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Motivation Framework Application

Two Problems

Generalized Greenwood Statistics



Motivation Framework Application

Population Genetics: Detecting Selective Pressure

Neutral Tree

I At each depth, leaf set
sizes are approximately
equidistributed

Tree with Selection

I Leaf set sizes are highly
unbalanced close to the
root

I Given a tree, how can we tell whether it was generated
under selection or not?

I Data allows computation of sum of squares of leaf set sizes
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Motivation Framework Application

Two-Sample Tests: Comparing {Xk}k∈[n] and {Yk}k∈[m]

Xk ~ Yk (Null)

[Xk] ≠ [Yk] (Alternative)

Var[Xk] ≠ Var[Yk] (Alternative)

How to test the hypothesis whether {Xk} and {Yk} are identi-
cally distributed?
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Motivation Framework Application

Sampling uniformly from
the k-dimensional
simplex ∆k−1

Generalized Greenwood Statistics



Motivation Framework Application

Balls and bins

I Sn,k ∼ U
(
n ·∆k−1 ∩ Z+

)
(Bose-Einstein-
Distribution)

Limit as n→∞ for fixed k

I Greenwood Statistic
(Greenwood ’46)

I Some moments, CLT,
statistical efficiency
(Moran ’47, ’51, ’53)

I Geometry: intersection of
L1 and L2 balls
I Up to k = 3 (Gardner

’52)
I Large deviations

(Schechtner, Zinn ’00)
I Tabulation of z-scores up

to k = 20 (Burrows ’79,
Currie ’81, Stephens ’81)
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Motivation Framework Application

Results

Observation (Recursion)
Let G(x) =

∑∞
m=0 Li−2m(x)/m!, then

E‖Sn,k‖2m
2 = m!(n−1

k−1
) [xn] (Sm(x))F(k) .

Corollaries (Discrete)

1. ε-approximation in
O
(n

ε log
(n

ε

)
+ n

ε log k
)

time
2. Conservative hypothesis

tests
3. Alternative Scaling

limits: CLT, LLN, large
deviations

Corollaries (Continuous)

1. Continuum
approximation:
‖Fn,k − Fk‖∞ ∈ O

(
n−1)

2. Monotonicity:
Fn,k − Fk ≥ 0

3. Regularity:
Fk ∈ Ck−3 ([0, 1])
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Motivation Framework Application

Application to
Two-Sample Testing
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Motivation Framework Application

Comparing Non-Parametric Two-Sample Tests

|| Sn ,k ||2
2

Kolmogorov-Smirnov

7

20

Figure: Hypothesis testing based on ‖Sn,k‖2
2 is more sensitive to variance

changes than common other two-sample tests.
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Comparing Non-Parametric Two-Sample Tests

|| Sn ,k ||2
2

Kolmogorov-Smirnov

Null

Alternative

Figure: Hypothesis testing based on ‖Sn,k‖2
2 is more sensitive to

compound mean and variance changes than common other two-sample
tests, for randomly generated null and alternative of common support.
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Motivation Framework Application

Comparing Non-Parametric Two-Sample Tests

|| Sn ,k ||2
2

Kolmogorov-Smirnov

Null

Alternative

Figure: Hypothesis testing based on ‖Sn,k‖2
2 is more sensitive to

compound mean and variance changes than common other two-sample
tests, for randomly generated null and alternative of distinct support.
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Motivation Framework Application

New Perspectives on old Questions

What happened?

1. Discretized continuous Greenwood Statistic
2. Understood discretized problem through generating

functions of moments
3. CDF reconstruction from moments, CLT, transfer to

continuous problem
4. Application to two-sample testing

What happens now?

1. Apply hypothesis test to real data
2. Quantify more precisely the power against given classes of

alternatives
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