
Automatically Generating Malicious Disks using Symbolic

Execution

Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar and Dawson Engler

Stanford University

Computer Systems Laboratory

{junfeng,csar,twohey,cristic,engler}@cs.stanford.edu

Abstract

Many current systems allow data produced by po-
tentially malicious sources to be mounted as a file
system. File system code must check this data for
dangerous values or invariant violations before us-
ing it. Because file system code typically runs inside
the operating system kernel, even a single unchecked
value can crash the machine or lead to an exploit.
Unfortunately, validating file system images is com-
plex: they form DAGs with complex dependency re-
lationships across massive amounts of data bound
together with intricate, undocumented assumptions.
This paper shows how to automatically find bugs in
such code using symbolic execution. Rather than
running the code on manually-constructed concrete
input, we instead run it on symbolic input that is
initially allowed to be “anything.” As the code runs,
it observes (tests) this input and thus constrains its
possible values. We generate test cases by solving
these constraints for concrete values. The approach
works well in practice: we checked the disk mounting
code of three widely-used Linux file systems: ext2,
ext3, and JFS and found bugs in all of them where
malicious data could either cause a kernel panic or
form the basis of a buffer overflow attack.

1 Introduction

Many current systems allow data produced by
potentially malicious sources to be mounted as a
file system. Just as network code must sanitize all
packet data and system calls must check all param-
eters before use, file system code must vet the data
it mounts to ensure that all explicit (and implicit)
invariants are obeyed by the candidate disk. For

example, inode indexes and block numbers should
always be within prescribed bounds and any counts
employed in a division operation should not be zero.

Since file systems typically run as privileged code
inside the kernel, a single unchecked value can, at
the least, crash the machine or at worst lead to an
exploit. Bitter experience has shown the difficulty
of validating network data. Unfortunately, validat-
ing an allegedly safe file system image is more com-
plex: network packets have a simple, linear struc-
ture whereas file system data structures bind mas-
sive amounts of data into complex DAGs full of in-
tricate, undocumented assumptions. Further, cul-
turally file system designers lack the same level of
paranoia as network implementors.

All of these factors make disk-focused attacks rel-
atively easy. We discuss three possible attacks. The
first, most general attack is for a bad person to gen-
erate a malevolent disk image and give it to a good,
trusting person (e.g., on a USB memory stick or
CD-ROM), who mounts it and then suffers. This
ability could also be used by a virus that infects a
user’s account, perhaps through a buggy mail client
or web browser, and writes a few choice malicious
blocks to the user’s removable media, thus crashing
the next machine the user inserts the media into.

Second, on a system that allows unprivileged
users to mount devices (the common case), a bad
person with physical access to the machine can
crash it without an intermediary by just mount-
ing the malevolent media themselves. Even though
physical access is often equated with root access,
disk mounting attacks lower the barrier to entry,
especially on public machines. No one thinks twice
about a lab user inserting a CD, but someone un-
screwing a computer and removing the hard disk is
much more suspicious.

1



Finally, systems increasingly let unprivileged
users mount arbitrary data as a file system. This
ability enables the worst attack: using the file sys-
tem to crash the machine or escalate privileges via
a buffer overflow without physical access to the ma-
chine. Mac OS X lets unprivileged users mount
normal files as file systems as part of the preferred
software distribution mechanism [1]. Linux provides
similar functionality with loop back mounts, which
user-friendly distributions like Linspire [2] enable for
regular users.

While file system validation bugs can have se-
rious consequences, they are difficult to eliminate.
The structure of a typical file system makes man-
ual inspection even more erratic than usual: deeply
nested conditionals and function call chains, the
sheer mass of code, prolific use of casting and
pointer operations, and difficult to follow dynamic
dispatch calls through function pointers (such as in
the VFS interface). In addition, the checks that
must be done can be quite tricky, especially in the
presence of arithmetic overflow, which programmers
reason about poorly. Random testing faces its own
difficulties. Bugs from arithmetic overflow often oc-
cur only for a narrow input range, making find-
ing them with random test cases unlikely. Further,
much of the file system code resides behind a thicket
of deeply nested conditionals that vet the initial
disk: reaching this code means that random testing
must correctly guess all values that the condition-
als depend on. For example, the Linux ext2 “read
super block” routine has over forty if-statements
checking the data associated with the super block.
Any randomly generated super block must satisfy
these tests before it can reach even the next level of
vetting, much less triggering the execution of “real
code” that performs actual file system operations.
Worse, many conditionals are equalities on 32-bit
values: hitting the exact value that will satisfy even
one such conditional will probably require billions of
attempts. More than a few is completely hopeless.

This paper shows how to automatically find bugs
in file system code using the symbolic execution sys-
tem EXE (“EXecution generated Executions”) we
developed in prior work [10]. The central insight be-
hind EXE is that code can be used to automatically
generate its own (potentially highly complex) test
cases. At a high level, we mark the disk as symbolic
input to the kernel, which we then run to produce
constraints and test cases.

Instead of running code on manually generated

test cases, EXE instruments a program and runs
it on symbolic input that is initially free to have
any value. As the code executes, the data is “in-
terrogated;” the results of conditional expressions
and other operations incrementally inform EXE of
constraints to place on the values of the input in or-
der for execution to proceed on a given path. Each
time the code performs a conditional check involv-
ing a symbolic value, EXE forks execution, adding
on the true path a constraint that the branch condi-
tion held while on the false path a constraint that it
did not. EXE generates test cases for the program
by using a constraint solver to find concrete values
that satisfy the constraints.

This approach has several nice features. First,
unlike most checking approaches it is constructive:
when it finds an error, it gives an actual, concrete
input to run through the code that will trigger the
error. From this point of view EXE can be viewed
as an automatic way to generate disk images that
enable exploits. Furthermore, this constructiveness
means that EXE has no false positives. Any input
it claims causes an error can be (automatically) fed
back into an uninstrumented version of the checked
code to verify that the error does indeed occur. As a
result, users do not have to trust that EXE worked
correctly — they can verify themselves that the in-
put causes the code to crash before inspecting it.
This test case can be saved for later regressions.

Second, it exponentially amplifies the effect of
running a single code path since it simultaneously
reasons about many possible values that the path
could be run with (all those that satisfy the current
path’s constraints), rather than a single set of con-
crete values from an individual test case. In fact, if
EXE has a solvable, accurate, complete set of path
constraints — no constraints were missed because
symbolic values were used in uninstrumented code,
no premature concretization occurred (see § 3.4) —
then EXE reasons about all possible values that the
path could execute with. To illustrate, a dynamic
memory checker such as Purify[22] will only catch
an out-of-bounds array access if the index (or base
pointer) has a bad value at the time of memory ac-
cess for the specific set of input values the code was
run with. In contrast, EXE will identify this bug if
there is any possible input value on the given path
that can cause an out-of-bounds index to the ar-
ray (modulo the caveats above). In addition, for
an arithmetic expression that uses symbolic data,
EXE can solve the associated constraints for values

2



to cause an overflow or a division by zero. Further-
more, the system does not just check values on a
single path, but will forcibly construct input values
to (ideally) go down all paths, getting coverage out
of practical reach from random or manual testing.

This amplification effect has the potential to
channel traditional quality assurance efforts towards
finding security vulnerabilities. Security exploits
are difficult to find with standard testing techniques
because they usually arise from uncommon interac-
tions and corner cases for which test generation is
hard. Symbolic execution specializes in generating
new and different inputs that drive a system into
novel states. Thus, the same effort needed to create
a testing framework can also be leveraged to create
an environment that searches for security problems.

Finally, the approach works. We checked the disk
mounting code of three widely-used Linux file sys-
tems — ext2, ext3[15] and JFS[24] — and found
bugs in all of them.

The paper is organized as follows: Section 2 gives
an overview of our approach, Section 3 provides
more details about symbolic execution (including its
limitations), Section 4 details the changes we needed
in order to make EXE work with Linux, Section 5
describes the bugs we found, Section 6 discusses re-
lated work, and Section 7 concludes.

2 System Overview

This section gives an overview of our approach,
graphically sketched in Figure 1. At a high level the
system consists of four pieces:
1. A trivial test driver that issues a mount system

call to cause the kernel to mount a symbolic disk
as a file system.

2. A modified version of the User Mode Linux ker-
nel [3] containing the file systems we are testing.
These modifications were mostly done in prior
work [37] and consist of simplifications such as
removing threading and changing kernel mem-
ory allocators to call into the EXE runtime. Sec-
tion 4 provides more details.

3. A (virtual) disk driver that manages the sym-
bolic disk.

4. The EXE system consisting of the EXE compiler
(exe-cc), which instruments code for symbolic
execution and the constraint management run-
time which interfaces with the STP 1 constraint

1Written by David Dill and Vijay Ganesh, STP departs
from the decades old standard approach of using Nelson and

solver.
The first three pieces are compiled with exe-cc, and
the resultant executable is then run with the EXE
runtime, causing the following to happen:
1. The test driver tries to mount a file system, caus-

ing the file system to request disk blocks from
the virtual disk driver.

2. At each block request, the virtual driver checks
if the file system has requested the block before.
If not, it creates a new, unconstrained symbolic
block whose contents are initially “anything,” by
(1) allocating a block of memory as large as the
disk read, (2) calling into the EXE runtime sys-
tem to mark the memory as symbolic, and (3)
returning a pointer to the memory back to the
file system. Otherwise it returns a pointer to
the previously read copy, implicitly preserving
any existing constraints on the block.

3. As the file system uses and observes symbolic
blocks, constraints are generated and tracked by
the EXE runtime.

4. When EXE detects an error or the mount sys-
tem call finishes and returns to the test driver,
EXE generates a concrete disk image by asking
the constraint solver for a solution to the cur-
rent set of constraints — literally the actual 0
and 1 values of bits that will satisfy the disk
constraints on the current path.

5. Each disk image generated by EXE in response
to an error is then mounted on an uninstru-
mented version of the kernel to verify that it does
indeed cause an error. All errors found this way
will be true errors since they are caused by a
real input that does not depend on EXE in any
way. Note that even disk images that cause no
obvious bugs are useful test cases since they pro-
vide a way to run many paths in the code, aiding
general correctness testing.

EXE is dynamic: it literally runs the checked pro-
gram. Thus, EXE has access to all the information
that a dynamic analysis has (and a static analy-
sis typically does not). All non-symbolic operations
happen exactly as they would in uninstrumented
code, and produce exactly the same values. Thus,
when these values appear in constraints they are
correct, not approximations. Symbolic expressions
are also exactly accurate. EXE models all of the

Oppen’s cooperating decision procedure framework [30] to
solve constraints, and instead just preprocesses and then bit-
blasts constraints to SAT, which it solves using MiniSat [14].
The STP approach is much simpler and preliminary results
suggest it is significantly faster than the traditional method.

3



� � � � � � � � � �

� 	 
 � � � � � 

� � � � � � � �
� � � �

� � � � �  � �
�  � � ! � � � �

" ! � � � � �

# � � � � � $ � � �
� �  � � �

� � � � �  � �
� � � % &  � � % �

�  � '

( ( ( ) (
) ( ) ) )( ( ( ) )

( ( ) ) )
( ( ( ) (
( ( ) ) )

� � � � # $ � � �

* $ � + � �  � � � � � �

# � � � � � $ � � � �

, - . / 0 1
2 2

3 . 4 5 6 7

3 . 4 5 8 7
9

3 . 4 5 : 7
� � � � ; � < � � ; � � � � � 

# � � � � � � � � � � % �
( ( ( ) (

) ( ) ) )( ( ( ) )
( ( ) ) )( ( ( ) (

( ( ) ) )

= > ? @ A B ? > C > D > E B @ F G D = > ? @ A B ? > A H > I J F D K

�  � '

Figure 1. Symbolic execution overview. Instrumented file sy stem code (shaded, on left) gets
symbolic blocks from our symbolic block device. When the cod e branches on the result of a
symbolic operation, the symbolic execution runtime tries t o run the code through both the true
and the false branches and generate concrete test cases. Gen erated tests are then checked by
running them on an unmodified kernel (thatched, on right).

C language, and works in the presence of point-
ers, unions, bit-fields, casts (even between integers
and pointers), and aggressive bit-operations such as
shifting, masking, byte swapping, and checksum-
ming. The only way that EXE loses even a single
bit of precision (i.e., it lets a bit be either 0 or 1
when it could not be) on a given path is if (1) EXE
is missing constraints, e.g., because the checked sys-
tem called uninstrumented code (such as assembly)
or (2) EXE has a bug. Section 3.4 discusses causes
of lost constraints in more detail.

In our context, what bit-level precision means is
that if (1) EXE has the full set of constraints for
a given path, (2) the constraint solver can produce
a concrete solution, and (3) the code is determinis-
tic then, (4) rerunning the checked system on these
concrete values will cause the file system code to fol-
low the same exact path to the error or termination
that generated the image.

Handling exponential branching. EXE aims
to get path coverage. While in general the number
of paths grows (roughly) exponential with the to-
tal lines of code, our domain is more manageable:
only branches on symbolic expressions cause forked
executions. In the code we check, most branches
involve non-symbolic conditions, which means they
execute concretely (as in uninstrumented code) with
linear cost. The caveat to this is loops. A simple
loop that compares a counter to a symbolic bound

can run until the counter reaches the (potentially
enormous) maximum value the symbolic could pos-
sibly contain. And if this was not already expen-
sive enough, more complex symbolic loop conditions
can, of course, run longer.

EXE currently handles loops using search heuris-
tics. When EXE forks execution it can chose which
branch to follow (or whether to resume the child
of an unexplored prior branch). By default EXE
uses depth-first search (DFS) to keep the number
of processes small (linear in the depth of the pro-
cess chain). In addition, when forking on loop con-
ditions it will (by default) explore the false branch
first, which means that loops run zero times, then
all paths in the loop are run once (and each exits
after), then all combinations run twice, etc.

Unfortunately, simple DFS works poorly in some
cases since it cannot backtrack. For example, if
checked code has two consecutive loops, L1 and L2,
DFS will get “stuck” on L2 and be unable to back-
track to L1 until it has executed L2 as many times
as possible. To counter this, EXE provides a set of
heuristics to guide search. Our current favorite uses
a mixture of “best-first” and DFS search. It picks
the process that will execute the line of code run the
fewest number of times. It then runs this process
(and its children) in a DFS manner for a while. It
then picks another best-first candidate and iterates.

4



Despite these challenges, our experiments needed
less than an hour to generate tests that trigger the
errors we discuss. While the mount system call im-
plementations checked in this paper have complex
control flow, they do little symbolic looping.

However, in some sense we are happy to let the
system run for weeks. As long as the tests EXE gen-
erates explore paths difficult to reach randomly (as
most are), then the only real alternative is manual
test generation, which (generally speaking) has not
had impressive results. Finally, once the tests are
generated, they can be run on the uninstrumented,
checked program at full speed and saved for later
regression runs.

We describe EXE in more detail in the next sec-
tion, including limitations that require a bit more
technical background, and then discuss issues in ap-
plying EXE to Linux.

3 Symbolic Execution

EXE has one main goal: at any point on a pro-
gram path to have an accurate, complete set of all
constraints on symbolic input for that path. When
EXE can both see and solve the constraints on a
given path (it cannot always), it can do two useful
things: (1) drive execution down all paths and (2)
use a path’s constraints to check if any possible in-
put value exists that could cause an error such as di-
vision by zero or an invalid dereference at any point
on that path. Our entire motivation for working on
EXE is the hope of achieving all path coverage plus
all value checking for large amounts of code.

This section gives a high-level overview of the key
features of EXE needed to check the file systems
code in this paper: (1) the mechanics of supporting
symbolic execution (accurately tracking path con-
straints and executing all paths), (2) its universal
checks, and (3) how it models memory (so that an
expression’s constraints reflect all possible memory
locations that the expression could refer to). We
close by discussing EXE’s limitations, including the
cases when it cannot track all constraints. For more
operational detail, the interested reader can refer
to [10], which introduced EXE.

3.1 Instrumentation

The first step in using EXE is to compile the
code to check using exe-cc, which uses the CIL
front-end [29] to instrument the checked program

for symbolic execution. The inserted instrumenta-
tion has two primary tasks: (1) supporting mixed
concrete and symbolic execution and (2) exploring
all program choices by forking program execution
when a symbolic value could cause several different
actions. We discuss each below.

EXE supports mixed concrete and symbolic ex-
ecution by inserting dynamic checks around every
expression, such as assignments, dereferences, and
conditionals. If an expression’s operands are con-
crete, then the expression is performed concretely
(i.e., as in the original, uninstrumented program).
If any of its operands are symbolic, the expression
is not performed, but instead the EXE runtime sys-
tem adds it as a constraint. For example, given the
expression x = y + z, EXE checks if y and z are
concrete and, if so, lets the expression execute and
records that x holds a concrete value. If y or z (or
both) are symbolic, EXE instead just adds the con-
straint x = y + z and records that x corresponds to
a symbolic value.

EXE is designed to explore everything “interest-
ing” that can happen because of an input value. It
explores both branches of a symbolic conditional (if
they are possible) by (1) literally using the fork sys-
tem call to clone execution and (2) adding on the
true path the symbolic constraint that the branch
condition is true, and on the false path that it is not.
As an example, consider the if-statement if(x*x +

y*y == z*z). If x, y, and z are concrete, then exe-
cution happens as normal: the expression is evalu-
ated and if true, the true branch is taken, otherwise
the false branch is. However, if x, y or w is symbolic,
then EXE forks execution and on the true path as-
serts that y × y + x × x = z × z is true, and on
the false path that it is not. (Note: a non-symbolic
variable involved in an expression will be concretely
evaluated, and its value encoded as a constant in
the constraint.) Figure 2 gives the rewrite transfor-
mation for conditional statements.

EXE uses forking in two other situations as a way
to drive execution into often-buggy corner cases:
(1) arithmetic overflow and (2) casting surprises.
EXE attempts to force overflow in each symbolic
arithmetic operation as follows. It builds two sym-
bolic expressions. The first encodes the operation at
the precision specified by the program being tested,
while the second encodes the operation at an essen-
tially infinite precision. EXE then queries its con-
straint solver to see if the constraints on the current
path ever allow these expressions to differ. If so, an

5



if-transformation(Expr e, Stmt s1, Stmt s2)
if is-symbolic(e) = 〈false〉

if e

s1

else

s2

else

if fork() = child

add-symbolic-constraint(e = true)
s1

else

add-symbolic-constraint(e = false)
s2

Figure 2. Rewrite transformation for con-
ditional expressions if(e) s1 else s2.

arithmetic overflow is possible, and EXE generates
a concrete test case that triggers the overflow.

Narrowing casts lose information and thus may
add bugs. EXE checks if a truncation cast from
an n-bit symbolic expression e to an m-bit sym-
bolic expression (m < n) can lose bits in a manner
similar to overflow checking. It builds a symbolic
expression that extracts m bits from e and sign-
or zero-extends it (as appropriate) back to n bits
and then queries the constraint solver to see if the
constructed expression could differ from e. If so, it
forks execution into two different execution paths
and adds constraints so that one path loses infor-
mation and the other does not.

Casts from a signed to an unsigned value are a
common source of security holes – if the signed vari-
able is negative, its unsigned representation will be
a very large value. Given such a cast on a symbolic
value, EXE queries the constraint solver to check if
the high bit of the symbolic value can be both 0 and
1. If so, EXE forks execution to create two paths:
one where the sign bit is constrained to be 0, and
another where it is constrained to be 1 (and thus
will generate a large unsigned value).

3.2 Symbolic Checks = Power

A key advantage of symbolic execution over con-
crete is that concrete execution operates only on a
single possible set of concrete values, whereas sym-
bolic execution operates on all values that the cur-
rent path constraints allow (modulo the power of
the constraint solver). EXE uses this ability to pro-
vide several “universal” checks. When an execution
reaches a program operation that gives an error for

certain values (0 for division, null or out-of-bounds
pointers for dereferences) EXE checks if any possible
input value exists that (1) satisfies the current path
constraints and (2) causes the operation to blow up.
Such “all value” checking is a dramatic amplifica-
tion over concretely checking a single value.

EXE does three universal checks: (1) that an in-
teger divisor or modulus is never zero, (2) that a
dereferenced symbolic pointer is never null, and (3)
that a dereferenced pointer lies within a valid ob-
ject. All checks follow the same general pattern: the
front-end inserts the check at each relevant point in
the checked program and calls the constraint solver
to determine if the condition could occur. If so,
EXE forks execution and (1) on one branch asserts
that the condition does occur, emits a test case,
and terminates; (2) on the false path asserts that
the condition does not occur (e.g., that an index is
in bounds, that a divisor is non-zero) and continues
execution (to hunt for more bugs).

The most complex check is determining if a sym-
bolic pointer dereference could be out of bounds.
EXE tracks the size of each memory block and
the block that each symbolic pointer should point
within using techniques similar to CRED [32] or Pu-
rify [22]. Given this information, then for any deref-
erence *p, EXE asks the constraint solver whether
p could be outside its base object. If so, EXE pro-
duces a concrete assignment for the initial symbolic
inputs that makes the concrete execution of the pro-
gram perform an out-of-bounds memory access. It
then adds the constraint that the pointer is within
its object and continues execution. Using these
checks, we found a complex buffer overflow error
in the ext2 file system (replicated in ext3), which
we discuss in Section 5.

Finally, note that EXE’s goal of path coverage
implicitly turns programmer asserts on a symbolic
expression into universal checks of the asserted con-
dition. When EXE hits an assert it will system-
atically search the set of constraints to try to reach
the false path of the assert check (as with any con-
ditional). If the assert passes, it was because EXE
could not find any input that would violate it. If
there is some input that lies within EXE’s constraint
solver’s ability to solve, then it will find it. This
exponentially amplifies the domain of a given asser-
tion in code over just checking it for a single con-
crete value. (Note, more generally, any correctness
check the programmer puts in their code will re-
ceive the same amplification since EXE will try to

6



drive execution down all paths in the checking code,
including the paths that catch errors.)

3.3 Modeling Memory

Two memory stores coexist during a run of an
EXE program: (1) the concrete store, which is just
the memory of the underlying machine (i.e., a flat
byte array addressed by 32-bit pointers) and (2) the
symbolic store, which resides inside of the constraint
solver. The concrete store is what concrete opera-
tions act upon and includes the heap, stack, and
data segments. The symbolic store includes both
(1) the set of symbolic variables used in the current
set of constraints (in addition to constants) and,
less obviously, (2) the set of constraints themselves.
Solving the symbolic store’s constraints gives a con-
crete store. Thus, a symbolic store describes zero
to many concrete stores: zero if its constraints have
no solution, many if there are many different solu-
tions. If the symbolic store is described by an accu-
rate, complete set of constraints, then any solution
is guaranteed to be a valid concrete store.

Concrete bytes holding concrete values have no
corresponding storage in the symbolic store. All val-
ues start out as concrete. When the user marks a
set of bytes as symbolic, EXE creates a correspond-
ing, identically-sized range of bytes in the symbolic
store, and records this correspondence in a hash ta-
ble that maps byte addresses to their corresponding
symbolic bytes. As the program executes, this table
grows as more bytes become symbolic, either by as-
signing a symbolic expression to a concrete variable
(parameter passing can be viewed as a form of as-
signment) or by indexing a data block by a symbolic
index.

Accurately tracking constraints that only involve
strongly-typed scalar variables is relatively simple:
just name the variables uniquely (e.g., as in the orig-
inal code) and use these names consistently in the
constraints. There are two problems we had to han-
dle for real C code: (1) that it treats memory as
untyped bytes, and (2) it uses pointers. We give
more detail below.

Untyped memory A simple, natural way to
build the symbolic store would be to map each
symbolic object in the textual program (such as
a variable, a structure, an array) to a correspond-
ing object (variable, structure, array) in the sym-
bolic store, essentially associating a single type with
each memory location. However, systems code of-
ten observes a single memory location in multiple

ways. For example, by casting signed variables to
unsigned, or (in the code we checked) treating an
array of bytes as an inode or superblock structure.

Since C treats memory as untyped bytes, EXE
does as well. It uses two STP primitives — bitvec-
tors and arrays — to encode the memory associated
with a symbolic object as an (untyped) STP array
of 8-bit bitvector elements. Using bitvectors let us
treat memory as untyped, using arrays let us han-
dle pointers (discussed below). Each read of mem-
ory generates constraints based on the static type
of the read (such as int, unsigned) but these types
do not persist (other than in the single constraint
generated by the symbolic expression that used the
given read). Observing bits using an unsigned ac-
cess does not impede a subsequent signed access.
Both accesses are performed as expected, and their
respective constraints are conjoined.

Symbolic pointers. Unlike scalars, symbolic
pointers can refer to many different symbolic vari-
ables. For example, given an array a of size n and an
in-bounds symbolic index i, then a simple boolean
expression (a[i] != 0) essentially becomes a big
disjunction:

(i == 0 && a[0] != 0)

|| (i == 1 && a[1] != 0)

|| ...

|| (i == n-1 && a[n-1] != 0)

Similarly, the simple array assignment a[i] = 42

could update any value in a.

While encoding such array expressions using a
raw SAT-solver interface is tricky, by using STP we
can just let it worry about such encoding complex-
ity. Our main challenge is taking a given pointer
dereference *(p+i) (where p or i could be sym-
bolic) and mapping it to the correct STP array and
index within that array. This mapping proceeds as
follows. We map the pointer to its corresponding
STP array in two steps. First, we (re)use EXE’s
machinery for checking out-of-bounds memory ref-
erences (from § 3.2), which given the address of a
concrete memory location p that holds a pointer will
return the starting address of the memory block b

that it (should) point into (b = base(&p)). Second,
we then lookup this base address b in an auxiliary
hash table to get its corresponding STP array name
bsym. If it has no symbolic counterpart we allocate
one with initial values set to those in the current
concrete memory location.

Given the symbolic array bsym associated with p

we then build a symbolic expression that gives the

7



1 : #include <assert.h>

2 : int main() {
3 : unsigned char i, j, k, a[4] = {11, 13, 17, 19};
4 : make symbolic(&i); // these macros make
5 : make symbolic(&j); // i, j, and k
6 : make symbolic(&k); // symbolic
7 : if(i >= 4 | | j >= 4 | | k >= 4) // force in−bounds
8 : exit(0);
9 : a[i] = 1;
10: if ( (a[j] + a[k] == 14) )
11: assert((i != 1));
12: }

Figure 3. A simple example using pointers.

(possibly symbolic) offset of p from the base of the
concrete memory block it points to (i.e., o = p− b).
We then add this to the original (possibly symbolic)
offset i. The final symbolic expression bsym[i+o] can
then be used in constraints to accurately refer to all
possible set of symbolic locations that the original
expression could point to.

The end result of these gyrations is that EXE can
handle both reads and writes of pointer expressions
where the pointer or the offset expression or both
are symbolic.

To get a feel for what this ability means consider
the code in Figure 3. When compiled with exe-cc,
the program will execute correctly and produce no
assertion violations. This code presents two main
challenges. First, the assignment a[i] = 1 uses the
symbolic index i, which could refer to four different
values in a. Thus, it creates a symbolic store that
can generate four different concrete memory stores,
depending on which element of a was overwritten.
Second, both a[j] and a[k] read using symbolic
indexes that could refer to any value in a. However,
when EXE hits the assert(a[j] + a[k] == 14)

statement on the true branch of the if statement
on line 10, the number of possible concrete stores is
reduced to three, because the only way in which this
condition can be true is when the value 13 is still
present in the array, i.e. when the second element is
not overwritten. The program checks this fact using
assert, which EXE proves true.

3.4 Limitations

EXE has several limitations, some ephemeral,
some more fundamental. In the ephemeral category,
EXE is still research quality so handling Linux is not
always a smooth ride. The fact that a concrete test
case is produced helps a lot in eliminating false posi-
tives. As a further check, EXE optionally tracks the

basic blocks visited when generating a give case and
will verify that the same path is executed when the
concrete value is rerun on the checked code. This
check found many bugs inside EXE.

There are two places where EXE replaces a sym-
bolic value with a concrete, constant value (“con-
cretization”) or places additional constraints on it
in order to make progress but discarding certain ex-
ecution paths or values:

1. Because STP does not handle division or mod-
ulo by a symbolic value, when EXE encounters
either operation it constrains the operand to be
a power of two and replaces the division or mod-
ulo operation by a shift or bitwise mask, respec-
tively.

2. Given a double-dereferences of a symbolic
pointer such as **p (where p is symbolic) EXE
will currently concretize the first dereference
(*p), thereby fixing it to one of the possibly
many storage locations it could refer to. (How-
ever, the result of **p can still be a symbolic
expression.) This concretization is an artifact of
the way we name arrays in STP; we are currently
working on removing it.

There are several places where EXE will miss
constraints:

1. If STP cannot solve the constraints on a path,
EXE terminates that path. This termination
has not happened when checking mount code,
but could in general since constraint solving is
an NP-hard problem.

2. If uninstrumented code (e.g. inline assembly or
functions in files that cannot be correctly com-
piled by exe-cc) attempts to use symbolic val-
ues. The next section discusses where this occurs
in the code we check.

3. Because of exponential branching (§ 2).

Currently the system is missing several features,
none of which mattered for this paper:

1. STP does not correctly handle all operations on
64-bit primitives, so we are not able to generate
proper constraints for code that makes exten-
sive use of long long values. Fortunately, disk
mounting code only uses such values in simple
ways that STP can handle.

2. STP does not support floating-point operations.
3. EXE does not handle call through symbolic

function pointers (which could be added by con-
cretization) and may not correctly track symbol-
ics passed to variable-length argument functions.

8



4 Applying EXE to Linux

Ideally, file systems would provide a unit testing
framework that would let us automatically extract
them from the host operating system and check
them at user level with EXE. Unfortunately, in
practice file systems are so tightly entwined with
their host OS that cutting file system code from
the rest of the kernel in such a manner is hope-
less because it interacts with virtually every part of
the kernel, from timers to the virtual memory layer
and all its associated buffers. Even approximating a
small portion of the kernel in order to check device
drivers is very labor intensive and prone to inaccu-
racies, requiring many careful adjustments to the
modeled functions [6, 28, 37].

Thus, we run most of the Linux kernel through
exe-cc. By pushing the entire Linux kernel into
our symbolic execution system we can check unan-
ticipated interactions between file system and other
kernel code. If we had attempted to model the
Linux VFS implementation while checking JFS, we
most likely would have missed the JFS bug we found
because it involves rather complicated interactions
with the Linux inode manipulation routines.

Rather than run Linux on the bare hardware, we
instead use the CMC framework [28, 37] an adapta-
tion of User Mode Linux (UML) to run the 2.4.19
kernel as an unprivileged user-level process. There
are two reasons for this. First, the current EXE re-
quires the ability to clone and wait for processes, op-
erations that we cannot do to a Linux kernel running
on hardware. Second, checking code running on the
bare hardware makes many things unnecessarily dif-
ficult: debuggers run poorly, if at all; pointer errors
reset the machine rather than causing a catchable
segmentation fault; etc.

Our virtual disk driver mostly does what one
would expect. Its main trick (as mentioned in
§ 2) is to lazily make blocks symbolic when they
are read, as opposed to simply making the entire
disk symbolic upfront. This laziness can make a
big difference in speed. For example, the minimum
size of a JFS disk is 16MB, and making the entire
disk symbolic would generate a prohibitively expen-
sive number of constraints right from the beginning.
Lazily making individual disk blocks symbolic the
first time they are inspected drastically reduces the
number of constraints, which in turn allows us to
check JFS.

Linux is a large piece of software that does ex-

citing things. As a result, we had adapt EXE in a
number of ways to work with Linux and Linux to
work with EXE.

We made two modifications to EXE in response
to checking Linux. First, given an assignment v =

e of a symbolic expression e to a concrete variable v,
EXE initially would always make v symbolic, even if
e was constrained to be a single value. Checking for
this special case and just assigning v the value that
e was constrained to hold dramatically reduced the
number of symbolics. Second, freeing a heap object
and then reusing it causes problems in the current
implementation of EXE because of the way we de-
termine the base object of a pointer involved in a
double-dereference, after we concretize it. We work-
around this problem by not freeing heap objects if
they are symbolic.

We modified Linux in several ways. First, EXE
does not support threads. Fortunately, CMC gives
us enough control over threading that we can eas-
ily disable it for the purposes of running the mount

system call.

Second, EXE instruments C code, but the ker-
nel uses a fair amount of hand-optimized assembly
for common memory manipulation routines such as
memcpy and strlen. While these improve runtime
performance in a real kernel, they cause EXE to
lose symbolic constraints when the input to one of
these routines contains symbolic values. We thus
replaced the optimized kernel routines with slower,
but instrumented, versions to ensure we track con-
straints across all kernel calls.

Third, the UML kernel maps itself into a fixed
virtual address range to simplify porting from the
real Linux kernel. The large number of temporary
variables introduced by exe-cc resulted in code and
data segments so large that they caused this map-
ping to fail. We elided this problem by only linking
the necessary kernel modules into the UML kernel,
and by reworking the exe-cc transforms to reduce
the number of generated temporaries.

Fourth, the front-end transformations we use for
instrumentation do not always handle the GNU C in
which Linux is written; they failed to compile eight
files. We compile these problem files with gcc and
treat the functions inside them as uninstrumented
library code. EXE is designed to halt execution
with an error whenever symbolic data is passed to
uninstrumented code to flag such losses of precision.
Fortunately, in the mount code we check, no sym-
bolic data is ever passed to these uninstrumented

9



File Kernel Read/Write Total

System Panic Arbitrary Memory
ext2 3 1 4
JFS 1 0 1
Total 4 1 5

Figure 4. Summary of unique vulnerabili-
ties found.

routines.
Finally, to help debugging we manually simplified

a hash function ( hashfn), used to hash the block
and device number during buffer cache lookups,
whose extensive uses of shifts generated a lot of con-
straints.

5 Results

We applied our technique to three Linux file sys-
tems, ext2, ext3 and JFS. For the rest of this section
we treat ext2 and ext3 as one file system because the
code (and its bugs) implementing the mount opera-
tion in ext3 is almost identical to that in ext2. We
found four vulnerabilities in ext2 that were repli-
cated in ext3, and one vulnerability in JFS. The
instrumented EXE code typically finds the bugs in
less than a few minutes and in no case in more than
hour on a modern desktop.

For technical reasons, we run the file system code
on top of an older kernel, Linux 2.4.19, and many
vulnerabilities we found have already been fixed in
the latest Linux 2.6 kernels. However, we were pre-
viously unaware of any of these, and two of the vul-
nerabilities we found are still present in the latest
Linux kernel.

Figure 4 summarizes the errors we found. Four of
these errors cause the kernel to panic, while one er-
ror makes the kernel read and write arbitrary mem-
ory. We discuss these errors in detail in the fol-
lowing sections. The inlined comments in the code
snippets in this section are all ours and are provided
for clarity.

5.1 Ext2 and Ext3

Of the four errors we found in ext2 and ext3, one
causes the kernel to read and write arbitrary mem-
ory, while the other three make the kernel crash.

The most dangerous exploit we found allows a
carefully crafted malicious disk to bypass an upper-
bound check of an offset through an arithmetic over-

flow, and then use this unconstrained offset to read
and write from arbitrary regions in memory.

We step through this bug below in some detail
below in order to give a feel for the type of bugs
EXE can find.

The source code that leads to this exploit is
shown in Figure 5. The function ext2 free blocks

frees count disk blocks belonging to inode inode,
starting at block number block. The parameter
block is read from disk and therefore is treated
as a symbolic variable by EXE. On lines 8-9,
ext2 checks that block is within the valid range.
However, if block is very large, block+count

can overflow and pass the check block+count

> le32 to cpu(es->s blocks count) (Note that
le32 to cpu is a macro that expands to the iden-
tity function on little endian machines). Later, ext2
computes block group (lines 16-17) using block,
and then calls load block bitmap (line 25). The
load block bitmap procedure uses block group as
an array index (lines 53-55), which allows an at-
tacker to read from arbitrary memory addresses.

Moreover, if the condition on lines 50 to 55 is
true, the code assigns the value of block group to
slot on line 57, after which it returns this value
back to the caller of the load block bitmap func-
tion. Then, this value is used to make an assignment
to variable bh (line 31), after which bh->data can
be used to write at arbitrary locations in memory
(line 37). This bug was fixed in later versions of the
2.4 kernel series.

While this bug was immediately found by EXE,
it is hard to find by manual inspection because it
involves a combination of two events (an arithmetic
overflow followed by a buffer overflow), which can
easily be overlooked.

The bug highlights the benefit of EXE’s mem-
ory model. Without EXE’s bit-level precision and
support for symbolic pointers and casting, it is ex-
tremely difficult to detect such exploits. In addi-
tion, EXE’s multiple symbolic checks made it easy
to diagnose the error. EXE flagged an arithmetic
overflow on lines 9 and 10, and buffer overflows on
lines 31, 37, 53 and 55, which we used to identify
the root cause of the bug.

Finally, because EXE produced concrete values
that trigger these overflows we could easily verify
them by simply mounting the EXE-generated disk
image in an uninstrumented Linux 2.4.19 kernel,
which generated a kernel panic when block group

was used to index past the bounds of an array.

10



1 : /* fs/ext2/balloc.c */
2 : void ext2 free blocks (struct inode * inode,
3 : unsigned long block,
4 : unsigned long count) {
5 : /* . . . */
6 : // EXE: block is symbolic. block + count can overflow
7 : // and be smaller than s blocks count
8 : if (block < le32 to cpu(es−>s first data block)
9 : | | (block + count) >

10: le32 to cpu(es−>s blocks count)) {
11: ext2 error (. . .);
12: goto error return;
13: }
14: /* . . . */
15: // EXE: block group becomes symbolic
16: block group =
17: (block − le32 to cpu(es−>s first data block))
18: / EXT2 BLOCKS PER GROUP(sb);
19:
20: /* . . . */
21: // EXE: call load block bitmap with symbolic
22: // argument block group. load block bitmap
23: // can return block group, so bitmap nr
24: // becomes symbolic
25: bitmap nr = load block bitmap (sb, block group);
26: if (bitmap nr < 0)
27: goto error return;
28:
29: // ERROR! read out of bounds.
30: // sb−>u.ext2 sb.s block bitmap has size 8
31: bh = sb−>u.ext2 sb.s block bitmap[bitmap nr];
32: /* . . . */
33: for (i = 0; i < count; i++) {
34: // ERROR! bh and bh−>b data can point to
35: // anywhere. read and write to
36: // arbitrary kernel memory.
37: if (!ext2 clear bit (bit + i, bh−>b data))
38: /* . . . */
39: }
40: /* . . . */
41: }
42:
43: static inline int

44: load block bitmap (struct super block * sb,
45: unsigned int block group) {
46: /* . . . */
47: if (. . .) {/* . . . */}
48: // ERROR! read out of bounds.
49: // EXT2 MAX GROUP LOADED is 8
50: else if (sb−>u.ext2 sb.s groups count <=
51: EXT2 MAX GROUP LOADED &&
52: sb−>u.ext2 sb.
53: s block bitmap number[block group]
54: == block group &&
55: sb−>u.ext2 sb.s block bitmap[block group]) {
56: // EXE: slot becomes symbolic
57: slot = block group;
58: } else {
59: slot = load block bitmap (sb, block group);
60: }
61: /* . . . */
62: return slot; // EXE: potential symbolic return

63: }

Figure 5. Ext2 buffer overflow.

We found another bug in ext2 that allows a mali-
cious disk to panic the kernel at mount time. (This
bug was live in our version of the kernel but fixed
in 2.6.) Linux file systems such as ext2 may re-
spond in three different ways when faced with an
error: they may try to continue to execute nor-
mally, they may continue as read-only, or they may
panic the kernel. The actual behavior can be spec-
ified either through global mount options (usually
in a file called “/etc/fstab”), or by setting certain
flags in the disk’s super block. A correct imple-
mentation should always give priority to the global
mount options, which are usually set by system ad-
ministrators. The ext2 implementation incorrectly
allows on-disk flags to override global mount op-
tions, which malicious disks can exploit to panic the
kernel by setting the panic flag in the super block.

The other two exploits that we found in ext2 are
caused by a division by zero bug and a modulo by
zero bug, both taking advantage of file system code
which uses values read from the disk as divisors,
without first checking that they are not zero. One
of the errors is fixed in Linux version 2.6.10, but the
other still exists in the latest kernel version at the
time of publication.

Figure 6 shows the unfixed bug. The data argu-
ment to ext2 read super contains symbolic values
read from our symbolic disk. The function first lo-
cates the symbolic super block es within data on
line 9, then copies its fields to the in-memory super
block sb->u.ext2 sb on line 14-15 and checks if the
fields are valid. The field s inodes per group spec-
ifies the number of inodes contained in one block
group. Although the ext2 developers carefully check
it against an upper bound on line 18, they fail to
check it against zero. Subsequent use of this value
as denominator on line 39 can cause a modulo by
zero error.

The division by zero bug which was fixed in
Linux 2.6.10 is very similar to the modulo bug pre-
sented here, except that it only spans a single func-
tion. The fact that the modulo by zero bug spans
two different files, one where checks are performed
(fs/etc/super.c) and one where the modulo oper-
ation is done (ft/ext2/inode.c), probably explains
why it has not been fixed.

5.2 JFS

The bug we found in JFS is a NULL pointer
dereference that exists in the latest 2.4 series ker-
nels and in a slightly modified form in the latest

11



1 : // fs/ext2/super.c
2 : // EXE: parameter data contain symbolic values
3 : // read from the symbolic disk
4 : struct super block * ext2 read super (
5 : struct super block * sb, void * data, int silent) {
6 : /* . . . */
7 : // EXE: cast data to es. Now es points to the
8 : // symbolic super block
9 : es = (struct ext2 super block *)
10: (((char *)bh−>b data) + offset);
11: // EXE: copy values from es to sb
12: // sb−>u.ext2 sb.s inodes per group
13: // becomes symbolic
14: sb−>u.ext2 sb.s inodes per group =
15: le32 to cpu(es−>s inodes per group);
16: /* . . . */
17: // EXE: check uppper bound
18: if(sb−>u.ext2 sb.s inodes per group >

19: sb−>s blocksize * 8) {
20: printk("EXT2-fs: #inodes per group too big: %lu\n",
21: sb−>u.ext2 sb.s inodes per group);
22: goto failed mount;
23: }
24:
25: /* . . . */
26: // EXE: read root inode. iget will call ext2 read inode
27: sb−>s root = d alloc root(iget(sb, EXT2 ROOT INO));
28: /* . . . */
29: // include/linux/ext2 fs.h
30: #define EXT2 INODES PER GROUP(s) \
31: ((s)−>u.ext2 sb.s inodes per group)
32:
33: // fs/ext2/inode.c
34: void ext2 read inode (struct inode * inode) {
35: /* . . . */
36: //ERROR!: EXT2 INODES PER GROUP(inode−>i sb)
37: // is symbolic and can be 0.
38: offset = ((inode−>i ino − 1)
39: % EXT2 INODES PER GROUP(inode−>i sb)) *
40: EXT2 INODE SIZE(inode−>i sb);

Figure 6. Ext2 modulo-by-zero bug.

2.6 kernels. The mounting code discovers an error
in the provided disk and tries to undo the partially
completed mount by calling jfs umount. The code
is shown in Figure 7. This function frees the fileset
inode allocation map sbi->ipimap and then sets
the pointer to NULL on line 6. Later on line 10 it
tries to close the aggregate inode allocation map by
calling diFreeSpecial. After several nested func-
tion calls jfs umount calls diFree which retrieves
the value of ipimap (which is NULL) from the su-
perblock on line 17 and tries to dereference it on line
21, causing a NULL pointer exception. The same
bug also exists in the 2.6.10 kernel where a fixed off-
set is subtracted from the NULL pointer before it is
dereferenced, causing a page fault at an invalid vir-
tual address. Figure 8 shows the actual disk image

1 : /* fs/jfs/jfs umount.c */
2 : int jfs umount(struct super block *sb) {
3 : struct jfs sb info *sbi = JFS SBI(sb);
4 : struct inode *ipaimap = sbi−>ipaimap;
5 : /* . . . */
6 : sbi−>ipimap = NULL;
7 : /* . . . */
8 : ipaimap = sbi−>ipaimap;
9 : // EXE: this will eventually call diFree on ipaimap
10: diFreeSpecial(ipaimap);
11: }
12: /* fs/jfs/jfs imap.c */
13: int diFree(struct inode *ip) {
14: /* . . . */
15: // EXE: jfs umount sets ipimap = NULL
16: // so ipimap is also NULL
17: struct inode *ipimap = JFS SBI(ip−>i sb)−>ipimap;
18: // ERROR! expands to imap = ipimap−>u.generic ip
19: // where ipimap is NULL and will cause a
20: // NULL pointer dereference
21: struct inomap *imap = JFS IP(ipimap)−>i imap;

Figure 7. JFS NULL pointer dereference.

Offset Hex Values
00000 0000 0000 0000 0000 0000 0000 0000 0000

· · · · · ·
08000 464a 3153 0000 0000 0000 0000 0000 0000

08010 1000 0000 0000 0000 0000 0000 0000 0000

08020 0000 0000 0100 0000 0000 0000 0000 0000

08030 e004 000f 0000 0000 0002 0000 0000 0000

08040 0000 0000 0000 0000 0000 0000 0000 0000

· · · · · ·
10000

Figure 8. The hex dump above is a 64KB
disk that will cause JFS to dereference
a NULL pointer in the Linux 2.4.27 ker-
nel. (The · · · are repeats of the previ-
ous row.) To reproduce the NULL pointer
dereference in Linux 2.4.27, simply create
an empty 64K file and set the 64th sector
to the above. The same disk causes JFS to
dereference a garbage pointer in the 2.6.10
kernel.

generated by EXE from the error path constraints;
when mounted it will can cause the NULL or bogus
pointer dereference.

6 Related Work

There are many file system testing frameworks
that use application interfaces to stress a “live” file

12



system with an adversarial environment; two good
ones are [27, 34]. However, these focus on errors
that occur during the runtime operation of a file
system and do not focus on corruption or data in-
tegrity issues. Recently there has been some work
on characterizing how a file system responds to disk
errors [31], but this work starts with an initial, good
disk and then tries to cause problems. We instead
aim to crash the kernel from the get-go.

In the remainder of this section we compare EXE
to other symbolic execution work, static input gen-
eration, model checking, test generation, and finally
generic bug finding methods.

Symbolic Execution. In prior work we devel-
oped the EGT [9] system whose approach is sim-
ilar in spirit to EXE, but in practice has many
limitations: no pointers, arrays, bit-fields, casting,
overflow, sign extension and none of the extended
checks we describe in Section 3.2. Simultaneously
with EGT, the DART project [19] developed a sim-
ilar approach of generating test cases from symbolic
inputs. DART only handles constraints on inte-
gers of the form a1x1 + · · · + anxn + c ./ 0 where
./ ∈ {<, >,≤,≥, =, 6=}, and does not handle sym-
bolic pointers. This restriction prevents DART from
reasoning about the bit masking and pointer oper-
ations inherent in file system code.

The CUTE project [33], which splintered from
DART, handles pointer constraints by using an ap-
proximate pointer theory that causes it to miss er-
rors of the form: buf[i] = 0; buf[j] = 1; if

(buf[i] == 0) ERROR, where i and j are symbolic.

EGT, DART, and CUTE focused on unit-testing
small, user-level programs, rather than large, com-
plex kernel code. Additionally, none looked for the
types of errors focused on in this paper.

CBMC is a bounded model checker for ANSI-
C programs [11] designed to cross-check an ANSI
C implementation of a circuit against its Verilog
counterpart. Unlike EXE, which uses a mixture of
concrete and symbolic execution, CBMC runs code
entirely symbolically. It takes (and requires) an en-
tire, strictly-conforming ANSI C program, which it
translates into constraints that are passed to a SAT
solver. CBMC provides full support for C arith-
metic and control operations and reads and writes
of symbolic memory. However, it has several lim-
itations that keep it from handling systems code.
First, it has a strongly-typed view of memory, which
prevents it from checking code that accesses mem-
ory through pointers of different types. From ex-

perimenting using CBMC, this limit means it can-
not check a program that calls memcpy, much less
a program that casts pointers to integers and back.
Second, because CBMC must translate the entire
program to SAT, it can only check stand-alone pro-
grams that do not interact with the environment
(e.g., by using systems calls or even calling code for
which there is no source). Both of these limits pre-
vent CBMC from being used to check any of the file
system code in which we found bugs.

Larson and Austin [26] present a system that
dynamically tracks primitive constraints associated
with “tainted” data (e.g., data that comes from un-
trusted sources such as network packets) and warns
when the data could be used in a potentially dan-
gerous way. At potentially dangerous uses of in-
puts, such as array references or calls to the string
library, they check whether the index could be out
of bounds, or if the string could violate the library
function’s contract. Thus, as EXE, this system can
detect an error even if it did not actually occur
during the program’s concrete execution. However,
their system lacks almost all of the symbolic power
that EXE provides. Unlike EXE, they cannot gen-
erate inputs to cause paths to be executed; they re-
quire the user to provide test cases, and only check
the paths covered by these test cases.

Dynamic input generation techniques. Past
automatic input generation techniques appear to fo-
cus primarily on generating an input that will reach
a given path, typically motivated by the problem of
answering programmer queries as to whether con-
trol can reach a statement or not [16, 21]. EXE dif-
fers from this work by focusing on the problem of
comprehensively generating tests on all paths con-
trolled by input, which makes it much more effective
in exploring the state space of the programs being
tested.

Model Checking. Model checkers have been
previously used to find errors in both the design
and the implementation of software systems [6, 12,
18, 23, 28]. These approaches tend to require signif-
icant manual effort to build test harnesses. How-
ever, to some degree, the approaches are comple-
mentary: the tests our approach generates could
be used to drive the model checked code, similar
to the approach embraced by the Java PathFinder
(JPF) project [25]. JPF combines model checking
and symbolic execution to check applications that
manipulate complex data structures written in Java.
JPF differs from EXE first of all in its application

13



domain, but also in that it does not have support
for untyped memory (not needed because Java is a
strongly typed language), and symbolic pointers.

Static input generation. There has been a
long stream of research that attempts to use static
techniques to solve constraints to generate inputs
that will cause execution to reach a specific pro-
gram point or path [4, 5, 7, 20]. A nice feature of
static techniques is that they do not require running
code. However, in both theory and practice they
are much weaker than a dynamic technique such as
EXE, which has access to much useful information
impossible to get without running the program.

Static checking. Much recent work has fo-
cused on static bug finding [6, 8, 13, 17, 35]. The in-
sides of these tools look dramatically different than
EXE. The Saturn tool [36] is one exception, and ex-
presses program properties as boolean constraints,
and which models pointers and heap data down to
the bit level. Roughly speaking, because dynamic
checking runs code, it is limited to just executed
paths, but can more effectively check deeper prop-
erties. Examples include program executions that
loop on bad inputs, or byzantine errors that occur
when a formatting command (such as for printf)
is not properly obeyed. Many of the errors in this
paper would be difficult to discover statically. How-
ever, we view static analysis as complementary to
EXE testing — it is lightweight enough that there
is no reason not to apply it and then use EXE.

7 Conclusion

Currently, it is easy to attack file systems by
mounting data produced by a malicious source.
This paper has shown how aggressive symbolic ex-
ecution can be used to find such security holes in
real systems code and other interesting errors. We
used the EXE symbolic execution system to find
nine such errors in three Linux file systems: one er-
ror in JFS and four in ext2, which were replicated
via cut-and-paste to ext3.

We plan to extend these techniques to automati-
cally “harden” code by generating filters that reject
bad data. When EXE finds a path that leads to an
error, if it has the complete, accurate set of path
constraints then it knows exactly what input data
will cause the error to occur. It can easily trans-
late these constraints to if-statements that reject
any concrete input that satisfy these constraints.
For the mount code, these checks can be inserted

around disk read calls and reject bad blocks with
a “cannot mount” error. The same basic approach
can be used to generate filters that reject dangerous
network packets.

Conversely, we also plan to use EXE to automat-
ically generate attacks. A natural domain is oper-
ating systems code: (1) run EXE-instrumented sys-
tem calls that mark all input from the user (system
call parameters, data copied manually from user-
space) as unconstrained, (2) when a crash is found,
solve for concrete input values, and (3) synthesize
a small program that will call into the kernel with
these values. (EXE can, of course, be used to gen-
erate filters for these attacks as above.)

8 Acknowledgments

We thank Vijay Ganesh and David Dill for their
outstanding work on our constraint solvers CVCL
and STP, Derek Chan for pointing us toward Lin-
spire, Lea Kissner for her editing help, and our shep-
herd David Wagner for his patience and extensive
comments. This research was supported by NSF
CAREER award CNS-0238570-001, a Department
of Homeland Security (DHS) grant, and a Junglee
Corporation Stanford Graduate Fellowship.

References

[1] Distributing software with internet-enabled disk im-
ages. http://developer.apple.com/documentation/

DeveloperTools/Conceptual/Soft%wareDistribution/

Concepts/sd_disk_images.html.

[2] Linspire - the world’s easiest desktop linux. http://

www.linspire.com.

[3] The user-mode linux kernel home page. http://

user-mode-linux.sourceforge.net.

[4] T. Ball. A theory of predicate-complete test coverage
and generation. In FMCO’2004: Symp. on Formal
Methods for Components and Objects. SpringerPress,
2004.

[5] T. Ball, R. Majumdar, T. Millstein, and S. K. Raja-
mani. Automatic predicate abstraction of C programs.
In PLDI ’01: Proceedings of the ACM SIGPLAN 2001
conference on Programming language design and imple-
mentation, pages 203–213. ACM Press, 2001.

[6] T. Ball and S. Rajamani. Automatically validating
temporal safety properties of interfaces. In SPIN 2001
Workshop on Model Checking of Software, May 2001.

[7] R. S. Boyer, B. Elspas, and K. N. Levitt. Select – a for-
mal system for testing and debugging programs by sym-
bolic execution. ACM SIGPLAN Notices, 10(6):234–45,
June 1975.

14



[8] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for
finding dynamic programming errors. Software: Prac-
tice and Experience, 30(7):775–802, 2000.

[9] C. Cadar and D. Engler. Execution generated test cases:
How to make systems code crash itself. In Proceed-
ings of the 12th International SPIN Workshop on Model
Checking of Software, August 2005. A longer version of
this paper appeared as Technical Report CSTR-2005-04,
Computer Systems Laboratory, Stanford University.

[10] C. Cadar, P. Twohey, V. Ganesh, and D. Engler. EXE:
A system for automatically generating inputs of death
using symbolic execution. Technical Report CSTR 2006-
01, Stanford, 2006.

[11] E. Clarke and D. Kroening. Hardware verification us-
ing ANSI-C programs as a reference. In Proceedings of
ASP-DAC 2003, pages 308–311. IEEE Computer Soci-
ety Press, January 2003.

[12] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach,
C. Pasareanu, Robby, and H. Zheng. Bandera: Extract-
ing finite-state models from Java source code. In ICSE
2000, 2000.

[13] M. Das, S. Lerner, and M. Seigle. Path-sensitive pro-
gram verification in polynomial time. In Proceedings
of the ACM SIGPLAN 2002 Conference on Program-
ming Language Design and Implementation, Berlin,
Germany, June 2002.

[14] N. Eén and N. Sörensson. An extensible sat-solver. In
E. Giunchiglia and A. Tacchella, editors, SAT, volume
2919 of Lecture Notes in Computer Science, pages 502–
518. Springer, 2003.

[15] The ext2/ext3 File system. http://e2fsprogs.sf.net.

[16] R. Ferguson and B. Korel. The chaining approach for
software test data generation. ACM Trans. Softw. Eng.
Methodol., 5(1):63–86, 1996.

[17] J. Foster, T. Terauchi, and A. Aiken. Flow-sensitive
type qualifiers. In Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and
Implementation, June 2002.

[18] P. Godefroid. Model Checking for Programming Lan-
guages using VeriSoft. In Proceedings of the 24th ACM
Symposium on Principles of Programming Languages,
1997.

[19] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. In Proceedings of the Con-
ference on Programming Language Design and Imple-
mentation (PLDI), Chicago, IL USA, June 2005. ACM
Press.

[20] A. Gotlieb, B. Botella, and M. Rueher. Automatic test
data generation using constraint solving techniques. In
ISSTA ’98: Proceedings of the 1998 ACM SIGSOFT
international symposium on Software testing and anal-
ysis, pages 53–62. ACM Press, 1998.

[21] N. Gupta, A. P. Mathur, and M. L. Soffa. Auto-
mated test data generation using an iterative relaxation
method. In SIGSOFT ’98/FSE-6: Proceedings of the
6th ACM SIGSOFT international symposium on Foun-
dations of software engineering, pages 231–244. ACM
Press, 1998.

[22] R. Hastings and B. Joyce. Purify: Fast detection of
memory leaks and access errors. In Proceedings of the
Winter USENIX Conference, Dec. 1992.

[23] G. J. Holzmann. The model checker SPIN. Software
Engineering, 23(5):279–295, 1997.

[24] The IBM Journaling File System for Linux. http://

www-124.ibm.com/jfs.

[25] S. Khurshid, C. S. Pasareanu, and W. Visser. General-
ized symbolic execution for model checking and testing.
In Proceedings of the Ninth International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, 2003.

[26] E. Larson and T. Austin. High coverage detection of
input-related security faults. In Proceedings of the 12th
USENIX Security Symposium (Security 2003), August
2003.

[27] Linux Test Project. http://ltp.sf.net.

[28] M. Musuvathi and D. R. Engler. Model checking large
network protocol implementations. In Proceedings of
the First Symposium on Networked Systems Design and
Implementation, 2004.

[29] G. C. Necula, S. McPeak, S. Rahul, and W. Weimer. Cil:
Intermediate language and tools for analysis and trans-
formation of c programs. In Proceedings of Conference
on Compilier Construction, March 2002.

[30] G. Nelson and D. Oppen. Simplification by cooperating
decision procedures. ACM Transactions on Program-
ming Languages and Systems, 1(2):245–57, 1979.

[31] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal,
H. S. Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Iron file systems. In SOSP ’05: Proceedings
of the twentieth ACM symposium on Operating systems
principles, pages 206–220, New York, NY, USA, 2005.
ACM Press.

[32] O. Ruwase and M. S. Lam. A practical dynamic buffer
overflow detector. In Proceedings of the 11th Annual
Network and Distributed System Security Symposium,
pages 159–169, 2004.

[33] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic
unit testing engine for C. In 5th joint meeting of the
European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE’05), Sept. 2005.

[34] stress. http://weather.ou.edu/~apw/projects/

stress.

[35] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun vul-
nerabilities. In The 2000 Network and Distributed Sys-
tems Security Conference. San Diego, CA, Feb. 2000.

[36] Y. Xie and A. Aiken. Scalable error detection using
boolean satisfiability. In POPL ’05: Proceedings of the
32nd ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 351–363, New
York, NY, USA, 2005. ACM Press.

[37] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Us-
ing model checking to find serious file system errors. In
Proceedings of the Sixth Symposium on Operating Sys-
tems Design and Implementation, Dec. 2004.

15


