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Motivation: Differential
Gene Expression
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Detecting expression heterogeneity

Broadly, differential expression analysis seeks to detect changes
in expression patterns across experimental conditions.
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Two examples: single-cell proteomics & bulk RNA-Seq

Mass spectrometry

UTR disruption

synonymous codon change

ribosome tunnel mutation

UTR disruption?

synonymous codon change?

ribosome tunnel mutation?

Can we detect structural variation in a way that

• harnesses any existing model formations,
• is robust to model misspecification,
• allows for model selection,
• and is computationally feasible?
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Two examples: single-cell proteomics & bulk RNA-Seq

cell type 1 cell type 2 cell type 3

Differential expression on the level of mixture

proportions instead of cell type

Can we construct a differential expression test that is

• sensitive to variation along desired directions,
• insensitive to variation along nuisance directions,
• and robust against model misspecification?
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Statistical Formulation:
K -sample tests
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K -sample tests: K = 2

Given Xn = {X1, ..., Xn} ∼ F ⊗n and Ym = {Y1, ..., Ym} ∼ G⊗m, a
two sample test probes

H0 : {F = G} against H1 ⊆ {F ̸= G}.

F,G ∈ Θ H1: F ≠ G

Likelihood-based

• Likelihood-ratio test
• Wald test

• Score test
• ...

Non-parametric

• Kolmogorov-Smirnov

• Mann-Whitney

• Geometric graphs

• Data depth
• ...

Power Size

?

F,G ∈ Θ+ε

Adaptive linear

multi-rank statistics

under Θ control
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Two-sample testing thus far

Efficiency against local

contiguous alternatives

[Pitman '48, Hodge-Lehmann '56,
Bahadur '67 , LeCam '86]

Efficiency against fixed alternatives

[Neyman-Pearson '33, Neyman '59,
Hoeffding '65, Bahadur '65, Moran '70]
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Likelihood-based tests

[Student '08, Neyman-Pearson '33,
Wilk '38, Wald '43, Rao '48]
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Correlations & ECDF

[Pearson '95, Cramér '28, Kolmogorov '33,
Smirnov '48, Anderson-Darling '56]
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Location & scale families

[Wilcoxon '45, Mann-Whitney '47 ,
van-der-Waerden '53,
Hodge-Lehmann '56,
Ansari-Bradley '60, Cucconi '68,
LePage '71, Hajek-Sidak-Sen '99]
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Location & scale families

[Randles-Peters '91, Möttönen-Oja '95,
Choi-Marden '97 , Hettmansperger et al. '98, Liu '93,
Rousson '02, Zuo-He '06, Liu et al. '10]
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Graph & energy methods

[Friedman-Rafsky '79 '83, Schilling '86,
Henze '88, Baringhaus-Franz '04,
Rosenbaum '05, Gretton et al. '05,
Székely-Rizzo '14, Chen-Friedman '18]

Rank Hotelling & rank MMD

[Boeckel et al. '18, Hallin et al. '20-'23,
Deb-Sen '21, Deb et al.'23 ]
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Univariate case: logistics
of Mann-Whitney’s U
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Comparing tests: Pitman efficiency

Most reasonable tests are consistent against fixed alternatives and
converge exponentially fast, rendering their comparison difficult.

Solution: Compare tests on alternatives approaching H0 at rate
N−1/2 (N = n + m and min{n, m} → ∞).

n = 10 n = 20 n = 40 n = 80

(Pitman) Asymptotic Relative efficiency
Informally, a test S1 has Pitman efficiency η with respect to a
test S2 and alternatives Hn if for a given size α it requires η−1

as many samples as S2 to achieve the same power.
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Case study: Mann-Whitney is surprisingly efficient

Hodges and Lehmann showed that the Pitman efficiency of
Mann-Whitney’s U against Student’s t is lower bounded by
108/125 ≈ 0.864 over all location families

H1 : G(x) = F (x + θN−1/2).

Moreover, the Gaussian-score-transformed Mann-Whitney test (also
known as van-der-Waerden test) is never less efficient than
Student’s t in the same setting.

That is, from an asymptotic, local perspective, van-der-Waerden
tests should always be preferred over t tests.
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Mann-Whitney: ingredients for efficiency

Reminder: Mann-Whitney’s U is given by Rm − Rn, where Rn, Rm
are the ranks of Xn, Ym in the pooled sample ZN = Xn ∪ Ym. This
test statistic is equivalent to

T id
n,m = N−1

m∑
k=1

rk = N−1
m∑

k=1
id (rk) ,

where rk is the normalized rank of Yk in ZN . The
van-der-Waerden test massages this into

T Φ−1
n,m = N−1

m∑
k=1

Φ−1 (rk) ,

where Φ−1 is the quantile function of a standard Gaussian.
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Extracting efficiency ingredients: linear rank statistics

Both T id
n,m and T Φ−1

n,m are examples of linear rank statistics:

Linear rank statistic
The linear rank statistic of weight w : [0, 1] → R associated with
Xn, Ym is

T w
n,m = N−1

m∑
k=1

w(rk) = (1 − α)
ˆ

w ◦ Hn,m dGm,

where α = n/N and Hn,m = αFn + (1 − α)Gm.

Other examples of linear rank statistics
• Siegel-Tukey: w(x) = |x − 1/2|
• Mood: w(x) = (x − 1/2)2

• Klotz: w(x) = Φ−2(x)

Question: How to choose w?
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Multivariate case:
Adaptive linear
multi-rank statistics
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Generalizing ranks from linear rank statistics

Question: What properties of (univariate) ranks are required for
(univariate) linear rank statistics to work?

Answer contains essentially three parts:

• rk = Fn(Xk) ∼ Uniform({1, 2, ..., N}/N)
• Fn(X ) −→ F (X ) ∼ Uniform([0, 1])
• F −1

n (U) −→ F −1(U) ∼ F for U ∼ Uniform([0, 1])

U X
F

F-1

That is, F is a transport map sending the law of X to U.
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Multivariate ranks as transport maps
This motivates the search for multivariate transport maps
A : Rq → Rq such that for U ∼ Uniform(□q)

A(X ) ∼ U A−1(U) ∼ X .

U XA

A-1

Generally, many such maps exist. A popular way to instantiate one
is through optimal transport.

Multi-ranks via optimal transport
A population rank map A is given as the minimizer of EX ∥X −
A(X)∥p

p subject to A(X) ∼ U. The empirical law of Xn gives
rise to the empirical rank map An, where the constraint reads
An(Xn) = An for any An : Uniform(An) w−→ Uniform(□q).
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Two-sample testing based on multi-ranks

The notion of linear rank statistics then generalizes to multi-ranks in
a straightforward manner:

T w
n,m = N−1

m∑
k=1

w ◦ AN(Yk),

where AN : ZN → AN . The only existing two-sample test based on
An targeting location families was proposed by Deb et al. (’23) and
turns out to be equivalent to (J : □q → Rq)

SJ
n,m = ∥N−1

m∑
k=1

J ◦ AN(Yk)∥2
2 = ∥T J

n,m∥2
2.

Linear multi-rank statistic
A linear multi rank-statistic is any statistic of the form ∥T w

n,m∥2
2

for some w : □q → Rℓ.

Question: How to choose w?
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Connecting w and likelihood ratios

Given a family PΘ = {pθ : θ ∈ Θ ⊂ Rℓ}, the two-sample likelihood
ratio statistic is given by

λ′
Θ = maxθ1,θ2∈Θ pθ1(Xn)pθ2(Ym)

maxθ∈Θ pθ(Xn)pθ(Ym) .

Pushing both pθ1 and pθ2 forward by the transport map
Pθ1 : Pθ1#pθ1 = Uniform(□q) gives the equivalent statistic

λΘ = max
θ1,θ2∈Θ

(Pθ1#pθ2)(Pθ1(Ym)).

X ∼ pθ1 Y ∼ pθ2

Pθ1
Pθ1(X) ∼ U

Pθ1(Y )

Observation: Under local alternatives, AN ≈ Pθ1 + O(N−1/2)!
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Connecting w and likelihood ratios

Locally around (θ1, θ2) = (θ∗, θ∗), the log-likelihood ratio is
governed by the behavior of the sample score

m∑
k=1

zθ∗(Yk) =
m∑

k=1
zθ∗ ◦ P−1

θ∗ ◦ Pθ∗(Yk) ≈
m∑

k=1
zθ∗ ◦ P−1

θ∗︸ ︷︷ ︸
w

◦AN(Yk)

=
m∑

k=1
w ◦ AN(Yk) = NT w

n,m.

Theorem (Adaptive linear multi-ranks; informal)
Set ŵ = zθ̂ ◦ P−1

θ̂
for any

√
N-consistent estimator θ̂ of θ based

on ZN . Then under H0, (T ŵ
n,m | θ̂) is exactly distribution-free

and converges to N (0, α(1 − α)
´

ŵ ⊗ ŵ). Moreover, under local
contiguous alternatives in PΘ its Pitman efficiency relative to λΘ
is 1.
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Application: RNA-Seq
Differential Expression
Analysis
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Benchmarking under zero-inflated NB model

Modeling considerations for RNA-Seq data

• data appear to follow negative binomial distributions more
closely than other easily parametrized models, and so are
modeled as such

• differential expression based on NB likelihood-ratios
• recent awareness [e.g., Li et al. ’22] that popular differential

expression packages are often miscalibrated (FDR/FWER
inflation by a factor of 5)

• often suggested alternative: Mann-Whitney

n = m = 20 n = m = 60 n = m = 100

p
ow

er

effect size

Tn,m

MW-U
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Benchmarking under zero-inflated NB model

ε n m GAMLSS MDSeq MOCHIS diffVar log-Bartlett

0 150 250 0.803 0.733 0.788 0.776 0.766
1 150 250 0.287 0.182 0.747 0.696 0.491
2 150 250 0.274 0.158 0.724 0.629 0.441
3 150 250 0.3 0.146 0.688 0.521 0.415
4 150 250 0.236 0.727 0.755 0.36 0.145
5 150 250 0.202 0.719 0.731 0.251 0.141
6 150 250 0.177 0.709 0.726 0.158 0.136
0 50 50 0.59 0.512 0.548 0.536 0.533
0 50 100 0.658 0.579 0.608 0.601 0.607
0 100 100 0.738 0.664 0.692 0.705 0.692
0 100 150 0.765 0.693 0.743 0.736 0.723
3 50 50 0.132 0.133 0.43 0.215 0.115
3 50 100 0.144 0.143 0.49 0.23 0.117
3 100 100 0.164 0.152 0.59 0.299 0.125
3 100 150 0.177 0.16 0.636 0.317 0.129
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Additional features

Joint testing
Question: Many differential expression packages test separately
for location & scale and adjust resulting p-values for multiple
testing. Can this testing be performed jointly?
Solution: Given K weight functions {wk : □q → Rℓk , j =
1, ..., K}, stack them to form weight w =

∑K
k=1 ek ⊗ wk : □q →

Rℓ, where ℓ =
∑K

k=1 ℓk , and perform tests on T w
n,m.

Projecting out nuisance alternatives
Question: Can T w

n,m be designed to remain insensitive to batch
effects, PCR amplification, etc.?
Solution: Given weight functions w1 and w2 sensitive to signal and
noise alternatives, respectively, the weight w = Π⊥

w2w1 remains
powerful in the direction of w1 while ignoring variation along w2.
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Additional features

(K > 2)-sample testing
Question: How is the previous discussion extended to the general
setup involving K samples X1, ..., XK ?
Answer: T w

n,m is naturally generalized to

T w
n1,...,nK = N−1

K∑
k=1

ek ⊗

 nk∑
j=1

w ◦ AN(Xkj)

 ,

which enjoys all the previous power and robustness properties.

Qualitative weight constructions
Question: How should T w

n,m be used when a concrete candidate
for PΘ doesn’t exist?
Answer: Weight functions need not be derived from models, but
can be assembled pure from qualitative observations.
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Adaptive multi-ranks: summary

What happened?
• Starting from univariate linear rank statistics, T w

n,m
generalizes them to
▶ include multivariate sample spaces Xn, Ym ⊂ Rq

▶ account for multivariate weight functions w : □q → Rℓ

• This is made possible through an extension of univariate
ranks using transport maps.

• The resulting tests are as powerful as likelihood-ratios under
correct model specification, yet remain well-calibrated (and
comparably well-powered) in the absence thereof.

• Applications to RNA-Seq differential expression analysis
show promise.

Thank you!
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