schedule();

SOCK_SLEEP_POST(sk)

} while(scp->state != DN_RUN);

return 0;

Figure 1: Lost return value caught by flagging the redundant
assignment to err.

/* 2.4.1/net/atm/lec.c:lec_addr_delete: */

for(entry=priv->lec_arp_tables[i];

entry != NULL;

entry=next) { /* BUG: never reached */

next = entry->next;

if (...) {

lec_arp_remove(priv->lec_arp_tables, entry);

kfree(entry);

}

lec_arp_unlock(priv);

return 0;

}

Figure 2: A single-iteration loop caught by flagging the re-
dundant assignment next = entry→next. The assignment
appears to be read in the loop iteration statement (entry =

next) but it is dead code, since the loop always exits after a
single iteration. The logical result will be that if the entry the
loop is trying to delete is not the first one in the list, it will
not be deleted.

aborting the loop after a single iteration. This error is caught
by the fact that an assignment used to walk down a linked
list is never read because the loop iterator that would do so is
dead code. Figure 3 gives a variation on the theme of unex-
pected control flow. Here an if statement has an extraneous
statement terminator at its end, making the subsequent return
to be always taken. In these cases, a coding mistake caused
“dangling assignments” that were not used. This fact allows
us to flag such bogus structures even when we do not know
how control flows in the code. The presence of these errors
led us to write the dead-code checker in the next section.

Reassigning values is typically harmless, but it does signal
fairly confused programmers. For example:

/* 2.4.5-ac8/drivers/net/wan/sdla_x25.c:

alloc_and_init_skb_buf */

struct sk_buff *new_skb = *skb;

new_skb = dev_alloc_skb(len + X25_HRDHDR_SZ);

Where new skb is assigned the value *skb but then imme-
diately reassigned another allocated value. A different case
shows a potential confusion about how C’s iteration works:

/* 2.4.1/drivers/scsi/scsi.c: */

SCnext = SCpnt->bh_next;

/* 2.4.5-ac8/fs/ntfs/unistr.c:ntfs_collate_names */

for (cnt = 0; cnt < min(name1_len, name2_len); ++cnt) {

c1 = le16_to_cpu(*name1++);

c2 = le16_to_cpu(*name2++);

if (ic) {

if (c1 < upcase_len)

c1 = le16_to_cpu(upcase[c1]);

if (c2 < upcase_len)

c2 = le16_to_cpu(upcase[c2]);

}

/* [META] stray terminator! */

if (c1 < 64 && legal_ansi_char_array[c1] & 8);

return err_val;

if (c1 < c2)

return -1;

...

Figure 3: Catastrophic return caught by the redundant assign-
ment to c2. The last conditional is accidentally terminated
because of a stray statement terminator (“;”) at the end of
the line, causing the routine to always return err val.

/* 2.4.1/net/ipv6/raw.c:rawv6_getsockopt */

switch (optname) {

case IPV6_CHECKSUM:

if (opt->checksum == 0)

val = -1;

else

val = opt->offset;

/* BUG: always falls through */

default:

return -ENOPROTOOPT;

}

len=min(sizeof(int),len);

...

Figure 4: Unintentional switch “fall through” causing the code
to always return an error. This maps to the low-level redun-
dancy that the value assigned to val is never used.

for (; SCpnt; SCpnt = SCnext) {

SCnext = SCpnt->bh_next;

Where the variable SCnext is assigned and then immediately
reassigned in the loop. The logic behind this decision remains
unclear.

The most devious error. A few of the values reassigned
before being used were suspicious lost values. One of the
worst (and most interesting) was from a commercial system
which had the equivalent of the following code:

c = p->buf[0][3];

c = p->buf[0][3];

At first glance this seems like an obvious copy-and-paste
error. It turned out that the redundancy flags a much more
devious error. The array buf actually pointed to a “memory
mapped” region of kernel memory. Unlike normal memory,
reads and writes to this memory cause the CPU to issue
I/O commands to a hardware device. Thus, the reads are not
idempotent, and the two of them in a row rather than just one
can cause very different results to happen. However, the above
code does have a real (but silent) error — in the variant of
C that this code was written, pointers to memory mapped IO

System Bugs False
Linux 2.4.5-ac8 66 26

Table 3: Bugs found by the dead code checker on Linux
version 2.4.5-ac8.

must be declared as “volatile.” Otherwise the compiler is free
to optimize duplicate reads away, especially since in this case
there were no pointer stores that could change their values.
Dangerously, in the above case buf was declared as a normal
pointer rather than a volatile one, allowing the compiler to
optimize as it wished. Fortunately the error had not been
triggered because the GNU C compiler that was being used
had a weak optimizer that conservatively did not optimize
expressions that had many levels of indirection. However,
the use of a more aggressive compiler or later version gcc
could have caused this extremely difficult to track down bug
to surface.

4. DEAD CODE
The checker in this section flags dead code. Since pro-

grammers generally write code to run it, dead code catches
logical errors signaled by false beliefs that an impossible path
can execute.

The core of the dead code checker is a straightforward
mark-and-sweep algorithm. For each routine it (1) marks
all blocks reachable from the routine’s entry node and (2)
traverses all blocks in the routine, flagging any that are not
marked. It has three modifications to this basic algorithm.
First, it truncates all paths that reach functions that would
not return. Examples include “panic,” “abort” and “BUG”
which are used by Linux to signal a terminal kernel error
and reboot the system — code dominated by such calls can-
not run. Second, we suppress error messages for dead code
caused by constant conditions, such as

if(0)

printf("in foo");

since these frequently signaled code “commented out” by us-
ing a false condition. We also annotate error messages when
the code they flag is a single statement that contains a break
or return. These are commonly a result of defensive pro-
gramming. Finally, we suppress dead code caused by macros.

Despite its simplicity, dead code analysis found a high
number of clearly serious errors. Three of the errors caught
by the redundant assignment checker are also caught by the
dead code extension: (1) the single iteration loop in Figure 2,
(2) the mistaken statement terminator in Figure 3, and (3)
the unintentional fall through in Figure 4.

Figure 5 gives the most frequent copy-and-paste error.
Here the macro “pseterr” returns, but the caller does not
realize it. Thus, at all seven call sites that use the macro, there
is dead code after the macro that the client intended to have
executed.

Figure 6 gives another common error — a single-iteration
loop that always terminates because it contains an if-else state-
ment that breaks out of the loop on both paths. It is hard to
believe that this code was ever tested. Figure 7 gives a vari-
ation on this, where one branch of the if statement breaks

/* 2.4.1/drivers/char/rio/rioparam.c:RIOParam */

if (retval == RIO_FAIL) {

rio_spin_unlock_irqrestore(&PortP->portSem, flags);

pseterr(EINTR); /* BUG: returns */

func_exit();

return RIO_FAIL;

}

Figure 5: Unexpected return: The call pseterr is a macro
that returns its argument value as an error. Unfortunately, the
programmer does not realize this and inserts subsequent op-
erations, which are flagged by our dead code checker. There
were many other similar mistaken uses of the same macro.

out of the loop but the other uses C’s “continue” statement,
which skips the rest of the loop body. Thus, none of the code
at the end of the body can be executed.

/* 2.4.1/drivers/scsi/53c7,8xx.c:

return_outstanding_commands */

for (c = hostdata->running_list; c;

c = (struct NCR53c7x0_cmd *) c->next) {

if (c->cmd->SCp.buffer) {

printk ("...");

break;

} else {

printk ("Duh? ...");

break;

}

/* BUG: cannot be reached */

c->cmd->SCp.buffer =

(struct scatterlist *) list;

list = c->cmd;

if (free) {

c->next = hostdata->free;

hostdata->free = c;

}

Figure 6: Broken loop: the first if-else statement of the loop
contains a break on both paths, causing the loop to always
abort, without ever executing the subsequent code it contains.

5. REDUNDANT CONDITIONALS
The checker in this section flags redundant branch con-

ditionals from: (1) branch statements (if, while, for, etc)
with non-constant conditionals that always evaluate to either
true or false; (2) switch statements with impossible case’s.
Both cases are a result of logical inconsistency in the program
and are therefore likely to be errors.

The checker is based on the false-path pruning (FPP) fea-
ture in the xgcc system. FPP was originally designed to prune
away false positives arising from infeasible paths. It symbol-
ically evaluates variable assignments and comparisons, either
to constants (e.g. x = 10, x < 100) or to other variables
(e.g. y = x, x < y), using a simple congruence closure al-
gorithm [11]. It will stop the checker from checking the
current execution path as soon as it detects a logical conflict.

With FPP, the checker is implemented using a simple
mark-and-sweep algorithm. For each routine, it explores all
feasible execution paths and marks branches (as opposed to

/* 2.4.5-ac8/net/decnet/dn_table.c:

dn_fib_table_lookup */

for(f = dz_chain(k, dz); f; f = f->fn_next) {

if (!dn_key_leq(k, f->fn_key))

break;

else

continue;

/* BUG: cannot be reached */

f->fn_state |= DN_S_ACCESSED;

if (f->fn_state&DN_S_ZOMBIE)

continue;

if (f->fn_scope < key->scope)

continue;

Figure 7: Useless loop body: similarly to Figure 6 this loop
has a broken if-else statement. One branch aborts the loop,
the other uses C’s continue statement to skip the body and
begin another iteration.

/* 2.4.1/drivers/net/arcnet/arc-rimi.c:

arcrimi_found */

/* reserve the irq */ {

if (request_irq(dev->irq, &arcnet_interrupt ...))

BUGMSG(D_NORMAL,

"Can’t get IRQ %d!\n", dev->irq);

return -ENODEV;

}

Figure 8: Unexpected return: misplaced braces from the in-
sertion of a debugging statement causes control to always
return.

basic blocks in Section 4) visited along the way. Then it
takes the set of unmarked branches and flags conditionals
associated with them as redundant.

The checker was able to find hundreds of redundant con-
ditionals in Linux 2.4.1. The main source of false positives
arises from the following two forms of macros: (1) those with
embedded conditionals, and (2) constant macros that are used
in conditional statements (e.g. “if (DEBUG) {...},” where
DEBUG is defined to be 0). After suppressing those, we are
left with three major classes of about 200 problematic cases,
which we describe below.

The first class of errors is the least serious of the three
that we characterize as “overly cautious programming style.”
This includes cases where the programmer checks the same
condition multiple times within very short program distances.
We believe this could be an indication of a novice program-
mer and the conjecture is supported by the statistical analysis
described in section 6.

Figure 9 shows a redundant check of the above type from
Linux 2.4.1. Although it is almost certainly harmless, it shows
the programmer has a poor grasp of the code. One might be
willing to bet on the presence of a few surrounding bugs.

Figure 10 shows a more problematic case. As one can
see, the else branch of the second if statement will never
be taken, because the first if condition is weaker than the
negation of the second. Interestingly, the function returns
different error codes for essentially the same error, indicating

/* 2.4.1/drivers/media/video/cpia.c:cpia_mmap */

if (!cam || !cam->ops)

return -ENODEV;

/* make this _really_ smp-safe */

if (down_interruptible(&cam->busy_lock))

return -EINTR;

if (!cam || !cam->ops) /* REDUNDANT! */

return -ENODEV;

Figure 9: Overly cautious programming style: the second
check of (!cam || !cam->ops) is redundant.

a possibly confused programmer.

/* 2.4.1/drivers/net/wan/sbni.c:sbni_ioctl */

slave = dev_get_by_name(tmpstr);

if(!(slave && slave->flags & IFF_UP &&

dev->flags & IFF_UP))

{

... /* print some error message, back out */

return -EINVAL;

}

if (slave) { ... }

/* BUG: !slave is impossible */

else {

... /* print some error message */

return -ENOENT;

}

Figure 10: Overly cautious programming style. The check of
slave is guaranteed to be true and also notice the difference
in return value.

The second class of errors we catch are again seemingly
harmless, but when we examine them carefully, we find se-
rious errors around them. With some guesswork and cross-
referencing, we assume the while loop in Figure 11 is trying
to recover from hardware errors encountered when reading
a network packet. But since the variable err is never up-
dated in the loop body, the condition (err != SUCCESS) is
always true and the loop body is never executed more than
once, which is nonsensical. This could signal a possible bug
where the author forgets to update err in the large chunk
of recovery code in the loop. This bug, if confirmed, could
be difficult to detect dynamically, because it is in the error
recovery code that is easy to miss in testing.

/* 2.4.1/drivers/net/tokenring/smctr.c:

smctr_rx_frame */

while((status = tp->rx_fcb_curr[queue]

->frame_status)

!= SUCCESS)

{

err = HARDWARE_FAILED;

... /* large chunk of apparent recovery code,

with no updates to err */

if (err != SUCCESS)

break;

}

Figure 11: Redundant conditional that suggests a serious pro-
gram error.

The third class of errors are clearly serious bugs. Fig-
ure 12 shows an example detected by the redundant condi-
tional checker. As one can see, the second and third if state-
ments carry out entirely different actions on identical condi-
tions. Apparently, the programmer cut-and-pasted the con-
ditional without changing one of the two NODE LOGGED OUT

into a fourth possibility: NODE NOT PRESENT.

/* 2.4.1/drivers/fc/iph5526.c:

rscn_handler */

if ((login_state == NODE_LOGGED_IN) ||

(login_state == NODE_PROCESS_LOGGED_IN)) {

...

}

else

if (login_state == NODE_LOGGED_OUT)

tx_adisc(fi, ELS_ADISC, node_id,

OX_ID_FIRST_SEQUENCE);

else

/* BUG: redundant conditional */

if (login_state == NODE_LOGGED_OUT)

tx_logi(fi, ELS_PLOGI, node_id);

Figure 12: Redundant conditionals that signal errors: a con-
ditional expression being placed in the else branch of another,
identical one

/* 2.4.1/drivers/scsi/qla1280.c:

qla1280_putq_t */

srb_p = q->q_first;

while (srb_p)

srb_p = srb_p->s_next;

if (srb_p) { /* BUG: this branch is never taken*/

sp->s_prev = srb_p->s_prev;

if (srb_p->s_prev)

srb_p->s_prev->s_next = sp;

else

q->q_first = sp;

srb_p->s_prev = sp;

sp->s_next = srb_p;

} else {

sp->s_prev = q->q_last;

q->q_last->s_next = sp;

q->q_last = sp;

}

Figure 13: A serious error in a linked list insertion imple-
mentation: srb p is always null after the while loop (which
appears to check the wrong Boolean condition).

Figure 13 shows another serious error. One can see that
the author intended to insert an element pointed to by sp into
a doubly-linked list with head q->q first, but the while

loop really does nothing other than setting srb p to NULL,
which is nonsensical. The checker detects this error by infer-
ring that the exit condition for the while loop conflicts with
the true branch of the ensuing if statement. The obvious
fix is to replace the while condition (srb p) with (srb p &&

srb p->next). This bug can be dangerous and hard to detect,
because it quietly discards everything that was in the original
list and constructs a new one with sp as the only element
in it. As a matter of fact, the same bug is still present in

the latest 2.4.19 release of the Linux kernel source as of this
writing.

6. PREDICTING HARD ERRORS WITH RE-
DUNDANCIES

In this section we show the correlation between redundant
errors and hard bugs that can crash a system. The redun-
dant errors come from the previous four sections. The hard
bugs were collected from Linux 2.4.1 with checkers described
in [8]. These bugs include use of freed memory, dereferences
of null pointers, potential deadlocks, unreleased locks, and
security violations (e.g., the use of an untrusted value as an
array index). We show that there is a strong correlation be-
tween these two error populations using a statistical technique
called the contingency table method [6]. Further, we show
that a file containing a redundant error is roughly 45% to
100% more likely to have a hard error than a file selected at
random. These results indicate that (1) files with redundant
errors are good audit candidates and (2) redundancy corre-
lates with confused programmers who will probably make a
series of mistakes.

6.1 Methodology
This subsection describes the statistical methods used to

measure the association between program redundancies and
hard errors. Our analysis is based the 2 × 2 contingency ta-
ble [6] method. It is a standard statistical tool for studying
the association between two different attributes of a popula-
tion. In our case, the population is the set of files we have
checked, and the two attributes are: (a) whether a file contains
redundancies, and (b) whether it contains hard errors.

In the contingency table approach, the sample population
is cross-classified into four categories based on two attributes,
say A and B, of the population. We obtain counts (oij) in
each category, and tabularize the result as follows:

B
A True False Totals

True o11 o12 n1·

False o21 o22 n2·

Totals n·1 n·2 n··

The values in the margin (n1·, n2·, n·1, n·2) are row and col-
umn totals, while n·· is the grand total. The null hypothesis
H0 of this test is that the A and B are mutually independent,
i.e. knowing A does not give us any additional information
about B. More precisely, if H0 holds, we are expecting that:

o11

o11 + o12
≈

o21

o21 + o22
≈

n·1

n·1 + n·2
.1.

We can then compute expected values (eij) for the four cells
in the table as follows:

eij =
ni·n·j

n··
1To see this is true, consider 100 white balls in an urn. We
first randomly draw 40 of them and put a red mark on them.
We put them back in the urn. Then we randomly draw
80 of them and put a blue mark on them. Obviously, we
should expect roughly 80% of the 40 balls with red marks
to have blue marks, as should we expect roughly 80% of the
remaining 60 balls without the red mark to have a blue mark.

We use a “chi-squared” test statistic [15]:

T =
∑

i,j∈{1,2}

(oij − eij)2

eij

to measure how far the observed values (oij) deviates from
the expected values (eij). Using the T statistic, we can derive
the the probability of observing oij if the null hypothesis H0

is true, which is called the p-value 2. The smaller the p-value,
the stronger the evidence against H0, thus the stronger the
correlation between attributes A and B.

6.2 Data acquisition and test results
In our previous work [8], we used the xgcc system to

check 2055 files in Linux 2.4.1 kernel. We had focused on se-
rious system crashing hard bug and were able to collect more
than 1800 serious hard bugs in 551 files. The types of bugs
we checked for included null pointer dereference, deadlocks,
and missed security checks. We use these bugs to represent
the class of serious hard errors, and derive correlation with
program redundancies.

We cross-classify the program files in the Linux kernel
into the following four categories and obtain counts in each:

1. o11: number of files with both redundancies and hard
errors.

2. o12: number of files with redundancies but not hard
errors.

3. o21: number of files with hard errors but not redundan-
cies.

4. o22: number of files with neither redundancies nor hard
errors.

We can then carry out the test described in section 6.1 for
the following three redundancy checkers: redundant assign-
ment checker, dead code checker, and redundant conditional
checker (the idempotent operation is excluded because of its
small sample size).

The result of the tests are given in Tables 4, 5, 6, and 7.
As we can see, the correlation between redundancies and hard
errors are extremely high, with p-values being approximately
0 in all four cases. It strongly suggests that redundancies
often signal confused programmers, and therefore are a good
predictor for hard, serious errors.

6.3 Predicting hard errors
In addition to correlation, we want to know how much

more likely it is that we will find a hard error in a file that
has one or more redundant operations. More precisely, let
E be the event that a given source file contains one or more
hard errors, and R be the event that it contains one or more
forms of redundant operations, we can compute a confidence
interval for T′ = (P(E|R) − P(E))/P(E), which is a measure
of how much more likely we are to find hard errors in a file
given program redundancies.
2Technically, under H0, T has a χ

2 distribution with one de-
gree of freedom. p-value can be looked up in the cumulative
distribution table of the χ

2
1 distribution. For example, if T is

larger than 4, the p-value will go below 5%.

Redundant Hard Bugs
Assignments Yes No Totals

Yes 345 435 780
No 206 1069 1275

Totals 551 1504 2055

T = 194.37, p-value = 0.00

Table 4: Contingency table: Redundant Assignments vs. Hard
Bugs. There are 345 files with both error types, 435 files with
an assign error and no hard bugs, 206 files with a hard bug
and no assignment error, and 1069 files with no bugs of
either type. A T-statistic value above four gives a p-value of
less than .05, which strongly suggests the two events are not
independent. The observed T value of 194.37 gives a p-value
of essentially 0, noticeably better than this standard threshold.
Intuitively, the correlation between error types can be seen in
that the ratio of 345/435 is considerably larger than the ratio
206/1069 — if the events were independent, we expect these
two ratios to be close.

Hard Bugs
Dead Code Yes No Totals

Yes 133 135 268
No 418 1369 1787

Totals 551 1504 2055

T = 81.74, p-value = 0.00

Table 5: Contingency table: Dead code vs. Hard Bugs

The prior probability of hard errors is computed as fol-
lows:

P(E) =
Number of files with hard errors

Total number of files checked
= 551/2055 = 0.2681

We tabularize the conditional probabilities and T′ values
in Table 8. (Again, we excluded the idempotent operation
checker because of its small bug sample.) As shown in ta-
ble, given any form of redundant operation, it is roughly
45% − 100% more likely we will find an error in that file
than otherwise. Furthermore, redundancies even predict hard
errors across time: we carried out the same test between re-
dundancies found in Linux 2.4.5-ac8 and hard errors in 2.4.1
(roughly a year older) and found similar results.

7. FAIL-STOP SPECIFICATION
This section describes how to use redundant code actions

to find several types of specification errors and omissions.
Often program specifications give extra information that allow
code to be checked: whether return values of routines must be
checked against null, which shared variables are protected by
which locks, which permission checks guard which sensitive
operations, etc. A vulnerability of this approach is that if a
code feature is not annotated or included in the specification,
it will not be checked. We can catch such omissions by
flagging redundant operations. In the above cases, and in
many others, at least one of the specified actions makes little

Redundant Hard Bugs
Conditionals Yes No Totals

Yes 75 79 154
No 476 1425 1901

Totals 551 1504 2055

T = 40.65, p-value = 0.00

Table 6: Contingency table: Redundant Conditionals vs. Hard
Bugs

Hard Bugs
Aggregate Yes No Totals

Yes 372 573 945
No 179 931 1110

Totals 551 1504 2055

T = 140.48, p-value = 0.00

Table 7: Contingency table: Program Redundancies (Aggre-
gate) vs. Hard Bugs

sense in isolation — critical sections without shared states are
pointless, as are permission checks that do not guard known
sensitive actions. Thus, if code does not intend to do useless
operations, then such redundancies will happen exactly when
checkable actions have been missed. (At the very least we
will have caught something pointless that should be deleted.)
We sketch four examples below, and close with a checker that
uses redundancy to find when it is missing checkable actions.

Detecting omitted null annotations. Tools such as
LCLint [12] let programmers annotate functions that can re-
turn a null pointer with a “null” annotation. The tool emits
an error for any unchecked use of a pointer returned from
a null routine. In a real system, many functions can re-
turn null, making it easy to forget to annotate them all. We
can catch such omissions using redundancy. We know only
the return value of null functions should be checked. Thus,
a check on a non-annotated function means that either the
function: (1) should be annotated with null or (2) the func-
tion cannot return null and the programmer has misunder-
stood the interface.

Finding missed lock-variable bindings. Data race detec-
tion tools such as Warlock [20] let users explicitly bind locks
to the variables they protect. The tool flags when annotated
variables are accessed without their lock held. However, lock-
variable bindings can easily be forgotten, causing the variable
to be (silently) unchecked. We can use redundancy to catch
such mistakes. Critical sections must protect some shared
state: flagging those that do not will find either (1) useless
locking (which should be deleted for good performance) or
(2) places where a shared variable was not annotated.

Missed “volatile” annotations. As described in Section 4,
in C, variables with unusual read/write semantics must be
annotated with the “volatile” type qualifier to prevent the
compiler from doing optimizations that are safe on normal
variables, but incorrect on volatile ones, such as eliminating
duplicate reads or writes. A missing volatile annotation is
a silent error, in that the software will usually work, but only

R R ∧ E R P(E|R) P(E|R) − P(E) Standard Error
95% Confidence
Interval for T′

Assign 353 889 0.3971 0.1289 0.0191 48.11% ± 13.95%
Dead Code 30 56 0.5357 0.2676 0.0674 99.82% ± 49.23%

Conditionals 75 154 0.4870 0.2189 0.0414 81.65% ± 30.28%
Aggregate 372 945 0.3937 0.1255 0.0187 46.83% ± 13.65%

Table 8: Program files with redundancies are roughly 50% more likely to contain hard errors

occasionally give incorrect errors. As shown, such omissions
can be detected by flagging redundant operations (reads or
writes) that do not make sense for non-volatile variables.

Missed permission checks. A secure system must guard
sensitive operations (such as modifying a file or killing a pro-
cess) with permission checks. A tool can automatically catch
such mistakes given a specification of which checks protect
which operations. The large number of sensitive operations
makes it easy to forget a binding. As before, we can use re-
dundancy to find such omissions: assuming programmers do
not do redundant permission checks, then finding permission
check that does not guard a known sensitive operation signals
an incomplete specification.

7.1 Case study: Finding missed security holes
In a separate paper [3] we describe a checker that found

operating system security holes caused when an integer read
from untrusted sources (network packets, system call param-
eters) was passed to a trusting sink (array indices, memory
copy lengths) without being checked against a safe upper and
lower bound. A single violation can let a malicious attacker
take control of the entire system. Unfortunately, the checker
is vulnerable to omissions. An omitted source means the
checker will not track the data produced. An omitted sink
means the checker will not flag when unsanitized data reaches
the sink.

When implementing the checker we used the ideas in
this section to detect such omissions. Given a list of known
sources and sinks, the normal checking sequence is: (1) the
code reads data from an unsafe source, (2) checks it, and (3)
passes it to a trusting sink. Assuming programmers do not
do gratuitous sanitization, then a missed sink can be detected
by flagging when code does steps (1) and (2), but not (3).
Reading a value from a known source and sanitizing it implies
the code believes the value will reach a dangerous operation.
If the value does not reach a known sink, we have likely
missed one. Similarly, we could (but did not) infer missed
sources by doing the converse of this analysis: flagging when
the OS sanitizes data we do not think is tainted and then
passes it to a trusting sink.

The analysis found roughly 10 common uses of sanitized
inputs in Linux 2.4.6 [3]. Nine of these uses were harmless;
however one was a security hole. Unexpectedly, this was not
from a specification omission. Rather, the sink was known,
but our inter-procedural analysis had been overly simplistic,
causing us to miss the path to it. The fact that redundancy
flags errors both in the specification and in the tool itself was
a nice surprise.

8. RELATED WORK
Two existing types of analysis have focused on redundant

operations: optimizing compilers and “anomoly detection”
work.

Optimizing compilers commonly do dead-code elimina-
tion and common-subexpression elimination [1] which re-
move redundancies to improve performance. One contribu-
tion of our work is the realization that these analyses have
been silently finding errors since their invention. While our
analyses are closely mirror these algorithms at their core, they
have several refinements. First, we operate on a higher-level
representation than a typical optimizer since a large number
of redundant operations are introduced due to the compila-
tion of source constructs to the intermediate representation.
Second, in order to preserve semantics of the program, com-
piler optimizers have to be conservative in its analysis. In
contrast, since our goal is to find possible errors, it is perfectly
reasonable to flag a redundancy even if we are only 95% sure
about its legitimacy. In fact, we report all suspicious cases
and sort in order of a confidence heuristic (e.g. distance be-
tween redundancies, etc) in the report. Finally, the analysis
tradeoffs we make differ. For example, we use a path-sensitive
algorithm to suppress false paths; most optimizers omit path-
sensitive analyses because their time complexity outweighs
their benefit.

The second type of redundant analysis includes checking
tools. Fosdick and Osterweil first applied data flow “anomaly
detection” techniques in the context of software reliability. In
their DAVE system [18], they used a depth first search algo-
rithm to detect a fixed set of variable def-use type of anoma-
lies such as uninitialized read, double definition, etc. Static
approaches like this [13, 14, 18] are often path-insensitive,
and therefore could report bogus errors from infeasible paths.

Dynamic techniques [17, 7] instruments the program and
detect anomalies that arise during execution. However, dy-
namic approaches are weaker in that they can only find errors
on executed paths. Further the run-time overhead and diffi-
culty in instrumenting operating systems limits the usage of
this approach.

The dynamic system most similar to our work is Huang [17].
He discusses a checker similar to the assignment checker in
Section 3. It tracks the lifetime of variables using a simple
global analysis. At each assignment it follows the variable
forward on all paths. It gives an error if the variable is read
on no path before either exiting scope or being assigned an-
other value. However, no experimental results were given.
Further, because it is dynamic it seems predisposed to report
large numbers of false positives in the case where a value is
not read on the current executed path but would be used on
some other (non-executed) path.

Other tools such as lint, LCLint [12], or the GNU C
compiler’s -Wall option warn about unused variables and
routines and ignored return values. While these have long
found redundancies in real code (we use them ourselves
daily), these redundancies have been commonly viewed as
harmless stylistic issues. Evidence for this perception is that
to the best of our knowledge the many recent error check-
ing projects focus solely on hard errors such as null pointer
dereferences or failed lock releases, rather than redundancy
checking [4, 10, 5, 9, 2, 19, 21]. A main contribution of
this paper is showing that redundancies signal real errors and
experimentally measuring how well this holds.

9. CONCLUSION
This paper explored the hypothesis that redundancies,

like type errors, flag higher-level correctness mistakes. We
evaluated the approach using four checkers which we applied
to the Linux operating system. These simple analyses found
many surprising (to us) error types. Further, they correlated
well with known hard errors: redundancies seemed to flag
confused or poor programmers who were prone to other error
types. These indicators could be used to decide where to audit
a system.

10. ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers for their

helpful comments. This work was supported by NFS award
0086160 and by DARPA contract MDA904-98-C-A933.

11. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley,
Reading, Massachusetts, 1986.

[2] A. Aiken, M. Faehndrich, and Z. Su. Detecting races in
relay ladder logic programs. In Proceedings of the 1st
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, April 1998.

[3] K. Ashcraft and D. Engler. Using programmer-written
compiler extensions to catch security holes. In To
appear in IEEE Symposium on Security and Privacy
2002, 2002.

[4] T. Ball and S.K. Rajamani. Automatically validating
temporal safety properties of interfaces. In SPIN 2001
Workshop on Model Checking of Software, May 2001.

[5] W.R. Bush, J.D. Pincus, and D.J. Sielaff. A static
analyzer for finding dynamic programming errors.
Software: Practice and Experience, 30(7):775–802, 2000.

[6] G. Casella and R. L. Berger. Statistical Inference.
Wadsworth Group, Pacific Grove, CA, 2002.

[7] F. T. Chan and T. Y. Chen. Aida–a dynamic data flow
anomaly detection system for pascal programs.
Software: Practice and Experience, 17(3):227–239,
March 1987.

[8] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler.
An empirical study of operating systems errors. In
Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles, 2001.

[9] R. DeLine and M. Fahndrich. Enforcing high-level
protocols in low-level software. In Proceedings of the
ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation, June 2001.

[10] D. L. Detlefs. An overview of the extended static
checking system. In Proceedings of the First Workshop

on Formal Methods in Software Practice, pages 1–9,
January 1996.

[11] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on
the common subexpression problem. Journal of the
ACM, 27(4):758–771, October 1980.

[12] D. Evans, J. Guttag, J. Horning, and Y. M. Tan. LCLint:
A tool for using specifications to check code. In
Proceedings of the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, December 1994.

[13] I. R. Forman. An algebra for data flow anomaly
detection. In Proceedings of the 7th international
conference on Software engineering, pages 278–286,
1984.

[14] L. D. Fosdick and L. J. Osterweil. Data flow analysis in
software reliability. ACM Computing Surveys, 8(3):305 –

330, September 1976.
[15] D. Freedman, R. Pisani, and R. Purves. Statistics. W.W.

Norton, third edition edition, 1998.
[16] S. Hallem, B. Chelf, Y. Xie, and D.R. Engler. A system

and language for building system-specific, static
analyses. To appear in PLDI 2002.

[17] J. C. Huang. Detection of data flow anomaly through
program instrumentation. IEEE Transactions on
Software Engineering, 5(3):226–236, May 1979.

[18] L. J. Osterweil and L. D. Fosdick. Dave–a validation
error detection and documentation system for fortran
programs. Software: Practice and Experience,
6(4):473–486, December 1976.

[19] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. E. Anderson. Eraser: A dynamic data race detector
for multithreaded programming. ACM Transactions on
Computer Systems, 15(4):391–411, 1997.

[20] N. Sterling. WARLOCK - a static data race analysis
tool. In USENIX Winter, pages 97–106, 1993.

[21] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun
vulnerabilities. In The 2000 Network and Distributed
Systems Security Conference. San Diego, CA, February
2000.

