
Execution Generated Test Cases: How to Make

Systems Code Crash Itself

Cristian Cadar and Dawson Engler?

Computer Systems Laboratory
Stanford University

Stanford, CA 94305, U.S.A.

Abstract. This paper presents a technique that uses code to automat-
ically generate its own test cases at run-time by using a combination of
symbolic and concrete (i.e., regular) execution. The input values to a
program (or software component) provide the standard interface of any
testing framework with the program it is testing, and generating input
values that will explore all the “interesting” behavior in the tested pro-
gram remains an important open problem in software testing research.
Our approach works by turning the problem on its head: we lazily gener-
ate, from within the program itself, the input values to the program (and
values derived from input values) as needed. We applied the technique
to real code and found numerous corner-case errors ranging from simple
memory overflows and infinite loops to subtle issues in the interpretation
of language standards.

1 Introduction

Systems code is difficult to test comprehensively. Externally, systems interfaces
tend towards the baroque, with many different possible behaviors based on tricky
combinations of inputs. Internally, their implementations tend towards heavily
entangling nests of conditionals that are difficult to enumerate, much less exhaust
with test cases. Both features conspire to make comprehensive, manual testing
an enormous undertaking, so enormous that empirically, many systems code test
suites consist only of a handful of simple cases or, perhaps even more commonly,
none at all.

Random testing can augment manual testing to some degree. A good example
is the fuzz [3, 4] tool, which automatically generates random inputs, which is
enough to find errors in many applications. Random testing has the charm that
it requires no manual work, other than interfacing the generator to the tested
code. However, random test generation by itself has several severe drawbacks.
First, blind generation of values means that it misses errors triggered by narrow
ranges of inputs. A trivial example: if a function only has an error if its 32-
bit integer argument is equal to “12345678” then random will most likely have

? This paper is a shortened version of [1], which was in simultaneous submission with
similar but independent work by Patrice Godefroid et al [2]. Our thanks to Patrice
for graciously accepting this version as an invited paper.

to generate billions of test cases before it hits this specific case. Second, and
similarly, random testing has difficulty hitting errors that depend on several
different inputs being within specific (even wide) ranges of values. Third, the
ability of random testing to effectively generate random noise is also its curse.
It is very poor at generating input that has structure, and as a result will miss
errors that require some amount of correct structure in input before they can
be hit. A clear example would be using random test generation to find bugs
in a language parser. It will find cases where the parser cannot handle garbage
inputs. However, because of the extreme improbability of random generation
constructing inputs that look anything like legal programs it will miss almost all
errors cases where the parser mishandles them.

Of course, random can be augmented with some amount of guidance to more
intelligently generate inputs, though this comes at the cost of manual inter-
vention. A typical example would be writing a tool to take a manually-written
language grammar and use it to randomly generate legal and illegal programs
that are fed to the tested program. Another would be having a specification or
model of what a function’s external behavior is and generate test cases using
this model to try to hit “interesting” combinations. However, all such hybrid
approaches require manual labor and, more importantly, a willingness of imple-
mentors to provide this labor at all. The reluctance of systems builders to write
specifications, grammars, models of what their code does, or even assertions is
well known. As a result, very few real systems have used such approaches.

This paper’s first contribution is the observation that code can be used to au-

tomatically generate its own potentially highly complex test cases. At a high level,
the basic idea is simple. Rather than running the code on manually-constructed
concrete input, we instead run it on symbolic input that is initially allowed to
be “anything.” As the code observes this input, these observations tell us what
legal values (or ranges of values) the input could be. Each time the code makes
a decision based on an observation we conceptually fork the execution, adding
on one branch the constraint that the input satisfies the observation, and on
the other that it does not. We can then generate test cases by solving these
constraints for concrete values. We call such tests execution generated testing

(EGT).

This process is most easily seen by example. Consider the following contrived
routine bad abs that incorrectly implements absolute value:

0: int bad abs(int x) {
1: if(x < 0)
2: return −x;
3: if(x == 12345678)
4: return −x;
5: return x;
6: }

As mentioned before, even such a simple error will probably take billions
of random-generated test cases to hit. In contrast, finding it with execution
generated testing it is straightforward. Symbolic execution would proceed as
follows:

1. Initial state: set x to the symbolic value of “anything.” In this case, before
any observations at all, it can be any value between INT MIN and INT MAX.
Thus we have the constraints x ≥ INT MIN ∧ x ≤ INT MAX .

2. Begin running the code.

3. At the first conditional (line 1) fork the execution, setting x to the symbolic
constraint x < 0 on the true path, and to x ≥ 0 on the false path.

4. At the return (line 2) solve the constraints on x for a concrete value (such
as x == -1). This value is later used used as a test input to bad abs.

5. At the second conditional (line 3) fork the execution, setting x to the con-
straints x ≡ 12345678∧ x ≥ 0 on the true path and x 6= 12345678∧ x ≥ 0
on the false path.

6. At the second return (line 4) solve the symbolic constraints x ≡ 12345678∧
x ≥ 0. The value is 12345678 is our second test case.

7. Finally, at line 5, solve x’s constraints for a concrete value (e.g., x = 1). This
value is used as our third, final case.

We can then test the code on the three generated values for x. Of course, this
sketch leaves many open questions — when to generate concrete values, how
to handle system calls, how to tell what is correct, etc. The rest of the paper
discusses these issues in more detail.

There are a couple of ways to look at the approach. From one point of view,
implementation code has a “grammar” of the legal inputs it accepts and acts on,
or rejects. EGT is an automatic method to extract this grammar (and the con-
crete sentences it accepts and rejects) from the implementation rather than from
a hand-written specification. From another viewpoint, it can be seen as a way to
turn code “inside out” so that instead of consuming inputs becomes a generator
of them. Finally, and perhaps only half-vacuously, it can be viewed as a crude
analogue of the Heisenberg effect in the sense that unlike observations perturb-
ing experiments from a set of potential states into a variety of concrete ones,
observations in this case perturb a set of possible inputs into a set of increasingly
concrete ones. The more precise the observation the more definitively it perturbs
the input. The most precise observation, an equality comparison, fixes the input
to a specific concrete value. The least precise, an inequality, simply disallows a
single value but leaves all others as possibilities.

This paper has three main contributions:

1. A simple conceptual approach to automatically generate test cases by run-
ning code on symbolic inputs.

2. A working prototype EGT system.

3. Experimental results showing that the approach is effective on real code.

The paper is organized as follows. Section 2 gives an overview of the method.
Section 3 discusses concrete implementation issues. The next four sections give
four case studies of applying the approach to systems code. Finally, Section 7
discusses related work and Section 8 concludes.

2 Overview

This section gives an overview of EGT. The next section discusses some of the
implementation details.

In order to generate test cases, EGT runs the code on symbolic rather than
real input. Whenever code reads from its environment (via network packets,
command line options, files, etc) we want to instead return a symbolic variable
that has no constraints on its actual value. As the program executes and uses
or observes this value (e.g., through comparisons), we add constraints based on
these observations. Then, to determine how to reach a given program path, we
solve these constraints and generate input that satisfies them.

At a high-level, the EGT system has three core activities:

1. Instrumentation to track symbolic constraints. Our prototype EGT sys-
tem instruments the tested code using a source-to-source transformation.
This instrumentation inserts checks around every assignment, expression
and branch in the tested program and calls into our runtime system. It
also inserts code to fork a new process at each decision point at which the
associated boolean condition could return both true and false.

2. Constraint solving. We model our constraints using formulas of quantifier-
free first-order logics as represented by CVCL, a state-of-the-art decision
procedure solver [5, 6]. CVCL has been used in applications ranging hardware
verification to program analysis to mathematical theorem proving.
We use CVCL in two ways. First, after every branch point we call it to
determine if the current set of constraints is satisfiable. If not, we stop fol-
lowing the code path, otherwise we continue. CVCL is sound: if it states
that no solution exists, it is correct. Second, at the end of a code path that
uses symbolic input, we use CVCL to generate concrete values to use as test
input.

3. Modeling. External functions that return or consume input can either be
modeled so that they work with symbolic variables, or not modeled, in which
case any value they take must be made concrete. In general, one can leave
most things unmodeled, with the downside that testing coverage will be
reduced. Models are not that hard to write. A four-line model for the Unix
recv system call is given in Section 6. In addition, models can be used to
speed up the test generation. This optimization is discussed in Section 3.2.

The mechanical act of instrumenting code is pretty easy, and there are a lot of
constraint solvers to pick from and use as black boxes. Thus, the main challenge
for the approach is how to run code symbolically. The next subsection talks
about this in more detail.

2.1 Symbolic execution

The basic idea behind our approach is that when we perform logical or arithmetic
operations, we generate constraints for these, and when we perform control flow

decisions, we fork execution and go down both paths. This section sketches how
we can symbolically execute code. For ease of exposition, we initially assume
that all the variables in a program are symbolic; Section 3.1 shows how we can
intermix symbolic and concrete execution in order to efficiently process real code.

Assignment: v = e. We symbolically do an assignment of an expression e

to a variable v by generating the constraint that v ≡ e. For example, v = x + y

generates the constraint that v ≡ x + y; other arithmetic and logical operators
are similar.

The complication is that v may have been involved in previous constraints.
We must distinguish the newly assigned value of v from its use in any already
generated constraints. For example, assume we have two assignments: (1) x = y

and then (2) y = 3. The first assignment will generate the constraint that x ≡ y.
The second will generate the constraint y ≡ 3. At this point, the constraints
imply x ≡ 3, which is obviously nonsensical. This new value for y after its
assignment y = 3 has nothing to do with any prior constraints involving y and
should have no impact on them. Thus, an assignment v = e must have two
parts. First, generate a new location for v and only then generate the constraint
that v ≡ y. 1

If-statements. We symbolically execute an if-statement as follows: (1) fork
execution at the conditional, (2) on the true path add the constraint that the
conditional expression e is true (e ≡ true) and continue, (3) on the false path
add the constraint that e is false (e ≡ false) and continue. For example:

concrete | symbolic
if(e) | if(fork() == child)

s1; | add constraint(e == true);
| s1;

else | else

s2; | add constraint(e == false);
| s2;

Loops. We transform loops into if-statements with goto’s so they are handled
as above. One danger is that iterating on a symbolic loop variable can continue
forever, forking a new execution on each evaluation of the loop condition. The
usual practical hack is to only iterate a fixed number of times or for a fixed
amount of time (we do the latter). Neither solution is perfect. However, in our
context almost any solution is preferable to manual test generation.

Function calls: f(x). There are three differences between a symbolic func-
tion call and an imperative, call-by-value call. First, control can return multiple
times into the caller, once for each fork-branching that occurs. Second, con-
straints placed on x in the body of f must propagate up to the caller. For
example, the concrete code:

1 Alternatively, ignoring aliasing, we could have equivalently gone through all existing
constraints involving v and relabeled them to use a new, fresh name.

int foo(int x) {
if(x == 3)

return 1;
else

return 2;
}

will generate a symbolic execution that returns twice into the caller, since the
branch will cause a forked execution. On the true branch we want to propagate
the constraint that x ≡ 3 back to the caller and on the false that x 6= 3. The
final difference is that at the exit point from a function, we create a temporary
symbolic variable and return that as the function’s expression value. Figure 1
gives a symbolic translation of bad abs based on the above rules.

// initial constraints: x >= INT MIN /\ x <= INT MAX
int symbolic bad abs(int x) {

ret = new symbol; // holds the return expression.

if(fork() == child) // fork execution at each branch point.
add constraint(x < 0); add constraint(ret = −x);
// first return, final constraints:
// x >= INT MIN /\ x <= INT MAX /\ x < 0 /\ ret = −x
return ret;

else

add constraint(x >= 0);

if(fork() == child) // fork execution
add constraint(x = 12345678); add constraint(ret = −x);
// second return, final constraints: x >= INT MIN /\ x <= INT MAX
// /\ x >= 0 /\ x = 12345678 /\ ret = −x
return ret;

else

add constraint(x != 12345678);

add constraint(ret = x);
// last return final constraints: x >= INT MIN /\ x <= INT MAX
// /\ x >= 0 /\ x != 12345678 /\ ret = x
return ret;

}

Fig. 1. A symbolic translation of bad abs.

2.2 What is correctness?

EGT, like all testing approaches, needs to have some notion of what “bad”
behavior is so that it can flag it. We use three approaches to do so.

First, and unsurprisingly, check for program independent properties, such as
segmentation faults, storage leaks, memory overflows, division by zero, dead-
locks, uses of freed memory, etc.

Second, do cross-checking. If a piece of code implements an important inter-
face, then there are likely to be several implementations of it. These implementa-
tions can be cross-checked against each other by running the test cases generated
from one implementation (or both) on both implementations and flagging differ-
ences. One important usage model: after modifying a new version of a system,
cross-check it against the old version to make sure any change was intended.
This approach works especially well for complex interfaces.

Third, specification-by-example. While writing specifications to state what
exactly code must do in general is hard, it is often much easier to take the specific
test cases our tool generates and specify what the right answers are just for these
cases. For example, for the bad abs routine, the EGT system generates the three
concrete values: -3, 12345677, 12345678. Thus, for testing we would just do:

assert(bad abs(−3) == 3);
assert(bad abs(12345677) == 12345677);
assert(bad abs(12345678) == 12345678);

3 Implementation Issues

This section discusses implementation aspects of our EGT tool.

3.1 Mixed symbolic and concrete execution

Ignoring memory and solver-limitations, we can run any code entirely symboli-
cally until it interacts with the outside, concrete world. For example, if it calls
external code, or sends a packet on a real network to a machine running concrete
code, or prints output to be read by a real person. At this point you must either
make the inputs to the external code concrete (e.g, you must send data rather
than a symbolic constraint in a network packet), or, alternatively, make a model
of the world to pull it into the simulation.

In practice, constraint solvers are not as robust as one might hope and so
without care overzealous constraint generation will blow them up, sometimes
for good theoretic reasons, sometimes for unimpressive practical ones. Further,
symbolic-only execution is expensive in both speed and space. Thus, we do a
hybrid approach that intermixes concrete and symbolic execution. The basic
approach is that before every operation we dynamically check if the values are
all concrete. If so, we do the operation concretely. Otherwise, if at least one
value is symbolic we do the operation symbolically (using the logic described in
Section 2.1.

We use the CIL tool [7] to instrument the code of tested programs. Below,
we sketch how to conceptually rewrite source constructs for a C-like language so
that they can run on either concrete or symbolic values, mentioning some of the
more important practical details.

Our first transformation conceptually changes each variable or expression v

to have two instances: a concrete one (denoted v.concrete) and a symbolic one
(denoted v.symbolic). If v is concrete, v.concrete holds its concrete value and
v.symbolic contains the special token 〈invalid〉. Conversely, if v is symbolic,
v.symbolic holds its symbolic value and v.concrete is set to 〈invalid〉.

In practice, we track the v.symbolic field using a table lookup that takes
the address of a the variable v (which gives it a unique name) and returns v’s
associated “shadow” symbolic variable v.symbolic (if it is symbolic) or null
(if it is concrete). In the latter case, the variable v contains the concrete value
(v.concrete) and can just be used directly. The following examples assume
explicit concrete and symbolic fields for clarity.

assign rule(T &v, T e) {
if(e is concrete)

// equivalent to v.concrete = e.concrete;
// v.symbolic = <invalid>;
v = (concrete=e.concrete, symbolic=<invalid>);

else

// equivalent: v.symbolic = e.symbolic
v = (concrete=<invalid>, symbolic=new symbolic var T);
constraint(v.symbolic = e.symbolic);

}

Fig. 2. Rewrite rule for assignment v = e for any variable v and expression e of type
T.

The most basic operation is assignment. Figure 2 gives the basic assignment
rule. If the right hand variable e is a concrete expression or variable, just assign
its concrete value to the left-hand side v and mark v’s symbolic component as
invalid. If e is symbolic, then as explained in the previous section, we must
allocate a fresh symbolic variable to be used in any new constraints that are
generated. After that, we first set v.concrete to be invalid and then add the
constraint that v.symbolic equals e.symbolic.

Roughly as simple are basic binary arithmetic operators. Figure 3 gives the
rewrite rule for binary addition; other binary arithmetic operators are similar. If
both x and y are concrete, we just return an expression whose concrete part is
just their addition and symbolic part is invalid. Otherwise we build a symbolic
constraint s and then return an expression that has s as its symbolic component
and invalid for its concrete.

The rewrite rule for if-statements is a straight-forward combination of the
purely symbolic rule for if-statements with the similar type of concrete-symbolic
checking that occurs in binary relations. There are two practical issues. First,
our current system will happily loop on symbolic values — the parent process
of a child doing such looping will terminate it after a timeout period expires.
Second, we use the Unix fork system call to clone the execution at every symbolic

// rule for x + y
T plus rule(T x, T y) {

if(x and y are concrete)
return (concrete=x.concrete + y.concrete, <invalid>);

s = new symbolic var T;
if(x is concrete)

constraint(s = x.concrete + y.symbolic);
else if y is concrete

constraint(s = x.symbolic + y.concrete);
else

constraint(s = x.symbolic + y.symbolic);
return (concrete=<invalid>, symbolic=s);

}

Fig. 3. Rewrite rule for “x + y” where variables x and y are of type T.

branch point. Naively this will quickly lead to an exponential number of processes
executing. Instead we have the parent process wait for the child to finish before
continuing to execute on its branch of the conditional. This means we essentially
do depth-first search where there will only be one active process and a chain of
its predecessors who are sleeping waiting for the active process to complete.

// rule for *p
T deref rule(T* p) {

if(*p is concrete)
return (concrete=*p, symbolic=<invalid>);

else

s = new symbolic var T;
if(p is concrete)

constraint(s = (*p).symbolic);
else

// symbolic dereference of p
constraint(s = deref(p.symbolic));

return (concrete=<invalid>, symbolic=s);
}

Fig. 4. Rewrite rule for dereference “*p” of any pointer p of type T. The main com-
plication occurs when we dereference a symbolic pointer: in this case we must add a
symbolic constraint on the dereferenced value.

Because dereference deals with storage locations, it is one of the least intuitive
rewrite rules. Figure 4 gives the rewrite rule for dereferencing *p. A concrete
dereference works as expected. A dereference of a concrete pointer p that points
to a symbolic value also works as expected (i.e., just like assignment, except
that the rvalue is dereferenced). However, if p itself is symbolic, then we cannot

actually dereference it to get what it points to but instead must generate a funny
constraint that says that the result of doing so equals the symbolic dereference
of p.

At an implementation level, CVCL currently does not handle symbolic deref-
erences so we do not either. Further, in the short term we do not really do the
right thing with any pointer dereference that involves a symbolic value (such as
a symbolic offset off of a concrete pointer or a symbolic index into a symbolic
array). In such cases we will generate a concrete value, which may be illegal.

One happy result of this limitation is that, when combined with the the
way the implementation uses a lookup table to map variables to their shadow
symbolic values, it makes handling address-of trivial. For example, given the
assignment p = &v we simply do the assignment, always, no matter if v is a
symbolic or concrete. A lookup of p will return the same symbolic variable (if
any) that lookup of &v does. Thus any constraints on it are implicitly shared
by both. Alternatively, if there is no symbolic, then p will point directly at the
concrete variable and dereference will work as we want with no help.

Function calls are rewritten similarly to the previous section.

One implementation detail is that to isolate the effects of the constraint solver
we run it in its own child Unix process so that (1) we can kill it if it does not
terminate and (2) any problems it runs into in terms of memory or exceptions
are isolated.

3.2 Creating a model for speed

Not all the code in the program under testing should be given the same level
of attention. For example, many of our benchmarks make intensive use of the
string library, but we don’t want to generate test cases that exercise the code in
these string routines.

More precisely, imagine a program which uses strcmp to compare two of
its symbolic strings. Most implementations of strcmp would traverse one of the
strings, and would compare each character in the first string with the corre-
sponding character in the second string and would return a value when the two
characters differ or when the end of a string has been reached. Thus, the routine
would return to the caller approximately 2n times, each time with a different
set of constraints. However, most applications use a routine such as strcmp as
a black box, which could return only one of the following three values: 0, when
the strings are equal, -1 when the first string is lexicographically smaller than
the second one, and 1 otherwise. Returning the same value multiple times does
not make any difference for the caller of the black box.

Instead of instrumenting routines such as those in the string library, we could
instead provide models for them. A model for strcmp would return three times,
once for each possible return value. After each fork, the model would add a series
of constraints which would make the outcome of that branch symbolically true:
for example, on the branch which returns 0, the model would add constraints
setting the two strings equal. Of course, certain branches may be invalid; e.g. if

the two string have different lengths, strcmp could not return 0. In this case,
the corresponding branch is simply terminated.

We implemented models for the routines in the string library, and used them
in generating tests for our benchmarks. Adding these specifications has two main
benefits. On the one hand, it removes useless test cases from the generated test
suites (by removing tests which would only improve code coverage in the string
routines), and on the other hand it significantly improves performance. For the
WsMp3 benchmark that we evaluate in Section 6, the test suites are generated
approximately seven times faster.

3.3 Discussion

Currently we do lazy evaluation of constraints, deferring solving them until the
last possible moment. We could instead do eager evaluation, where as soon as
we use a symbolic value we make up a concrete one. This eliminates the need to
execute code symbolically. However, by committing to a concrete value imme-
diately, it precludes the ability to change it later, which will often be necessary
to execute both paths of any subsequent branch based on that variable’s value
(since the concrete value will either satisfy the true or the false branch, but not
both). A hybrid approach might be best, where we make up concrete values
immediately and then only do full symbolic execution on code paths that this
misses.

4 Micro-case study: Mutt’s UTF8 routine

As the first micro-benchmark to evaluate EGT, we applied it to a routine used by
the popular Mutt email client to convert strings from the UTF-8 to the UTF-7
format. As reported by Securiteam, this routine in Mutt versions up to version
1.4 have a buffer overflow vulnerability which may allow a malicious IMAP server
to execute arbitrary commands on the client machine [8].

We selected this paper in part because it has been one of the examples in a
recent reliability paper [9], which used a carefully hand-crafted input to exploit
it.

We extracted the UTF8 to UTF7 conversion routine from Mutt version 1.4,
ran the code through our tool, and generated test cases for different lengths of
the UTF-8 input string. Running these generated tests immediately found the
error.

The paper we took the code from suggested a fix of increasing the memory
allocation ratio from n*2 to n*7/3. We applied this change to the code, and reran
the EGT generated test cases, which immediately flagged that the code still has
an overflow. The fact that the adjusted ratio was still incorrect highlights the
need for (and lack of) automated, comprehensive testing.

Table 1 presents our results. For each input size, we report the size of the
generated test suite and the time it took to generate it, the cumulative statement
coverage achieved up to and including that test suite, and the largest output size

that we generated for that input size. These results (and all our later results),
were generated on a Intel Pentium 4 Mobile CPU at 1.60GHz, with 512MB
RAM.

Input Generation Test Suite Statement Largest
Size Time Size Coverage Output

1 16s 10 84.0% 5
2 1m35s 38 94.2% 8
3 7m26s 132 94.2% 11
4 34m12s 458 95.6% 15
5 2h35m 1569 95.6% 19

Table 1. Test suites generated for utf8 to utf7

5 Case study: printf

This section applies EGT to three different printf implementations. The printf
routine is a good example of real systems code: a highly complex, tricky interface
that necessitates an implementation with thickets of corner cases. Its main source
of complexity is the output format string it takes as its first argument. The
semantics of this single string absorb the bulk of the 234 lines the ANSI C99
standard devotes to defining printf; these semantics define an exceptionally ugly
and startling programming language (which even manages to include iteration!).

Thus, printf is a best-case scenario for EGT. The standard and code com-
plexity create many opportunities for bugs. Yet the inputs to test this complexity
can be readily derived from printf’s parsing code, which devolves to fairly sim-
ple, easily solved equality checks. Further, the importance of printf means there
are many different implementations, which we can use to finesse the need for a
specification by cross-checking against each other.

We checked the following three printf implementations; all of them (inten-
tionally) implemented only a subset of the ANSI C99 standard:

1. The Pintos instructional operating systems printf; the implementation in-
tentionally elides floating point. This implementation is a stern test of EGT,
since the developer (the co-author of a widely-read C book) had intimate
knowledge of the standard.

2. The gccfast printf, which implements a version of printf in terms of
fprintf. 2

3. A reduced-functionality printf implementation for embedded devices. 3

2 http://www.opensource.apple.com/darwinsource/WWDC2004/gccfast-1614/
3 http://www.menie.org/georges/embedded/index.html

Format Pintos´ Embedded GCCfast
Length printf printf printf

2 34 17 30
21s 2s 15s

3 356 75 273
4m0s 1m48s 3m10s

4 3234 337 2105
40m47s 21m6s 87m36s

128 590 72 908
123m56s 119m38s 120m19s

Table 2. Test suites generated for printf, the first row of each size gives the number
of generated tests, the second row the time required to do so.

Pintos´ Embedded GCCfast
printf printf printf

Mismatches 426 146 7
self tests of 4214 of 501 of 3316

Mismatches 624 6395 91
all tests of 8031 of 8031 of 8031

Statement 95% 95% 98%
Coverage (172 lines) (101 lines) (63 lines)

Table 3. Mismatches found in the printf implementations.

We used EGT to generate test suites by making the format string the single
symbolic argument to printf. We set the size of this symbolic string to a fixed
length and generated test cases from the resultant constraints. We describe our
measurements below and then discuss the bugs and differences found.

Measurements. We generated test cases for format strings of length 2, 3,
4, and 128. Table 2 shows the test suite size that we generated for each format
length and the time it took to generate the test suite. We allowed a maximum
of 30 seconds per CVCL query; there were only two queries killed after spending
more than 30 seconds. For format lengths of 128 long, we terminated the test
generation after approximately two hours.

Below are a representative fraction of EGT-generated format strings of length
4:

" %lle" " %#0f" " %G%." " % +l" " %#he" " %00." " %+jf"

" %-lf" " %#hf" " %+f " %#.E" " %00 " " %.c " " %
" % #c" " %-#." " %c%’" " %c%j" " %# p" " %---" " %+-u"

" %llc" " %0g " " %#+-" " %0 u" " %9s%"

Note that while almost all look fairly bizarre, because they are synthesized from
actual comparisons in the code, many are legal (and at some level “expected”
by the code).

Results. After generating test suites, we checked the output for each printf

in two ways. First, we took the tests each implementation generated and cross-
checked its output on these tests against the output of glibc’s printf. Each
of of the three implementations attempts to implement a subset of the ANSI
C99 standard, while glibc intends to fully implement it. Thus, any difference
is a potential bug. EGT discovered lots of such differences automatically: 426
in Pintos, 146 in the Embedded printf and 7 in GCCfast’s printf (which was
surprising since it only does minimal parsing and then just calls fprintf, which
then calls glibc’s printf). Since we had access to the implementor of Pintos
we focused on these; we discuss these below.

Second, we took the tests generated by all implementations and cross-checked
their output against each other. Since they intentionally implement different sub-
sets of the standard, we expect them to have different behavior. This experiment
tests whether EGT can find such differences automatically. It can: 624 in Pintos,
6395 in Embedded and 91 in GCCfast.

Note that in both experiments, the Pintos and the GCCfast printf routines
print an error message and abort when they receive a format string that they
cannot handle. Since they only intend to handle a subset of the standard, this is
correct behavior, and we do not report a mismatch in this case. In contrast, the
Embedded printf instead fails silently when it receives a format string which
it cannot handle. This means that we cannot differentiate between an incorrect
output of a handled case and an unhandled case, and thus we report all these
cases as mismatches.

Table 3 also shows the statement coverage achieved by these test suites; all
printf’s achieve more than 95% coverage. Most of the lines that were not covered
are unreachable. For example, Pintos’ printf has a NOT REACHED statement
which should never be reached as long as Pintos treats all possible format strings.
Similarly, for the Embedded printf, we don’t reach the lines which redirect the
output to a string buffer instead of stdout; these lines are used by sprintf,
and never by printf. Some lines however where not reached because our system
treats only the format string as symbolic, while the rest of the arguments are
concrete. Finally, two of the three printf implementations use non-standard
implementations for determining whether a character is a digit, which our system
does currently not handle correctly. The number of lines reported in Table 3 are
real lines of code, that is lines which have at least one instruction.

We reported all mismatches from Pintos to its developer, Ben Pfaff. We got
confirmation and fixes of the following bugs.

Incorrect grouping of integers into groups of thousands.

“Dammit. I thought I fixed that... Its quite obviously incorrect in that
case.” — Ben Pfaff, unsolicited exclamation, 3/23/05, 3:11pm.

The code mishandled the “’” specifier that says to comma-separate integer digits
into groups of three. The exact test case was:

// correct: −155,209,728
// pintos : −15,5209,728
printf("%’d", −155209728);

Amusingly enough, the bug had been fixed in the developer’s tree, but he
had forgotten to push this out to the released version (which we were testing).

Incorrect handling of the space and plus flags.

“That case is so obscure I never would have thought of it.” — Ben Pfaff,
unsolicited exclamation, 3/23/05, 3:09pm.

The character “%” can be followed by a space flag, which means that “a blank
should be left before a positive number (or empty string) produced by a signed
conversion” (man printf(3)). Pinto incorrectly leaves a blank before an un-
signed conversion too. We found a similar bug for the plus flag.

This bug and the previous error both occurred in the same routine, format integer,
which deals with formating integers. The complexity of the specification of even
this one small helper function is representative of the minutia-laden constraints
placed on many systems interfaces and their internals.

We now give a more cursory description of the remaining errors.
Incorrect alignment of strings. Pintos incorrectly handles width fields

with strings, although this feature works correctly for integers (which got better
testing).

Incorrect handling of the t and z flags. When the flag t is used, the
unsigned type corresponding to ptrdiff t should be used. This is a detail of
the standard which was overseen by the developer. We found a similar bug for
the z flag, which specifies that the signed type corresponding to size t should
be used.

No support for wide strings and chars. Pintos does not support wide
string and wide chars, but fails silently in this case with no error message.

Undefined behavior. We found several bugs which are caused by under-
specified features. An example of such a case is “printf(‘‘%hi’’, v), whose
output is undefined if v cannot be represented as a short.

6 Case study: WsMp3

This section applies our technique to the WsMp3 web server designed for trans-
ferring MP3 files [10]. We use WsMp3 version 0.0.5 which, uninstrumented con-
tains about 2,000 lines of C code; instrumented about 40,000. This version con-
tains a security vulnerability that allows attackers to execute arbitrary com-
mands on the host machine [11, 12]. Our technique automatically generated test
cases that found this security hole. In addition, it found three other memory
overflows and an infinite loop caused by bad network input (which could be
used for a DoS attack).

We first discuss how we set up test generation, coverage results, and then the
most direct method of effectiveness: bugs found.

6.1 Setting up WsMp3

WsMp3 has the typical web server core: a main loop that listens for connec-
tions using accept, reads packet from the connection using recv, and then does

operations based on the packet value. It also has a reasonably rich interaction
with the operating system. As a first cut we only made the network packet’s
returned by recv be symbolic, but made the packet size be concrete. We did
so by replacing calls to recv with calls to a model of it (recv model) that just
“returned” a symbolic array of bytes of a specific length:

// [model does not generate failures; msg len is fixed]
ssize t recv model(int s, char *buf, size t len, int flags) {

make bytes symbolic(buf, msg len);
return msg len;

}

It “reads in” a message of length msg len by telling the system the address range
between buf and buf+msg len should be treated as symbolic. We then generated
test cases for one byte packet, two bytes, and so forth by changing msg len to
the desired length.

After the web server finishes processing a message, we inserted a call into the
system to emit concrete values associated with the message’s constraints. We
then emit these into a test file and run the web server on it.

One subtlety is that after the web server processes a single message we exit it.
Recall that at every conditional on a symbolic value (roughly) we fork execution.
Thus, the web server will actually create many different children, one for each
branch point. Thus, even processing a “single” message will generate many many
test messages. In the context of this server, one message has little to do explicitly
with another and thus we would not get any more test cases by doing additional
ones. However, for a more stateful server, we could of course do more than one
message.

Finally, it was not entirely unheard of for even the symbolic input to cause the
code to crash during test generation. We handle segmentation faults by installing
a handler for the SIGSEGV signal and, if it is invoked, generate a concrete test
case for the current constraints and then exit the process.

Since WsMp3 makes intensive use of the standard string library, we used our
own string.h library described in Section 3.2. In our tests, using this library
improves performance by roughly seven-fold.

6.2 Test generation measurements

We used EGT testing to generate tests for packets of size 1, 2, 3, 4, 5, 12, and
128. Table 4 gives (1) the number of tests generated for each size, (2) the time it
took (user time), and (3) the number of times the CVCL constraint solver failed
to generate a concrete test from a set of constraints within 30 seconds.

Given our naive implementation, the test generation time was non-trivial.
For packets of size 12 and 128 we stopped it after 14 hours (they were running
on a laptop that we wanted to write this paper on). However, note that in some
sense high test generation cost is actually not so important. First, test generation
happens infrequently. The frequent case, running the generated tests, takes less
than a minute. Second, test generation is automatic. The time to manually
generate tests that would get similar amounts types of path coverage would

Packet Unfinished Execution Test Suite
Size Queries Time (s) Size

1 0 0s 1
2 0 0s 1
3 0 57s 18
4 0 10m28s 90
5 8 16m13s 97
12 134 14h15m 1173
128 63 14h15m 165

Table 4. Test suites generated for WsMp3. We stopped test generation for size 12 and
128 after roughly 14 hours.

be enormous. Further, manual generation easily misses cases silently. Finally, as
far as we know, there was no test suite for WsMp3. Clearly the EGT alternative
is much better.

We compare coverage from EGT to random testing. We use statement cov-
erage generated using gcc and gcov. We would have preferred a more insightful
metric than line coverage, but were not able to find adequate tools. We gener-
ated random tests by modifying the recv routine to request messages filled with
random data of a given size. For each packet size (1, 2, 3, 4, 5, 128, 256, and 512
bytes long), we generate 10, 1000, and 100,000 random tests, and then measured
the cumulative statement coverage achieved by all these tests. We recorded a
statement coverage of 23.4%, as opposed to 31.2% for EGT.

However, the roughly 8% more lines of code hit by EGT is almost certainly
a dramatic underreporting of the number of distinct paths it hits. More impor-
tantly, these lines appear out of reach of random testing no matter how many
more random tests we do. In addition, note that it takes about two hours and
a half to execute all the random test cases, while it takes less than a minute to
execute all the EGT test cases.

We manually examined the code to see why EGT missed the other state-
ments. Many of the lines of code that were not hit consisted of debugging and
logging code (which was disabled during testing), error reporting code (such as
printing an error message and aborting when a call to malloc fails), and code
for processing the command-line arguments (which wasn’t all reached because
we didn’t treat the arguments as symbolic inputs).

However, a very large portion of the code was not reached because the request
messages that we fabricate do not refer to valid files on the disk, or because we
fail to capture several timing constraints. As an example from the first category,
when a GET request is received, the web server extracts the file name from the
request packet, and then it checks if the file exists by using fopen. If the file does
not exist, WsMp3 sends a corresponding error message to the client. If the file is
valid, the file name is passed through various procedures for further processing.
Since we don’t have any files on our server, and since almost all the files being
fabricated by our system would be invalid anyway, the code which process files

and file names is never invoked. The right way to solve this problem is to provide
models for functions such as fopen, fread, and stat. However, even without
these models, we find interesting errors, as the next subsection describes.

6.3 Errors Found

We have identified five errors in the code which parses the request messages
received by WsMp3. All were caused by a series of incorrect assumptions that
WsMp3 makes about the request being processed. We describe three illustrative
bugs below.

// [buf holds network message]
char* get op(char *buf) {

char* op;
int i;

if((op=(char *)malloc(10))==NULL) {
printf("Not enough memory!\n");
exit(1);

}
// [note: buf is ’0’ terminated]

if(buf!=NULL && strlen(buf)>=3) {
//strncpy(op,buf,3);
i=0;
while(buf[i]!=’ ’) {

op[i]=buf[i];
i++;

}
op[i]=’\0’;

}
else op=NULL;

return op;
}

Fig. 5. WsMp3 buffer overflow bug: occurs if received message (held in buf) has more
than 10 characters before the first space.

Figure 5 gives the first bug. Here WsMp3 assumes that the first part of the
request message (held in buf) holds the type of the client request, such as GET

or POST, separated from the rest of the message by a space. After a request is
received, WsMp3 copies this action type in an auxiliary buffer by copying all the
characters from the original request, until a space is encountered. Unfortunately,
it assumes the request is legal rather than potentially malicious and allocates
only ten bytes for this buffer. Thus, if it receives an invalid request which does
not contain a space in the first ten characters, the buffer overflows and WsMp3

usually terminates with a segmentation fault. Amusingly, there is a (commented
out) attempt to instead do some sort of copy using the safe strncpy routine
which will only up to a pre-specified length.

This routine is involved in a second bug. As part of the checking it does do, it
will return NULL if the input is NULL or if the size of the incoming message is less
than three characters. However, the caller of this routine does not check for a
NULL return and always passes the buffer to strcmp, causing a remote-triggered
segmentation fault.

The third final bug was interesting: for certain rare request messages (where
the sixth character is either a period or a slash, and is followed by zero or more
periods or slashes, which are immediately followed by a zero), WsMp3 goes
into an infinite loop. Our EGT system automatically generates the very unusual
message required to hit this bug. The problematic code is shown below:

while (cp[0] == ’.’ | | cp[0] == ’/’)
for (i=1; cp[i] != ’\0’; i++) {

cp[i−1] = cp[i];
if (cp[i+1] == ’\0’)

cp[i] = ’\0’;
}

7 Related Work

To the best of our knowledge, while there has been work related to test generation
and synthesis of program inputs to reach a given program point, there is no
previous approach that effectively generates comprehensive tests automatically
from a real program. There certainly exists no tool that can handle systems
code. We compare EGT to past test generation work and then to bug finding
methods.

Static test and input generation. There has been a long stream of re-
search that attempts to use static techniques to generate inputs that will cause
execution to reach a specific program point or path.

One of the first papers to attack this problem, Boyer at al. [13], proposes the
use of symbolic execution to follow a given path was in the context of a system,
SELECT, intended to assist in debugging programs written in a subset of LISP.
The usage model was that the programmer would manually mark each decision
point in the path that they wanted executed and the system would incrementally
attempt to satisfy each predicate. More recently, researchers have tended to use
static analysis to extract constraints which then they try to solve using various
methods. One example is Gotlieb et al [14], who statically extracted constraints
which they tried to solve using (naturally) a constraint solver. More recently,
Ball [15] statically extracted predicates (i.e., constraints) using “predicate ab-
straction” [16] and then used a model checker to try to solve these predicates
for concrete values. There are many other similar static efforts. In general, static
techniques are vastly weaker than dynamic at gathering the type of information
needed to generate real test cases. They can deal with limited amounts of fairly

straightforward code that does not interact much (or at all) with the heap or
complex expressions, but run into intractable problems fairly promptly.

Dynamic techniques test and input generation. Much of the test gen-
eration work relies on the use of a non-trivial manually-written specification
of some kind. This specification is used to guide the generation of testing val-
ues ignoring the details of a given implementation. One of the most interesting
examples of such an approach is Korat [17], which takes a specification of a
data-structure (such as a linked list or binary tree) and exhaustively generates
all non-isomorphic data structures up to a given size, with the intention of testing
a program using them. They use several optimizations to prune data structure
possibilities, such as ignoring any data structure field not read by a program.
EGT differs from this work by attempting to avoid any manual specification and
targeting a much broader class of tested code.

Past automatic input generation techniques appear to focus primarily on
generating an input that will reach a given path, typically motivated by the
(somewhat contrived) problem of answering programmer queries as to whether
control can reach a statement or not. Ferguson and Korel[18] iteratively generate
tests cases with the goal of hitting a specified statement. They start with an
initial random guess, and then iteratively refine the guess to discover a path
likely to hit the desired statement. Gupta et al. [19] use a combination of static
analysis and generated test cases to hit a specified path. They define a loss
function consisting of “predicate residuals” which roughly measures by “how
much” the branch conditions for that path were not satisfied. By generating a
series of test cases, they use a numerical solver to find test case values that can
trigger the given path. Gupta’s technique combines some symbolic reasoning with
dynamic execution, mitigating some of the problems inherit in either approach
but not in both. Unfortunately, the scalability of the technique has more recently
been called into question, where small systems can require the method to take
an unbounded amount of time to generate a test case [20].

In EGT differs from this work by focusing on the problem of comprehensively
generating tests on all paths controlled by input. This prior work appears to be
much more limited in this regard.

Software Model Checking. Model checkers have been previously used to
find errors in both the design and the implementation of software systems [21–26,
22]. These approaches tend to require significant manual effort to build testing
harnesses. However, to some degree the approaches are complementary: the tests
our approach generates could be used to drive the model checked code.

Generic bug finding. There has been much recent work on bug finding [27,
26, 28, 29]. Roughly speaking because dynamic checking runs code, it is limited
to just executed paths, but can more effectively check deeper properties implied
by code. For example that the code will infinite loop on bad inputs, that a for-
matting command is not obeyed correctly. Many of the errors in this paper would
be difficult to get statically. However, we view static analysis as complementary
to EGT testing — it is lightweight enough that there is no reason not to apply
it and then use EGT.

8 Conclusion

This paper has proposed a simple method of automatically generating test cases
by executing code on symbolic inputs called execution generated testing. We
build a prototype EGT system and applied it to real code. We found numerous
corner-case errors ranging from simple memory overflows and infinite loops to
subtle issues in the interpretation of language standards.

These results, and our experience dealing with and building systems suggests
that EGT will work well on systems code, with its often complex requirements
and tangled logic.

9 Acknowledgements

The authors thank Ted Kremenek for his help with writing and related work and
David Dill for writing comments. The authors especially thank Ben Pfaff for his
extensive help with the code and results in Section 5. This research was supported
by NSF ITR grant CCR-0326227, NSF CAREER award CNS-0238570-001, and
a Junglee Corporation Stanford Graduate Fellowship.

References

1. Cadar, C., Engler, D.: Execution generated test cases: How to make systems code
crash itself. Technical Report CSTR 2005-04 3, Stanford University (2005)

2. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing.
In: Proceedings of the Conference on Programming Language Design and Imple-
mentation (PLDI), Chicago, IL USA, ACM Press (2005)

3. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of UNIX
utilities. Communications of the Association for Computing Machinery 33 (1990)
32–44

4. Miller, B., Koski, D., Lee, C.P., Maganty, V., Murthy, R., Natarajan, A., Steidl, J.:
Fuzz revisited: A re-examination of the reliability of UNIX utilities and services.
Technical report, University of Wisconsin - Madison (1995)

5. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating
valid ity checker. In Alur, R., Peled, D.A., eds.: CAV. Lecture Notes in Computer
Science, Springer (2004)

6. Ganesh, V., Berezin, S., Dill, D.L.: A decision procedure for fixed-width bit-vectors.
Unpublished Manuscript (2005)

7. Necula, G.C., McPeak, S., Rahul, S., Weimer, W.: Cil: Intermediate language and
tools for analysis and transformation of c programs. In: International Conference
on Compiler Construction. (2002)

8. Securiteam: Mutt exploit. http://www.securiteam.com/unixfocus/5FP0T0U9FU.
html (2003)

9. Rinard, M., Cadar, C., Dumitran, D., Roy, D.M., Leu, T., William S. Beebee, J.:
Enhancing server availability and security through failure-oblivious computing. In:
Symposium on Operating Systems Design and Implementation. (2004)

10. : Wsmp3 webpage. http://wsmp3.sourceforge.net/ (2005)

11. Associates, C.: Wsmp3 exploit. http://www3.ca.com/securityadvisor/

vulninfo/Vuln.aspx?ID=15609 (2003)
12. Secunia: Wsmp3 exploit. http://secunia.com/product/801/ (2003)
13. Boyer, R.S., Elspas, B., Levitt, K.N.: Select – a formal system for testing and

debugging programs by symbolic execution. ACM SIGPLAN Notices 10 (1975)
234–45

14. Gotlieb, A., Botella, B., Rueher, M.: Automatic test data generation using con-
straint solving techniques. In: ISSTA ’98: Proceedings of the 1998 ACM SIGSOFT
international symposium on Software testing and analysis, ACM Press (1998) 53–
62

15. Ball, T.: A theory of predicate-complete test coverage and generation. In:
FMCO’2004: Symp. on Formal Methods for Components and Objects, Springer-
Press (2004)

16. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of c programs. In: PLDI ’01: Proceedings of the ACM SIGPLAN 2001 con-
ference on Programming language design and implementation, ACM Press (2001)
203–213

17. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing based on Java
predicates. In: Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA). (2002) 123–133

18. Ferguson, R., Korel, B.: The chaining approach for software test data generation.
ACM Trans. Softw. Eng. Methodol. 5 (1996) 63–86

19. Gupta, N., Mathur, A.P., Soffa, M.L.: Automated test data generation using an
iterative relaxation method. In: SIGSOFT ’98/FSE-6: Proceedings of the 6th ACM
SIGSOFT international symposium on Foundations of software engineering, ACM
Press (1998) 231–244

20. Edvardsson, J., Kamkar, M.: Analysis of the constraint solver in una based test
data generation. In: ESEC/FSE-9: Proceedings of the 8th European software engi-
neering conference held jointly with 9th ACM SIGSOFT international symposium
on Foundations of software engineering, ACM Press (2001) 237–245

21. Holzmann, G.J.: The model checker SPIN. Software Engineering 23 (1997) 279–
295

22. Godefroid, P.: Model Checking for Programming Languages using VeriSoft. In:
Proceedings of the 24th ACM Symposium on Principles of Programming Lan-
guages. (1997)

23. Holzmann, G.J.: From code to models. In: Proc. 2nd Int. Conf. on Applications
of Concurrency to System Design, Newcastle upon Tyne, U.K. (2001) 3–10

24. Brat, G., Havelund, K., Park, S., Visser, W.: Model checking programs. In: IEEE
International Conference on Automated Software Engineering (ASE). (2000)

25. Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., Pasareanu, C., Robby, Zheng,
H.: Bandera: Extracting finite-state models from java source code. In: ICSE 2000.
(2000)

26. Ball, T., Rajamani, S.: Automatically validating temporal safety properties of
interfaces. In: SPIN 2001 Workshop on Model Checking of Software. (2001)

27. Das, M., Lerner, S., Seigle, M.: Path-sensitive program verification in polynomial
time. In: Proceedings of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, Berlin, Germany (2002)

28. Coverity: SWAT: the Coverity software analysis toolset. http://coverity.com

(2005)
29. Bush, W., Pincus, J., Sielaff, D.: A static analyzer for finding dynamic program-

ming errors. Software: Practice and Experience 30 (2000) 775–802

