Hydrodynamics of the inhomogeneous *ℓ*-TASEP

Dan Daniel Erdmann-Pham, Khanh Dao Duc & Yun S. Song

University of California, Berkeley

June 25, 2019 Tel Aviv University

Modeling Translation Dynamics

Hydrodynamics of the inhomogeneous *l*-TASEP

Which key parameters govern translation efficiency?

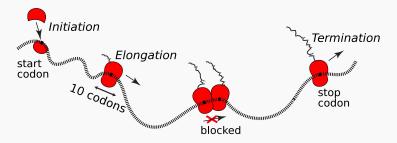
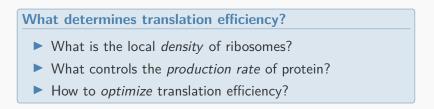



Figure: Ribosomes move along mRNA, translating it into a polypeptide

Complexity of translation

Elongation rates are locally regulated by a variety of factors:

- tRNA availability
- decoding and dissociation rates
- mRNA secondary structure
- co-translational folding
- signal recognition particle (SRP) binding
- interactions between polypeptide and ribosome exit tunnel
 - Do faster rates correspond to more efficient translation?
 - What are the implications of codon usage bias?
 - Does elongation or initiation limit production rates? What about termination rates?

Totally Asymmetric Simple Exclusion Process

The model

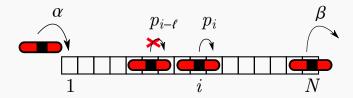
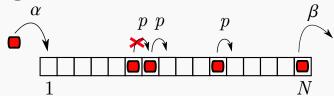



Figure: Totally Asymmetric Simple Exclusion Process (TASEP) with inhomogeneous jump rates and particles of size $\ell=3$

The homogeneous 1-TASEP

Modeling transport phenomena

- first introduced by MacDonald et al. (1968) to model translation
- solved by Derrida, Evans, Hakim, Pasquier (1993)
- since then used to model traffic flow, molecular transport, surface growth etc.

Hydrodynamics, KPZ and large deviations

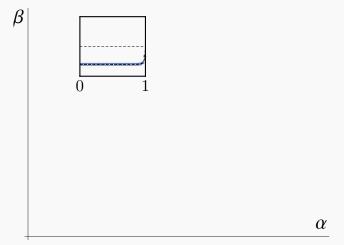
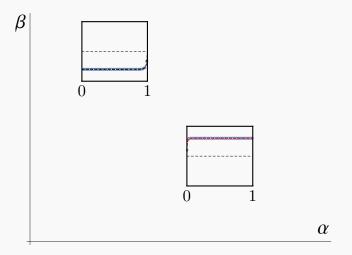
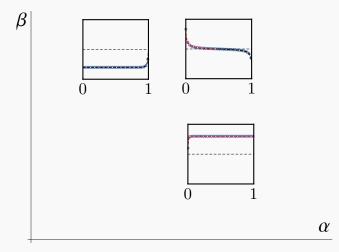
- law of large numbers (Burger's Equation)
- fluctuations (mostly on \mathbb{Z} and under specific initial data)
- rare events

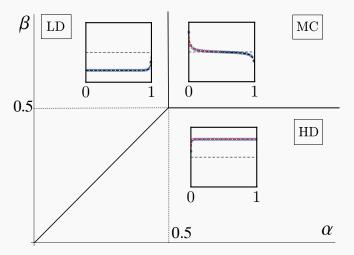
β

Phase Diagram of the homogeneous 1-TASEP

 α

Figure: We expect equilibrium density profiles to depend critically on α and β


Figure: Low initiation rates and large termination rates leave the lattice sparsely populated

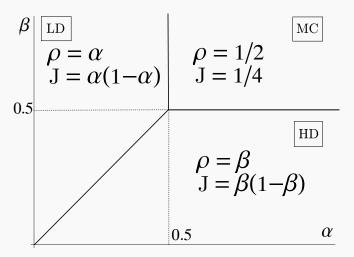

Figure: High initiation rate and low termination rates create traffic jams, resulting in a densely populated lattice

Figure: If particles both arrive and leave quickly, the results is a superposition of traffic jams and sparse regions

Figure: These three density profiles are representative of the low density, high density and maximum current regimes

Figure: These three density profiles are representative of the low density, high density and maximum current regimes

Can we extend these results to the inhomogeneous ℓ -TASEP?

Mean-field approaches

▶ ignore higher order correlations, e.g. approximate

$$\partial_t \langle au_i
angle = \langle au_{i-1} (1 - au_i)
angle - \langle au_i (1 - au_{i+1})
angle \ pprox \langle au_{i-1}
angle (1 - \langle au_i
angle) - \langle au_i
angle (1 - \langle au_{i+1}
angle)$$

 approximate bulk behavior by dynamics on a ring
 treat local defects as separating two decoupled copies of the homogeneous TASEP

Exact results through coupling

- global effects of local defects
- random elongation rates
- hydrodynamic limits
- power series expansions in lpha

Hydrodynamic Limit

Hydrodynamic Limit

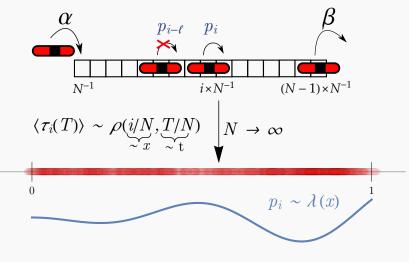
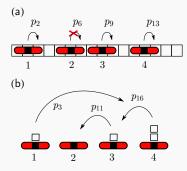



Figure: Continuum limit under Euler scaling

Hydrodynamics of the inhomogeneous *l*-TASEP

What dynamics does ρ follow?

1. Identify candidate PDE through Zero Range Process (ZRP):

Figure: Mapping from inhomogeneous *l*-TASEP to ZRP

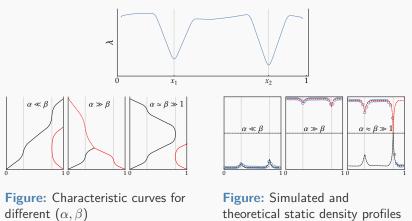
Result is a conservation law with current $J = \lambda \rho G(\rho)$:

$$\partial_t \rho = -\partial_x \left(\lambda \rho \mathcal{G}(\rho) \right),$$

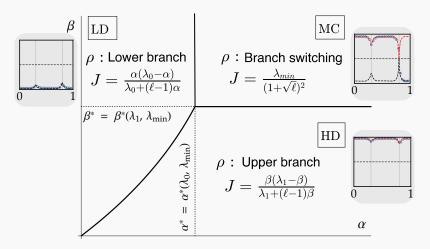
where

$$G(
ho)=rac{1-\ell
ho}{1-(\ell-1)\,
ho}.$$

- 2. Rigorous proof involves
 - relative entropy techniques (*Rezakhanlou '97*)
 - coupling with smoother system (Bahadoran '12)
 - local stationarity

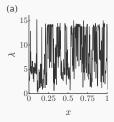

Solving the PDE

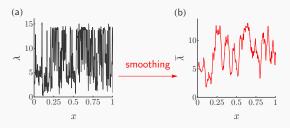
Hydrodynamics of the inhomogeneous ℓ-TASEP


Boundary conditions & characteristic equations

 $\alpha \& \beta$ impose effective Dirichlet Boundary Conditions which propagate via characteristics

Hydrostatics are determined by the characteristic curve that saturates the lattice


Phase diagram


Figure: Phase diagram depends only on $\lambda_0, \lambda_1, \lambda_{\min}$ and ℓ . Phase transitions are in ρ and J.

Application to Translation

Hydrodynamics of the inhomogeneous *l*-TASEP

Figure: Typical elongation profile of a yeast gene

Figure: Smoothing reveals clearer structure

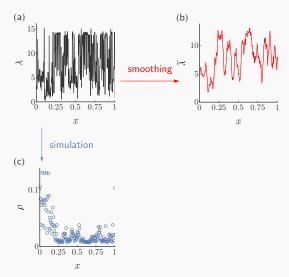


Figure: Simulation under noisy elongation yields noisy densities

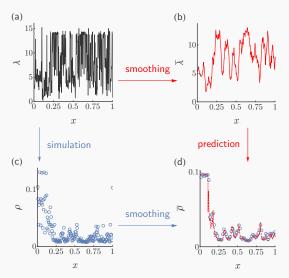


Figure: Smoothed predictions match smoothed densities

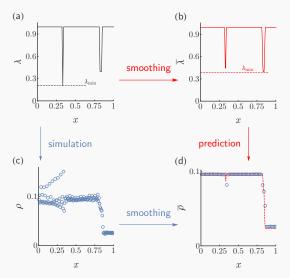


Figure: Smoothed elongation rates predict translation dynamics

Caveat 2: Misdetection of stacked ribosomes

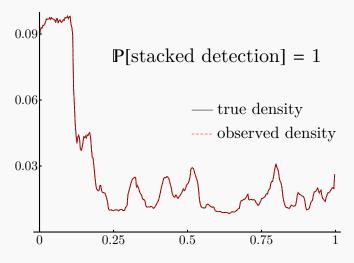


Figure: Complete identifiability in case of full detection

Caveat 2: Misdetection of stacked ribosomes

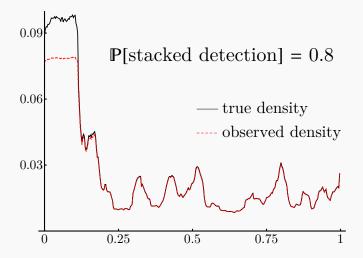


Figure: Mild misdetection affects HD, but preserves identifiability

Application

Caveat 2: Misdetection of stacked ribosomes

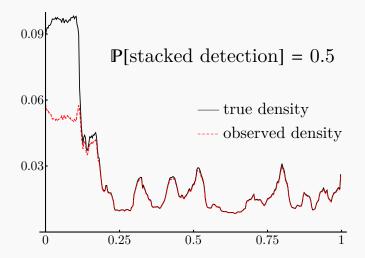


Figure: Identifiability is lost under moderate to severe misdetection

Caveat 2: Misdetection of stacked ribosomes

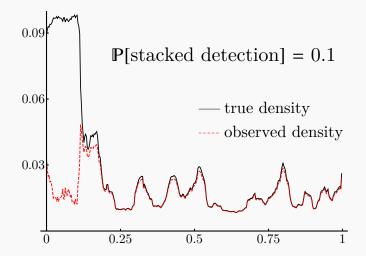


Figure: Identifiability is lost under moderate to severe misdetection

Caveat 3: Mixing time

- Analysis based on stationary distribution presupposes negligible transient behaviour
- How long does it take for the chain to mix?

Reassurance

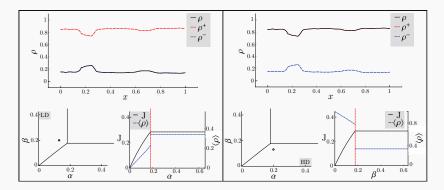
▶ In LD, approximately

$$\int_0^1 \left\{ \lambda(x) H' \circ H_-^{-1}\left(\frac{J}{\lambda(x)}\right) \right\}^{-1} \, \mathrm{d}x$$

seconds

- ► In MC, roughly twice as long
- ► In yeast, the median mixing time is 68 seconds, compared to a ~ 30 minutes median half-life in a transcript

Utility of hydrodynamic theory in understanding translation


Benefits of closed-form formulas

- 1. Obviate the need for costly simulation studies
- 2. Identification of key parameters governing translation, namely α , λ_{\min} , λ_0 and $x_{\min} = \arg \min_x \lambda(x)$

Design principles

- 1. Regulation: α should should act as main determinant of J
- 2. Production capacity: J_{\max} fixed by λ_{\min}
- 3. Sensitivity: rate of change of J in α is modulated by λ_0
- 4. Ribosome cost: small x_{min} may save resources

Regulation: Low Density (LD) vs. High Density (HD)

Figure: Any given level of production can be instantiated through either LD or HD. For the purposes of resource allocation, LD should be favored over HD, rendering α the major determinant of J.

How and how quickly can production rates adjust?

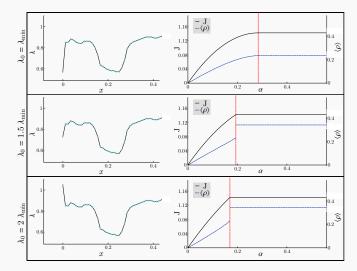
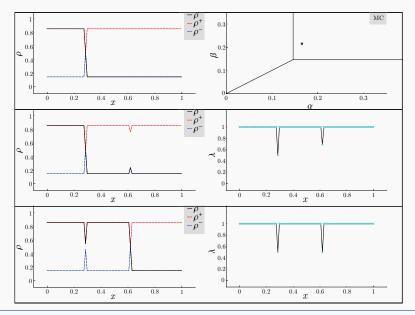
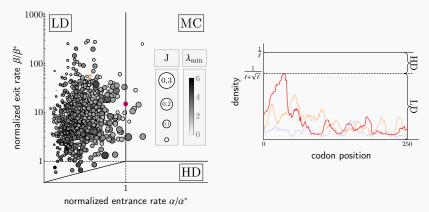



Figure: J plateaus at $J_{\max} = \lambda_{\min}/(1+\sqrt{\ell})^2$ with $\partial_{\alpha}J$ increasing in λ_0

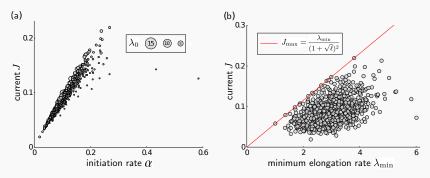
Optimizing ribosome cost at high production rates

Hydrodynamics of the inhomogeneous ℓ-TASEP

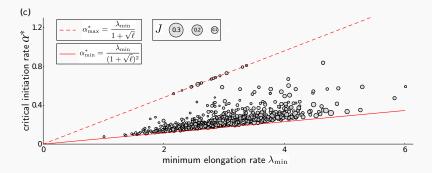

Translational efficiency in yeast

Hydrodynamics of the inhomogeneous *l*-TASEP

What regimes do yeast genes operate in?

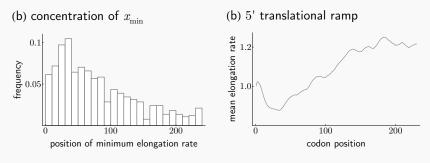

(a) Phase diagram

(b) Sample densities


Figure: Analysis of 850 previously inferred elongation profiles: 841 genes are located in LD, and 9 genes have pushed into MC, rendering α , λ_{\min} and λ_0 the main determinants of protein production.

Genes exploit full dynamic range of currents

- Most genes are initiation rate limited
- Elongation limited profiles exist at high translation rates
- Constitutively highly expressed transcripts operate close to maximum capacity
- Genes with variable expression demands show large variation in J


λ_0 facilitates realization and modulation of large currents

- Elevated initial rates close to maximum capacity
- ► Sensitivity ratio λ_0/λ_{min} increased for variable expression demands, and decreased for constitutive expression

Continuum Limit

Locations of minimum elongation rate are chosen judiciously

- Minimum elongation locations mirror 5' translational ramp, balancing trade-off between resource and sensitivity considerations
- High sensitivity and proximity to MC lower x_{min} significantly
- Genes with large x_{min} are furthest from MC

Looking back and ahead

What happened?

- 1. Derived closed-form expressions for TASEP current and densities by passing to hydrodynamic limit
- 2. Identified $\alpha, \lambda_0, \lambda_{\min}$ and x_{\min} as key parameters
- 3. Studied their consequences for codon usage bias
- 4. Developed four design principles governing translation
- 5. Provide evidence for implementation of principles in yeast

What might happen?

- Direct inference from ribosome profiling data
 - incorporate stacked ribosomes
- Rate function regularity and smoothing
- Fluctuations, large deviations, mixing times, singular configurations
- Apply machinery to transcription

Acknowledgements

Khanh Dao Duc

Yun Song

Fraydoun Rezakhanlou

Son Won Jun

Funding:

SIMONS FOUNDATION

CHAN ZUCKERBERG

German Academic Scholarship Foundation

BIOHUB

References

Bahadoran, C. (2012).

Hydrodynamics and hydrostatics for a class of asymmetric particle systems with open boundaries.

Communications in Mathematical Physics, 310(1):1–24.

Covert, P. and Rezakhanlou, F. (1997).

Hydrodynamic limit for particle systems with nonconstant speed parameter.

Journal of statistical physics, 88(1):383–426.

Erdmann-Pham, D. D., Duc, K. D., and Song, Y. S. (2018). Hydrodynamic limit of the inhomogeneous *l*-tasep with open boundaries: Derivation and solution. *arXiv preprint arXiv:1803.05609.*

Son, W., Erdmann-Pham, D. D., Dao Duc, K., and Song, Y. S. (2018).

Current-inspired visualization and evaluation of the tasep (civet). https://github.com/songlab-cal/civet.