RacerX: Effective, Static Detection of Race Conditions and Deadlocks

Dawson Engler and Ken Ashcraft
Computer Systems Laboratory
Stanford University
Stanford, CA 94305, U.S.A.

Abstract

This paper describes RacerX, a static tool that uses flow-sensitive, interprocedural analysis to detect both race conditions and deadlocks. It is explicitly designed to find errors in large, complex multithreaded systems. It aggressively infers checking information such as which locks protect which operations, which code contexts are multithreaded, and which shared accesses are dangerous. It tracks a set of code features which it uses to sort errors both from most to least severe. It uses novel techniques to counter the impact of analysis mistakes. The tool is fast, requiring between 2-14 minutes to analyze a 1.8 million line system. We have applied it to Linux, FreeBSD, and a large commercial code base, finding serious errors in all of them.

Keywords

Race detection, deadlock detection, program checking.

General Terms

Reliability, Verification.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification—reliability, validation; D.4.5 [Operating systems]: Reliability—verification

1 Introduction

The difficulty of finding data races and deadlocks is well known. Detecting such errors with testing is hard since they often depend on intricate sequences of low-probability events. This makes them sensitive to timing dependencies, workloads, the presence or absence of print statements, compiler options, or slight differences in memory models. This sensitivity increases the risk that errors will elude in-house regression tests yet make grand entrances when software is released to thousands of users. Further, even if a test case happens to trigger an error it can be difficult to tell that it has happened. Data races in particular are hard to observe since often they quietly violate data structure invariants rather than cause immediate crashes. The effects of these violations only manifest millions of cycles after the error occurred, making it hard to trace back to the root cause.

Because of these problems, many approaches have been developed to catch data races (deadlocks have received less attention). Language-level approaches attempt to simplify concurrency control by providing higher-level constructs that disallow uses that are error-prone. The most successful such effort are monitor-based primitives, which showed up early in systems programming [23] and have recently been incorporated in such languages as Java [18]. Other languages allow programmers to statically bind shared variables to the locks that protect them [9]. However, while languages can ameliorate some of the complexity of concurrency, they do not eliminate its problems. Common errors include simply not protecting shared data consistently, or using too-small critical sections to do so (such that a violated invariant is visible to other threads), or having locking cycles. While recent efforts have made progress in addressing some of these limitations [1, 19], in the end a language approach to protection is rather drastic: all code must be written in the language to get any benefits from it, which prevents system builders from choosing any other language that may better suit their needs. Also, language definitions tend to be relatively slow moving, and thus difficult to adapt as analysis sophistication increases.

As a result, there have been many tools developed to attack the problem: dynamic, post-mortem, and static as well as model checking.

The best known dynamic tool is the Eraser data race detector [29], which dynamically tracks the set of locks held during program execution. Eraser uses these “locks” to compute the intersection of all locks held when accessing shared state. Shared locations that have an empty intersection are flagged as not being consistently protected. Since set intersection is commutative, Eraser can flag errors irrespective of actual thread interleavings. Choi et al [7] have since improved upon Eraser. Most significantly, they incorporate static analysis to remove unnecessary checks from the runtime analysis. This reduces the runtime analysis overhead from factors of 10 in the original Eraser to 13 - 42 percent. While they do find errors in real programs, it is unclear how effective their solution would be on a multi-million line operating system. Tools similar to Eraser have been developed for Cilk programs [6] and Java [7]. Prior tools [13, 25, 27] used a more chancy approach based on Lamport’s “happens before” relationship [22] that only checked the scheduling interleavings that occurred while testing.

The strength of dynamic tools is that by operating at runtime they only visit feasible paths and have accurate views of the values of variables and aliasing relations. However, dynamic monitoring has a heavy computational price, making it time consuming to run test cases and impossible on programs that have strict timing requirements. High overheads mean that while in theory such tools can compute arbitrarily precise information, in practice they are limited to what can be computed efficiently (both in time and space). Furthermore, their reliance on invasive instrumentation typically precludes their use on low-level code such as OS kernels, device drivers, and embedded systems, yet these are precisely the applications for which concurrency errors are the most dangerous. Finally, they can only find errors
on executed paths. Unfortunately, the number of feasible paths grows roughly exponentially with the size of code. This means that in practice testing can only exercise a tiny fraction of all feasible paths, leaving large systems with a residue of errors that could take weeks of execution to manifest. Even worse, much of the code in a large OS cannot be run. The bulk of such code resides in device drivers, and only a small fraction of these drivers can be tested at a typical site, since there is usually a small number of installed devices.

Post-mortem techniques [21] analyze log or trace data after the program has executed in a manner similar to dynamic techniques. While post-mortem analyses can affect performance less than dynamic analyses they suffer from the same limitation as dynamic techniques in that they can only find errors along executed paths.

Another way to find races is to use model checking [8], which is a formal verification technique that can be viewed as a more comprehensive form of dynamic testing. Model checking takes a simplified description of the code and exhaustively tests it on all inputs, using techniques to explore vast state spaces efficiently. It grew out of the need to explore the massive state spaces in hardware circuits, in part to find concurrency errors. It can provide help for finding software races as well. The Java PathFinder [2] and Bandera [10] projects use model checking to find errors in concurrent Java programs. The more specialized Toolset system was developed expressly for finding errors (including concurrency errors) in software-based multiprocessor cache coherence protocols [5]. Unfortunately, while model checking trumps testing in terms of state space exploration, getting a large system into a model checker is still rare. It requires significant effort both to specify the system (which can involve writing an abstract specification in a simplified programming language) and in scaling it down enough to execute in the model checked environment. Model checking an entire system the size of an OS is a long way off.

At the other end of the spectrum are static tools. While these have less precise local information, they can provide significant advantages for large code bases. Unlike a dynamic approach, static analysis does not require executing code: it immediately finds errors in obscure code paths that are difficult to reach with testing. Because they occur offline they can also do analysis impractical at runtime.

Two of the better known static race detection approaches are the Warlock tool for finding races in C programs [30] and the Extended Static Checking [12] (ESC) and ESC/Java [24] tools for Modula-3 and Java respectively, which use a theorem prover to find errors. Burrows et al [3] have since extended ESC/Java to check for stronger properties than unprotected variable accesses, which is the only error most prior tools flag. Unfortunately, in part because of lack of precision at compile time, both Warlock and ESC make heavy use of annotations to inject knowledge into the analysis and to reduce the number of false positives. Anecdotally this caused problems when applying Warlock to large code bases; sophisticated code requires many annotations just to suppress spurious errors. Initial measurements from Flanagan and Freund [15] give a more quantitative feel for the state-of-the-art in annotation-based race checking — they measured an overhead of one annotation per 50 lines of code at a cost of one programmer hour per thousand lines of code [15].

Applying this approach to a several million line operating system would require roughly 100 continuous days of annotations. While there has been work on partially automating the annotation process, current tools still require much manual assistance. For example, Houdini [16] was able to reduce the number of non-concurrency annotations needed on a 36,000 line program from 3679 to 2037.

We want to build tool that effectively finds data races and deadlocks in large, complex systems. The main rules of this game are as follows:

1. The tool should need no annotations other than an indication as to what functions are used to acquire and release locks. We want do not want users to have to invest time annotating large portions of their system. (Though, we do welcome any annotations they do provide.) In particular it must automatically infer checking information and have automatic ways of handling common false positives without user intervention.

2. The tool must be able to separate out potentially severe errors from the mass of violations it will find. In our experience the key problem with race detection is not the analysis needed to find errors — even simple analysis can find thousands of unprotected shared variable accesses in a large system. Rather, the hard problem is finding those errors that can actually cause problems.

3. The tool must minimize the impact of analysis mistakes and the false positives they cause. Empirically, if the first few errors a user inspects are false positives, or if there are too many false positives in a row, users will stop inspecting a tool's output and even discard the tool.

4. The tool must scale to millions of lines of code both in speed and in its ability to report complex errors.

Ideally, we want users to specify their system's locking functions, run the tool, and immediately find serious errors.

This paper describes RacerX, a static tool that uses flow-sensitive, interprocedural analysis to detect both race conditions and deadlocks. It aggressively infers checking information such as which locks protect which operations, which code contexts are multithreaded, and which shared accesses are dangerous. It tracks a set of code features which it uses to sort errors from most to least severe. It uses novel techniques to counter the impact of analysis mistakes — for example by selecting the results of those paths that are the most trustworthy, cross-checking decisions in multiple ways, and inferring which semaphores are being used for mutual exclusion as opposed to unilateral synchronization. The tool is fast, requiring somewhere between 2-14 minutes to analyze a 1.8 million line system. We have applied it to Linux, FreeBSD, and a large commercial code base. It has found serious errors in all of them.

The next section gives an overview of RacerX. Section 3 describes the generic lockset analysis. Sections 4—7 describe: the deadlock checker, how we make it more accurate, how we mitigate lockset mistakes, and our results. Section 8 describes the race detector and its results. Finally, Section 9 concludes.

2 Overview

This section gives an overview of RacerX and the systems we checked. At a high level, checking a system with RacerX involves five phases: (1) retargeting it to system-specific locking functions, (2) extracting a control flow graph from the checked system, (3) running the deadlock and race checkers over this flow graph, (4) post-processing and ranking the results, (5) inspection. The first and last phases are done by the user, the middle three by RacerX.
To retarget it to a new system, the user supplies a table specifying functions used to acquire and release locks as well as those that disable and enable interrupts (some might do both). These functions have a set of attributes attached that specify whether they: spin, block, or are “try locks” that return an error code rather than block, as well as whether the locks are recursive, are semaphores, or are read locks. RacerX uses this information to determine the effects of acquiring or releasing a given lock.

In addition, users may optionally provide an annotator routine that marks whether routines are single-threaded, multi-threaded, or interrupt handlers. These are used by the race detector to determine whether accesses need locks. Often systems have naming conventions that can be exploited during this process. This approach has a significant advantage over traditional annotations in that it only requires a small, fixed cost to get results.

In the end, RacerX annotation overhead is modest — typically less than 100 lines of annotations for over one million lines of checked code. For example, the lines of lock annotation and function annotation code for Linux is 18 and 31 lines, for FreeBSD is 30 and 36 lines, and for System X is 30 and 52 lines.

The extraction phase iterates over each file in the checked system and extracts a control flow graph (CFG) that is stored in a file. The CFG contains all function calls, uses of global variables, uses of parameter pointer variables and, optionally, uses of all local variables. Any concurrency operation — lock, unlock, interrupt disable and enable – is annotated. The CFG also includes the symbolic information for these objects, such as their names and types, whether a variable access is a read or write, whether a variable is a parameter, whether a function or variable is static, the line number of the enclosing statement, etc. To support flow-sensitive analysis, each statement has a set of pointers to all statements that immediately follow it in the program text.

The analysis phase reads the emitted flow graph files one at a time for the entire system into memory, constructs a linked whole-system CFG, and then traverses it checking for deadlocks or races. Functions are linked first within their containing file and then globally. The resultant graph will be cyclic if the code contains recursion or loops. The CFG potentially has many different roots, which are functions that have no callers. A typical OS will have many roots, one for each system call.

Given the set of roots, the analysis phase iterates over each and does a flow-sensitive, depth-first, interprocedural traversal of the CFG, tracking the set of locks held at any point. This lockset is similar to that used previously in Eraser [29] and Warlock [30]. At each program statement, the race detection or deadlock checkers are passed the current statement, the current lockset, and other information, which they use to emit error messages and statistics used during the final inspection phase. Since there may be exponentially many paths through this graph, we cache analysis results so that we do not have to re-analyze parts of the CFG that we have reached with the same lockset.

The final phase, inspection, consumes the analysis results and post-processes them to compute ranking information for error messages. It then presents these to the user for manual inspection. Ranking sorts messages based on two features: (1) the likelihood of being a false positive, and (2) the difficulty of inspection. A great deal of our effort has been absorbed by the need for clever ranking. In contrast, the analysis has proven relatively straightforward.

2.1 The systems we check

We checked three systems. The first two are Linux version 2.5.62 and FreeBSD version 5.1 (note we do not check FreeBSD for races). These are large systems written by many different programmers and as such is a good test that our approach can handle different coding and design styles.

We also checked a large commercial operating system (roughly 500K lines of code), which we call “System X.” Its development environment differs radically from that of Linux and FreeBSD. System X undergoes regular, uniform testing by a dedicated QA department, the development group is relatively tight-knit and fits within a single building, and all code undergoes a peer review process. While the core Linux kernel undergoes a similar review process (albeit more spatially separated) the bulk of the OS is developed and tested more haphazardly. Using the results from systems developed under such vastly different conditions gives a feeling for the generality of the approach.

We crudely calibrated the quality of System X by running two static checkers from [20]. These flagged uses of freed memory and not releasing an acquired lock. The free checker’s error rate was 25% (four free errors out of 1600 checks) and the lock checker’s was .4% (two lock errors out of 500 checks). Linux had slightly higher error rates at .3% and .46% respectively.

There was also an unfortunate, practical reason to check a commercial system: while it is simple to determine that a shared access occurs without a lock, it is extremely difficult in general to take a large unknown system and understand if an access can actually cause incorrect behavior. Doing so requires reasoning about code invariants and actual interleavings (rather than potential ones), both of which are often undocumented. As a result, a single race condition report can easily take tens of minutes to diagnose. Even at the end it may not be possible to determine if the report is actually an error. In contrast, other types of errors found with static analysis can take seconds to diagnose (e.g., uses of freed variables, not releasing acquired locks). By working with paid developers it was much easier to get confirmation of race condition errors; race reports to Linux tend to go unconfirmed, perhaps because the maintainers had the same difficulties in reasoning about them as we did.

3 Locket Analysis

This section describes our generic lockset algorithm, which RacerX uses to detect both deadlocks and races. We compute locksets at all program points using a top-down, flow- and context-sensitive, interprocedural analysis. Top-down because it starts from the root of each call graph and does a depth first search (DFS) traversal down the control flow graph (CFG). Flow-sensitive because we analyze the effects of each path, rather than (say) conflating them at join points. It is context-sensitive because it analyzes the lockset at each actual call site.

Conceptually, the analysis is simple — a DFS graph traversal that (1) adds and removes locks as needed and (2) calls the race and deadlock checkers on each statement in the flow graph. We cache analysis results at both the statement and function level. Caching works because the analysis is deterministic — two executions that both start

1 Note that unreachable functions will also be roots: the race detection throws away static functions with no callers, since they often have many race conditions when detached from their intended caller.
from statement s within the CFG with the same lockset l
will always produce the same result.

We cache the locksets that have reached each statement
in the CFG using a *statement cache*. If we reach statement
s with lockset l and l is in s's statement cache, we stop
analyzing the current path and backtrack to the last join
in the CFG. Otherwise we add l to s's cache and continue.

We memoize the effect of each function f using a *summary
cache*. This cache summarizes the effects of each function
by recording for each lockset l that entered f the set of
locksets that reached each exit point in f. If we reach
function f with lockset l and l is in the summary cache, we
do not analyze f again, but instead skip over it. Otherwise,
we do analyze it, record the locksets it produced (l_1, \ldots, l_n),
and add $l \rightarrow (l_1, \ldots, l_n)$ to f's summary cache. In either case
we continue the analysis forward within the calling function
a different times, once for each lockset (l_1, \ldots, l_n).

The exit locksets include all effects of the function and
any functions that it calls. Since the analysis is flow
sensitive, a function could produce an exponential number
of locksets: one for each different control path interleaving
that starts from its entry statement and reaches its exit
statements, including all paths in all functions that it calls.
In practice their effects are more modest. Most functions either
release all locks they acquire or avoid acquiring them at all.
Thus, a function that only calls other such functions will
produce the same single lockset with which it was entered.
Functions that do more interesting locking tend to produce
a few different locksets at most.

The core analysis algorithm is given in Figure 1. It has
three main parts:

1. **traverse_cfg**, which iterates over all roots in the flow
graph and calls **traverse_fn**.
2. **traverse_fn**, which takes a function f and lockset l and
analyses it. It first checks to see if the lockset is in
the function's summary cache (lines 12-14). If so, it returns
the set of all locksets that have reached the exit points
of f when analyzing starting with lockset l. Otherwise
it processes the function. If it is involved in a recursive
call, it breaks the recursion and returns. Otherwise,
it marks that it is processing this function (line 19), and
then calls **traverse_stmts** on the f's entry statement.
This routine does a DFS traversal of all successors and
returns the union of all locksets that reach exit points.
Its result is added to f's summary cache (line 27) and
returned (line 28).
3. **traverse_stmt** applies lockset ls to statement s. As with
traverse_fn it also does caching, but does not need to
track the summary — any cache hit will have been visited
by a traversal that did reach an exit point (and produced
an exit lockset). If we have not seen this lockset be-
fore, we add it to the statement cache and continue. If
we have reached an exit statement we return the current
lockset (line 43-44). The summary for this path says that
if we start with entry ls we will produce ls. The code
then adds or removes locksets as needed. Lines 51-66
do the bulk of the work. We first build an initial work-
list — if the statement is a resolved function call this
list contains the exit locksets returned by **traverse_fn**, “or
otherwise it is just the current lockset. We then iter-
ate over each lockset in the worklist, recursively calling
traverse_stmt on each of s's children. We then return
the union of all locksets returned by these traversals.

Figure 1: Pseudo-code for interprocedural lockset algorithm.
entry lockset entry ls and store it in the cache (line 36).
It is required because different entry locksets can converge
to the same lockset within a function. If this convergence
happened and we did not record the entry lockset in the
file along with the current lockset, a cache hit in the midst
of the function could terminate the computation before the
final exit locksets have been found. Adding the entry lockset
to the cache prevents such masking.

The basic algorithm is modeled on the analysis frame-
works of ESP [11] and the MC system [20], both of which
are based in part on RHS [28]. Our implementation is sim-
er simpler since we specialized it to lockset analysis rather
than supporting arbitrary extensions. The analysis is also less
sophisticated in that if we enter a function with a new lock-
set, we compute all exit locksets. A more advanced system
would do relaxation computations that would allow it to
use the exit locksets produced by different entry locksets.
Despite this limitation, the analysis is fast overall.

Practical issues. Locksets are interned in a hash table
so that we can compare them using pointers. Further, note
that only locking operations cause the lockset to grow and
shrink. I.e., if a lock name contained in a lockset goes out
of scope, the lockset does not change — the fact that a
storage location has a value indicating it is locked persists
independently of whether this location has a name in the
current scope.

For error reporting we obviously need a backtrack of the
current callchain along with any interesting events that hap-
pened on it (such as lock acquisitions). Getting the trace of
all functions above the current call is easy. Unfortunately,
we also need a trace of all the events that led to the current
lockset, including any calls into children functions that had
some effect. Further, since we skip functions that hit in the
summary cache, we also have to track the backtrack to all
locksets in the summary cache. When reporting an error, we
traverse back along the current trace, splicing in summary
cache traces at every skipped callsite. Because longer traces
are harder to reason about, we pick the smallest trace for
functions that have multiple paths leading to the same exit
lockset.

OS code can transfer control between two points without
requiring an explicit code path between them. For example,
most OSes provide a way to copy data from the user to
kernel space and vice versa (e.g., “copyin” and “copyout"
on BSD). If the memory they access is not in core, these
routines will take a page fault, implicitly transferring control
to the page fault handler. Thus, every callsite that invokes
these functions has an implicit call to the page fault handling
code. Since page fault handling typically involves a heavy
degree of locking it is important not to miss this transfer.

Similarly, there are implicit ordering dependencies be-
tween the main bodies of system calls. For example, open
must occur before read or write which cannot occur after
close. 2 Again, compilers cannot see these dependencies.

For concurrently, there is a simple solution. We let the user
write “stub” portions of code that encode these dependen-
cies. These are then compiled as normal code, and used to
form any necessary edges. For example, the following stub
tells RacerX that copy in calls do_page_fault:

```c
int copyin(void *dst, void *src, size_t len) {
    do_page_fault();
}
```

2 Of course the initial portion of these routines can run in any
order, since the user can call them with impunity; however, out of
order calls will fail.

For the ordering constraint above, we would write code that
calls system calls in the orders that we want them analyzed.

Approximations. Our analysis has several important
limitations. First, we do not do alias analysis. We crudely
represent local and parameter pointer variables by their type
name rather than their variable name. For example, a pa-
rameter foo that is a pointer to a structure of type bar
will be named “local:struct bar.” This approximation is
mostly conservative in that it can cause false positives for
our deadlock detector but will not lead to missed errors.
However, it may lead to a lower ranking for errors that in-
volve such pointers than would otherwise be warranted. We
plan to use more sophisticated pointer analysis in the future.

Second, we do only simple function pointer resolution.
We record all functions ever assigned to a function pointer
of a given type (either with an explicit assignment or using a
static initialization) and, at each callsite, assume that all of
the functions could be invoked. We will not correctly resolve
functions that are passed as arguments to a routine that then
assigns them to a function pointer. Despite this limit, we
resolve most of the function pointers used in practice.

Finally, we have one main speed problem, caused by
the fact that OS code tends to have several widely-used
functions which can potentially invoke large portions of the
OS. For example, kernel memory allocators (such as Linux’s
malloc) can invoke an enormous amount of code if mem-
ory is low and paging gets triggered, including non-trivial por-
tions of the virtual memory system, file system, and various
drivers. This large reach causes problems if the function is
called in many different locations with different locks held,
since each different entry lockset causes us to reanalyze the
function. We take a simple approach to this problem: if the
number of distinct entry locksets in a function’s summary
cache exceeds a fixed limit (100) we skip the function. (This
is similar in spirit to PROFIX’s truncation of path visits [4].)
While not entirely satisfactory, this approach does not seem
to be that important sources of false negatives. For example,
increasing it yields few additional checks. Additionally, in
our experience, there is little real interaction between these
functions and their callers — code with many callers tends
to implement core kernel functionality and rarely calls back
into its calling context.

4 Deadlock Checking Overview

This section describes the core deadlock checking algorithm
and the ranking scheme used to order flagged errors. Dead-
lock checking has the unfortunate problem that a single mis-
take can cause an avalanche of false reports. As a result, the
bulk of our ingenuity has gone into developing techniques to
reduce false positives, which we describe in the subsequent
two sections.

4.1 Computing locking cycles

The deadlock detector works in two passes: (1) constraint
extraction, which extracts all locking constraints and (2)
constraint solving, which does a transitive closure flagging
cycles. We discuss each below.

Constraint extraction: is called by the generic analy-
sis engine on every lock acquisition and iterates over every
lock in the current lockset, emitting the ordering constraint
produced by the current acquisition. For example, if lock a
is in the current lockset and lock b has just been acquired,
the constraint “a → b” will be emitted, along with a trace
of how to get from the acquisition of \(a \) to that of \(b \) that includes the number of conditionals, function calls, and degree of aliasing involved.

The most difficult part of constraint extraction is guarding against false constraints caused by invalid locksets. Eliminating false positives consists solely of techniques to eliminate false constraints.

Constraint solving: reads in the emitted locking dependency constraints and computes the transitive closure of all dependencies. It records the shortest path between any cyclic lock dependency, ranks the results, and displays them to the user for inspection. The algorithm computes deadlocks involving \(2, \ldots, n \) threads, where \(n \) is a user-specified threshold.

As an example, given the constraints \(a \rightarrow b, b \rightarrow c, c \rightarrow a \), the algorithm derives the constraints \(a \rightarrow c, b \rightarrow a, c \rightarrow b \), etc. It will then flag the three-thread cyclic dependency between \(a \rightarrow c \) and \(c \rightarrow a \) that arises if thread 1 holds \(a \) and waits on \(b \), thread 2 holds \(b \) and waits on \(c \), and thread 3 holds \(c \) and waits on \(a \).

While the core transitive closure algorithm is simple, the need for intelligible error messages requires a fair amount of boilerplate, several times the amount of code needed to do the actual check. We have found this a common problem with program checking tools — detecting an error is often simple, most of the complexity arises in articulating why the tool believes it is error.

4.2 Ranking

This section gives an overview of our basic ranking algorithm. Since inspecting deadlock errors can take tens of minutes, effective error ranking is very important. At a high level, ranking error messages consists of sorting them based on the locking constraints that led to them both by how easy these constraints are to inspect, and by how likely they are to be wrong. We rank based on three criteria:

1. Whether the locks involved are local or global. Global lock errors are preferred over local ones, since local errors could be a result of naming mistakes because we replace non-global lock names with their type.
2. The depth of the call chain and the number of conditionals it spans. In general, short call chains with few conditionals are better than longer ones: there is less chance that an analysis mistake happened, and with each additional branch and call, inspecting errors becomes harder.
3. The number of threads involved. Each constraint in the computed cycle adds another thread. Errors with fewer threads are preferred to errors involving many threads because they tend to be: (1) significantly easier to reason about, (2) more likely to happen, and, importantly, (3) require touching far less code to get fixed.

We use these ranking criteria hierarchically sort error messages. We first divide errors into classes based on how many threads were involved, and place the classes in ascending order. We then further subdivide each of these classes based on the number of non-global locks they depend on, and arrange these sub-classes in ascending order. At the end, the first class will contain all errors involving two threads and two global locks, the next class all errors involving two threads and one local lock, and so forth. Finally, we sort the errors within each class by the number of conditionals and call chain depth involved in the shortest lock constraint (each call counts the same as three conditionals).

Figure 2: Simple deadlock between two global locks.

Figure 2 gives the highest ranked error we have found. It involves two global locks, both acquired within the same function. The output shown is the raw output from our tool (though the code example has been reformatted). It states that this is a two thread deadlock involving the two global locks \(\text{rtc_lock} \) and \(\text{task_lock} \), which are acquired in the order \(\text{rtc_lock} \rightarrow \text{task_lock} \) once and the order \(\text{task_lock} \rightarrow \text{rtc_lock} \) once. Both locks are only involved in this error and the call chains for both have a depth of one — i.e., both acquisitions happen within the same function. The error occurs if thread A enters \(\text{rtc_register} \) acquires \(\text{rtc_lock} \) and thread B enters \(\text{rtc_unregister} \) and acquires \(\text{task_lock} \). Both threads will then deadlock while they attempt to acquire the other's lock.

Since both routines occur next to each other in the source code, it appears that the programmer might have even done this ordering deliberately, perhaps because it mirrored the fact that register is reversed by unregister and so the locking order should be reversed. Numerous of our other Linux errors followed a similar pattern, where a device registration used exactly the opposite lock ordering of the unregister operation.

5 Increasing Analysis Accuracy

This section describes techniques that eliminate two significant sources of false lock dependencies caused by (1) semaphores used to enforce scheduling dependencies (rather than mutual exclusion) and by (2) "release-on-block" locks.
4.2: Rank errors involving few threads, local pointer locks, conditionals, and function calls over those with many.
§ 5.1: Automatically detect and suppress dependencies caused by semaphores used to enforce scheduling constraints.
§ 5.2: Do not generate constraints between release-on-block locks and lock acquisitions that block.
§ 6.1: Set lockset to empty after encountering a locking error (e.g., a double lock).
§ 6.2: Inspect errors found with downward-only propagation over those from upward.
§ 6.4: Rank errors flagged by both upward and downward lockset propagation over those by only one method.
§ 6.3: When propagating locksets to callers, pick the lockset that occurred on the most exit edges; break ties by taking the smallest lockset.
§ 6.5: Use unlockset analysis to remove lockset members not released on any subsequent path.

Table 1: Techniques to reduce deadlock false positives. The first two additionally help ease-of-inspection. The remaining techniques primarily focus on eliminating bogus constraints.

5.1 The rendezvous problem

One of the largest sources of false positives come from the fact that semaphores have two conflated uses: (1) binary semaphores used as locks to provide mutual exclusion or (2) signal-wait semaphores used to implement scheduling dependencies. In the latter case, one thread will wait on a semaphore using the “down” operation (an atomic decrement that sleeps if the counter is zero) until another thread indicates it should proceed using “up” (an atomic increment that may wake a sleeping thread). If we naively always treat a signaling semaphore as a lock, we would flag invalid lockset cycles. Consider the following code:

```
Producer
up(s); // signal ready
lock(1);
```

```
Consumer
down(s); // wait for result
unlock(1);
lock(1);
```

If the semaphore s were indeed a lock, then the consumer’s code has a cyclic dependency that can cause a deadlock (similar to the deadlock described in Figure 5). The deadlock occurs if two threads A and B can both run the consumer’s code with the following interleaving: (1) A acquires 1, acquires s, releases 1 and (2) B acquires 1. Both threads will deadlock waiting on the other’s lock.

For similar reasons, signal-wait semaphores can cause false negatives for the race condition checker described in Section 8. In the above code, since the call to “down(s)” is not followed by a matching “up” call, RacerX would believe that the “lock” s is held on every subsequent path, when in fact s provides no mutual exclusion at all.

We use belief analysis [14] to distinguish when a semaphore is being used as a lock as opposed to a signal-wait semaphore. The former we track as we do other locks, the latter we ignore. Signal-wait semaphores have two behavioral patterns: (1) they are almost never paired and (2) they have roughly as many unmatched up(s) calls as down(s) calls. In contrast, valid locks have exactly the opposite behavior: (1) they are almost always paired and (2) when not paired, they have many more unmatched lock calls than unlock calls (the most common unpairing is a lock with no matching unlock).

Thus, we have a simple classification problem: given a semaphore s does it behave more like a lock or like a scheduling semaphore? We answer this question by first measuring how often the large supply of known, non- semaphore locks satisfy these tests. We then measure how often s does and use statistical analysis to compute the probability that s belongs to a population similar to the known locks. More precisely, we use the following four-step algorithm:

1. Calculate how often true locks satisfy these two behavioral patterns. We take the entire set of known locks and count the number of lock acquisitions at lock releases rtotal, and unlock errors errtotal. We then calculate the average (“expected”) ratio of releases to acquisitions \(\ell \text{lock} = r_{\text{total}} / \ell_{\text{total}} \) and the expected ratio of unlock errors to unlock callsites \(\ell_{\text{lock}} = err_{\text{total}} / \ell_{\text{total}} \).
2. Calculate similar values for s: \(f_1 = r_s / a_s \) and \(f_2 = err_s / r_s \).
3. Use hypothesis testing [17] to calculate the probability p we are to observe (1) \(f_1 \) and (2) \(f_2 \), (or a more unlikely event) if s indeed belongs to a population whose true measurements are \(\ell \text{lock} \) and \(\ell_{\text{lock}} \). Details are in [17]. As an approximation, we treat \(f_1 \) and \(f_2 \) as being independent tests. This allows us to compute in isolation p-values \(p_1 \) and \(p_2 \) for each test and compute p by multiplying the results: \(p = p_1 \cdot p_2 \).
4. Discard semaphores below some probability threshold. In our case we set it to \(p = 0.17 \), but the exact value does not matter much, given the extremes exhibited by either population.

This approach closely follows that of [14]. The main difference is that we extend it to handle multiple tests (this prior work only looked at one).

Table 2 gives a few examples from both extremes, with representative counts. The lack of any release, and a high ratio of unlock errors to acquisitions are good indicators that the semaphore is not being used as a lock. This classification eliminated over twenty false positives out of roughly 40 examined deadlocks from our experiments.

<table>
<thead>
<tr>
<th>Name</th>
<th>Acq</th>
<th>Rel</th>
<th>Unlock Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>FQPCHEA.TYG</td>
<td>complete</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>event_exit</td>
<td>2</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>thread_exit</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>us.data.dev semaphore</td>
<td>8</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>sm Struct.mmap_sem</td>
<td>141</td>
<td>208</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2: Three signal-wait semaphores and two locking semaphores classified by our analysis. Signal-wait semaphores behave differently than locking semaphores. Note there are more releases than acquisitions when there are more paths after a lock that contain an unlock.

5.2 Release-on-block (ROB) lock semantics

One unanticipated source of false positives is that many older operating systems such as FreeBSD and Linux use
Figure 3: Code illustrating problems caused by semaphores.

global, coarse-grained locks that have “release-on-block” (ROB) semantics. These are a legacy left from their similar evolution from single-processor (mostly) single-threaded kernels to (somewhat) multi-threaded kernels running on multiprocessors. Initially, their main source of concurrency was interaction between the kernel and device interrupts, which they managed by disabling interrupts. They then introduced multiple kernel threads, managed using a single kernel lock, essentially turning the OS into a single, large monitor. Linux does so using the “big kernel lock” (BKL) released and acquired with calls to lock_kernel() and unlock_kernel(). FreeBSD similarly has the “Giant” lock managed with standard locking calls. Because there was only one such lock, any kernel thread that went to sleep holding it would deadlock the system. Thus, as with normal monitors [23] it was released and then reacquired after blocking.

Since then, these systems have moved towards more fine-grained locking, but their single ROB lock remains active and intermixed with the newer additions. Unfortunately, this intermixing causes two problems. First, for the programmer, it makes it easy to cause deadlocks when a thread acquires the single-kernel lock, acquires another lock, and then sleeps. Second, for the tool, it causes many bogus constraints to be emitted.

Figure 4 gives a representative example where the routine atm_ioctl calls put_user with the atm_dev_lock spinlock held. The routine put_user puts data at a user-specified address and can block if a page fault occurs. This routine is a good a good example of the value of automatic checking — atm_ioctl has over 20 such errors. These errors are potential security holes since the user can cause a page fault at will. We do not discuss these results further: our checker is conceptually no different than that described by in previous work [20], though it is a completely different implementation.

6 Handling Lockset Mistakes

Deadlock false positives are caused by false locking constraints, most from analysis mistakes. This section describes four techniques we use to mitigate the effects of such mistakes.

The single most significant cause of invalid locksets are intra- and interprocedural false paths. Almost all false constraints arise from a data-dependent lock release, either parameter-controlled locking or, more commonly, correlated branches such as the following:

```c
void foo(int x) {
  if(x)
    lock1();
  ...
  if(x)
    unlock1();
}
```

Without path-sensitive analysis (which we do not do) RacerX will believe there are four paths through foo, one of which acquires lock 1, but does not release it. On this invalid path, the analysis will exit function foo with an invalid lockset containing 1, which will promptly begin generating spurious constraints. Our interprocedural analysis makes
these mistakes worse because it will aggressively push such bogus locksets over as large an extent of code as possible.

While we intend to add path sensitivity to reduce the effects of this problem, the problem is undecidable in general and often difficult in practice. Instead we have used our experience examining false error reports to design simple, novel propagation techniques that minimize the propagation of invalid locksets, often limiting them to the actual function that caused the problem. Importantly, these techniques should work just as well with stronger analysis and other checking system.

6.1 Cutting off lock-error paths

We prune the lockset on paths that contain a locking error — double lock acquisitions, lock releases without a prior acquisition, or failure to release an acquired lock. Either the locking error is valid, in which case the system is in an inconsistent state and subsequent reports are neither surprising nor trustworthy, or the analysis has made a mistake, which will have similar results. In either case we want to suppress the effects of these mistakes. In the case of double locking and releases of unacquired locks, when run in deadlock mode RaceX sets the current lockset to empty, thereby eliminating any constraints that straddle the locking error 3. (In lock-error mode, it will emit a message so the user can inspect such locking errors.) Initially, we detected the third error, unreleased locks, when we finished processing a given root. We emitted an error for each held lock and denoted constraints emitted on that path. This case has since been subsumed by unlockset analysis (§ 6.5).

In a sense, lock acquisitions and releases can be viewed as crude programmer-supplied annotations indicating which code paths they believe must be taken. Paths that contain matching lock-unlock annotation pairs are likely valid and should be trusted; those with mismatches likely invalid and should not be.

6.2 Downward-only lockset propagation

A significant source of false positives for upward propagation occur when it falsely believes that a lock is held on function exit when it is not. Obviously, if we only propagate locksets downward from caller to callee but never upward back to the caller we eliminate this problem. Errors from this method tend to be the most reliable. Further, in our experience, they are also easier to reason about since they involve looking at one related call chain rather than the up and down progress through various subsystems and their abstractions.

We almost always use downward-only propagation to get to the first round of deadlock errors. However, this approach is vulnerable to false negatives, since it does not propagate the effects of locking “wrapper functions” (whose sole purpose is to acquire or release locks) up to their callers. Thus, after inspecting these results, we then do a second pass using upward propagation.

6.3 Selecting the right summary

Not all function summaries are equally trustworthy. An effective way to reduce false constraints is to only propagate the most plausible ones. We describe two different summary propagation strategies to isolate the effects of bad locksets.

Majority summary selection: after looking at around fifty locking errors similar to the code example at the beginning of this section we had the obvious-in-hindsight realization that since locking mistakes tend to occur on a minority of paths — most paths are correct, a few are wrong — this pattern can be exploited to select the most reasonable lockset from our summary cache. Rather than following all locksets a function call generates we instead take the one produced by the largest number of exit points within the function. Our assumption is that the lockset that reaches the most different exit edges within a function is the one that most accurately describes the actual locking interface of the function.

Minimum-size summary selection: almost all false positives come from paths that fail to release locks — such errors will cause the lockset on these paths to be one larger in size than on well-formed paths. This leads to the second realization that the effects of these errors go away if we simply select the smallest lockset exiting a given function. This insight can also be added to the majority summary selection scheme above as a means to break ties.

While these steps are simple, they make a significant difference in practice. The methods of summary selection are a novel trick that we expect will handle similar problems we have encountered in other contexts.

6.4 Constraint intersection

Downward-only and upward lockset propagation have are vulnerable to different problems: downward propagation to wrapper functions, upward propagation to invalid summaries that fool their selection criteria. We can exploit these different weaknesses to determine the most reliable lock dependencies.

In general, the more different ways to compute the same result the more confidence one has in its correctness. Locking dependencies are no different. If both methods state that the dependency $a \rightarrow b$ exists, we have more confidence in it than if $a \rightarrow b$ was produced by just one of the methods. We use this to rank different errors based on the number of different methods that agreed on the involved dependencies.

In practice, we first examine errors based on constraints derived from both methods, then the errors from downward propagation, then the errors from upward.

6.5 Unlockset analysis

Unlockset analysis is a simple yet effective method for removing invalid locks from a lockset. We developed it after attempting to find deadlocks in FreeBSD. While the techniques described so far were sufficient to handle Linux and System X, they left a large number of false positives on FreeBSD, mainly due its more complex control flow determining lock acquisition and release.

Unlockset analysis allowed us to eliminate by far the majority of the false constraints this complexity caused. It came from three related observations. First, when emitting a dependency $a \rightarrow b$, almost all false positives are due to mistakes about a. Intuitively, this makes sense — propagating a from its acquisition site to the acquisition site of b requires making at least several, and potentially many analysis decisions correctly. In contrast, we are naturally protected against most mistakes about b since the dependency $a \rightarrow b$ is emitted immediately at b's acquisition site, with
little opportunity for a mistake. Thus, a good way to cut down on false constraints is to only leave those locks in the lockset which we have a high degree of confidence that they are acquired.

Second, after examining the false positives caused by false constraints \(a \rightarrow b \), we noticed that in almost all cases, the code after the acquisition of \(b \) had no unlock of \(a \). I.e., most false constraints are caused when an acquired lock "goes too far" and is propagated past all of its releases.

Third, as a result of the prior observations, we had unconsciously evolved a pattern of inspecting deadlock errors caused by dependencies where the lock \(a \) was explicitly released after the second lock \(b \) was acquired. These errors are the easiest to inspect, since they demonstrate that the lock \(a \) was held past the acquisition of \(b \). The code for `rtc_register` in Figure 2 is a good example. First it acquires `rtc_lock` then `rtc_ranlock`, then it subsequently releases `rtc_lock`, strongly implying it was held. Thus, when ranking errors we would like to emit those first that are explicitly paired with a lock.

Unlockset analysis exploits all of these observations. Intuitively it is simple: at program statement \(s \), remove any lock \(l \) in the current lockset if there exists no successor statement \(s' \) reachable from \(s \) that contains an unlock of \(l \). If \(l \) reaches no unlock after statement \(s \) on any subsequent path then it is almost certain our analysis has made a mistake. Conversely, if it does reach an unlock then it becomes more likely that the lock is indeed held. The nice thing about this technique is that it tightly fits the lockset to the set of locations that the analysis seems able to handle. For example, consider the locksets obtained in the code given at the beginning of this section if we drop all locks that will not reach a subsequent release:

1. void foo(int x) {
 // unlockset
 1: if(x) {
 2: lock(1); (1)
 3: } ...
 4: }
 5: if(x) {
 6: unlock(1); (1)
 7: }

As with the original analysis, the lockset will contain 1 at lines 3, 4, and 5. However, unlike the original analysis, 1 is eliminated on the false path of the check at line 5 since it reaches no subsequent release. The lockset is exactly what RacerX would compute if it could suppress the infeasible path. The nice thing it that unlockset analysis is complementary to traditional analysis.

Unlockset analysis runs in two passes. Its implementation is similar to that of liveness analysis, which is used to determine if there is a path from statement \(s \) that can reach a use of variable \(v \). The first pass is a backwards analysis that runs before deadlock checking. For each statement \(s \) it computes \(s \)'s statement unlockset, which is the set of unlocks reachable using a downward traversal starting from \(s \). We compute statement unlocksets using a backwards pass from the leaves of the CFG reached during lockset analysis back up to the root(s). It is essentially the inverse of lockset analysis: as unlocks are encountered, they are added to the lockset, as locks are encountered, the unlock they reverse is removed. A statement's unlockset is the union of all of its children's unlocksets, plus the effect of any lock or unlock that it itself contains. Additionally, if statement \(s \) is a call to resolved function \(f \), we add the unlockset of \(f \)'s entry block to \(s \)'s. Similar to lockset analysis, we do not insert unlocks for which there was no preceding lock. Each statement persistently records its unlockset for use by the second pass.

Table 3: Deadlock bugs in System X, Linux, and FreeBSD

<table>
<thead>
<tr>
<th>System</th>
<th>Confirmed</th>
<th>Unconfirmed</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>System X</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Linux 2.5.62</td>
<td>4</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>FreeBSD</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

We separate confirmed from unconfirmed bugs since these messages can be hard to diagnose correctly in someone else's system.

The second pass is a forward analysis that runs during deadlock checking and computes the dynamic call unlockset, which is specific to each call chain. The call unlockset is the union of the statement unlocksets of each call site in the current call chain. For example, assume we are analyzing function \(h \) reached by the call chain \(f \rightarrow g \rightarrow h \). The call unlockset used to analyze \(h \) is computed by taking the union of the statement unlocksets at the call site of \(f \)'s call to \(g \) and \(g \)'s call to \(h \). We use the call unlockset to support context sensitivity: i.e., different callers of \(f \) may release different locks after the call to \(h \) returns — these releases should just be added to the unlockset of each call site and this call to \(h \) rather than to all callees. In general, we compute the call unlockset as follows. Before processing a root we initialize the current call unlockset to the empty set. When the analysis follows a resolved function call to \(h \) at statement \(s \) in function \(f \), we calculate the new call unlockset used to analyze \(h \) by taking the union of the original unlockset used in \(g \) and \(s \)'s statement unlockset.

Deadlock checking eliminates invalid locks in the lockset \(l \) at statement \(s \) by intersecting \(l \) with \(s \)'s statement unlockset and the current call unlockset.

7 Deadlock Results

Table 3 summarizes the errors found in System X, Linux, and FreeBSD. We found two confirmed deadlock errors in System X and three unconfirmed. There were seven false positives, three because of a complex check that acquired locks in different orders depending on their global ordering. Initially, there were over 20 false positives, but these were eliminated by the analysis of signal-wait semaphores described in Section 5.1.

Four errors in Linux were confirmed and patched. The others looked almost certain. There were six false positives. Since deadlock errors tend to take a while to inspect, we still have over fifty unsnipped error reports for Linux.

Finally, there were two confirmed errors in FreeBSD (both fixed), and three unconfirmed, though they seem probable. The six false positives came from complicated locking protocols. A very large number of false positives were eliminated with the unlockset analysis in Section 6.5.

We describe two of the more interesting errors below.

A surprising error: a single code path introduces a cyclic dependency: (1) code acquires \(a \), acquires \(b \), releases \(a \), and (2) reacquires \(a \). The last reacquisition introduces a circularity that can cause deadlock if another thread "slips in" and acquires \(a \) between steps (1) and (2) and then waits on \(b \).

Figure 5 gives an example taken from the commercial code System X. Here a thread enters the routine `FindHandle` while holding `acslock` and acquires `handleArrayLock`. It then calls `Validate`, which can potentially sleep using the routine `CpuSchedWait`. Unfortunately, `CpuSchedWait` will...
Figure 5: An unexpected deadlock pattern: an acquired lock
is released and then reacquired by the same thread, forming
a cycle.

release scsiLock before blocking and then reacquire it when
waking. This sequence creates a locking cycle.

While obvious in hindsight, this was not a type of dead-
lock we had initially expected. The first error report that
showed such a case was greeted with silence for 30 seconds
or so, then surprised laughter.

The most complex error: we only inspected a small
subset of all deadlocks emitted by the tool. The error in
Figure 6 was the most complex. It requires three threads,
involve one global and two non-global locks, and one deep call
call chain. The deadlock occurs in the following case:

1. Thread 1 executes igmp_timer_expire in the IPv4 net-
working code where it acquires im->lock and then follows
a six-level call chain to the routine inet_select_addr
where it tries to acquire the global lock inetdev_lock.

2. Thread 2 executes the routine inet_select_addr where
it acquires the global lock inetdev_lock and tries to get
the lock im->lock.

3. Thread 3 executes the routine igmp_heard_query where
it acquires im->lock and then calls igmp_mod_timer where
it tries to get im->lock.

This deadlock takes a while to diagnose, even when told
how exactly what the problem was by a static tool. It is difficult
to imagine finding this error without such hand-holding.

8 Race Detection

This section describes the race checker in RacerX. Race de-
tection is significantly harder than deadlock detection. It
requires having good answers to the following questions:

1. Is the lockset valid? The problems caused by invalid lock-
sets can be even worse than in the deadlock checker. Most
paths have relatively few locking operations. Thus, for
deadlock detection, an invalid lockset often does not trigger
subsequent lock operations, rendering the mistake harmless.
In contrast, there are many variable accesses, which
invalid locksets will immediately hit.

2. Can the code containing an unprotected access run con-
currently with another thread that accesses the same
shared state? Many parts of an OS, such as initialization
code, are effectively single threaded. Others, may have
very restricted forms of concurrency, such as a device
driver whose global state is private to a single hardware

device, and thus need only manage concurrent accesses
made by its interrupt handling code.

3. Does the access actually need to be protected? Many
concurrent unprotected accesses to shared state are per-
fectly harmless. They may involve reads of data that
of no other thread will write [29], or simple assignments that
are carefully ordered to provide a coherent picture of the
state. More difficult, we must differentiate pointers that
point to shared state from those that only refer to local
state. We must identify calls to functions that require
locks (even if we do not have their source code).

Below we give an overview of the basic algorithm and de-
scribe the techniques RacerX uses to answer these questions.

8.1 Race detection overview

At a high level, the race checker is called by the lockset anal-
ysis on each statement. It uses the current lockset and in-
ternal bookkeeping data structures to determine if it should
emit an error or not. As with the deadlock detector, given
lockset analysis, the checking logic itself is simple: by far
the majority of effort goes into ranking error messages. Rank-
ning for race detection is even more important since we must
simultaneously guard against mistakes (1) in false paths, (2)
in determining if code can run concurrently, and (3) in de-
termining if the access needs protection. The checker can
be run in three modes, from least to most precise:

1. Simple checking: only flags global accesses that occur without any lock held (i.e., the lockset is empty when the access occurs). Because it does not depend on resolving lock names correctly or inferring that a pointer can reference shared state, it eliminates several sources of false positives and its results are relatively robust. We always run this mode first.

2. Simple statistical: infers which non-global variables and functions must be protected by some lock.

3. Precise statistical: infers which specific lock protects an access and flags when an access occurs when the lockset does not contain that lock. We run this mode last, since it is the most sensitive to analysis mistakes.

We rank races using a set of heuristics devised for recognizing likely and unlikely races. Since different error messages will satisfy different heuristics, we need some way to compare them. We do so using a scoring function, which is the usual way to map non-numeric attributes to a numeric value suitable for comparison:

1. Each heuristic has a point value associated with it, positive when the heuristic correlates with a race, negative if it does not. Table 4 summarizes these heuristics and their default scores; the following four subsections describe the heuristics in more detail.

2. We compute a score for each error message by summing the point values of each heuristic it satisfies.

3. We sort all messages based on their point value.

4. We then use deterministic ranking (as in Section 4.2) to sort messages with the same point value.

The downside of this approach is that assigning points to heuristics is ad hoc. Unfortunately, since the heuristics do not typically directly dominate one another, there fundamentally does not seem to be an alternative. Fortunately, ranking does not seem overly sensitive to the exact scoring used. Further, the user can customize the scores to values more to their taste, and we could (but do not) use a learning algorithm to fit them more to the data.

The next four subsections describe how we determine:

1. If a lockset is valid, (2) if a context is multithreaded, (3) if an unprotected access is unsafe, and (4) if an access should be protected by a specific lock. We then describe some techniques to detect false negatives and finally results.

8.2 Is the lockset valid?

Deadlock false positives happened when the lockset contained invalid locks. Race detection false positives happen when the lockset does not contain all valid locks. We use the following techniques described in the deadlock checking sections to handle this problem, though some have to be changed to conservatively include locks rather than conservatively omit them. First, we use summary selection (§ 6.3) to decide what locksets to propagate to callers, though we bias towards picking the lockset containing the most entries rather than those with the least. Second, we use intersection ranking (§ 6.4) and rank race conditions found by both downward and upward propagation over those found with upward alone. Finally, we use the automatic classification of scheduling semaphores (§ 5.1) to eliminate false negatives.

Table 4: Subset of ranking and scoring criteria used to rank race conditions warnings. Ranking computes the total score for each message and then does a descending sort.

<table>
<thead>
<tr>
<th>§ 8.2 Is the lockset valid?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank errors flagged by both downward and upward propagation highest.</td>
</tr>
<tr>
<td>Order errors with the same score based on number of conditionals and call chain depth.</td>
</tr>
<tr>
<td>Count visits to statement with empty lockset versus not.</td>
</tr>
<tr>
<td>+2 if always visited with empty lockset.</td>
</tr>
<tr>
<td>+1 if more visits with empty lockset than not.</td>
</tr>
</tbody>
</table>

§ 8.3: Is code multithreaded?

Were there concurrency operations in this function or earlier in callchain?

- Rank all true cases before false ones.
- Data shared with interrupt handler.
- +2 if written in interrupt handler.
- +1 if read by interrupt handler.
- Count modifications n on different roots.

+2 if $n > 2$.
+1 if $n > 1$.

§ 8.4 Does X need to be protected?

Count number of times that X was the first, last or only object in a critical section.

+4 if only object > 1 times, +2 if 1 time.
+1 if first object > 0 times.
+1 if last object > 0 times.

Compute z-test statistic based on count of how often protected with any lock versus not protected.

+2 if $z > 2$.
-2 if non-global and $z < -2$.

Count the number n of unprotected variables in the non-critical section.

+2 if $n > 4$.
+1 if $n > 1$.

Non-atomic updates: reads to > 32-bits or bitfields.

+1.

Access was a write.

+1.

8.3 Is code multithreaded?

We have two methods of determining if code is multithreaded: (1) multithreading inference and (2) programmer-written automatic annotators that use system-specific knowledge to mark known single and multithreaded code.

Multithreaded inference: is a simple, automatic technique that uses a form of belief analysis [14] to infer whether a programmer believes code is multithreaded. It relies on the fact that in general programmers do not do spurious locking. Locks are acquired and released to protect something. Thus, any concurrency operation implies that the programmer believes the surrounding code is multithreaded. These operations include locking, as well as calls to library routines that provide atomic operations such as atomic.add or test_and_set. (From this perspective, concurrency calls can be viewed as carefully inserted annotations specifying that code is multithreaded.)

RacerX marks a function as multithreaded if concurrency operations occur (1) anywhere within its body, or (2) anywhere above it in the current callchain. Note that concurrency operations below it do not necessarily imply that the function itself is multithreaded. For example, it could...
be calling library code that always conservatively acquires locks. RacerX computes this information in two passes. First, it walks over all functions, marking them as multi-threaded if they do explicit concurrency operations within their body. Second, when doing the normal lockset computation, it tracks if it has hit a known multi-threaded function and, if so, adds this annotation to any error emitted.

Programmer-written annotators: RacerX exposes its data structures to clients, including the list of all functions read. As stated in Section 2 clients can iterate over these routines marking them as: (1) single threaded (such as initialization code), (2) functions that should be ignored, (3) multi-threaded (such as system call entry points) (4) interrupt handlers, which can run at any point unless interrupts are explicitly disabled, and (4) functions that should be ignored. RacerX skips the first two categories and promotes errors in the latter two. As in the automatic inference, reports originating from multi-threaded code paths are more likely than those coming from possibly single-threaded code paths.

Annotators can exploit naming conventions and other system knowledge to label functions. For example, the following is our Linux annotator that marks all functions beginning with ‘sys_’ (i.e., system calls) as multi-threaded:

```c
// client annotator called by RacerX
void mark_entry_routines(struct flist *fl) {
  for(struct fn *f = fn_begin(f); f; f = fn_next(f))
    if(strcmp(f->name, "sys_") == 0)
      f->multithreaded = 1;
}
```

The fact that annotators can automatically classify large numbers of functions based on programmer knowledge has been a big win.

RacerX automatically propagates these annotations to other “equivalent” functions by exploiting the fact that in systems code, functions assigned to the same function pointer typically belong to an equivalence class in that they all implement the same interface (e.g., open, read, write, close) [14]. Thus, if a function f marked with some annotation (“multithreaded,” “single,” etc.) is assigned to function pointer fp, RacerX automatically propagates its annotation to all other functions assigned to the same function pointer.

8.4 Does X need to be protected?

We take three approaches to answering this question: (1) eliminating accesses unlikely to be dangerous, (2) promoting accesses that have a good chance of being unsafe, and (3) inferring which variables programmers believe must not be accessed without a lock. We describe each below.

Ignored accesses: we ignore variables read but never written, since they require no concurrency control. We optionally demote variables written but rarely or never read since they are often statistics variables that the programmer explicitly tolerates lost updates on. Warnings about them are often unwelcome and can hide more important errors. We avoid flagging races on variables still private to a given thread by stripping out all references to newly allocated data. We avoid flagging common harmless initializations by demoting assignments of 0 and 1 to variables. Finally, we demote errors where data appears to be written only during initialization and only read afterwards. We do so by counting the number of different roots that reach a write to a given variable; variables written only from a single root are likely candidates and their errors demoted.

Non-atomic modifications: We also want to detect accesses that have a high probability of being unsafe so that we can promote them. We have found several heuristics that work well. First, we favor errors that write data over read errors, since there are many more ways that reads can be safe. Second, we rank each error on an unprotected code path (a “non-critical-section”) by the total number of other accesses to writable shared state. If there are many variables on this path that could be written by other threads then it is almost certain a thread executing this path will see an inconsistent view of the world. (Figure 7 contains an example.) As a special case, we explicitly flag variables that cannot be read or written atomically such as bit fields and 64-bit variables on 32-bit machines. Unprotected accesses to these variables can result in surprising values, which is rarely the intent.

Programmer beliefs: We rank unprotected accesses especially high if the programmer appears to believe that the variable or routine should be protected.

The first effective way to infer such beliefs is to realize that the first, last, or only shared data in a critical section are special. As noted above, programmers do not write redundant critical sections. Thus, if a variable or function call is the only piece of potentially shared state within the critical section, then we have strong evidence that the programmer thinks (1) the state should be protected and (2) that the acquired lock does so. Similarly, the first and last pieces of shared state in a critical section are also noteworthy (although to a lesser degree), since programmers often acquire a lock on the first shared state access that must be protected and release it immediately after the last one. (Another way to look at it is that programmers do not make critical sections gratuitously large).

The second way we use statistical analysis to infer if a programmer appears to believe an access should be protected. Oversimplified, it works by assuming all functions and all pointer variables must be protected by a lock. It then counts how many times they are accessed with a lock held versus not. Routines and types the programmer believes should be protected will have a relatively high number of locked uses and few unlocked uses. Identically to [14] (and similarly to § 5.1) we then use the x-test statistic to determine how likely it is that these counts were due to chance (i.e., the programmer protected the variable or function coincidently rather than with intent). The reader does not need to understand the details, other than we use the formula:

\[
z = \frac{s \cdot n - p_0 \cdot s}{\sqrt{p_0 \times (1 - p_0) / n}}
\]

Here s is the number of protected accesses, n the total number of accesses, and p0 represents how often that we expect a function or variable that does not need to be protected will be protected coincidently. (We set p0 = 0.8, which reflects that such coincidental protections are frequent.) A high positive value of z implies that the number of protected accesses was more than that we would expect from chance.

An example error: Figure 7 shows a race that we give a high ranking to based on the features discussed in this section. The output is the unprocessed error message emitted by RacerX (a post-processing pass can make the output prettier, but more verbose). Properly interpreted they indicate that this error should be ranked high in the error messages. The main features:

1. The field nvars=4 indicates there are four accesses to shared state in this "non-critical-section." While there are safe ways to update a single variable without locks
while sharing it with others, modifying and reading a set of variables is almost certainly an error. The aggregate set will take on values impossible under any valid sequential interleaving. In this case, we can also lose an update to the field `enabledPassthroughWords`.

2. The field `has_locked` specifies that locking was used earlier in the call chain, suggesting that we are in a multi-threaded context.

3. The field `modified` specifies that at least one of the shared variables was modified.

This is a real error that has since been fixed. It was caused because the developer forgot to adapt this function when porting the code to SMP. When the system is run on a uniprocessor, there is no problem. When it is run on an SMP machine, things get more exciting.

8.5 Does I need to be protected by 1?

We infer whether a given lock protects a variable using a statistical approach similar to that in the previous section. The inference works in two passes. The first does a local pass over the entire system counting (1) the total number of accesses to a variable or routine and (2) the number of times these accesses held a specific lock. The second pass filters the candidate locks for each variable by picking a single “best” lock out of all the candidates and then doing an interprocedural pass checking with it. Since we can make mistakes in deciding that lock 1 protects x, we rank errors where no lock is held over those where the wrong one was. The main refinements in practice are (1) deciding what to count and (2) some evidence is more compelling than others.

What to count. We have made two mistakes in deciding what to count. The first mistake is to record whether or not a given statement accesses a variable or routine with a lock held every time the statement is encountered during analysis. Doing so has two problems. First, the number of times a statement is hit has little to do with anything other than that there are many paths to it that acquire different locks (and thus defeat caching). Second, a single piece of code really only gives one piece of evidence that the programmer believed a lock protected a variable. The number of times it is hit during analysis is irrelevant. Thus, we only allow each point in the CFG to make exactly one contribution to a lock count.

A second mistake is to not take strong steps to suppress coincidental lock pairings. For example, if we call `foo` with lock 1 held it is generally a bad idea to mark accesses to variables in `foo` as being protected by 1 — it will tend to access many related things, which will thus have high numbers of successful accesses under 1, polluting the checking results. Similarly, if variable v is accessed within a critical section we only count it once, not matter how many times it was accessed. Not suppressing multiple counts causes problems because a few critical sections may make heavy use of a given variable that is (coincidentally) then viewed as heavily protected by a lock and its errors then ranked highly.

What evidence really matters. As in the previous subsection, we give special weight to the first, last, and only shared data in a critical section, since they imply that the programmer believes that the critical section’s lock protects them. These are also great examples to display during inspection since they make it very clear to a user of RacerX what exactly is being protected.

An example error: Figure 8 gives a simple example of this. There were 37 accesses to `serial_out` with the argument `info` with interrupts disabled, in contrast there was only one non-disabled use. The routine-argument pair was the first statement of a critical section 11 times and the last one 17 times. Even knowing nothing about the system, simply looking at the examples makes it obvious that the programmer is explicitly disabling interrupts before invoking this routine. Having such examples makes inspection much easier. In practice we almost always look at errors that have such features before those that do not.

8.6 How to find false negatives?

While eliminating false positives is important, so is removing false negatives. Below we describe three methods we use to guard against different types of false negatives.

Statistical inference of locking functions. Obviously, the more locking functions RacerX knows of, the more effective it will be. While it uses interprocedural analysis to propagate information across procedure boundaries, it requires knowing a set of “root” locking functions. Although many such functions are well-known, large systems have a startling number of special-purpose locking routines. To in-
fer these functions we use a variant of the belief analysis used in [14] to infer paired functions. To determine if functions a and b should be paired, we count how often they are, how often they are not, and rank the results using the z-test statistic. We modify this approach to give high priority to functions implemented in the same file and functions that have suggestive names (“lock,” “unlock,” “disable,” etc.). Users can inspect derived pairs either as a means to ensure that they did not miss any, or as a way to simply infer all of them from the source code. There were forty such functions in System X, including four that we had missed, despite working with its source code in collaboration with core implementors for over eight months.

Errors in lockset analysis. Static checkers have the invidious problem that any errors in their analysis that cause false negatives are silent. Some cleverness is needed to find ways to detect such silent failures. We have three main ways.

First, many systems, such as FreeBSD and System X, make heavy use of locking assertions which we can check statically. The most prevalent example are places where the program asserts that a given lock is held:

```c
ASSERT(is_locked(clock));
```

RacerX checks its lockset each time it reaches such assertions and emits an error if the lock is not in the lockset: such missing locks signal either programmer or analysis mistakes.

Second, we exploit the fact that we can check for other errors. Flaggling lock pairing errors gives us an easy way to ensure that our system correctly matches locks.

Third, we again exploit the fact that programmers do not gratuitously do locking operations. The intent of a critical section is to protect something. Thus, we can detect false negatives in RacerX by counting how many shared variables each critical section contains. Critical sections with zero count either indicate the programmer made a mistake (e.g., a typo in a variable name) or that our state tracking is broken. We found eight errors in the RacerX implementation when we modified it to flag empty critical sections. There were six minor errors, one error where we mishandled arrays (and so ignored all array uses indexed by pointer variables) and a particularly nasty silent lockset cachenig error that caused us to miss over 20% of all code paths. We plan to extend this approach more globally and ensure that every shared variable is associated with some lock and that every lock is associated with some shared state.

8.7 Race results

Table 5 summarizes the results for System X and Linux. System X had seven hard bugs, four unconfirmed bugs, and thirteen harmless errors. Six of the false positives were due to signal-wait semaphores; we obtained these results before developing the analysis described in Section 5.1. The other eight were unfortunate interactions with function pointers.

We had fewer unexpected messages for Linux than for System X because it was harder to get confirmation of them. There were three valid bugs (all fixed), two unconfirmed errors, two errors involving statistic variables and six false positives.

9 Conclusion

RacerX is a static tool that uses flow-sensitive, interprocedural analysis to detect both race conditions and deadlocks. It uses novel strategies to infer checking information such as which locks protect which operations, which code contexts are multithreaded, and which shared accesses are dangerous. We applied it to FreeBSD, Linux and a large commercial code base and found serious errors in all of them.

Acknowledgements

This research was supported by DARPA contract MDA904-98-C-A933 and by an NSF Career Award. We are especially grateful for the last-minute rewriting help of Godmar Back and Ted Kremenek. We thank Stefan Savage and the anonymous reviewers for their feedback.

References

