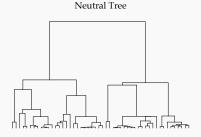
Selection Detection and Two-Sample-Testing: Generalized Greenwood Statistics and their Applications

Dan Daniel Erdmann-Pham, Jonathan Terhorst & Yun S. Song

University of California, Berkeley

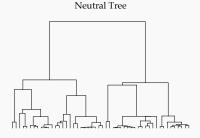
July 9, 2019 SPA 2019

Two Problems



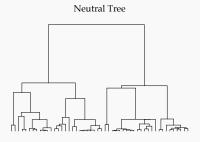
 At each depth, leaf set sizes are approximately equidistributed Leaf set sizes are highly unbalanced close to the root

 Given a tree, how can we tell whether it was generated under selection or not?
 Data allows computation of sum of squares of leaf set size

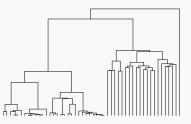


 At each depth, leaf set sizes are approximately equidistributed Leaf set sizes are highly unbalanced close to the root

 Given a tree, how can we tell whether it was generated under selection or not?
 Data allows computation of sum of squares of leaf set sizes

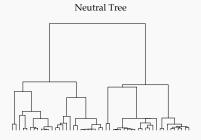


 At each depth, leaf set sizes are approximately equidistributed Tree with Selection

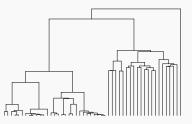


 Leaf set sizes are highly unbalanced close to the root

 Given a tree, how can we tell whether it was generated under selection or not?
 Data allows computation of sum of squares of leaf set sizes

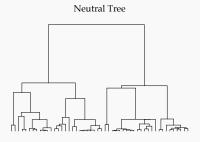


 At each depth, leaf set sizes are approximately equidistributed Tree with Selection

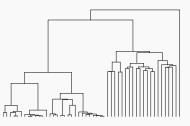


 Leaf set sizes are highly unbalanced close to the root

 Given a tree, how can we tell whether it was generated under selection or not?
 Data allows computation of sum of squares of leaf set sizes



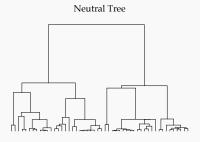
 At each depth, leaf set sizes are approximately equidistributed Tree with Selection



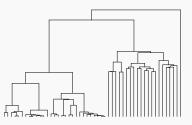
 Leaf set sizes are highly unbalanced close to the root

Given a tree, how can we tell whether it was generated under selection or not?

Data allows computation of sum of squares of leaf set sizes



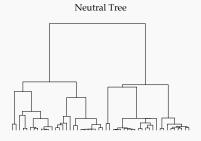
 At each depth, leaf set sizes are approximately equidistributed Tree with Selection



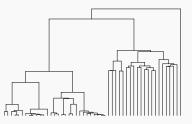
 Leaf set sizes are highly unbalanced close to the root

Given a tree, how can we tell whether it was generated under selection or not?

Data allows computation of sum of squares of leaf set sizes

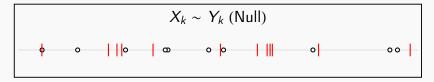


 At each depth, leaf set sizes are approximately equidistributed Tree with Selection

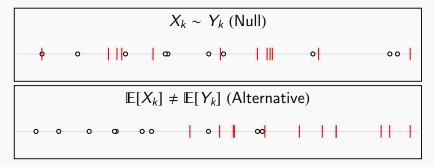


- Leaf set sizes are highly unbalanced close to the root
- Given a tree, how can we tell whether it was generated under selection or not?
- Data allows computation of sum of squares of leaf set sizes

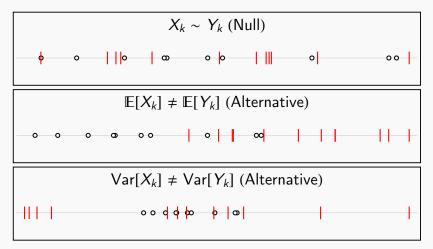
How to test the hypothesis whether $\{X_k\}$ and $\{Y_k\}$ are identically distributed?



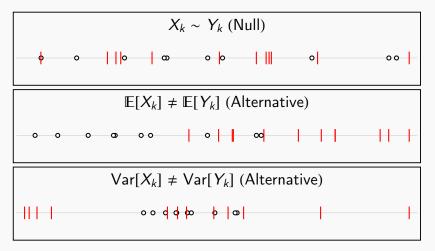
How to test the hypothesis whether $\{X_k\}$ and $\{Y_k\}$ are identically distributed?



How to test the hypothesis whether $\{X_k\}$ and $\{Y_k\}$ are identically distributed?

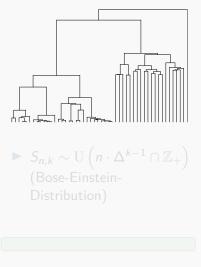


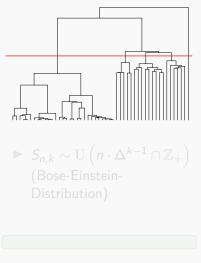
How to test the hypothesis whether $\{X_k\}$ and $\{Y_k\}$ are identically distributed?

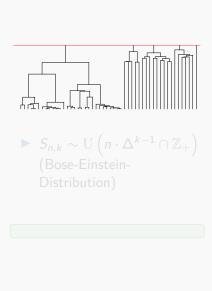


How to test the hypothesis whether $\{X_k\}$ and $\{Y_k\}$ are identically distributed?

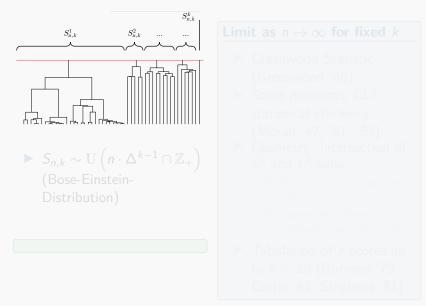
Sampling uniformly from the *k*-dimensional simplex Δ^{k-1}

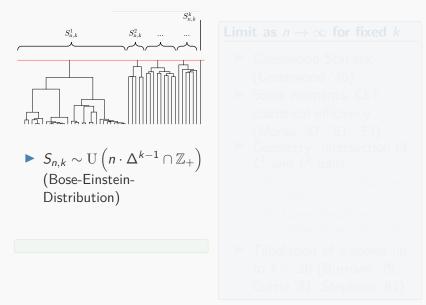


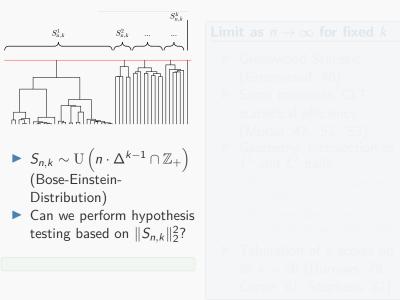


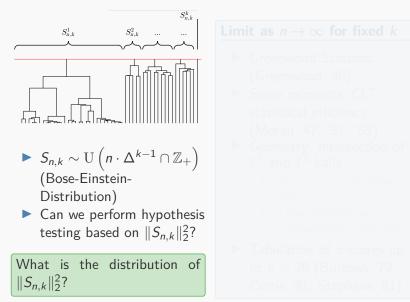


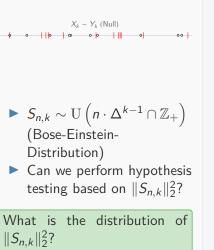
 Tabulation of z-scores up to k = 20 (Burrows '79, Currie '81, Stephens '81)

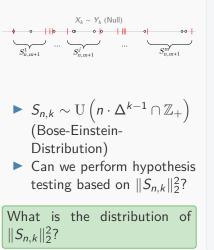


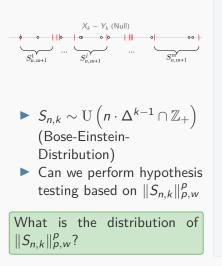










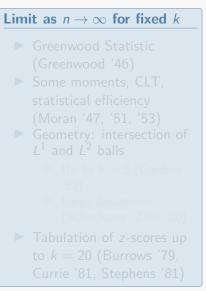


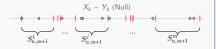
►
$$S_{n,k} \sim U\left(n \cdot \Delta^{k-1} \cap \mathbb{Z}_+\right)$$

(Bose-Einstein-
Distribution)

 Can we perform hypothesis testing based on ||S_{n,k}||^p_{p,w}

What is the distribution of $||S_{n,k}||_{p,w}^{p}$?





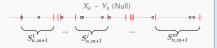
►
$$S_{n,k} \sim \mathrm{U}\left(n \cdot \Delta^{k-1} \cap \mathbb{Z}_+\right)$$

(Bose-Einstein-
Distribution)

 Can we perform hypothesis testing based on ||S_{n,k}||^p_{p,w}

What is the distribution of $||S_{n,k}||_{p,w}^p$?

Limit as $n \to \infty$ for fixed k		
	Greenwood Statistic (Greenwood '46)	
	Some moments, CLT, statistical efficiency	
	(Moran '47, '51, '53) Geometry: intersection of L^1 and L^2 balls	



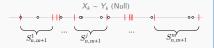
►
$$S_{n,k} \sim U\left(n \cdot \Delta^{k-1} \cap \mathbb{Z}_+\right)$$

(Bose-Einstein-
Distribution)

 Can we perform hypothesis testing based on ||S_{n,k}||^p_{p,w}

What is the distribution of $||S_{n,k}||_{p,w}^p$?

Limit as $n \to \infty$ for fixed k		
	Greenwood Statistic	
	(Greenwood '46)	
	Some moments, CLT,	
	statistical efficiency	
	(Moran '47, '51, '53)	



►
$$S_{n,k} \sim U\left(n \cdot \Delta^{k-1} \cap \mathbb{Z}_+\right)$$

(Bose-Einstein-
Distribution)

 Can we perform hypothesis testing based on ||S_{n,k}||^p_{p,w}

What is the distribution of $||S_{n,k}||_{p,w}^{p}$?

Lim	it as $n o \infty$ for fixed k
	Greenwood Statistic
	(Greenwood '46)
	Some moments, CLT,
	statistical efficiency
	(Moran '47, '51, '53)
	Geometry: intersection of L^1 and L^2 balls
	Up to k = 3 (Gardner '52)
	 Large deviations
	Currie '81, Stephens '81)

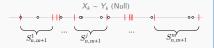
►
$$S_{n,k} \sim U\left(n \cdot \Delta^{k-1} \cap \mathbb{Z}_+\right)$$

(Bose-Einstein-
Distribution)

 Can we perform hypothesis testing based on ||S_{n,k}||^p_{p,w}

What is the distribution of $||S_{n,k}||_{p,w}^p$?

Lim	it as $n \to \infty$ for fixed k
	Greenwood Statistic
	(Greenwood '46)
	Some moments, CLT,
	statistical efficiency
	(Moran '47, '51, '53)
	Geometry: intersection of L^1 and L^2 balls
	Up to k = 3 (Gardner '52)
	 Large deviations
	(Schechtner, Zinn '00)
	Currie '81, Stephens '81)



►
$$S_{n,k} \sim U\left(n \cdot \Delta^{k-1} \cap \mathbb{Z}_+\right)$$

(Bose-Einstein-
Distribution)

 Can we perform hypothesis testing based on ||S_{n,k}||^p_{p,w}

What is the distribution of $||S_{n,k}||_{p,w}^{p}$?

Limit as $n \to \infty$ for fixed k	
	Greenwood Statistic
	(Greenwood '46)
	Some moments, CLT,
	statistical efficiency
	(Moran '47, '51, '53)
	Geometry: intersection of
	L^1 and L^2 balls
	• Up to $k = 3$ (Gardner
	'52)
	Large deviations
	(Schechtner, Zinn '00)
	Tabulation of <i>z</i> -scores up
	to $k = 20$ (Burrows '79,
	Currie '81, Stephens '81)

Results

Observation (Recursion) Let $G(x) = \sum_{m=0}^{\infty} \operatorname{Li}_{-2m}(x)/m!$, then $\mathbb{E} \|S_{n,k}\|_2^{2m} = \frac{m!}{\binom{n-1}{k-1}} [x^n] (S_m(x))^{\bigstar(k)}.$

Corollaries (Discrete)

- 1. ε -approximation in $O\left(\frac{n}{\varepsilon}\log\left(\frac{n}{\varepsilon}\right) + \frac{n}{\varepsilon}\log k\right)$ time
- Conservative hypothesis tests
- Alternative Scaling limits: CLT, LLN, large deviations

Corollaries (Continuous)

1. Continuum approximation: $\|F_{n,k} - F_k\|_{\infty} \in O(n^{-1})$ 2. Monotonicity: $F_{n,k} - F_k \ge 0$ 3. Regularity: $F_k \in C^{k-3}([0,1])$

Results

Observation (Recursion) Let $G(x) = \sum_{m=0}^{\infty} \operatorname{Li}_{-2m}(x)/m!$, then $\mathbb{E} \|S_{n,k}\|_2^{2m} = \frac{m!}{\binom{n-1}{k-1}} [x^n] (S_m(x))^{\bigstar(k)}.$

Corollaries (Discrete)

- 1. ε -approximation in $O\left(\frac{n}{\varepsilon}\log\left(\frac{n}{\varepsilon}\right) + \frac{n}{\varepsilon}\log k\right)$ time
- 2. Conservative hypothesis tests
- 3. Alternative Scaling limits: CLT, LLN, large deviations

Corollaries (Continuous)

1. Continuum approximation: $||F_{n,k} - F_k||_{\infty} \in O(n^{-1})$ 2. Monotonicity: $F_{n,k} - F_k \ge 0$ 3. Regularity: $F_k \in C^{k-3}([0,1])$

Results

Observation (Recursion) Let $G(x) = \sum_{m=0}^{\infty} \operatorname{Li}_{-2m}(x)/m!$, then $\mathbb{E} \|S_{n,k}\|_2^{2m} = \frac{m!}{\binom{n-1}{k-1}} [x^n] (S_m(x))^{\bigstar(k)}.$

Corollaries (Discrete)

- 1. ε -approximation in $O\left(\frac{n}{\varepsilon}\log\left(\frac{n}{\varepsilon}\right) + \frac{n}{\varepsilon}\log k\right)$ time
- 2. Conservative hypothesis tests
- Alternative Scaling limits: CLT, LLN, large deviations

Corollaries (Continuous)

1. Continuum approximation: $||F_{n,k} - F_k||_{\infty} \in O(n^{-1})$ 2. Monotonicity: $F_{n,k} - F_k \ge 0$ 3. Regularity: $F_k \in C^{k-3}([0,1])$

Application

Results

Observation (Recursion) Let $G(x) = \sum_{m=0}^{\infty} \operatorname{Li}_{-2m}(x)/m!$, then $\mathbb{E} \|S_{n,k}\|_2^{2m} = \frac{m!}{\binom{n-1}{k-1}} [x^n] (S_m(x))^{\bigstar(k)}.$

Corollaries (Discrete)

- 1. ε -approximation in $O\left(\frac{n}{\varepsilon}\log\left(\frac{n}{\varepsilon}\right) + \frac{n}{\varepsilon}\log k\right)$ time
- 2. Conservative hypothesis tests
- 3. Alternative Scaling limits: CLT, LLN, large deviations

Corollaries (Continuous)

```
1. Continuum
approximation:
||F_{n,k} - F_k||_{\infty} \in O(n^{-1})
2. Monotonicity:
F_{n,k} - F_k \ge 0
3. Regularity:
F_k \in C^{k-3}([0, 1])
```

Application

Results

Observation (Recursion) Let $G(x) = \sum_{m=0}^{\infty} \operatorname{Li}_{-2m}(x)/m!$, then $\mathbb{E} \|S_{n,k}\|_2^{2m} = \frac{m!}{\binom{n-1}{k-1}} [x^n] (S_m(x))^{\bigstar(k)}.$

Corollaries (Discrete)

- 1. ε -approximation in $O\left(\frac{n}{\varepsilon}\log\left(\frac{n}{\varepsilon}\right) + \frac{n}{\varepsilon}\log k\right)$ time
- 2. Conservative hypothesis tests
- 3. Alternative Scaling limits: CLT, LLN, large deviations

Corollaries (Continuous)

```
1. Continuum

approximation:

||F_{n,k} - F_k||_{\infty} \in O(n^{-1})

2. Monotonicity:

F_{n,k} - F_k \ge 0

3. Regularity:

F_k \in C^{k-3}([0,1])
```

Results

Observation (Recursion) Let $G(x) = \sum_{m=0}^{\infty} \operatorname{Li}_{-2m}(x)/m!$, then $\mathbb{E} \|S_{n,k}\|_2^{2m} = \frac{m!}{\binom{n-1}{k-1}} [x^n] (S_m(x))^{\bigstar(k)}.$

Corollaries (Discrete)

- 1. ε -approximation in $O\left(\frac{n}{\varepsilon}\log\left(\frac{n}{\varepsilon}\right) + \frac{n}{\varepsilon}\log k\right)$ time
- 2. Conservative hypothesis tests
- 3. Alternative Scaling limits: CLT, LLN, large deviations

Corollaries (Continuous)

1. Continuum approximation: $||F_{n,k} - F_k||_{\infty} \in O(n^{-1})$ 2. Monotonicity: $F_{n,k} - F_k \ge 0$ 3. Regularity:

3. Regularity:
$$F_k \in C^{k-3}([0,1])$$

Results

Observation (Recursion) Let $G(x) = \sum_{m=0}^{\infty} \operatorname{Li}_{-2m}(x)/m!$, then $\mathbb{E} ||S_{n,k}||_2^{2m} = \frac{m!}{\binom{n-1}{k-1}} [x^n] (S_m(x))^{\bigstar(k)}.$

Corollaries (Discrete)

- 1. ε -approximation in $O\left(\frac{n}{\varepsilon}\log\left(\frac{n}{\varepsilon}\right) + \frac{n}{\varepsilon}\log k\right)$ time
- 2. Conservative hypothesis tests
- 3. Alternative Scaling limits: CLT, LLN, large deviations

Corollaries (Continuous)

1. Continuum approximation: $||F_{n,k} - F_k||_{\infty} \in O(n^{-1})$ 2. Monotonicity: $F_{n,k} - F_k \ge 0$ 3. Regularity: $F_k \in C^{k-3}([0,1])$

Results

Observation (Recursion) Let $G(x) = \sum_{m=0}^{\infty} \operatorname{Li}_{-2m}(x)/m!$, then $\mathbb{E} \|S_{n,k}\|_2^{2m} = \frac{m!}{\binom{n-1}{k-1}} [x^n] (S_m(x))^{\bigstar(k)}.$

Corollaries (Discrete)

- 1. ε -approximation in $O\left(\frac{n}{\varepsilon}\log\left(\frac{n}{\varepsilon}\right) + \frac{n}{\varepsilon}\log k\right)$ time
- 2. Conservative hypothesis tests
- 3. Alternative Scaling limits: CLT, LLN, large deviations

Corollaries (Continuous)

- 1. Continuum approximation: $\|F_{n,k} - F_k\|_{\infty} \in O(n^{-1})$
- 2. Monotonicity:
 - $F_{n,k}-F_k\geq 0$
- **3.** Regularity: $F_k \in C^{k-3}([0,1])$

Results

Observation (Recursion) Let $G(x) = \sum_{m=0}^{\infty} \operatorname{Li}_{-2m}(x)/m!$, then $\mathbb{E} \|S_{n,k}\|_2^{2m} = \frac{m!}{\binom{n-1}{k-1}} [x^n] (S_m(x))^{\bigstar(k)}.$

Corollaries (Discrete)

- 1. ε -approximation in $O\left(\frac{n}{\varepsilon}\log\left(\frac{n}{\varepsilon}\right) + \frac{n}{\varepsilon}\log k\right)$ time
- 2. Conservative hypothesis tests
- 3. Alternative Scaling limits: CLT, LLN, large deviations

Corollaries (Continuous)

- 1. Continuum approximation: $\|F_{n,k} F_k\|_{\infty} \in O(n^{-1})$
- 2. Monotonicity:
 - $F_{n,k}-F_k\geq 0$
- 3. Regularity: $F_k \in C^{k-3}([0,1])$

Application to Two-Sample Testing

Generalized Greenwood Statistics

Comparing Non-Parametric Two-Sample Tests

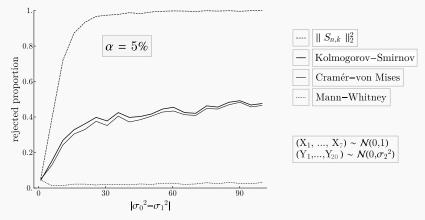


Figure: Hypothesis testing based on $||S_{n,k}||_2^2$ is more sensitive to variance changes than common other two-sample tests.

Comparing Non-Parametric Two-Sample Tests

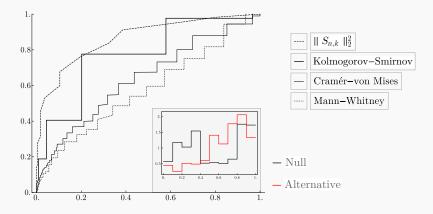


Figure: Hypothesis testing based on $||S_{n,k}||_2^2$ is more sensitive to compound mean and variance changes than common other two-sample tests, for randomly generated null and alternative of common support.

Comparing Non-Parametric Two-Sample Tests

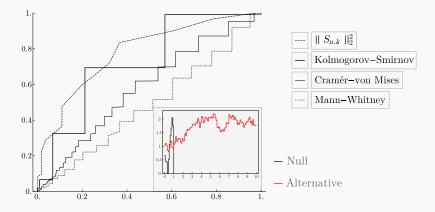


Figure: Hypothesis testing based on $||S_{n,k}||_2^2$ is more sensitive to compound mean and variance changes than common other two-sample tests, for randomly generated null and alternative of distinct support.

What happened?

- 1. Discretized continuous Greenwood Statistic
- **2.** Understood discretized problem through generating functions of moments
- **3.** CDF reconstruction from moments, CLT, transfer to continuous problem
- 4. Application to two-sample testing

- 1. Apply hypothesis test to real data
- 2. Quantify more precisely the power against given classes of alternatives

What happened?

- 1. Discretized continuous Greenwood Statistic
- **2.** Understood discretized problem through generating functions of moments
- **3.** CDF reconstruction from moments, CLT, transfer to continuous problem
- 4. Application to two-sample testing

- 1. Apply hypothesis test to real data
- 2. Quantify more precisely the power against given classes of alternatives

What happened?

- 1. Discretized continuous Greenwood Statistic
- 2. Understood discretized problem through generating functions of moments
- **3.** CDF reconstruction from moments, CLT, transfer to continuous problem
- 4. Application to two-sample testing

- 1. Apply hypothesis test to real data
- 2. Quantify more precisely the power against given classes of alternatives

What happened?

- 1. Discretized continuous Greenwood Statistic
- 2. Understood discretized problem through generating functions of moments
- **3.** CDF reconstruction from moments, CLT, transfer to continuous problem
- 4. Application to two-sample testing

- 1. Apply hypothesis test to real data
- 2. Quantify more precisely the power against given classes of alternatives

What happened?

- 1. Discretized continuous Greenwood Statistic
- 2. Understood discretized problem through generating functions of moments
- **3.** CDF reconstruction from moments, CLT, transfer to continuous problem
- 4. Application to two-sample testing

- 1. Apply hypothesis test to real data
- 2. Quantify more precisely the power against given classes of alternatives

What happened?

- 1. Discretized continuous Greenwood Statistic
- 2. Understood discretized problem through generating functions of moments
- **3.** CDF reconstruction from moments, CLT, transfer to continuous problem
- 4. Application to two-sample testing

- 1. Apply hypothesis test to real data
- Quantify more precisely the power against given classes of alternatives

What happened?

- 1. Discretized continuous Greenwood Statistic
- 2. Understood discretized problem through generating functions of moments
- **3.** CDF reconstruction from moments, CLT, transfer to continuous problem
- 4. Application to two-sample testing

- 1. Apply hypothesis test to real data
- 2. Quantify more precisely the power against given classes of alternatives

Acknowledgements

Jonathan Terhorst

Yun Song

Jonathan Fischer

Funding:

German Academic Scholarship Foundation

Generalized Greenwood Statistics