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Abstract

Probabilistic Models and Statistical Tools for Gene Expression Analysis

by

Ðan Daniel Erdmann-Pham

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Yun S. Song, Co-chair

Professor Steven N. Evans, Co-chair

The recent explosion of novel experimental protocols in the life sciences is providing glimpses
into fundamental biological processes that previously remained inaccessible. The mechanisms
underlying these processes are unique enough that understanding them often requires approaches
beyond those traditionally associated with data-driven statistics. This thesis explores three such
instances, in which borrowing ideas from geometry, probability theory and partial differential
equations can lead to tangible improvements over existing methods, as well as new frameworks for
future tasks. Our first analysis revolves around protein synthesis: the conversion of genes into viable
polypeptides through what is known as translation. By exploiting the so-called Totally Asymmetric
Simple Exclusion Process (TASEP) as a model of translation, we rephrase questions of biological
interest in terms of Markov chains properties, which in turn we successfully tackle by deriving an
adequate continuum limit of the TASEP. Analysis of this limiting process reveals a handful of key
parameters that govern translation efficiency, whose roles we summarize in a concise set of design
principles, and confirm on ribosome profiling data of yeast. Secondly, we direct attention to the task
of gene expression deconvolution: recovering individual cell type contributions to the transcript
abundances of an entire tissue. By embedding our deconvolution procedure into a full-likelihood
framework, we not only provide provably optimal error guarantees, but also enable convenient model
evaluation, adaptation and uncertainty quantification. We demonstrate this improved performance
and flexibility on a variety of simulated and experimental bulk samples. And thirdly, motivated by
detecting differential expression of genes across tissues, individuals or conditions, we investigate
non-parametric two-sample testing. After identifying a broad family of statistics that includes as
special cases Mann-Whitney’s U, Greenwood’s and Dixon’s, we employ combinatorial tools to
quickly compute their null distributions’ moments to arbitrary precision. Combined with an equally
fast and provably accurate solution to the related moment problem we thus arrive at a well-calibrated,
versatile goodness-of-fit test with applicability beyond the gene expression setting. We showcase its
power in various direct comparisons with a number of tests commonly used in practice.
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“The journey’s only just begun”, said the tortoise to
the meerkat and lifted a leg to air out its shell.

“Adventures await.”
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Chapter 1

Introduction

The content of this thesis lies broadly in the field of mathematical biology: It attempts to understand
biological processes through the lens of probability theory, geometry and mathematical analysis.
More specifically, we will be interested in modeling quantitatively the processes that govern what
is called the gene expression ecosystem on all its scales—from the large-scale descriptions of
DNA-to-RNA transcription and genome evolution to the molecular dynamics of protein synthesis.
Insights into these processes are primarily afforded through data, and consequently much of our
energy will be focused on the development of rigorous and transparent data analysis schemes
that tie the observables we measure to the mechanisms that generate them. Despite this technical
and quantitative emphasis of our work, we hope that ultimately it serves to aid illuminate very
real biological phenomena whose inner workings have remained opaque. Thus, we open this
introductory chapter with a motivational prologue outlining the kind of biological questions that
will guide our theoretical considerations throughout the thesis.

1.1 Background
Figure 1.1 provides a schematic representation of what is known as the central dogma of molecular
biology, or perhaps less intimidatingly, the directed flow of genetic information that occurs in all1

living cells, and is essential for any organism’s proper functioning: Starting out as geometrically
rigid, highly localized double-helix structures on the left-hand side of Figure 1.1, DNA molecules
are converted into the considerably more nimble and flexible RNA molecules depicted in the
middle panel through a process known as transcription. These messenger molecules in turn are
mobile enough to freely traverse the cell, reaching even its remotest corners, whereupon they
themselves, by way of the so-called translation step, are turned into protein (illustrated on the
far right); the geometric machines whose folding and configuration allow performance of the
various processes necessary to keep the cell alive. This conversion of rigid yet easily duplicated
and maintained DNA to elaborate yet functional protein is mediated primarily by two classes of

1Throughout this thesis the word all is taken to mean all, with possibly very few exceptions when encountered in a
biological context; when used in a mathematical setting, we truly mean all.
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DNA RNA ProteinTranscription Translation

Polymerase Ribosome

Figure 1.1: The central dogma of molecular biology. The directed flow of genetic information
describes the conversion of rigid DNA molecules (left) into functional protein (right) via RNA
molecules (middle). This conversion is mediated by an abundance of particle-like objects (named
RNA polymerase and ribosomes) that traverse and travel between the various involved structures in
a highly stochastic manner.

small, particle-like2 organelles: RNA polymerases and ribosomes. These molecules perpetually
meander through the cell, attaching to, detaching from and traversing the various DNA and RNA
structures involved while working to transform them into their respective molecular successors.
Being subject to and conditional on the various diffusive, thermal and chemical fluctuations that
shape the cellular landscape, their motion is to all intents and purposes random in nature. As a
result, the aforedescribed, macroscopic gene expression ecosystem is, on a molecular scale, driven
by a stochastic interacting particle process, which naturally renders its (macroscopic) observables
of interest stochastic as well. Attempting to capture and make sense of this complexity is what turns
Figure 1.1 into an inviting playground for probabilistic and statistical modeling stories to grow up
in—of which this thesis is presenting three.

2at least macroscopically; on a microscopic level, polymerases and ribosomes exhibit delicate geometric structure
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1.2 Outline

A theoretical model of translation

Figure 1.2: Modeling translation dynamics.

We begin by zooming into the right-
most sandbox of this playground in
Chapter 2: The conversion of RNA
into protein by way of translation. As
one of the final major steps of syn-
thesizing viable protein, translation
has received intense scrutiny both as
a target for interrupting pathogenic
pathways (see, e.g., [W+03] for a
comprehensive overview of transla-
tion as a target for antibiotics, and
[BRH+15] for more recent develop-
ments) and as a tool for amplifying
the efficacy of biotechnological and
pharmaceutical applications (with the
most recent mRNA-vaccines provid-
ing a case in point). Harnessing it
most fruitfully requires pinpointing
the key players and key determinants
that govern translation efficiency; the
knobs that need turning in order to
enhance or throttle protein produc-
tion. We carry out such identification
by resorting to a mathematical model
known as the inhomogeneous `-TASEP (Totally Asymmetric Simple Exclusion Process with par-
ticles of size `̀̀), which constitutes a Markov chain popular in both the theoretical and applied
sciences. In the context of the former, it has established itself as a model system in non-equilibrium
statistical mechanics, and recently garnered notable attention in the field of integrable probability
and random surface growth models for its unexpected connections to random matrix theory and
display of a nascent universality class called KPZ (see, e.g., [Cor16] for a survey). In more applied
settings, it provides an interacting particle process at the heart of various transport phenomena
arising in traffic flow, molecular signaling and sedimentation among others (see, e.g., [SCN10] for
an extensive overview). Despite its ubiquity, characterizing key quantities of the general inhomoge-
neous `-TASEP like its stationary distribution or particle current has largely remained elusive, with
quantitative and qualitative insights supplied mostly through simulation and approximation only. In
light of recent advances in the field of experimental ribosome profiling, which affords unprecedented
snapshots of translation in vivo, the intractability and inaccuracy that come with simulations and
approximations are infeasible for faithful parameter inference from such data. Chapter 2 is devoted
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to overcoming these limitations by deriving exact expressions of various key quantities of interest
in a continuum regime called the hydrodynamic limit, employing them to formulate a concise set
of design principles that guarantee optimal translation efficiencies, and applying them to data to
confirm their utility in practical biological settings. Figure 1.2 displays a condensed graphical
abstract.

Full-likelihood deconvolution
The translation process described above requires as essential input RNA transcripts, and is thus
fundamentally constrained by total transcript abundances in the cell. These abundances almost
always exceed the two copies depicted in Figure 1.1, typically ranging in the thousands or hundreds
of thousands instead, and are chiefly determined by the stochastic interplay between polymerases and
DNA molecules, and therefore random variables themselves. Since their magnitude directly affects
translational activity and thereby protein concentrations, it is not surprising that their distributional
properties ought to depend on the function and environment of the cell they reside in; e.g., genes
related to pigmentation are likely expressed at larger levels in cells of the iris than in the liver, while
transcripts encoding various metabolic proteins are expected in more considerable quantities in
the latter; with both fluctuating significantly throughout the various stages of development. This
observation is the primary inspiration for the contents of Chapters 3 and 4, which interrogate its
inverse: Can we distinguish cells of distinct cell types or in distinct environments based solely
on their RNA-count profiles? And if we can, is it possible to tell the cell type composition of
entire tissues or organs from observing (samples from) the total transcript tally aggregated across
all its constituent cells? Despite its seemingly simpler structure, the first question calls for a
statistically rather more complex answer and so is postponed to Chapter 4. The follow-up question
is known as the problem of cell-type deconvolution3 and is regularly asked in clinical settings:
While practitioners are unlikely to encounter organs that are half-iris half-liver, it is common for
tissues’ cell type compositions to drift away from their (frequently difficult to assess) baseline
throughout different stages of development or disease progression, and their analysis thus promises
diagnostic potential. Chapter 3 is devoted to furnishing tools for precisely this analysis: By
exploiting reference panels of known cell type profiles and positing explicit generative models for
both their and the target tissues’ associated noise, we are able to construct an inference scheme
that (under mild conditions) supplies asymptotically optimal proportion estimates combined with
provably well-calibrated confidence regions. We demonstrate our technique’s favorable performance
by benchmarking against a zoo of previously proposed deconvolution methods, and showcase the
flexibility and versatility that result from our likelihood formulation through deconvolving and
interpreting a sequence of real biological datasets collected to examine the impact of aging on tissue
composition.

3not to be confused with the inverse operation of convolution, which in mathematics literature is typically referred
to as deconvolution too; see, e.g., [Ria86]
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Non-parametric hypothesis testing

Figure 1.3: Hypothesis tests via spacings.

The deconvolution method just de-
scribed requires access to RNA-count
distributions of individual cell types
or proxies thereof; indeed, it is
straightforward to convince oneself
that absent such access faithful pro-
portion inference is essentially impos-
sible4. Interestingly, the aforemen-
tioned question of distinguishing cell
types and conditions based on gene
expression, rather than reconstructing
their proportions in mixtures, is mean-
ingful even without such reference
profiles: It seems reasonable that two
sets of transcript abundances can be
declared distributionally distinct de-
spite no explicit understanding of how

precisely they are so. This is the task of so-called two-sample tests: given two collections of random
variables {X1, . . . ,Xn} and {Y1, . . . ,Ym} drawn i.i.d. from distributions µ and ν , respectively; is it
possible to reliably decide whether µ = ν , or more broadly, if ν ∈A and µ /∈A for some class
of measures A ? In clinical settings, answering such question provides a dimension separate from,
and more general than, cell type composition through which otherwise difficult to probe departures
from normalcy can be captured, and has consequently spurred the development of a diverse array
of statistical tools to aid its analysis. This wealth of methodology notwithstanding, satisfactory
resolutions of this question have mostly been attained under comparatively narrow assumptions
on A : Procedures like Student’s t-test or the Mann-Whitney test rest on rigid parametric or semi-
parametric constraints (like normality of the involved distributions or a parametrization of A by
locations shifts, i.e., A = {µ(· − a),a ∈ R}), while schemes akin to the Kolmogorov-Smirnov
test or Cramér-von-Mises criterion trade power for generality (that is, A = {all ν : ν 6= µ} is
maximal, but ν {decide µ 6= ν} behaves poorly even for ν far away from µ). From a perspective of
analyzing differential gene expression, neither such behavior is desirable—transcription levels may
aberrate due to a variety of distinct biological conditions, rendering any absolute assumptions on
A infeasible; while any sacrifice in power risks misdiagnosis of potential disease state. Chapter 4
attempts to demonstrate that this trade-off between generality and power is, in fact, surmountable:
instead of relying on any individual test statistic, it devises an entire family F of summary statistics
that is (i) compact enough to characterize null distributions explicitly, yet (ii) rich enough to contain
at least one member of substantial power against any generic, fixed class of alternatives A . By

4unless, of course, other strong assumptions are imposed; e.g., the availability of marker genes or a large number of
adequately sampled bulk tissues can compensate for missing references; such approaches are aptly dubbed reference-free
deconvolutions
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designing an efficient algorithm to identify this particularly reliable member, it thus provides a
general, non-parametric two-sample test capable of detecting a wide class of alternatives. As is
often the case when analyzing hypothesis tests, the principal technical challenge lies in adequately
describing the null distributions of F , which our proposed method overcomes by means of deriving
explicit formulae for the involved moment sequences coupled with a fast and provably accurate
scheme to resolve the resultant moment problem. Conveniently, following such route not only
provides compelling performance when applied to configurations typically encountered in the
gene expression setting and compared with various test in common use (see, e.g., Figure 1.3 for a
schematic impression), but also helps to illuminate one particular member of F which had sparked
considerable theoretical work over the years prior: the so-called Greenwood statistic. By examining
its moment sequence more closely, we are able to contribute towards addressing questions surround-
ing its tail behavior, regularity and monotonicity that had remained previously open, providing
a pleasing example of how application-driven endeavors may yield results that are of interest to
theorists as well. Indeed, on a less concrete level this dissertation hopes to convince the reader that
instances of such symbiotic interplay between theory and application—with both profiting from
each other—abound in nature and occasionally can enable insights that may not have been attained
from studying either in isolation.
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Chapter 2

Modeling Translation Dynamics

This chapter is joint work with Khanh Dao Duc and Yun S. Song, and was published as [EPDS20]
in Cell Systems.

2.1 Introduction
Being a major determinant of gene expression and protein abundance levels [LVW+07, KGF13],
translation of mRNA into polypeptides is one of the most fundamental biological processes underly-
ing life. The extent to which this process is regulated and shaped by the sequence landscape has
been widely studied over the past decades [DKP16, HC18, QCSvdO15], revealing many intricate
mechanisms that may affect translation dynamics. From a more global perspective, however, it
has been challenging to integrate these findings to elucidate the key factors that govern translation
efficiency. Indeed, translation is a complex process that depends on many parameters, including the
initiation rate, site-specific elongation rates (which can vary substantially along a given transcript),
and the termination rate. How does the overall rate of protein synthesis depend on these parameters?
To make the problem more concrete, suppose that the goal is to achieve the fastest rate of protein
production while minimizing the cost. Would choosing the “fastest” synonymous codon at each
site do the job? If the local elongation rate changes at a particular site, would it necessarily affect
the overall rate of protein synthesis? If not, then which parameters actually matter? Aside from
achieving a desired protein production rate, how does a translation system make efficient use of
available resources, particularly the ribosomes? These are important questions in molecular and
evolutionary biology, as well as synthetic biology, but challenging to answer because there are many
parameters involved – for a transcript consisting of N codons, one has to analyze a model with
about N parameters, which is seemingly intractable when N is large.

In this chapter, we develop a theoretical tool to answer the above questions. Our work hinges
on analyzing a mathematical model that describes the traffic flow of ribosomes, which mediate
translation by moving along the mRNA transcript. Beginning with [MGP68], most mechanistic
studies of translation dynamics have been based on the so-called Totally Asymmetric Simple
Exclusion Process (TASEP), a probabilistic model that explicitly describes the flow of particles
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along a lattice [ZDS11, ZT16]. As a classical model of transport phenomena in non-equilibrium,
the TASEP has attracted wide interest from mathematicians and physicists [BE07]. To describe
translation realistically, however, a generalized version of the model needs to be employed, taking
into account the extended size of the ribosome and the heterogeneity of the elongation rate along
the transcript. Under such general conditions, critical questions have hitherto remained open; in
particular, identifying the parameters most crucial to the current and particle density has proven
elusive.

Here we carry out a theoretical analysis of a generalized version of the TASEP and obtain
analytic results that provide practical insights into translation dynamics. Our approach is to study
the process in a continuum limit called the hydrodynamic limit, which leads to a general PDE
satisfied by the density of particles. Upon solving this PDE, we obtain exact closed-form expressions
for stationary currents and particle densities that agree very well with Monte Carlo simulations of the
original TASEP model. Furthermore, we provide a complete characterization of phase transitions in
the system. These results allow us to identify the key parameters that govern translation dynamics,
and to formulate a set of specific design principles for optimizing translation efficiency in terms
of protein production rate and resource usage. Using experimental ribosome profiling data of S.
cerevisiae, we show that the translation system of this organism is generally efficient according to
the design principles we found.

2.2 Results
We first present our theoretical results on a mathematical model of translation and identify the
key parameters that govern its dynamics. We then apply our theoretical results to formulate four
simple design principles that detail how to tune these parameters to optimize the overall rate of
protein synthesis and efficiency of ribosome usage. We then analyze ribosome profiling data of
S. cerevisiae and demonstrate that its translation system is generally efficient, consistent with the
design principles we found.

Theoretical Results on a Stochastic Model of Translation
Model description of the inhomogeneous `-TASEP

At a high level, translation of mRNA involves three types of movement of the ribosome, as illustrated
in Figure 2.1A: 1) Initiation – a small ribosomal subunit enters the open reading frame so that
its A-site is positioned at the second codon and then a large ribosomal subunit binds with the
small subunit. 2) Elongation – the nascent peptide chain gets elongated by one amino acid and
the ribosome moves forward by one codon. 3) Termination – the ribosome with its A-site at the
stop codon unbinds from the transcript. An important point to note is that more than one ribosome
can translate the same mRNA transcript simultaneously, so the movement of a ribosome can be
obstructed by another ribosome in front, similar to what happens in a traffic flow on a one-lane road.
Such interaction is what makes the dynamics difficult to analyze.
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We model the flow of ribosomes on mRNA using a generalized TASEP, called the inhomoge-
neous `-TASEP, on a one-dimensional lattice with N sites (see Figure 2.1B). In this process, each
particle (corresponding to a ribosome in mRNA translation) is of a fixed size ` ∈N and is assigned a
common reference point (e.g., the midpoint in the example illustrated in Figure 2.1B). The position
of a particle is defined as the location of its reference point on the lattice. A configuration of parti-
cles is denoted by the vector τττ = (τ1, . . . ,τN), where τi = 1 if the ith site is occupied by a particle
reference point and τi = 0 otherwise. The jump rate at site i of the lattice is denoted by pi > 0.
During every infinitesimal time interval dt, each particle located at position i ∈ {1, . . . ,N−1} has
probability pidt of jumping exactly one site to the right, provided that the next ` sites are empty;
particles at positions between N− `+1 and N, inclusive, never get obstructed. Additionally, a new
particle enters site 1 with probability αdt if τi = 0 for all i = 1, . . . , `. If τN = 1, the particle at site
N exits the lattice with probability βdt. The parameter α is called the entrance (or initiation) rate,
while β is called the exit (or termination) rate.

The hydrodynamic limit

The key quantities of interest are the stationary probability 〈τi〉 of any individual site i being occupied
or not, and the current (or flux) J of particles in the system. In the corresponding translation process,
these quantities reflect the local ribosomal density and the protein production rate, respectively.

In the special case of the homogeneous 1-TASEP (pi = p for all i and ` = 1), the stationary
distribution of the process decomposes into matrix product states, which can be treated analytically
[DEHP93]. Unfortunately, in the general case this approach is intractable, necessitating alternative
methods such as the hydrodynamic limit. When ` > 1, deriving the hydrodynamic limit is not
straightforward, however, as the process does not possess stationary product measures [SS04]. To
tackle this problem, we mapped the `-TASEP to another interacting particle system called the zero
range process (ZRP, see Section A.1 of the appendix and Figure A.1), whose hydrodynamic limit,
assuming it exists, can be derived from the associated master equation. More precisely, we obtained
the hydrodynamic limit through Eulerian scaling of time and space by a factor a = N−1, and by
following its dynamics on scale x such that k =

⌊ x
a

⌋
, for 1 < k < N [Rez91]. Implementing this

limiting procedure for the ZRP and mapping it back to the inhomogeneous `-TASEP, we found
that the limiting occupation density ρ(x, t) := P(τk(t) = 1), assuming its existence, satisfies the
nonlinear PDE

∂tρ =−∂x [λ (x)ρ G(ρ)]+
a
2

∂xx [λ (x)G(ρ)]+O(a2), (2.1)

where G(ρ) =
1− `ρ

1− (`−1)ρ
and λ is a differentiable extension of (p1, . . . , pN), such that λ (x) =

λ (ka) = pk. More generally, this PDE takes the form of a conservation law with systematic and
diffusive currents J and JD, given by

J(ρ,x) = λ (x)ρG(ρ) and JD(ρ,x) =
λ (x)ρ

1− (`−1)ρ
. (2.2)
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Figure 2.1: Illustration of the translation process, the inhomogeneous `-TASEP with open
boundaries, and its phase diagram. A: Ribosomes initiate translation at the mRNA 5′ end,
elongate the polypeptide by decoding one codon at a time, and eventually terminate the process
by detaching from the transcript. B: Particles (of size ` = 3 here) enter the lattice at rate α and
a particle at position i (here defined by the position of the midpoint of the particle) moves one
site to the right at rate pi, provided that the move is not blocked by another particle in front. C:
Example rate function with key parameters shown. D: The phase diagram is completely determined
by λ0,λ1,λmin and `. In this example, (λ0,λ1,λmin, `) = (0.9,0.3,0.1,10). All phase transitions are
continuous in J and, unless λmin coincides with λ0 or λ1, discontinuous in ρ . E: Simulated results
for `= 3,N = 800, and λ as in C are compared with theoretical predictions. Dashed black and red
lines represent upper and lower branches of solutions to (2.1). Circles are averaged counts over
5×107 Monte-Carlo steps after 107 burn-in cycles.

As a� 1, the systematic current dominates and solutions of (2.1) generically converge locally
uniformly on (0,1) to so-called entropy solutions of

∂tρ =−∂x [λ (x)ρ G(ρ)] . (2.3)

Further details and relevant calculations are provided in Section A.1 of the appendix.



CHAPTER 2. MODELING TRANSLATION DYNAMICS 11

Particle densities, currents and phase transitions

The first order nonlinear PDE given by (2.3) can be solved using the method of characteristics
[Eva10], which describes the evolution of differently dense “patches” of particles over time. Solving
for the characteristics yields two branches of solutions, which we call “upper” and “lower” branches,
while the boundary conditions imposed by α and β determine which branch is taken by the
stationary density of particles (see Section A.2 of the appendix). As a consequence, the behavior of
the system is characterized by a phase diagram in α and β . Moreover, this phase diagram depends
on only few parameters of the system (see Figure 2.1C): the size of particles `, the jump rates at the
boundaries, λ0 := λ (0) and λ1 := λ (1), and the minimum jump rate λmin := min{λ (x) : x ∈ [0,1]}.
In particular, these parameters determine the critical initiation and termination rates, α∗ and β ∗,
that are associated with phase transitions. More precisely, the critical initiation rate α∗ is given by

α
∗ =

λ0− (`−1)Jmax

2

[
1−

√
1− 4λ0Jmax

[λ0− (`−1)Jmax]
2

]
, (2.4)

where Jmax =
λmin

(1+
√
`)2 . Note that α∗ is determined by the jump rates λ0 and λmin. In the context of

translation dynamics, this means that α∗ will be specific to each gene, as different genes will likely
have different values of λ0 and λmin. For a fixed λ0, the critical rate α∗ increases as λmin increases.
For a fixed λmin, it turns out that α∗ satisfies

λmin

(1+
√
`)2
≤ α

∗ ≤ λmin

1+
√
`
, (2.5)

where the lower bound is achieved as λ0→ ∞, while the upper bound is achieved when λ0 = λmin.
More generally, for a fixed λmin, the critical initiation rate α∗ decreases as λ0 increases. The critical
termination rate β ∗ is obtained from (2.4) by replacing λ0 with λ1. Hence, for mRNA translation,
β ∗ is also gene-specific, determined by the key elongation rates λ1 and λmin.

The resulting phase diagram, which generalizes previous formulas for the homogeneous 1-
TASEP [DEHP93], is summarized as follows (see Figure 2.1D):

1. If α < α∗ and β > β ∗ (LD I): In this regime the flux is limited by the initiation rate, leading
to a low density profile. The corresponding current assumed by the system is

JL =
α(λ0−α)

λ0 +(`−1)α
, (2.6)

while the site-specific particle density is

ρL(x) =
1
2`

+
JL(`−1)
2`λ (x)

−

√[
1
2`

+
JL(`−1)
2`λ (x)

]2

− JL

`λ (x)
. (2.7)

2. If α > α∗ and β < β ∗ (HD I): Now the flux is limited by the particle exit rate, resulting in
a high density regime. The associated current JR and density ρR are identical to JL ((2.6)) and ρL
((2.7)), respectively, with λ0 and α replaced by λ1 and β .
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3. If α < α∗ and β < β ∗ (LD II and HD II): The steady state is determined by the sign of
JL− JR (computed as above). If it is positive (JL > JR), the system is in a low density regime with
current and density given by JL and ρL, respectively. Conversely, if it is negative, the system is in a
high density regime with JR and ρR as the current and density.

4. If α > α∗ and β > β ∗ (MC): The system carries the maximum possible current (also referred
to as the transport capacity of the system)

Jmax =
λmin

(1+
√
`)2

, (2.8)

which is limited only by the minimum elongation rate λmin. Its density is characterized by qualita-
tively different profiles to the left and right of xmin = argminx λ (x): For x < xmin, ρ(x) is described
by the upper branch (obtained by replacing JR with Jmax in the equation for ρR), while for x > xmin,
ρ(x) is described by the lower branch (obtained by replacing JL with Jmax in ρL). That is, a branch
switch occurs at xmin (where ρ(xmin) = (1+

√
`)−2). We proved more generally that every global

minimum of λ regulates the traffic of particles (like a toll reducing the traffic flow) in this fashion:
incoming densities to the left of it are always described by the upper branch whereas outgoing
particles on the right follow the lower branch. In particular, this implies that in the case of multiple
global minima, the density between two consecutive minima must undergo a discontinuous jump
from lower to upper branch (for more details, see Section A.2 of the appendix and Figure A.3).

Novel phenomena and applicability to discrete lattices

As shown in Figure 2.1E, for smooth rate functions the densities predicted by our analysis agree
well with Monte Carlo simulations in all regimes of the phase diagram. In the context of translation
dynamics, however, elongation rates are typically less regular, exhibiting substantial fluctuations
throughout the entire transcript (see Figure 2.2A). Despite this lack of regularity, the hydrodynamic
limit can still be employed to describe local averages of such a system. In particular, smoothing
particle profiles by windows of length ` reproduces parameters that closely match hydrodynamic
predictions (see Section A.2 of the appendix and Figure A.5). Hence, all subsequent analyses
described below will pertain to elongation rate profiles smoothed by a ten-codon moving average.
A noteworthy consequence of the above results is that local averages of elongation rates are more
predictive of overall translation dynamics than their non-smoothed counterparts. In particular, the
location at which branch switching occurs in the MC regime is governed by xmin = argminx{px}/N
which may be, and in many cases is, considerably different from argminx{px}/N (cf. Figure A.4).

We highlight a few novel phenomena in our generalization of the homogeneous 1-TASEP: First,
extending particles to size ` > 1 and lowering the limiting jump rate λmin reduces both the transport
capacity Jmax and the critical rates (α∗ and β ∗) for entrance and exit, leading to an enlarged MC
phase region. This is expected as fewer particles are needed to saturate the lattice, and distances
between particles are larger, which in turn limits the number of particles able to cross a site per given
time. This phenomenon is quantified precisely using our explicit expressions for α∗,β ∗, and Jmax
(see (2.4) and (2.8)). Second, the inhomogeneity in λ may deform the LD-HD phase separation
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Figure 2.2: Local averaging reproduces hydrodynamic limit in lattices with discontinuous
rate functions. Applying the hydrodynamic theory to smoothed jump rates correctly predicts
smoothed density profiles and currents. A: Elongation rates of the yeast gene YHR025W arbitrarily
chosen from [DDS18] (see Section 2.3 for further details). B: Smoothed elongation rates obtained
by applying a ten-codon moving average to the raw profile in A. C: Density profile resulting from
simulation (as in Figure 2.1E except with ` = 10,N = 357) under discontinuous profile in A. D:
The hydrodynamic density profile (dashed red) associated with the smoothed elongation rates of
B reproduces the smoothed density profile obtained from averaging the raw densities in C by a
moving ten-codon window. Similarly, simulated and predicted currents are in excellent agreement
(0.1072 and 0.1077, respectively).
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from being a straight line in the homogeneous `-TASEP [CL04] to a generally nonlinear curve (see
Figure 2.1D) determined by solutions (α,β ) of

α(λ0−α)

λ0 +(`−1)α
=

β (λ1−β )

λ1 +(`−1)β
, (2.9)

corresponding to the condition JL = JR. This is a consequence of α and β affecting the system at
different scales whenever λ0 6= λ1, resulting in a phase diagram that is no longer symmetric. Lastly,
our observation of density profiles performing branch switching in the MC phase was indiscernible
in the homogeneous case, as the high density and low density branches merge into a single value
(viz. ρ = 1√

`+`
).

2.3 Application: Design Principles for Translational Systems
We sought to apply our theoretical analysis to understand how the translational system can be
regulated and optimized with regard to protein synthesis rate and ribosome usage. The hydrodynamic
theory developed above singles out the key parameters that determine the current and particle
densities. We illustrate in Figure 2.3 how λ0, λmin, and xmin impact the current capacity, its sensitivity
to the initiation rate α , and the global particle density, suggesting the following principles:

1. The initiation rate α (and not termination rate β ) should regulate the production rate J.
As shown by our analysis of the current, any value of the current that lies below the system’s
production capacity Jmax can be attained through either HD or LD regime. In order to avoid overuse
of resources, however, a transcript should always operate in LD, where the main determinant for
currents is the initiation rate α (cf. (2.6)). To guarantee LD profiles, termination rates merely need
to exceed the critical value β ∗, whereas initiation rates are more tightly controlled, varying between
0 and α∗. Within this interval, the current J increases with α according to (2.6), as illustrated in
Figure 2.3A.

2. The minimum elongation rate λmin determines the production capacity Jmax. As α increases
in the LD regime, the current J reaches a plateau that is associated with the maximal current (MC)
regime (see Figure 2.3A). By (2.8), the maximum possible current is directly proportional to λmin,
which therefore sets the range within which production rates may vary. Large values of λmin allow
for both constitutively high expression of genes as well as highly variable protein levels, while small
values of λmin guarantee constitutively low expression.

3. In the LD regime, the sensitivity of production rate J to α is moderated by λ0 and varies
across different values of α . Our theory predicts that for β > β ∗ (i.e., provided that the termination
rate is sufficiently high), the dynamic range of the initiation rate (i.e., the range of α within which
the overall protein production rate J varies with α) is given by (0,α∗), where the critical initiation
rate α∗ is defined in (2.4). Furthermore, the degree to which J varies with α is fully determined
by the elongation rate λ0, as shown in (2.6). Indeed, λ0 controls the time spent by particles at the
start of the lattice, and can induce significant buffering if α is large enough, thereby modulating the
effective rate of entrance associated with J. We illustrate this in Figure 2.3A, where we compare
how the current varies as a function of α for different values of λ0 relative to λmin. Recall that the
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Figure 2.3: Main determinants of current and particle densities. A: J in LD and MC as a
function of α , for various choices of λ0. While λmin governs the maximum current at which J
plateaus, varying λ0 results in changes in ∂αJ, the α-sensitivity of J. Distinct (λmin,λ0) pairs
give rise to different α-dependencies of J, suggesting different responses to global changes in
the ribosome pool. α∗3 , α∗1.5, and α∗1 correspond to the α∗ value (in units of λmin) when λ0 =
3λmin,λ0 = 1.5λmin, and λ0 = λmin, respectively. B: Two λ -profiles that are close in Lp, but with
far apart xmin are plotted (top panel) together with their associated MC ribosome densities (bottom
panel). The branch switching strongly affects equilibrium particle densities and hence ribosomal
costs, with λ -profiles achieving xmin close to 0 (top, dotted black curve) benefiting from substantial
savings (bottom, black curve) compared to otherwise similar profiles (red curves).
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critical initiation rate α∗ satisfies the inequalities in (2.5), and that α∗ increases as λ0 decreases.
Figure 2.3A also shows that for λ0 fixed, the production rate of a system closer to the MC regime
(i.e., with α just below α∗) is less sensitive to changes in α , and that this effect is more pronounced
the closer λ0 is to λmin. More generally, the α-sensitivity of J increases as λ0 increases. While the
dependence of J in α is sublinear for λ0 = λmin, it becomes linear as λ0 gets large (see (2.6)). This
suggests in particular that changes in the free ribosome pool (changing the initiation rate globally)
can impact the protein production rate differently across different genes.

4. Positioning λmin close to the start site can reduce the amount of ribosomes used. At maximum
production capacity (MC regime), we have shown that the density profile follows the high density
branch from the start of the lattice until the location xmin of λmin whereafter it adopts the low density
branch. This characteristic branch switching phenomenon makes xmin critical for the purpose of
resource allocation. In Figure 2.3B, we illustrate how a small local change in the rate function can
induce a large increase of average particle density when xmin changes substantially. Therefore, a
way to limit the excessive usage of ribosomes induced by traffic jams at maximum capacity is to
position the minimum rate close to the start. However, as previously shown, positioning it too close
to the start (such that λ0 = λmin) would also decrease the sensitivity of the system to α .

Empirical Study: Translational Efficiency in Yeast
In light of the aforementioned principles, we explored the extent to which the translational system
in yeast is efficient. For this study, we used elongation rates previously inferred from ribosome
profiling data for a set of 850 genes in S. cerevisiae [DDS18] (see Section A.2 of the appendix).
These genes were selected in [DDS18] based on length and footprint coverage, to yield robust
estimates of rates. The advantage of using this particular dataset over most others lies in the fact that
the inferred rates for this subset of genes faithfully reproduce ribosome profiling data, incorporating
several experimental artifacts of ribo-seq such as undetected stacked ribosomes, thereby minimizing
confounding from technical biases. Furthermore, primarily analyzing high-coverage (and thus likely
highly expressed) genes does not confound our study of design principles, but rather provides us an
increased signal-to-noise ratio, as these genes are precisely those on which our design principles are
expected to act most strongly.

We analyzed the location of these 850 genes in the phase diagram, and the distribution of the
key parameters and variables that determine the ribosomal currents and densities. We found the
aforementioned theoretical design principles being reflected as follows:

1. Translation mainly operates in LD regime. Upon computing α∗ and β ∗, we located the
position of each gene in the phase diagram (see Figure 2.4A). Over the 850 genes in our dataset, we
found 841 in LD and the remaining 9 in the MC region. No genes were found in HD, suggesting no
excessive usage of ribosome to achieve any protein level. As a result, the initiation rate is the main
determinant and limiting factor of the current (Spearman’s rank correlation coefficient ρ = 0.979).
The strength of this correlation nevertheless decreases as genes get closer to the MC regime, since
J becomes less sensitive to α and λmin becomes its rate limiting factor (see Figure 2.4C). To
quantify this reduction in correlation, we binned the data by quartiles of J and computed Spearman
correlations within each bin, which yielded (in order of quartiles): 0.93,0.72,0.64, and 0.58.
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2. Wide ranges of currents are covered within production capacity. For each gene in our dataset,
we examined the maximal protein production rate, which according to our theory is proportional
to λmin. The data exhibit an overall range of λmin between 1.01 and 6.01 codons/second, and for
any fixed λmin, currents are well spread out across [0,Jmax] (see Figure 2.4D). Given that genes
cover almost all of the theoretically possible range of currents, we investigated whether certain
configurations of λmin and J are associated with the biological function of specific genes. To do so,
we compared ribosomal protein genes (known to be highly expressed) and genes related to stress
response (requiring variable expression over time, see Section A.2 of the appendix). We found that,
while both sets of genes display comparable λmin, ribosomal genes are more likely to be close to
their maximal production capacity (p < 7×10−3, see of the appendix) and more consistently so
(the coefficient of variation is 0.22 for ribosomal genes and 0.36 for stress response).

3. λ0 (associated with sensitivity to α) is higher for genes that are either highly expressed or
subject to varying expression demand. The impact of increasing α-sensitivity is primarily twofold:
First, for fixed production capacity, large currents may be attained with smaller initiation rates;
and second, more substantial changes in currents may be achieved with small changes in α . To
investigate the former we computed α∗, the critical rate necessary for a gene to attain maximum
capacity, across all genes whose λmin exceeded the median λmin of the data set (as large currents
presuppose large capacities). Further binning this range into quartiles (to isolate the dependence
of α∗ on λ0), we found that genes whose currents are at least 90% of the production capacity
are significantly more sensitive (p < 0.008,0.01,0.05, and 0.004, respectively; see Figure 2.4E),
requiring smaller initiation rates to reach peak production rate (cf. Figure 2.4C). To inspect the
second aspect of λ0 as facilitator or inhibitor of rapid changes in current, we explored the ratio of
λ0 to λmin again in ribosomal and stress response genes. For constitutively highly expressed genes
like ribosomal genes, we expect this ratio to be small to maintain stable current close to MC (cf.
Figure 2.3), whereas genes with variable expression demands like the ones associated with stress
response should exhibit larger ratios. Confirming this intuition, we found significantly reduced
levels of λ0/λmin in ribosomal genes (p < 2× 10−6), and significantly increased levels in stress
response genes (p < 0.04).

4. The position of λmin is preferentially located early in the open reading frame. Upon analyzing
the distribution of xmin from our dataset (see Figure 2.4B), we found it preferentially located in
the codon positions between 30 to 40, consistent with genes forestalling excessive ribosome usage
through enforcing branch switching early on. More specifically, we reasoned that both genes closer
to MC and those highly sensitive to α run higher risk of incurring substantial ribosome cost and
should thus locate xmin early in the coding sequence. Indeed, both the top quartile of genes close
to MC (as measured by α/α∗) and stress response associated genes showed significantly smaller
xmin (p < 0.03 and 0.01, respectively). Moreover, genes with unusually large values of xmin are
significantly less likely to be close to MC (top quartile of xmin: p < 1×10−3).

To check for systematic biases potentially present in our subsampled gene set and to show
replicability of our main biological conclusions, we also analyzed two other independent (and much
larger) datasets from [WJW14] (combined with polysome profiling from [MLF+04]) and [PRI+14]
(see Section A.2 of the appendix). We inverted the solution of (2.3) to obtain approximate estimates
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of initiation rates, termination rates, and smoothed elongation rates for these datasets, and repeated
our analyses. As shown in Figure A.6, the results are generally in excellent agreement with what is
discussed above (Figure 2.4A,B).

2.4 Discussion
While past quantitative studies of the TASEP under general conditions of extended particle size
and/or rate heterogeneity have mostly been limited to numerical simulations or mean-field approx-
imations, [LC03, SZL03, SSL04, CL04, DSZ07], we used here a different approach that relies
on studying the hydrodynamic limit of the process. In the case of homogeneous rates, previous
studies [Sch05, SS04] established this hydrodynamic limit, but without further analyzing the subse-
quent PDE. After deriving this limit for inhomogeneous rates, we obtained closed-form formulas
for the associated current, densities, and phase diagram, generalizing previous theoretical results
for the TASEP [DEHP93, BE07] and its variants [SZL03, CL04, SdQ11]. Our approach has the
advantage of revealing the key parameters that the current and densities depend on, enabling an
immediate quantification of the process and its phase diagram. Such a quantification is difficult to
achieve via conventional stochastic simulations or approximations used in the past several years
[ZDS11, ZT16, SNCR18].

Our characterization of the current and densities in the phase diagram suggests that, in agreement
with earlier experimental studies [KGC+13, SMV09], translation dynamics should be mainly
governed by the initiation rate, while the termination rate and most elongation rates have negligible
impact. In particular, our results explain why having the initiation rate as the main limiting factor
of the current [PK11] minimizes ribosome usage. In addition, we discovered the importance of
smoothed rather than raw elongation profiles in predicting translation dynamics, explaining the
previously observed mild effect that any individual elongation change has compared to accumulated,
neighboring changes [LT18]. This allowed us to identify two key parameters of the system, namely,
the smoothed elongation rate λ0 immediately following initiation and the minimal smoothed
elongation rate λmin. Previous studies have established some association between the sequence
context in the early 5′ coding region and protein production levels [FSR+17, BLN+16, BYAZ+15].
For example, it has been shown that mRNA secondary structure in the first ∼ 16 codons (which
locally decreases the elongation rate) negatively affects the translation rate in E. coli, while no
significant contribution of mRNA folding in other regions was found [FSR+17]. By exposing α and
λ0 as the only parameters that currents in LD depend on, our analysis suggests a direct explanation
for such contrast.

We also highlighted the impact of λ0 on the sensitivity of the current to changes in α . In
practice, initiation rates can vary at the individual gene level (e.g., through interactions with specific
miRNAs [HWMP05]). According to our theory, the way that these variations impact the protein
production rate depends on λ0; we hence suggest that this may explain why genes associated with
stress response present higher values of λ0, as it facilitates the response to changes in α . At a more
global level, our study shows how protein levels can be more or less robust against changes in the
ribosomal pool, which can simultaneously affect all initiation rates in a cell [SDN+13]. Since the
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level of ribosomes present in a cell fluctuates over time [WARF+18], it would be interesting to see if
protein levels scale uniformly with these variations across genes, and if not, whether the differences
in λ0 can explain it.

To the best of our knowledge, the role of the minimum elongation rate λmin has so far received at-
tention only indirectly, through the study of what is known as the “5′ translational ramp” [TCV+10].
This ramp is a pattern of translational slowdown around codon position 30-50 followed by steadily
accelerating elongation rates, which is mirrored by the spatial distribution of minimum elongation
rates we found here. This ramp has been hypothesized to prevent crowding of ribosomes on the
transcript [TCV+10], for which we provide a theoretical basis, exposing λmin as a separator between
crowded and freely elongating ribosomes. More generally, the complex interplay between the
maximum current capacity, ribosome usage, and sensitivity to the initiation rate suggests various
ways to set the parameters λ0, λmin and xmin, depending on the desired object to optimize. For
example, allocating the minimum elongation rate near the beginning of the ramp region provides an
optimal trade-off between high sensitivity and minimal traffic jams. On the other hand, it would be
optimal for genes with housekeeping function to have a decreased sensitivity, which would push the
minimum to earlier positions.

Our analysis can also help to answer the long-debated question regarding the implication of
translation on codon usage bias [HP08, FLG+18, SDN+13]. Since highly expressed genes are
enriched for synonymous codons translated by more abundant tRNAs [YDZ+15, HC18], it has
been hypothesized that codon usage bias increases the overall protein synthesis rate by accelerating
elongation [HP08]. However, recent studies have challenged such a hypothesis, suggesting that
translational selection for speed is not sufficient to explain the observed variation in codon usage
bias [MA18]. Synonymous changes of the coding sequence modify local elongation rates, but,
according to our theory, such a modification impact the overall protein production rate only if the
smoothed elongation rates λ0 or λmin are affected. In addition, our work implies that synonymous
codon replacements that substantially change the location xmin of λmin affect the efficiency of
ribosome usage, and hence are more likely to be under selective pressure.

Aside from these cases, there should be little direct impact of synonymous codon usage on trans-
lation efficiency; this prediction is consistent with previous studies that tried to explain differences
in expression using codon identity [GMG+12], and to characterize the sensitivity of translational
output with respect to changes in elongation [LT18]. Codon usage bias could affect the protein
production rate indirectly, however, by reducing the cost of translation: replacing a codon by a
“faster” synonymous codon helps to reduce the local ribosome density on the transcript, and this
can in turn increase the availability of free ribosomes and therefore increase the initiation rate α

slightly; in the LD regime, increasing α would increase the protein production rate.
We note that other factors such as mRNA decay [HC18], or reduction of nonsense errors or

co-translational misfolding [Gil07, FLG+18] might be more important drivers of codon usage bias.
Finally, it would be interesting to experimentally test our theoretical predictions, e.g., using

cell-free expression protocols such as lysate-based systems, which have been developed to optimize
protein synthesis and more recently refined to study translation dynamics [MMF17, RC14, KF19].
By designing an appropriate mRNA sequence and controlling different components (NTPs, ribo-
somes, tRNAs, specific amino acids), these systems allow to manipulate the initiation and elongation
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rates, and hence tune the key parameters identified by our theoretical analysis. For example, one can
modify λmin or λ0 by changing the level of corresponding amino acids, and vary α by modifying
the 5′ UTR sequence or changing the ribosome concentration. The flexible nature of such cell-free
expression systems, coupled with precise measurement of protein levels (e.g., via isotope-labeled
amino acids or reporter proteins), should help to verify our theoretical results. In particular, it would
be interesting to experimentally demonstrate the existence of phase transitions, and by modifying
the mRNA sequence, test our predictions on how to effectively control the robustness and sensitivity
of the translation system. We are currently pursuing these research directions.
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Figure 2.4: Translation machinery in S. cerevisiae optimizes for ribosomal cost, flexible regu-
lation and production capacity. All rates are in codons per second, while currents are in ribosomes
per second. A: 850 genes of S. cerevisiae located in the phase diagram, with size and hue reflecting
current and minimum elongation rate. Systems of comparable production capacities (∝ λmin) fully
exploit their dynamic range through α , with highly expressed proteins situated inside or close
to MC. B: λmin is placed early on in codon sequences to minimize ribosome cost. C: α is the
main determinant of currents for low to average current genes, which the correlation for highly
expressed genes decreases due to stronger variation in λ0 and transitions into MC. D: Genes utilize
full dynamical ranges of J through varying α and λ0. Constitutively highly expressed genes tend
to be closer to maximum capacity (red line), while genes with variable expression demands are
distributed more broadly (see main manuscript). E: For fixed production capacity ∝ λmin, α∗ tends
to be smaller for genes with larger production rates. That is, larger λ0 facilitate attainment of
large currents. Moreover, within highly expressed genes, those associated with variable expression
patterns exhibit higher sensitivities (smaller α∗), whereas genes with constitutive high expression
are found closer towards maximal insensitivity (dotted red line) as these configurations favor stable
expression.
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Chapter 3

Deconvolution of Bulk Transcriptomic Data

This chapter is joint work with Jonathan Fischer, Justin Hong and Yun S. Song, and is published in
Genome Research [EPFHS21].

3.1 Introduction
Bulk RNA sequencing (RNA-seq) has proven a useful tool to investigate transcriptomic variation
across organs/tissues, individuals, and various other biological conditions [MFR+15, SAB15].
Despite many successes, this technology’s full potential is inherently limited because each ex-
periment measures the average gene expression among a large group of cells, the composition
of which is unknown. Thus, despite the reduction in technical and biological variability attained
by averaging, bulk experiments are potentially confounded by cell type proportions when con-
sidering heterogeneous cell mixtures [LR14, SHF+16]. Such confounding impedes the direct
comparison of samples, possibly leading to the spurious or missed inference of biologically rel-
evant genes when attempting to identify clinically important differences. Moreover, cell type
compositions are often independently informative of biological processes including organ function
[CBK+06, HSL+18, KRS+13, YH17] and development [HSL+18, HFK+17]. For example, cell
type infiltration has been found to correlate with disease progression, disease status, and complex
phenomena such as aging [FNK+03, BSPG+17, ZZZ+19, BBK+16, SJNK17]. Unlike bulk experi-
ments, single-cell technologies allow us to query the transcriptome at the resolution of individual
cells. Resulting analyses often seek to characterize the heterogeneity within, or the differences
between, specified cell types [SWGV14]. By isolating the expression patterns of each measured
cell type, single-cell gene expression data can provide a reference to aid the inference of the cell
type compositions of bulk samples; this process is known as deconvolution.

Computational rather than experimental estimation of cell type compositions is attractive for
several reasons. Single-cell experiments are more expensive than their bulk counterparts and require
heightened technical expertise to perform, often rendering the large-scale generation of single-cell
gene expression data infeasible [GMA+19]. Furthermore, even when performed correctly, many
protocols fail to capture cell types in an unbiased fashion, meaning empirical cell type proportions
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often are not reliable estimators of true organ/tissue compositions [Tra15]. Finally, deconvolution
can be applied to the deep compendium of available bulk RNA-seq data to refine earlier analyses
and probe previously unanswerable or heretofore unformulated questions. Consequently, the
computational deconvolution problem has become a topic of intense methodological research (as
detailed in [ACVMDP18]). The problem may be represented mathematically as

Mααα = bbb, (3.1)

where M is a gene-by-cell type matrix of cell type-specific gene expression averages, ααα a vector
of cell type mixing proportions, and bbb a vector of gene expression values in a bulk RNA-seq
experiment. Depending on which of M, ααα , and bbb are measured, different approaches are appropriate.
We focus on the case in which both M and bbb have been observed, albeit noisily, and it remains
to infer ααα; this is known as supervised deconvolution. Early approaches frequently utilized pre-
defined marker genes for well-studied cell types, restricting their applicability. More recent methods
formulate the problem as a regression task to be solved by variants of non-negative least squares
(e.g., MuSiC [WPS+19], DWLS [TDC+19], SCDC [DTU+20], and Bisque [JAR+20]) or with
more sophisticated machine learning techniques (such as CIBERSORTx [NSL+19] and Scaden
[MMO+20]). Though each paradigm presents its own strengths, both fail to replicate the benefits
of explicit generative modeling. The result is algorithms which may perform well but lack the
flexibility to extend beyond the estimation of cell type proportions.

In this chapter, we propose a new method, RNA-Sieve, which employs asymptotic theory and
a novel optimization procedure to solve a probabilistic model of deconvolution via maximum
likelihood estimation. We demonstrate its highly capable performance across a diverse array of
scenarios, including different organs/tissues, cell types, and practical challenges. We then highlight
newly opened avenues for continued development made feasible by our generative framework,
including confidence regions and general hypothesis tests.

3.2 Results

Method Overview
Although a single run of bulk RNA-seq produces only a solitary gene expression vector, myriad
cells contribute to this measurement. The obtained profile is hence a composite snapshot of the
gene expression levels of numerous individual, putatively independent cells. When coupled with
an assumption that cells of the same type behave similarly, this large number of cells permits the
application of the central limit theorem (CLT) and the wealth of normal distribution approximations
it implies. Conveniently, the marginal distribution for gene expression of an arbitrary cell in the bulk
sample is a straightforward mixture distribution (see Equation (B.1) in Section B.1). The resulting
CLT-derived likelihood consequently depends only on the means and variances of gene expression
for each cell type and the respective cell type proportions in the bulk sample, the latter of which
we make our goal to infer computationally. To estimate the requisite cell type-specific moments,
RNA-Sieve uses gene expression measurements from scRNA-seq experiments. We further model
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the estimation error of the computed moments by once again invoking the CLT, and the combination
of these two approximations yields a full, composite likelihood built using normal distributions.
We subsequently infer cell type proportions via a custom-made maximum likelihood estimation
procedure. Several features of our algorithm ensure accurate and robust results. Our alternating
optimization scheme is split into two components to better avoid sub-optimal local minima, with
a final projection step handling flat extrema to avoid slow convergence. We also incorporate a
gene filtering procedure explicitly devised to improve cross-protocol stability, a crucial concern
given that single-cell and bulk experiments will always be performed with different technological
platforms. Our algorithm can also perform joint deconvolutions, leveraging multiple samples to
produce more reliable estimates while parallelizing much of the optimization. In this setting, each
included bulk sample improves the denoising of the single-cell reference regardless of its mixture
proportions, leading to improved statistical performance. Finally, we wish to emphasize that our
likelihood-based model allows us to pursue extensions which are infeasible using prior approaches.
A notable example includes confidence regions for estimates (see Section 3.2), among others (see
Section 3.3). Full mathematical and computational details are presented in Section B.1, and a
schematic is displayed in Figure 3.1.

Performance in Pseudobulk Experiments
To establish RNA-Sieve’s effectiveness, we performed in silico experiments using scRNA-seq data
from the Tabula Muris Senis Consortium [T+20]. In these experiments we built “pseudobulks” by
aggregating reads from labeled cells in known proportions to use for deconvolution. We considered
thirteen organs with between two and eleven cell types per organ. Moreover, counts generated
via both the Smart-Seq2 and 10x Chromium protocols are available for each organ, enabling
convenient cross-protocol comparisons. These are particularly important given that bulk and single-
cell RNA-seq samples are always processed using different techniques. To evaluate RNA-Sieve,
we compared its performance to that of six recently published methods as well as non-negative
least squares (NNLS). Performance was assessed for each organ by computing the L1 distance
(absolute difference) between inferred and true proportions and dividing by the number of cell types
present. Further details are provided in Section 18. We found that RNA-Sieve produced the smallest
mean error in both possible reference/bulk configurations (Figure 3.2 and Table 3.1; full results in
Table B.2). To better understand performance, we also visualized errors when aggregating by organ
(that is, the column-wise distributions of the checkerboard plots in Figure 3.2, see Figure B.1). This
demonstrated that RNA-Sieve performed at least as well as all competitors, and often notably better,
in nearly all organs. Our strong performance across organs regardless of the number of cell types or
similarities among them suggests that RNA-Sieve is versatile over a range of scenarios. Finally, we
directly compared each method’s errors to those of RNA-Sieve on the same deconvolution tasks
(given by the row-wise distributions of the checkerboards in Figure 3.2, see Figure B.2). In each
case, RNA-Sieve produced smaller errors than the other methods a majority of the time.

Although RNA-Sieve’s nominal improvement in the average per-cell-type L1 metric may appear
minor at first glance, we note that a typical tissue consists of several cell types, and thus the
overall error may accumulate rapidly. The constraint that mixture proportions sum to 1 means such
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Figure 3.1: The RNA-Sieve pipeline. After applying a filtering procedure to scRNA-seq data,
RNA-Sieve builds reference matrices for the mean and variance of expression for each gene across
cell types. Using these estimates and bulk RNA-seq data, it performs joint deconvolution via
maximum likelihood estimation by expressly modeling noise both in the reference and bulk data,
yielding cell type proportion estimates and confidence regions for each sample.



CHAPTER 3. DECONVOLUTION OF BULK TRANSCRIPTOMIC DATA 26

Table 3.1: Summary of deconvolution errors for each considered method in pseduobulk exper-
iments. Errors were computed as the L1 distance (in %) between the inferred and true proportions
averaged over the number of present cell types per organ. Single-cell RNA-seq data for the refer-
ences and pseudobulks were taken from the Tabula Muris Senis experiment. The mean, median,
and interquartile range are displayed for the results in thirteen different organs; see Section 18 for
additional details.

(a) Smart-Seq2 reference and 10x Chromium pseudobulk.

RNA-Sieve CIBERSORTx Scaden SCDC MuSiC DWLS Bisque NNLS
Mean 6.9 8.6 8.6 8.7 10.1 11.2 12.7 30.5
Median 6.1 7.1 7.2 8.3 10.6 7.2 10.1 31.0
IQR 7.7 3.4 4.1 7.9 6.0 6.9 5.2 15.3

(b) 10x Chromium reference and Smart-Seq2 pseudobulk.

RNA-Sieve CIBERSORTx DWLS Scaden Bisque SCDC MuSiC NNLS
Mean 6.7 7.4 7.6 10.5 12.5 18.1 18.7 26.4
Median 8.2 6.2 5.4 10.5 11.0 15.7 15.7 16.4
IQR 9.9 7.8 6.9 4.6 8.9 12.1 4.6 17.0

reductions in error are likely to be meaningful; when errors in inference are of the same order as the
proportion of common cell types, it becomes very easy to arrive at incorrect biological conclusions,
especially in more complex tissues with many cell types. We show in Figure B.3 a representative
example of seemingly minor average per-cell-type improvement resulting in comparatively major
individual-cell-type differences. Other error metrics are more sensitive to different aspects of
performance and may detect such improvements more reliably, and are touched upon below. By
virtue of having to consider multiple distinct algorithms, tissues, cell types, and experimental
protocols, any benchmarking evaluation must necessarily consist of a large number of combinations.
Between these many factors and the random nature of the data, it is (even theoretically) nearly
impossible for any one algorithm to dominate the others in all situations (as is recognized and
discussed in [MMO+20]). We believe that evaluation should therefore focus on aggregate measures
of accuracy across many situations. We hence supplement Table 3.1 and Figure 3.2 with Table 3.2,
which presents the mean ranks of all eight algorithms aggregated across all (26) cross-protocol
experiments using the L1, L2, L∞, and KL error quantifications as these accuracy metrics assess
different aspects of model performance (see Section 18). We find RNA-Sieve outperforms its nearest
competitor by roughly one-half rank regardless of error metric, a gap which is at least as large as
those between other neighboring methods (NNLS excluded).

In practice, complications to the generic deconvolution problem may arise. For example,
the scRNA-seq reference data may lack one or more cell types found in the bulk sample, or
may even contain extra ones. Such problems are more likely to occur when performing cross-
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Figure 3.2: Distribution of errors for each method in pseudobulk experiments. Pseudobulk
experiments were performed in 13 different organs using data from the Tabula Muris Senis ex-
periment. Errors were computed as the average L1 error across cell types in each organ. In the
violin plots, horizontal black bars correspond to the mean error and methods are ordered left to
right from lowest to greatest mean error. In the grid plots, methods and organs were ordered using
SVD-induced clustering. Roughly speaking, the methods from top to bottom are characterized by
improving performance while the organs from left to right are characterized by decreasing variability
in different methods’ performances. Color indicates the difference between the average error across
methods in that organ; deeper shades of red (blue) indicate poor (good) relative performance. See
Table B.1 for context regarding the cell types present in each organ.
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Table 3.2: Mean ranking of algorithms under various error metrics. All eight methods were
ranked 1 (best) to 8 (worst) on all 26 cross-protocol deconvolutions using the L1,L2,L∞ and KL
(KL-divergence) metrics, and their mean ranks computed.

RNA-Sieve DWLS CIBERSORTx Scaden Bisque SCDC MuSiC NNLS
L1 2.9 3.4 3.6 3.9 4.5 5.0 5.3 7.4
L2 3.0 3.5 3.5 4.0 4.5 4.8 5.2 7.4
L∞ 3.0 3.7 3.5 4.0 4.4 4.8 5.2 7.3
KL 2.9 3.3 3.8 3.8 4.5 4.9 5.3 7.5

experimental or cross-subject deconvolutions, as we typically must. It is thus important to examine
how algorithms perform in these situations. We further recognize the necessity to demonstrate
robustness to misspecification for a model-based approach like RNA-Sieve. To do so, we selected
the kidney, limb muscle, liver, and marrow due to their representative ranges of cell type number
and dissimilarities, and considered all possible configurations containing one extra or missing cell
type in the single-cell references. When the reference contains too many cell types, deconvolution
schemes should infer proportions near zero for these extra cell types. We found that to be the
case with RNA-Sieve (Figures 3.3 and B.4) as long as the extra reference cell type is sufficiently
distinct from the other cell types present in the reference. When cell types are highly similar,
inferred proportions may be shared among them and might not change substantially upon removal
of one of these cell types from the bulk. Meanwhile, when a cell type present in the bulk is absent
from the reference, the more likely of these two scenarios, the deconvolution problem becomes
overdetermined. Ideally, deconvolution algorithms would move the weight of the removed cell type
to those most similar to it. Our empirical results (Figures 3.4 and B.5) indicate that RNA-Sieve
tends to do precisely this. In some cases, this means mass transfer to one single cell type, while in
others the weight is shared among multiple. This result suggests that in the case of misspecification,
RNA-Sieve will still achieve sensible solutions as long as sufficiently representative cell types are
captured in the reference set. We note that given the generative nature of our model, a hypothesis
test to detect missing cell types is, as opposed to existing methods, within the capabilities of our
framework (see Section 3.3).

Validation with Real Bulk RNA-seq Data
In certain rare instances, bulk RNA-seq data sets with known or experimentally estimated cell type
proportions are available. We considered three such data sets in order to evaluate RNA-Sieve under
more realistic conditions. The first of these data sets is a bulk RNA-seq mixture of two human breast
cancer cell lines and fibroblasts with accompanying scRNA-seq data first published in [DTU+20].
These cells were mixed together in proportions of 60% MDA-MB-468, 30% MCF-7, and 10%
fibroblasts. As shown in Table 3.3, RNA-Sieve yields highly accurate results, attaining the lowest
average error among all methods. With the exception of SCDC, other methods overestimated the
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Figure 3.3: Deconvolution with extra cell types as reference. Pseudobulk experiments were
performed on four organs from the Tabula Muris Senis, in which one cell type is removed from the
pseudobulk at a time through a leave-one-out procedure. The top row shows the inferred proportions
with no extra reference cell types. Darker colors indicate a higher estimated proportion value. Here
we used Smart-Seq2 data for the references and 10x Chromium for the pseudobulks.
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Figure 3.4: Deconvolution with missing cell types in the reference matrix. Experiments were
conducted as in Figure 3.3 but with missing cell types in the reference instead of the bulk.
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Table 3.3: Inferred proportions from different methods in cell line mixture experiment. Data
from [DTU+20] with known cell type proportions was used to evaluate each applicable method
(displayed proportions may not sum precisely to 1 due to rounding). Bisque and MuSiC are not
intended for use with only one individual in the bulk data and/or single-cell reference and were thus
not included. SCDC was run in tree mode for this deconvolution.

Estimated Proportions (%)
Method 60% MDA-MB-468 30% MCF-7 10% Fibroblasts Mean L1 Error

RNA-Sieve 62 26 13 3
SCDC 60 19 21 4
Scaden 35 44 21 17

CIBERSORTx 32 52 16 19
DWLS 26 48 27 23
NNLS 22 56 21 25

fraction of the MCF-7 cell line in the bulk while underestimating the MDA-MB-468 cell line by
large amounts, and most methods substantially overestimated the fibroblast proportions.

Because this experiment contains only three cell types and a single bulk sample all from one
experiment, we sought to validate using larger data sets containing expression measurements from
peripheral blood mononuclear cells (PBMCs) which promised to be more heterogeneous. The
first of these, analyzed in [NSL+19], measures gene expression in twelve bulk samples and a
scRNA-seq reference from one individual. Ground-truth cell type proportions in all bulk samples
were estimated using flow cytometry and were grouped into six primary categories: B cells, CD4+
T cells, CD8+ T cells, monocytes, natural killer (NK) cells, and neutrophils. The second PBMC
bulk data set comes from [MLX+19] and contains a further twelve individuals, with flow cytometry
again providing cell type proportion estimates for the same cell types. We obtained two scRNA-seq
PBMC reference data sets. The first, which we used with the Newman et al. bulk, also comes
from Newman et al. and assays one individual. To explore the effect of multiple individuals in the
reference, we downloaded two reference sets from the public repository managed by 10x Genomics
and subsequently merged them; this reference was used with the Monaco et al. bulk data samples.
As neutrophils are notably difficult to assay accurately at the single-cell level, they were not present
in either of the original reference panels. However, given the large fractions of neutrophils estimated
by flow cytometry, particularly for the Newman et al. data set, we identified a publicly available
data set which contains scRNA-seq data for human neutrophils [XSW+20]. These data were then
incorporated into both reference sets in order to enable more effective comparisons. Because the
Newman et al. scRNA-seq reference was relatively small (tens to hundreds of cells per cell type)
and only had one individual present, we subsampled the neutrophil data down to 250 cells from one
individual to be consistent with the other cell types. Conversely, because the 10x Genomics PBMC
reference had more cells (hundreds to thousands of cells per cell type) and multiple individuals, we
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Table 3.4: Average L1 errors with PBMC data and ground-truth cell proportions from flow
cytometry. The first two columns display average L1 errors for the two PBMC data sets individually,
while the last column aggregates L1 errors across both data sets. Bisque and MuSiC do not provide
proportion estimates for the Newman et al. data because only one individual is present for all
reference cell types. CIBERSORTx was run in B-mode per their recommendation with a UMI-based
scRNA-seq reference.

Average L1 Error (%)
Method Aggregate Newman et al. Data Monaco et al. Data

RNA-Sieve 4.8 4.8 4.7
DWLS 7.2 4.7 9.7
Scaden 9.4 11.3 7.6

CIBERSORTx 14.4 17.7 11.2
SCDC 19.3 17.2 21.3
NNLS 25.2 27.7 22.7
Bisque n/a n/a 17.3
MuSiC n/a n/a 22.7

subsampled 1250 neutrophils in total from three individuals for use in the reference (see Section 18).
Subsequent deconvolutions showed that RNA-Sieve performed the best out of all methods

as measured by the mean absolute deviation (L1 error) when aggregating across both analyses
(Table 3.4). The results are summarized graphically in Figure 3.5. The presence of neutrophils
presented a challenge for several methods, perhaps due to the fact that they came from a different
experiment or because of their uniquely low RNA counts. For example, in the bulk data from
Newman et al., neutrophils were strongly underestimated by CIBERSORTx, Scaden, and SCDC
with most of that mass being allocated to either monocytes, CD4+ T cells, or B cells, respectively.
RNA-Sieve and DWLS both performed well on these bulk samples, though RNA-Sieve slightly
underestimated neutrophils in favor of monocytes while DWLS had minor difficulty distinguishing
between CD4+ and CD8+ T cells. A similar story emerged for the Monaco et al. data, with
CIBERSORTx, DWLS, Scaden, and, to a lesser extent, RNA-Sieve underestimating neutrophil and
CD8+ T cell proportions while overweighting monocytes or CD4+ T cells. In contrast, Bisque,
SCDC, and MuSiC strongly overweighted neutrophils (and sometimes natural killer cells) at the
expense of other cell types. To produce a more formal and comprehensive comparison, we computed
summary statistics in the same manner as Table 3.2 using the 24 bulk samples comprising the two
data sets. RNA-Sieve achieves the best performance among all considered methods (Table 3.5) in
each metric as it exhibits strong performance for both data sources. DWLS performs well on the
Newman et al. data but fails to attain that level of accuracy on the Monaco et al. data.

Finally, we analyzed samples from the pancreatic islets region of the human pancreas where
ground-truth proportions were not available. This region has previously been used for validation
in the absence of ground-truth proportions because of prior knowledge of the general ranges of
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Table 3.5: Mean ranking of algorithms under various error metrics combined across the two
PBMC deconvolutions. All six applicable methods were ranked 1 (best) to 6 (worst) across 24 bulk
samples from the Newman et al. and Monaco et al. data using the L1,L2,L∞ and KL (KL-divergence)
metrics, and their mean ranks were computed.

RNA-Sieve DWLS Scaden CIBERSORTx SCDC NNLS
L1 1.3 2.2 2.7 4.1 4.8 6.0
L2 1.3 2.2 2.7 4.1 4.8 6.0
L∞ 1.2 2.7 2.8 3.6 4.9 5.9
KL 1.3 2.5 2.4 4.0 5.0 5.9
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Figure 3.5: Deconvolution biases for PBMC data with known ground-truth proportions. Av-
erage differences between inferred and true proportions were computed within each cell type across
the twelve bulk samples present in each scenario. Consistent overestimation of a cell type’s abun-
dance results in darker blue squares, while red corresponds to chronic underestimation. Methods
are ordered left-to-right by overall performance.

constituent cell types. Moreover, the well-known negative relationship between beta cell proportions
and hemoglobin A1c (Hb1Ac) levels allows us to test whether different deconvolution approaches
can recapitulate this relationship. As shown in Figure B.6, RNA-Sieve is among the methods which
successfully identify the expected negative correlation. As ground-truth values were not available
for these data, it is impossible to ascertain precisely how methods performed, though it appears
each method’s average inferred beta cell proportions are below the expected ∼ 50%. Nevertheless,
successful recovery of the expected association between beta cell proportions and Hb1Ac levels
serves as a useful benchmark. Given the necessity to demonstrate robust performance across a range
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of tissues and cell type groups, we feel this result provides important support to RNA-Sieve’s strong
performance in the cell line and PBMC deconvolution tasks above.

Analysis of Real Bulk Organ Samples
We next applied RNA-Sieve to real bulk RNA-seq data to look for interesting patterns in organ
composition. We chose to continue working with the Tabula Muris Senis data set as it contains many
bulk RNA-seq samples in addition to the scRNA-seq data previously described. Due to its expansive
experimental design across organs and ages, this resource is uniquely suited to interrogate changes
in cell type compositions associated with the process of aging. By identifying changes in the balance
of cell classes, we hope to provide insight into shifts in the mechanisms driving organ functions
at different stages of life. In general, aging represents one of the more complicated biological
processes, and one which occurs in every person or organism. Due to its ubiquity and significant
effects on quality of life, improved understanding of the etiologies underlying age-associated
functional deficits holds great potential therapeutic value. Degradation of the musculoskeletal and
immune systems are among the most apparent phenotypic changes occurring during mammalian
aging. Here we highlight intriguing results from three organs with roles in these bodily systems–the
limb muscle in the former, and the spleen and bone marrow in the latter. In the absence of ground
truth, we judge the reliability of our estimates by the relative consistency of inferred proportions
within and across age groups.

Limb muscle in the arms and legs provides support and locomotion. It primarily consists of
skeletal muscle, stromal, immune, and endothelial cells. Differentiated muscle cells contract to
produce the aforementioned support and motion, while satellite cells serve in myogenesis and
muscular repair [CCAK+07]. Stromal cells comprise the connective organ which binds sarcomeres
together and connects muscles to bones in addition to displaying certain regenerative capabilities
[KAK+19]. Immune response is often noted in muscle cells after mechanical stress-induced
damage to muscle fibers, when the tissue becomes inflamed due to tearing [NWHK14, BKK+13].
Endothelial cells are present due to the often high degree of vascularization needed to support
muscle function [CCAK+07]. Upon application of RNA-Sieve to the available bulk muscle samples,
we observed a noticeable increase in skeletal muscle satellite cells and a substantial decrease in
the mesenchymal stem cell proportion in older mice (Figure 3.6a). These trends are present, albeit
fairly gradual, until around 21 months old with more sudden changes apparent thereafter. There was
also an apparent increase in macrophage proportions up until 15 months of age, followed by a slow
decline for the remainder of life. Each of these three cell types has been demonstrated to function in
muscle fiber repair through different mechanisms [SNM+15]. This pattern in cell type composition
may thus indicate changes in the relative use of different regenerative pathways as individuals age.

The bone marrow is a vital component of the immune system which executes the bulk of
hematopoiesis and contains numerous constituent cell types ranging from various stem cells to more
mature cell classes [GA08]. This rich combination yielded several age-associated trends in cell type
composition, and we choose to focus on two. First, an effectively linear growth in the number of
hematopoietic stem cells was observed with increasing age. Though this may seem surprising given
reduced adaptive immunity with age, this exact phenomenon has been previously observed in both
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mice and humans [PPS+11], and it is accompanied by a decrease in functionality of these cells.
Conversely, granulocyte proportion appeared to decrease after roughly 9 months of age. Further
examination reveals that the granulocyte fraction tends to mirror that of granulocytopoietic cells,
but with an increasing deficit between the two as age increases. Such a pattern is suggestive of the
reduced potency of granulocytopoiesis that we would expect with age. Hence, in the marrow we
are able to identify known patterns of cell type composition variation despite the presence of many
transcriptomically similar cell types.

The spleen occupies a central role in the lymphatic system and is important, though not strictly
essential, for proper functioning of the immune system and red blood cell recycling. This organ
is split into two pieces—the red pulp, which contains blood cells, and the white pulp, which is
primarily lymphatic [MK05]. Typically, the large majority of present immune cells are B and T
cells, with smaller quantities of other cell types [HKP19]. Various progenitor cells may be present
to spur production of immune and red blood cells, though these processes are primarily performed
in the bone marrow [MVL+18]. It is notably difficult to distinguish among these progenitor cells
in their early stages, making it possible that several varieties are captured within the single label
of proerythroblasts. Upon deconvolution, we found that our inferred proportions for B and T cells
matched accepted ranges [HKP19]. More interestingly, we noticed an unexpected and transient
spike in the proportion of proerythroblasts peaking at roughly nine months of age (Figure 3.6c).
Importantly, this increase is observed in all four of the 9-month-old individuals, and is thus not an
artifact of outlying samples. Mice at this age are roughly analogous to humans of between 30-40
years of age, and as hematopoiesis is generally restricted to the marrow at this age except under
stress conditions, it is unclear whether a programmed hematopoeitic process is occurring or if we
are capturing the behavior of a cell type not enumerated in the reference set.

Extension to Confidence Regions
Within the deconvolution task, the generative framework of RNA-Sieve permits extensions which
remain out of reach using prior approaches. One such possibility is the computation of confidence
regions for inferred cell type proportions. Despite its clear importance, error quantification in
deconvolution is challenging and has received relatively scant attention, leaving users to only guess
at the reliability of their results. As deconvolution is sometimes performed upstream of tasks such
as differential expression or eQTL detection, it is critical to know whether inferred proportions
are precise. Because RNA-Sieve infers these proportions via maximum likelihood estimation,
we can directly tap into the wide array of theory on asymptotic confidence bounds. Specifically,
we construct confidence regions for inferred proportion values through numerical computation of
the inverse empirical Fisher information matrix (see Section 18 in Section B.1). We demonstrate
RNA-Sieve’s ability to produce well-calibrated confidence regions by constructing them for within-
and cross-protocol pseudobulk deconvolutions using Tabula Muris Senis data as well as both real
PBMC bulk data sets in Section 3.2.

We began with within-protocol comparisons where all modeling assumptions are generically
met. As shown in Figures 3.7a and B.7A, we obtain narrow, yet well-calibrated, confidence
intervals, indicating the effectiveness of our procedure in this simplified scenario. However, the
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Figure 3.6: Real bulk deconvolutions from the Tabula Muris Senis. ∼ 40 samples across ten
ages were deconvolved using Smart-Seq2 references in the limb muscle, bone marrow, and spleen.
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typical deconvolution setting will present complications in the form of protocol differences in the
scRNA-seq reference and bulk RNA-seq data. Under mild and plausible assumptions on these
distributional shifts, our MLE framework is robust to such model misspecification (see Section 18),
and we still achieve good performance in spite of protocol mismatch (Figures 3.7b and B.7B).
Aggregating across runs, our 95%-confidence intervals contain the true cell type proportions 96.7%
and 91.8% of the time in the within- and across-protocol deconvolutions, respectively.

To ensure that we obtain sensible results with real bulk RNA-seq data, we also generated
confidence intervals for the whole blood samples analyzed in Section 3.2. We again obtain calibrated
and sensible results, with our confidence intervals containing the truth 95.8% of the time in the
Monaco et al. bulk samples and 90.3% of the time in the Newman et al. bulk samples (Figure 3.8).
Though assessing their accuracy is impossible absent ground-truth proportions, we also computed
confidence intervals for the real bulks deconvolved in Section 3.2 to verify that RNA-Sieve’s
confidence intervals were reasonable in tissues besides whole blood. We found that these interval
widths were similar to those we obtained in our other trials (Figure B.8). The distribution of
confidence interval half-widths for cell type proportions were also generally consistent across
samples (Figure B.9). We note that MuSiC presents a quantity which seemingly corresponds to
the variance in proportion estimates, though it was not emphasized in their manuscript, and we
generally found the produced values to be overly small in practice.

In principle, the widths of confidence intervals should depend on the number of cells and
genes in the reference, similarity among cell types in the reference, and agreement between the
reference and bulk measurements. Our empirical results suggest that these eminently logical
factors do, in fact, drive the widths of our intervals. For example, the confidence intervals in
cross-protocol deconvolutions are a bit wider than their within-protocol counterparts, due to our
adaptive procedure’s conservative nature when it detects differences between the reference and
bulk. This arises in part because we deem fewer genes reliable when compared to within-protocol
experiments. Moreover, evidence of the contribution of reference sample size is present in a few
organs, most notably the lung with its many low-frequency cell types.

3.3 Discussion
Here we have introduced our method for supervised bulk gene expression deconvolution, RNA-
Sieve, and illustrated its robust performance in a variety of settings. Unlike methods which rely on
variants of least squares or the application of complex machine learning algorithms, we place the
deconvolution problem into a generative probabilistic framework that models random noise in both
the reference panel and bulk samples by relying on asymptotic theory. Through simulations and
applications to real data, we demonstrated the broad applicability of our method and its utility to
investigate biological questions of interest.

It is valuable to understand how RNA-Sieve differs from other approaches and to consider
the consequences of these divergent design choices. Least squares-based solutions such as Mu-
SiC [WPS+19], SCDC [DTU+20], and DWLS [TDC+19] devise their own implementations of
weighted non-negative least squares (W-NNLS). These methods aim to handle heteroskedasticity
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(a) Within-protocol – Smart-Seq2 pseudobulk and reference
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(b) Cross-protocol – Smart-Seq2 reference and 10x Chromium pseudobulk

Figure 3.7: Deconvolution results for pseudobulk experiments. Tabula Muris Senis were used
as described in Section 3.2. Error bars represent marginal 95% confidence intervals as described in
Section 18 For cell type specification, see Table B.1
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(a) Newman et al. whole blood bulks
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(b) Monaco et al. whole blood bulks

Figure 3.8: Deconvolution results for real bulk samples with known ground truth. PBMC
references and whole blood bulks were used as described in Section 3.2. True proportions estimated
by flow cytometry are in black while RNA-Sieve estimates are in red, with 95% confidences
indicated.
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across genes by re-weighting them according to their variability and specificity, allowing genes
which are putatively more informative to carry increased importance in the regression task. Alter-
natively, Bisque [JAR+20] uses NNLS after applying a transformation to bring the reference and
bulk data into better distributional agreement. From a modeling perspective, least squares-based
solutions generally address uncertainty in the bulk only, leaving stochasticity in the single-cell
reference unaccounted for. With RNA-Sieve, rather than devising a specialized gene-weighting
scheme, we naturally emphasize some genes more than others via variances resulting from an
explicit generative model incorporating noise in both single cells and the bulk. We also do not
explicitly attempt to bring reference and bulk data into better agreement a là Bisque, instead
relying on a filtering protocol to remove genes which display signs of significant deviation from our
assumptions. Integrating an explicit transformation is an interesting possibility for RNA-Sieve, and
should only boost its performance by further aligning data to our model assumptions. Other methods
employ machine learning techniques, such as CIBERSORTx [NSL+19], which uses ν-support
vector regression, and Scaden [MMO+20], which utilizes deep neural networks. These approaches
can be opaque to the user due to their reliance on high-complexity algorithms which often lack
theoretical guarantees of optimality and provably accurate inference despite continuing advances in
explainability techniques. Comparatively, our formulation of RNA-Sieve as the MLE of an explicit
generative model is transparent in both parameter interpretation and performance guarantees. The
parameters updated during optimization have explicit biological meanings and tracing their values
allows for a deeper interrogation of the predictions RNA-Sieve generates. This is a useful feature
when providing context to inferred cell type proportions as well as exploring the theoretical limits
of deconvolution as a function of cell type properties. Like MuSiC, SCDC, Bisque, and Scaden, we
do not select marker genes in RNA-Sieve. This helps us maintain computational efficiency, while
simultaneously providing robustness with respect to outlier fluctuations in gene expression. We also
parallelize our optimization steps and jointly update parameters when deconvolving multiple bulk
samples. This yields significant speedups relative to serial runs and allows us to share statistical
strength across all bulks.

RNA-Sieve is embedded in a flexible generative framework, which can be adapted to a variety
of situations to make deconvolution performance more effective. One of these is the modeling of
further sources of variation. For instance, if gene expression distributions are expected to differ
drastically across individuals from which samples are taken, this knowledge can be explicitly
incorporated into our likelihood. Without such modification, RNA-Sieve implicitly follows the
paradigm of MuSiC, SCDC, and Bisque in penalizing genes of large inter-individual variance via
the marginal variances resulting from estimation of the reference panel. A similar notion applies to
mitigating potential batch effects or effectively combining disparate references. Currently, different
reference matrices which are believed to have the same expression distributions can be averaged
together to increase statistical power without further modification of our present implementation.

A principal motivation of this work was to expand the scope of accessible questions in the de-
convolution setting. Our likelihood-based approach facilitates extensions which are intractable with
current algorithms. As a first step, we have chosen to demonstrate our ability to explicitly construct
confidence regions for inferred proportions, producing a mathematically rigorous quantification
of the uncertainty in our estimates. The necessity of these bounds is plainly substantiated by the
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use of deconvolution upstream of tasks ranging from cell type-specific differential expression to
eQTL detection using heterogeneous RNA-seq organ samples. The credibility of any such analyses
is predicated on the accuracy of deconvolution, because any errors in this initial step will propagate
through to the final result. Consequently, we anticipate that our confidence regions will encourage
improved assessment of the reliability of results obtained through these types of analyses. Our
confidence intervals are also of obvious inherent value when using deconvolution results to infer
differences in cell type composition between samples, whether due to disease status or other factors.
Beyond error quantification via confidence intervals, potent possibilities lie in hypothesis testing.
Currently, CIBERSORTx does propose one type of test, though our understanding is that it tests
whether any of the bulk cell types were found in the reference. This is rather restrictive, so we hope
to develop procedures with broader utility. One example with clinical impact is a test to determine
whether the reference panel is missing cell types present in the bulk sample. Even though we have
demonstrated that RNA-Sieve is robust with respect to such misspecification (see Section 3.2), it is
nonetheless beneficial to know whether the deconvolution performed was sufficiently valid using
a principled approach. Such a test can be directly developed in our framework by examining the
residuals produced by our maximum likelihood estimate, and work in this direction is underway.

Despite the flurry of recently developed methods, the question of statistical deconvolution of
gene expression data remains far from solved. RNA-Sieve illustrates the efficacy, adaptability as
well as promise of generative modeling in this setting, and we hope it spurs continued development
within other methodological paradigms. In particular, notions of error quantification and hypothesis
testing merit further attention.
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Chapter 4

Nonparametric Goodness-of-Fit Testing

This chapter is joint work with Jonathan Terhorst and Yun S. Song. It is available as an arXiv
preprint [EPTS20].

4.1 Introduction
In an address to the Royal Statistical Society, epidemiologist and statistician [Gre46] introduced
what became known as Greenwood’s statistic in order to study the randomness of infection times
T1, . . . ,Tk of a given number k of patients. More precisely, he was interested in testing the hypothesis
of whether these infection times were generated by a homogeneous Poisson process; that is, whether
(T1,T2, . . . ,Tk)/(∑

k
j=1 Tj) is distributed uniformly on the (k−1)-dimensional simplex. To do so, he

proposed a test based on the null distribution of the statistic (∑k
j=1 T 2

j )/(∑
k
j=1 Tj)

2, for which he
was able to provide a complete description for k = 2, but none for k > 2. This sparked a flurry of
studies attempting both to better understand Greenwood’s statistic in higher dimensions, as well as
to clarify its power and efficiency as a hypothesis test. In a series of papers, [Mor47, Mor51, Mor53]
computed the test statistic’s first four moments for an arbitrary k, proved a central limit theorem as
k→ ∞ (albeit with very slow convergence), and estimated the test’s efficiency against a specific
class of alternatives. Around the same time, [Gar52] fully described the case k = 3 by fruitfully
interpreting the distribution function of the test statistic as the volume of intersection between
a sphere and the simplex. Subsequently, [Dar53] found a closed-form, but difficult to invert,
characteristic function, while [Wei56] and [SR70] investigated the role of Greenwood’s statistic
in the context of the general goodness-of-fit test of whether a sample X1, . . . ,Xn follows a given
arbitrary distribution F . There they proved that a test based on Greenwood’s statistic is both most
powerful against symmetric linear alternatives, and enjoys the greatest asymptotic relative efficiency
against a wide class of tests and alternative hypotheses. Given these favorable properties, but
analytically intractable nature of Greenwood’s statistic, approximations and numerical schemes
were devised by [Bur79], [Cur81] and [Ste81] to tabulate scores for certain significance levels up
to k = 20. Most recently, [SZ00] exploited the geometric interpretation of [Gar52] to derive an
explicit rate function to characterize the large deviations of Greenwood’s statistic as k→ ∞.
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Closely connected to Greenwood’s statistic, and applicable in an equal variety of settings, is a
discretized version of it: instead of sampling uniformly from the simplex ∆k−1, the null distribution
may be uniform over all integral points in the scaled simplex n ·∆k−1 for some n ∈ Z+. Tests and
computations based on such measure occur in various contexts in computational biology (e.g.,
[PTSP18, RCK07]), physics (where it is known as the Bose-Einstein distribution) and theoretical
statistics, where it emerges naturally as an urn model [Hol79]. Greenwood’s statistic has a natural
analogue in this discretized scenario, where it is known as Dixon’s statistic after its proposed use
by [Dix40] for performing non-parametric two-sample testing. However, although its asymptotic
behavior has been well studied by [HR80], a description in the non-asymptotic regime as well as
convergence rates have, to the best of our knowledge, remained elusive.

Here we fill this gap by studying a generalized family of Greenwood’s statistics (including
Dixon’s statistic) for finite n and k, for which we are able to exactly and efficiently compute its
moments. Using this knowledge, we examine various scaling limits, proving CLT results as well
as identifying novel limiting distributions. We then quantify the connection between Dixon’s and
Greenwood’s statistic through precise convergence rates and monotonicity results, while using our
understanding from the discrete setting to offer new insights into the moment sequence, smoothness
and monotonicity of Greenwood’s statistic. Finally, we propose a simple and efficient algorithm that
recovers an underlying continuous distribution from its first m moments up to O(m−1) accuracy, and
use it to devise a powerful hypothesis test of whether two data sets {X1, . . . ,Xk−1} and {Y1, . . . ,Yn}
were sampled from the same distribution. We demonstrate the test’s suitability for a large class of
alternatives through extensive power studies, and compare it with the classical Kolmogorov-Smirnov,
Cramér-von Mises and Mann-Whitney tests. We illustrate how the same principles employed in
designing our two-sample test can be applied equally successfully to the settings of one-sample
tests, and tests using paired data.

4.2 Preliminaries and notation
For a positive integer n, we use [n] to denote the set {1, . . . ,n}. The two probability spaces
underlying most of our discussion will consist of the (k−1)-dimensional probability simplex

∆
k−1 =

{
(x1,x2, . . . ,xk) ∈ [0,1]k :

k

∑
i=1

xi = 1

}

together with the uniform measure µ∆k−1 =σ/σ(∆k−1)= (k−1)!σ/
√

k, where σ is surface measure
in Rk, and its discretized version

Dn,k = (n∆
k−1)∩Zk =

{
(z1,z2, . . . ,zk) ∈ {0, . . . ,n}k :

k

∑
i=1

zi = n

}

with its uniform measure µDn,k = |Dn,k|−1 =
(n+k−1

k−1

)−1
. In other words, µ∆k−1 is the law of a

Dirichlet(1, . . . ,1) variable, while a k-part weak composition of n chosen uniformly at random is
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distributed according to µDn,k . Occasionally we will refer to this latter distribution as a uniform
configuration of n balls distributed over k bins. To test the hypothesis of whether a sampled random
variable XXX = (X1, . . . ,Xk) in Zk or Rk has distribution µ∆k−1 or µDn,k , respectively, we are interested
in comparing the distribution of its weighted `p-norms

‖XXX‖p
p,www =

k

∑
i=1

wiX
p
i ,

for some fixed weight vector www = (w1, . . . ,wk) ∈ Rk, against its null distribution. That is, if
SSSk ∼ µ∆k−1 and SSSn,k ∼ µDn,k , we are interested in studying the distributions of ‖SSSk‖p

p,www and ‖SSSn,k‖p
p,www

(to prevent confusion of powers and vector indices, we will denote entries of SSSk and SSSn,k by SkJ jK
and Sn,kJ jK for j ∈ [k]). For p = 2 and www = 111k, with 111k := (1, . . . ,1) being the all-ones vector of
length k, these are precisely Greenwood’s and Dixon’s statistics, respectively.

A primary reason why understanding these statistics is important is their application to non-
parametric testing. If Z1, . . . ,ZN are independently sampled from the same continuous distri-
bution F , then the spacings (that is, the differences between consecutive order statistics) of
0,F(Z(1)), . . . ,F(Z(N)),1 are distributed according to µ∆N , so characterizing the distribution of
Greenwood’s statistic allows to test if the sample is distributed according to F . Similarly, if
X1, . . . ,Xk−1,Y1, . . . ,Yn are i.i.d. samples from the same continuous distribution G, and we define
the order statistics

−∞ =: X(0) < X(1) < · · ·< X(k−1) < X(k) := ∞,

and the number of Yi sandwiched between every two consecutive order statistics

Sn,kJ jK := #
{

i : X( j−1) ≤ Yi < X( j)
}
, (4.1)

for j ∈ [k], then (Sn,kJ1K, . . . ,Sn,kJkK) is distributed according to µDn,k .
These two hypothesis tests will be our main application considered in Section 4.5. Before

coming to those, in Section 4.3 we present our main theoretical results about ‖SSSn,k‖p
p,www and ‖SSSk‖p

p,www.
In particular, we will detail a simple and efficient way to compute their moment sequences exactly.
Recovering the distribution of ‖SSSn,k‖p

p,www and ‖SSSk‖p
p,www from these moments seems analytically

intractable, but can be done algorithmically in an efficient and exact manner. Section 4.4 is
dedicated to describing such an algorithm.

4.3 Moments and scaling limits of generalized
spacing-statistics

We start by investigating the discrete generalized spacing-statistics ‖SSSn,k‖p
p,www, from which their

continuous analogues will follow. Our point of departure is the well-known Wilcoxon-Mann-
Whitney U statistic [MW47, Wil45]. It is easy to see that in the special case of p = 1 and www =
(k−1)↓ := (k−1,k−2, . . . ,1,0), we recover, up to an explicit constant depending only on k, the
U statistic. Indeed, for two samples X1, . . . ,Xk−1 and Y1, . . . ,Yn, with R1, . . . ,Rk−1 the ranks of



CHAPTER 4. NONPARAMETRIC GOODNESS-OF-FIT TESTING 45

X1, . . . ,Xk−1 computed in the joint ensemble {X1, . . . ,Xk−1,Y1, . . . ,Yn}, their U statistic is given
by U = ∑

k−1
j=1 R j. In our notation introduced in (4.1), we then have R j = j +∑

j
i=1 Sn,kJiK, and

consequently

U =
k−1

∑
j=1

R j =
k−1

∑
j=1

[
j+

j

∑
i=1

Sn,kJiK

]
=

k−1

∑
j=1

j+
k−1

∑
i=1

k−1

∑
j=i

Sn,kJiK

=

(
k−1

2

)
+

k−1

∑
i=1

(k− i)Sn,kJiK

=

(
k−1

2

)
+‖SSSn,k‖1

1,(k−1)↓,

as desired. In order to both compute the exact distribution of U under the null hypothesis of all Xi,Yi
being generated i.i.d, as well as its asymptotic normality, [MW47] exploited a recurrence relation
which, in our language, consists of conditioning on the occupancy of the very last entry in SSSn,k. Con-
ditional on the event {Sn,kJkK > 0}—that is, conditional on the last bin containing at least one ball—

we may remove one such ball to find that
(
‖SSSn,k‖1

1,(k−1)↓ | {Sn,kJkK > 0}
)

d
= ‖SSSn−1,k‖1

1,(k−1)↓. Simi-
larly, on {Sn,kJkK = 0} we may omit the very last bin to arrive at(
‖SSSn,k‖1

1,(k−1)↓ | {Sn,kJkK = 0}
)

d
= ‖SSSn,k−1‖1

1,(k−2)↓+ n. Combining these two observations, and

writing qn,k(x) = P
(
‖SSSn,k‖1

1,(k−1)↓ = x
)

, yields the two-term recursion

qn,k(x) =
n

n+ k−1
qn−1,k(x)+

k−1
n+ k−1

qn,k−1(x−n), (4.2)

from which the whole probability mass function of ‖SSSn,k‖1
1,(k−1)↓ can be computed in O(n2k2)

time. Moreover, this recursion directly translates into a recurrence of the moments of ‖SSSn,k‖1
1,(k−1)↓,

which allowed [MW47] to prove a central limit theorem as n,k→ ∞, thus rendering U a versatile
and quickly computable two-sample test statistic.

Unfortunately, the recurrence relation (4.2) lacks robustness with respect to varying either p
or www = (w1, . . . ,wk): for p > 1 and generic www, removing a ball from any bin changes ‖SSSn,k‖p

p,www by
an amount depending on the total number of balls in that bin, and removing a bin may result in
weights that are in no way related to the original weights. This can be fixed by conditioning not
only on the vacancy of SSSn,kJkK, but its precise occupancy. Defining qp,www

n,k (x) := P
(
‖SSSn,k‖p

p,www = x
)

and www−k := (w1, . . . ,wk−1), we have

qp,www
n,k (x) =

n

∑
j=0

P
(
Sn,kJkK = j

)
qp,www−k

n− j,k−1 (x−wk jp)

=

(
n+ k−1

k−1

)−1 n

∑
j=0

(
n− j+ k−2

k−2

)
qp,www−k

n− j,k−1 (x−wk jp) , (4.3)
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with initial conditions

qp,www
n,k (x) =


0, if x /∈ {xmin,xmax} or n < 0,
1x=w1np, if k = 1,
1x=0, if n = 0,

(4.4)

where xmin = minSSSn,k∈Dn,k ‖SSSn,k‖p
p,www and xmax = ‖www‖∞np bound the range of ‖SSSn,k‖p

p,www. However,
solving (4.3) and (4.4) generically requires O

(
np+1k‖www‖∞

)
time, thus rendering it unfeasible to

compute for even modestly large n and p. To circumvent this problem, in what follows we will
instead use a moment-based approach.

Exact moments of ‖SSSn,k‖p
p,www and ‖SSSk‖p

p,www

The following theorem, together with Proposition 6 in Section 4.4, demonstrates how the afore-
mentioned computational intractability can be circumvented by lifting (4.3) to the moments of
‖SSSn,k‖p

p,www:

Theorem 1. Let G(x,y) = ∑
∞
m=0 Li−pm(x)ym/m!, where Lis(x) = ∑

∞
j=1 j−sx j is the polylogarithm

function. Denoting by [xnym]P(x,y) the (n,m)th coefficient of a power series P in x and y, we have

E
(
‖SSSn,k‖p

p,www
)m

=
m!(n+k−1
k−1

) [xnym]
k

∏
i=1

G(x,wiy) . (4.5)

In particular, the first m moments of ‖Si, j‖p
p,www for (i, j) ∈ {0, . . . ,n}×{1, . . . ,k} can be computed in

O(nm · (lognm) · (logk)) time.

Proof. We first expand the left-hand side of (4.5) to find

E
(
‖SSSn,k‖p

p,www
)m

= ∑
σσσ∈Dn,k

P(SSSn,k = σσσ)

(
k

∑
j=1

w jσ
p
j

)m

=

(
n+ k−1

k−1

)−1

∑
σσσ∈Dn,k

∑
ηηη∈Dm,k

(
m

η1, . . . ,ηk

) k

∏
j=1

wη j
j σ

η j p
j

=
m!(n+k−1
k−1

) ∑
ηηη∈Dm,k

(
∑

σσσ∈Dn,k

k

∏
j=1

(w jσ
p
j )

η j

η j!

)
︸ ︷︷ ︸

An,k,m,w

, (4.6)

so it remains to show that An,k,m,w = [xnym]∏k
j=1 G(x,w jy). By definition of Lix(x), we have for

every fixed ηηη ∈ Dm,k

∑
σσσ∈Dn,k

k

∏
j=1

wη j
j σ

pη j
j

η j!
= [xn]

k

∏
j=1

Li−pη j(x)
η j!

wη j
j , (4.7)
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and so

An,k,m,w = [xn] ∑
ηηη∈Dm,k

k

∏
j=1

Li−pη j(x)
η j!

wη j
j

= [xn]

{
[ym]

k

∏
j=1

(
∞

∑
i=0

Li−pi(x)
i!

(w jy)i

)}

= [xnym]
k

∏
j=1

G(x,w jy), (4.8)

as desired. The O(nm · (lognm) · (logk)) runtime is now a direct consequence of computing the
Cauchy product of k bivariate degree-(n,m) polynomials using the Fast Fourier Transform.

The above theorem will be our main tool for devising an efficient, powerful, and general two-
sample test in Section 4.5, if the two samples are modestly sized. In the case where one sample is
significantly larger than the other, the following result, paired with Proposition 6 below, yields an
even more efficient testing procedure.

Proposition 1. For fixed k, SSSn,k/n converges in distribution to SSSk ∼ µ∆k−1 . In particular, we have∥∥∥∥SSSn,k

n

∥∥∥∥p

p,www

d−→ ‖SSSk‖p
p,www as n→ ∞. (4.9)

Proof. It suffices to show that

lim
n→∞

P
(

SSSn,k

n
∈ E
)
= P(SSSk ∈ E) (4.10)

for any Lebesgue-measurable set E ⊂ ∆k−1. Moreover, by Dynkin’s π-λ theorem, we may without
loss of generality assume E to be a box with rational vertex points inside ∆k−1 (see e.g. Theorem
1.1 in [Kal06]), which will allow us to count the number of lattice points in E as n→ ∞. To wit, let
L(E,n) be the cardinality of the set nE ∩Zk, then Ehrhart theory informs us that (cf. [Ehr67])

L(E,n) = VolΛ(E) ·nk−1 +O(nk−2), (4.11)

where VolΛ(E) = λk−1(E)/d(Λ) is the (k−1)-dimensional Lebesgue volume of E, normalized by
the co-volume of the lattice Λ = Zk∩H induced by Zk on the hyperplane H = {xxx ∈Rk : ∑

k
j=1 x j =

0}. But since the fundamental region of Λ is the parallelepiped formed by {eee1−eee j} j∈{2,...,k}, where
eee j ∈ Rk is the jth standard basis vector, the co-volume can be computed to be

d(Λ)2 = detV tV = det
(
Ik−1 +111k−1111T

k−1
)
, (4.12)

with the columns of V being given by {eee1−eee j} j∈{2,...,k}. It is straightforward to check that V tV has
eigenvalue 1 of multiplicity k−2 (with the associated eigenspace spanned by {eee1−eee j} j∈{2,...,k−1}),
and eigenvalue k of multiplicity 1 (with eigenvector 111k−1 = (1, . . . ,1)), and therefore

d(Λ) =
√

k. (4.13)
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Since
√

k/(k−1)! is precisely the (k−1)-dimensional volume of ∆k−1, we finally arrive at

P
(

SSSn,k

n
∈ E
)
=

L(E,n)(n+k−1
k−1

) = L(E,n)
nk−1

(k−1)! +O(nk−2)
= (k−1)!VolΛ(E)+O

(
n−1)

n→∞−−−→ (k−1)!√
k

λk−1(E) = P(SSSk ∈ E) , (4.14)

which proves the first part of our proposition. The result in (4.9) is now a direct consequence of the
continuous mapping theorem.

We note in particular that for p = 2 and www = 111k = (1, . . . ,1), the limiting random variable in
(4.9) is precisely Greenwood’s original test statistic. It is in this sense that we consider ‖SSSn,k‖p

p,www
generalized Greenwood statistics. In order for this connection between two-sample testing and tests
of uniformity to be of any use, a clear understanding of both the limiting distributions, as well as the
convergence rates is necessary. We begin with the former, for which reasoning akin to Theorem 1 is
available:

Theorem 2. Let Qp(x) = ∑
∞
m=0(pm)!xm/m!. Then,

E
(
‖SSSk‖p

p,www
)m

=
(k−1)!m!

(pm+ k−1)!
[xm]

k

∏
j=1

Qp(w jx). (4.15)

In particular, the first m moments of ‖S j‖p
p,www for j ∈ {1, . . . ,k} can be computed in

O(m · (logm) · (logk)) time.

Proof. As in (4.6), we expand the left-hand side of (4.15) to obtain

E
(
‖SSSk‖p

p,www
)m

=
∫

∆k−1

(
‖xxx‖p

p,www
)m dµ∆k−1(xxx)

= ∑
ηηη∈Dm,k

(
m

η1, . . . ,ηk

)∫
∆k−1

k

∏
j=1

(
wη j

j xpη j
j

)
dµ∆k−1(x)

=
(k−1)!m!√

k
∑

ηηη∈Dm,k

(
k

∏
j=1

wη j
j

η j!

)∫
∆k−1

k

∏
i=1

xpηi
i dσ(x)

=
(k−1)!m!√

k
∑

ηηη∈Dm,k

(
k

∏
j=1

wη j
j

η j!

)
×

∫
Π∆k−1

(
k−1

∏
i=1

xpηi
i

)
(1− x1−·· ·− xk−1)

pηk
√

k dλk−1(x) (4.16)

=
(k−1)!m!

(pm+ k−1)! ∑
ηηη∈Dm,k

k

∏
j=1

(pη j)!
η j!

wη j
j (4.17)
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=
(k−1)!m!

(pm+ k−1)!
[xm]

k

∏
j=1

(
∞

∑
i=0

(pi)!
i!

(w jx)i

)
(4.18)

where σ(dx) is (unnormalized) surface measure on ∆k−1, Π∆k−1 the projection of ∆k−1 on the
hyperplane spanned by the first k− 1 coordinate axes, and (4.17) follows from recognizing the
integral in (4.16) as the partition function of a Dirichlet variable with parameters (pη1, . . . , pηk).
We identify (4.18) as (4.15), and thus complete the first part of the proof. The second part now
follows as in Theorem 1 from computing (4.18) using the Fast Fourier Transform.

Remark 1. The generating function Qp(x) in Theorem 2 belongs to a class of well-known special
function, which is not overly surprising given the occurrence of µ∆k−1 in various applications
in physics (where it is known as the Bose-Einstein distribution). More precisely, Qp(x) can be
expressed as the generalized hypergeometric series

Qp(x) = pF0

[
1,

1
p
,

2
p
, . . . ,

p−1
p

](
p2x
)
.

In particular, for p = 2 (i.e., including the Greenwood statistic ‖SSSk‖2
2,111k

), we have Q2(x) =

2F0
[
1, 1

2

]
(4x) = 1√

xD
(

1
2
√

x

)
, where Dawson’s integral

D(x) = e−x2
∫ x

0
et2

dt (4.19)

is interpreted through its asymptotic expansion (cf., formula 7.1.23 in [AS65]).

Together with Proposition 6 to be discussed later, Theorem 2 clarifies the distributional properties
of the continuous approximations of ‖SSSn,k‖p

p,www for large n (while also satisfactorily answering
Greenwood’s question of describing the distributional properties of ‖SSSk‖2

2,111k
, cf. Section 4.3). The

following proposition guarantees the quality of these approximations:

Proposition 2. Let F p,www
n,k ,F p,www

k : [0,1]→ [0,1] be the cumulative distribution functions of
∥∥SSSn,k

n

∥∥p
p,www

and ‖SSSk‖p
p,www, respectively. Then we have

‖F p,www
n,k −F p,www

k ‖∞ = O(n−1), (4.20)

for every fixed k ≥ 2.

Proof. As in the proof of Proposition 1, let Λ = Zk ∩H where H = {xxx ∈ Rk : ∑
k
j=1 x j = 0}.

Denoting by
Et = {x ∈ ∆

k−1 : ‖x‖p
p,www ≤ t}= {‖SSSk‖p

p,www ≤ t} (4.21)

the t-level set of F p,www
k , we observe that since the fundamental domain of Λ has diameter

‖(k−1,−1, . . . ,−1)‖2 =
√

k(k−1), the number L(Et ,n) of lattice points in nEt is bounded by(
n−
√

k(k−1)
)k−1

VolΛ
(
Et)≤ d(Λ)L(Et ,n)
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≤
(

n+
√

k(k−1)
)k−1

VolΛ
(
Et) . (4.22)

Thus, in particular,

µDn,k

(
nEt)−µ∆k−1

(
Et)= L(Et ,n)(n+k−1

k−1

) − (k−1)!VolΛ
(
Et)

≤ (k−1)!VolΛ
(
Et)[(1+

k
n

)k−1

−1

]

≤
√

k
k−1

∑
j=1

(
k−1

j

)(
k
n

) j

, (4.23)

where using VolΛ
(
E1)=√k/(k−1)! as an upper bound for VolΛ (Et) turns (4.23) independent of

t. Similarly, a uniform lower bound is given by

µDn,k

(
nEt)−µ∆k−1

(
Et)≥ (k−1)!VolΛ

(
Et)[(1− 2k

n+ k−1

)k−1

−1

]

≥
√

k
k−1

∑
j=1

(
k−1

j

)(
−2k

n+ k−1

) j

. (4.24)

Combining (4.23) and (4.24) gives (4.20) as desired.

The results presented so far cover a wide range of scenarios encountered in practice when
performing two-sample tests. Before considering other limiting situations, we first examine the
insight that Theorem 2 provides into the distributional properties of the generalized Greenwood
statistics ‖SSSk‖p

p,www, with particular emphasis on the Greenwood statistic ‖SSSk‖2
2,111k

itself.

Analysis of ‖SSSk‖p
p,www and the right tail probability

While providing an efficient means of computing large n limits of any generalized Greenwood
statistics ‖SSSk‖p

p,www, Theorem 2 (together with Proposition 6) also satisfactorily answers Greenwood’s
question of describing the distribution of ‖SSSk‖2

2,111k
, which had remained open since [Gre46]. In

particular, using the formulas given in (4.15) and Proposition 6, the approximate z-score tabulations
of [Bur79, Cur81, Ste81] can be extended to arbitrary k and arbitrary accuracy at reasonable runtime.
In practice, this should be useful both for moderate and large k, for even though a central limit
theorem (in k) exists for ‖SSSk‖2

2,111k
[Mor47], its convergence rate is unfeasibly slow. Apart from

computational improvements, Theorem 2 also sheds light on analytic properties of ‖SSSk‖p
p,www, and

‖SSSk‖2
2,111k

more specifically.
We begin by controlling the decay of moments, which in turn will inform us about tail behavior

near x0 = 1.
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Proposition 3. For p≥ 2 and k ≥ 2, and fixed weights wi ∈ [0,1], for all i ∈ [k], we have

lim
m→∞

(
E‖SSSk‖p

p,www
)m

mk−1 =
(k−1)!

pk−1 ·Wwww, (4.25)

where Wwww = |{1≤ i≤ k : wi = 1}| is the number of weights taking value 1. In particular, the
Greenwood statistic satisfies

lim
m→∞

(
E‖SSSk‖2

2,111k

)m

mk−1 =
k!

2k−1 . (4.26)

Proof. We first rewrite (4.17) as

E
(
‖SSSk‖p

p,www
)m

=
1(pm+k−1

k−1

) ∑
ηηη∈Dm,k

( m
η1,...,ηk

)( pm
pη1,...,pηk

) k

∏
j=1

wη j
j =

1(pm+k−1
k−1

)swww
m, (4.27)

which has leading order O
(

m−(k−1)
)

, if we can show that swww
m is Ω(1). To do so, we proceed by

induction on k, the length of w, proving that in fact limm→∞ swww
m =Wwww. It is straightforward to check

that for η ∈ {2, . . . ,m−1},
(m

η

)
/
(pm

pη

)
is bounded above by

(m
2

)
/
(2m

2η

)
, and thus for the base case

k = 2 we have

s(w1,w2)
m =

m

∑
η=0

(m
η

)(pm
pη

)wη

1 wm−η

2 ≤ wm
1 +wm

2 +

(m
1

)(pm
p

) +(m−2)

(m
2

)(pm
2p

)
m→∞−−−→ 1w1=1 +1w2=1 =W(w1,w2), (4.28)

as desired. For the inductive step, we condition on the first entry of η to obtain

s(w1,...,wk)
m =

m

∑
`=0

(m
`

)(pm
p`

)w`
1 ∑

ηηη∈Dm−`,k−1

( m−`
η1,...,ηk−1

)( p(m−`)
pη1,...,pηk−1

) k−1

∏
j=1

wη j
j+1

= s(w2,...,wk)
m +wm

1 +O
(
m−1)

m→∞−−−→W(w2,...,wk)+1w1=1 =W(w1,...,wk), (4.29)

where we used the inductive hypothesis on s(w1,...,wk)
m , and as in (4.28), bounded summands corre-

sponding to ` ∈ {2, . . . ,m−1} by
(m

2

)
/
(pm

2p

)
. (4.25) and (4.26) now follow from taking the limit as

m→ ∞ in (4.27).

The above result is useful primarily for describing the right tail of ‖SSSk‖p
p,www. Despite the obvious

utility of such a result to hypothesis testing, such a description has not been available so far, even
for ‖SSSk‖2

2,111k
.
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Corollary 1. For www = (w1, . . . ,wk) such that Wwww ≥ 1, the density f p,www
k of ‖SSSk‖p

p,www is analytic at
x0 = 1, and its first non-zero term in the Taylor expansion is (k−1)Ww/2k−2(1− x)k−2. That is, for
x close to x0 = 1, we have

f p,www
k (x) =

(k−1)Wwww

2k−1 (1− x)k−2 +O
(
(1− x)k−1

)
. (4.30)

In particular, Greenwood’s statistic satisfies

f 2,111k
k (x) =

(k
2

)
2k−2 (1− x)k−2 +O

(
(1− x)k−1

)
. (4.31)

Proof. Let f p,www
k (x) = ∑

∞
j=0 c j(1−x) j be the Taylor expansion of f p,www

k around x0 = 1. We first notice
that for any r ≥ 0, ∫ 1

0
xm(1− x)r dx =

1
m+ r+1

· 1(m+r
r

) , (4.32)

and hence, using the fact that f p,www
k is bounded,

E
(
‖SSSn,k‖p

p,www
)m

=
∫ 1

0
xm f p,www

k (x) dx+O
(
e−m)

=
∞

∑
j=0

c j

∫ 1

0
xm(1− x) j dx+O

(
e−m)

=
∞

∑
j=0

c j
1

m+ j+1
1(m+ j
j

) +O
(
e−m) . (4.33)

Identifying the (k−2)nd term with (4.25) immediately yields (4.30).

While Corollary 1 is phrased so as to clarify the decay properties of the right tail, its proof readily
allows characterization of all the coefficients beyond the (k− 2)nd one in the Taylor expansion
of f p,www

k around x0 = 1. For instance, it is straightforward to compute ck−1 =
(k

2

)
(k+ 2)/2k and

ck = (k+1)(k+6)(k2 +7k+16)/2k+4 by hand, and more generally, cr for arbitrary r ∈ N can be
efficiently computed in O

(
r
p log r

p logk+[r logr]2
)

time. See Section C.1 for the detailed algorithm.

This distributional understanding of the right tail complements an explicit description of f p,www
k on the

far left worked out by [Mor53] for the Greenwood statistic, valid for x ∈ [0,1/(k−1)]. The reason
for this rather narrow understanding near 0, and a guarantee that the right tail fares much better, is
provided by the following lemma.

Lemma 1. For k, p > 1, the density f p,111k
k (x) of ‖SSSk‖p

p,111k
is analytic on the intervals{( 1

jp−1 ,
1

( j−1)p−1

)}
j∈{2,...,k}. In particular, the Taylor expansion of f p,111k

k (x) around x0 = 1 has

radius of convergence 1/2p−1.
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Proof. As we increase the radius r of an `p ball centered at the origin, the ball will intersect
the j < k dimensional faces of ∆k−1 for the first time at rp

j = ‖
1
j 111 j‖p

p =
1

jp−1 , which can be seen
from projecting the `p ball onto the j-dimensional coordinate-hyperplanes. These are the only
points where f p,111k

k is not smooth, and therefore f p,111k
k must be analytic on

{( 1
jp−1 ,

1
( j−1)p−1

)}
for

j ∈ {2, . . . ,k}.

In light of Lemma 1, it is clear that the narrow applicability of the left-tail formulas in [Mor53]
is due to the quickly decreasing volume λk−1

(
∆k−1) in k: the only regime in which the intersection

of an `2 and an `1 ball is straightforward to compute is when this intersection is empty (i.e.,
‖SSSk‖2

2,111k
≤ 1/k) or restricted to the k−1-dimensional face of ∆k−1 (in which case this computation

reduces to a calculation of the volume of spherical caps). However, the volumes of these regimes are
exhausted quickly, highlighting the importance of radius-independent descriptions like Theorem 2
(in combination with Proposition 6). For the particular case of (one-sided) hypothesis testing,
the following monotonicity result guarantees that small k approximations provide conservative
estimates to large k instances.

Proposition 4. For p> 1, the c.d.f. F p,111k
k of ‖SSSk‖p

p,111k
is increasing in k. That is, F p,111k′

k′ (x)≥ F p,111k
k (x)

for all x ∈ [0,1] and k′ > k.

Proof. We let Bp
k (r) be the `p ball of radius r in Rk, and recall that

µ∆k−1

{
‖SSSk‖p

p,1k
≤ rp

}
=

λk−1
(
Bp

k (r)∩∆k−1)
λk−1

(
∆k−1

) . (4.34)

From Lemma 1 it is clear that the proposition is true for x≤ 1
(k−1)p−1 . In order to relate λk−1

(
Bp

k (r)∩∆k−1)
to λk−2

(
Bp

k−1(r)∩∆k−2) for x > 1
(k−1)p−1 , we define Ki(r) for i ∈ {1, . . . ,k} to be the cone of apex

1
k 111k and base formed by the intersection of Bp

k (r) with the ith (k−2)-dimensional face of ∆k−1 (for
some fixed enumeration of the k (k−2)-dimensional faces). Since ·

⋃k
i=1 Ki(r)⊂ Bp

k (r)∩∆k−1, it
follows that

λk−1

(
Bp

k (r)∩∆
k−1
)
>

k

∑
i=1

λk−1 (Ki) (4.35)

=
k

k−1
· 1√

k(k−1)
λk−2

(
Bp

k (r)∩∆
k−1
)

=

√
k

(k−1)
3
2

λk−2

(
Bp

k−1(r)∩∆
k−2
)
, (4.36)

where by slight abuse of notation we used λk−2
(
Bp

k (r)∩∆k−1) for the (k−2)-dimensional volume of
Bp

k (r) intersected with the (k−2)-dimensional faces of ∆k−1. The fact that k ·λk−2
(
Bp

k (r)∩∆k−1)=
λk−2

(
Bp

k−1(r)∩∆k−1
)

follows from the same projection argument as used in Lemma 1.
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Alternative scaling limits
Our treatment up to now has primarily focused on the large n limit of ‖SSSn,k‖p

p,www while keeping
k fixed, for which we saw a rich limiting distribution with fruitful connections to the previously
studied Greenwood statistic emerge. However, in the setting of two-sample testing, it may very well
happen that k and n are of comparable order, in which case similar behavior cannot be expected to
govern the distribution of ‖SSSn,k‖p

p,www. What happens in these cases is much simpler, as the following
proposition demonstrates.

Proposition 5. Assume n,k→∞, and define µn,k,p = k−1E‖SSSn,k‖p
p,111k

, σ2
n,k,p = k−1Var‖SSSn,k‖p

p,111k
. If

0 <Wmin ≤ wi ≤Wmax for all i ∈ {1, . . . ,k}, then

Zn,k,p,www =
‖SSSn,k‖p

p,www−µn,k,p

(
∑

k
j=1 w j

)
σn,k,p

(
∑

k
j=1 w2

j

)1/2
d−→

{
N (0,1), if k

n → α ≤ 1,
0, if k = o(n) .

(4.37)

Moreover, in the case of k→ ∞ while n remains fixed, if for every k, {wi}i∈[k] is the discretization
wi = w(i/k) of some function w : [0,1]→ [Wmin,Wmax] continuous (Lebesgue) almost everywhere,
then

‖SSSn,k‖p
p,www

d−→
n

∑
j=1

w
(
U j
)
, (4.38)

where {U j} j∈[n] are i.i.d. Uniform([0,1]).

The proof of this central limit theorem is by the method of moments, where explicit combi-
natorial expressions like (4.27) and known large deviations allow for precise quantification of the
decorrelation in SSSn,k. The full details are presented in Section C.2. We point out here that in the
two-sample setting, constraining k to grow at most linearly in n is no restriction, as the roles of
balls and bins turn out to be easily exchanged. Before elaborating on the application to two-sample
testing and making this statement precise, we give an efficient algorithm to reconstruct a distribution
from its moments.

4.4 Reconstruction of a distribution from its moment sequence
Reconstructing a probability measure from its moments is a task that has received attention both in
theoretical settings (see e.g. [AK65]), where existence and uniqueness questions are addressed, and
applied statistical problems, where existence and uniqueness are typically taken for granted, and
efficient algorithms for computing the distribution in question are sought.

For a discrete distribution of n atoms, the latter can be done by solving an n×n Vandermonde
system, which [BP70] showed is solvable in O

(
n2) time. However, in our setting ‖SSSn,k‖p

p,www

generically has O
(
nk−1) atoms, whose precise location within {xmin, . . . ,‖www‖∞np} is typically

unknown. That is, solving the moment problem for ‖SSSn,k‖p
p,www exactly via its associated Vandermonde
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system requires O
(

min
{
‖www‖2

∞n2p,n2(k−1)
})

operations, which already for small values of p or k
becomes prohibitively large. Moreover, aside from this computational intractability in our discrete
setting, it is clear that such direct approach is unfeasible to conduct in the corresponding infinite-
dimensional scenario required for ‖SSSk‖p

p,www, and hence new algorithms are needed.
A commonly proposed alternative consists of forfeiting the demand for an exact recovery and

focus on approximate reconstruction instead, attempting to trade off accuracy for accelerated run-
times. Examples of such approximation schemes include maximum entropy based algorithms (see
e.g. [MP84]) as well as various applications of the method of moments. While the latter relies
to a large extent on strong parametric assumptions, which are not available for our generalized
Greenwood statistics, the former is primarily useful for density estimations with only a few explicit
(or estimated) moments. Theorem 1 and Theorem 2, however, allow us access to a vast number of
moments quickly, suggesting that a maximum entropy ansatz could waste valuable information. To
remedy this situation, we recall a fact that is mentioned in [Fel08] (p. 227, Theorem 2), but that to
the best of our knowledge has not found widespread use in applied statistics.

Fact 1. Let X ∈ [0,1] be a (not necessarily continuous) random variable with cumulative distribution
function F and moments µm = EXm, then at every continuity point x of F, we have limn→∞ F̂n(x) =
F(x), where

F̂n :=
n−1

∑
j=0

1 j
n≤x

(
n
j

)
(−1)n− j (

δ
n− j

µ
)

j , (4.39)

with δ : RN→ RN being the difference operator δ : (a j) j∈N 7→ (a j+1−a j) j∈N.

Part of the reason for the modest popularity of Fact 1 in statistical estimation problems may be the
presence of generally large alternating summands, causing possibly uncontrollable instabilities if the
moments µm are not known exactly. In our situation, this instability does not present any limitations,
since Theorem 1 and Theorem 2 allow computation of µm = E‖SSSn,k‖p

p,www (or µm = E‖SSSk‖p
p,www,

respectively) to arbitrary precision, thus rendering (4.39) a promising candidate for reconstructing
the distributions in question. It remains to clarify its convergence speed:

Proposition 6. Let X ∈ [0,1] be a random variable which is either (i) absolutely continuous with
respect to λ1, with density f ∈C1 ([0,1]), or (ii) discrete with support suppX = {x0, . . . ,xN}. Then
for any resolution εn→ 0,εn >

1
n0.51 , there exists n0( f ,ε) ∈ N, so that for all n≥ n0,

sup
x∈[0,1]

∣∣F̂n(x)−F(x)
∣∣≤ ‖ f‖∞ +2‖ f ′‖∞ +2

n+1
, (i)

sup
x∈[0,1]\suppεn

X

∣∣F̂n(x)−F(x)
∣∣≤ 2e−2nε2

n +(|suppX |−2)e−2nh2
, (ii)

where F̂n(x) is defined in (4.39), suppε
X = {x ∈ [0,1] : d(x,suppX)< ε} is the ε-fattening, and

h = mini, j |xi− x j| is the mesh of suppX .
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Proof. We first tackle (i) by recalling from [Fel08] that the summation in (4.39) is nothing but

EBn,x(X) = E
n−1

∑
j=0

1 j
n≤x

(
n
j

)
Xk (1−X)n−k , (4.40)

where Bn,x is the degree n approximation of 1[0,x] by Bernstein polynomials (see [Ber12]). To
compute its approximation error, we choose a threshold εn→ 0 and investigate

F(x)−EBn,x(X) = E
(
1[0,x](X)−Bn,x(X)

)
=
∫
[0,1]\{x}εn

(
1[0,x](y)−Bn,x(y)

)
f (y) dy︸ ︷︷ ︸

An,x

+
∫
{x}εn

(
1[0,x](y)−Bn,x(y)

)
f (y) dy︸ ︷︷ ︸

A′n,x

, (4.41)

in which we treat the term An,x first: Interpreting Bn,x(y) as P(Sn,y ≤ nx), where Sn,y∼Binomial(n,y),
we see that by standard large deviation estimates and Pinsker’s inequality

|An,x| ≤ (x− εn)‖ f‖∞e−nDKL(x|x−εn)

+‖ f‖∞(1− x+ εn)e−nDKL(x|x+εn) ≤ ‖ f‖∞e−2nε2
n , (4.42)

where DKL (p | q) is the Kullback-Leibler divergence (or the relative entropy) between a Bernoulli(p)
and Bernoulli(q) distribution. To control A′n,x then, we Taylor expand f to rewrite the integral in
(4.41) as

A′n,x =
∫
{x}εn

(
1[0,x](y)−Bn,x(y)

)(
f (x)+ f ′(ξy,x)(y− x)

)
dy

= ( f (x)−Mn · x)
∫
{x}εn

(
1[0,x](y)−Bn,x(y)

)
dy︸ ︷︷ ︸

A′′n,x

+Mn

∫
{x}εn

(
1[0,x](y)−Bn,x(y)

)
y dy︸ ︷︷ ︸

A′′′n,x

, (4.43)

where miny∈{x}εn f ′(y)≤Mn ≤maxy∈{x}εn f ′(y). In particular, since we assumed f ∈C1 ([0,1]) and
εn→ 0, there must exist a n′0 so that f ′(x)− 1 ≤Mn ≤ f ′(x)+ 1 for all n ≥ n′0. So it remains to
control A′′n,x and A′′′n,x, which can be done in a manner similar to (4.42):

∣∣A′′n,x∣∣≤ ∫
[0,1]

(
1[0,x](y)−Bn,x(y)

)
dy+ e−2nε2

n =
x−1
n+1

+ e−2nε2
n (4.44)
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≤ 1
n+1

+ e−2nε2
n∣∣A′′′n,x∣∣≤ ∫

[0,1]

(
1[0,x](y)−Bn,x(y)

)
y dy+ e−2nε2

n (4.45)

=
3nt(x−1)+2(x2−1)

2(n+1)(n+2)
+ e−2nε2

n ≤ 1
n+1

+ e−2nε2
n ,

provided n≥ 4. Finally, combining (4.41)-(4.45), we obtain

∣∣F̂n(x)−F(x)
∣∣≤ ‖ f‖∞ +2‖ f ′‖∞ +2

n+1
+2
(
‖ f‖∞ +‖ f ′‖∞

)
e−2nε2

n , (4.46)

independently of x. Choosing εn ≥ n−
1
2+δ and n0 so large that the first term dominates the second

yields (i). (ii) follows in a very similar manner by observing that for n such that εn < h, any
x ∈ [0,1]\ suppεn

X satisfies

∣∣1[0,x](y)−Bn,x(y)
∣∣≤{e−2nε2

n , if y ∈ {ymin(x),ymax(x)} ,
e−2nh2

, for all other y ∈ suppX ,
(4.47)

where ymin(x) = min{y′ ∈ suppX : y′ > x} and ymax(x) = max{y′ ∈ suppX : y′ < x} are the two
atoms of X left and right of x. Therefore,

|F(x)−EBn,x(X)| ≤ ∑
y∈suppX

P(X = y)
∣∣1[0,x](y)−Bn,x(y)

∣∣
≤ 2e−2nε2

n +(|suppX |−2)e−2nh2
, (4.48)

which is (ii).

We remark that the proof works equally well for distributions that have both an absolutely
continuous and a singular part (with respect to λ1), in which case the continuous component
presents the bottleneck, resulting in an O

(
n−1) bound like in (i). For purely discrete measures

however, we notice that by setting εn = ε < h/2 in (ii), we can reconstruct F(x) for x ∈ suppX up to
exponentially decreasing error (in the number of moments) by computing F̂(x+2ε). Moreover,
the bounds (i)-(ii) present worst case errors that are achieved at x for which f (x), | f ′(x)| are large
or atoms of X densely packed, respectively. Away from these bottlenecks, and in particular in
the tails of ‖SSSn,k‖p,www and ‖SSSk‖p,www, these guarantees should improve significantly. Lastly, we may
replace each use of Bernstein polynomials throughout the entire analysis with any other expedient
polynomial approximation of 1[0,x] in order to impose desired properties on the reconstructed density.
If, e.g., one-sided reconstructions are preferable (for instance, in order to give rise to conservative
hypothesis tests in Section 4.5), then resorting to appropriate one-sided polynomial approximations
(the optimal of which is worked out in [BQMC12]) will enforce this preference. To summarize our
situation then:
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1. We can approximate the distribution of ‖SSSk‖p
p,www on [ap,www,1] (where a2,111k =

1
2 and ap,www < 1 gen-

erally) by computing its exact Taylor expansion of order r around x0 = 1 in
O
(

r
p log r

p logk+[r logr]2
)

time (see Proposition 3 and Section C.1).

2. On [0,ap,www], we can achieve a uniform approximation error of ε in O
(1

ε
log 1

ε
logk

)
(see

Proposition 3 and Proposition 6 (ii)). Moreover, in the special case that p = 2 and www = 111k,
exact formulas for any x ∈ [0, 1

k−1 ] are available by Lemma 1 and its preceding remarks.

3. For n large, we can approximate the distribution of ‖SSSn,k‖p
p,www by that of ‖SSSk‖p

p,www and using the
two bullet points above. The additional error incurred is of order O

(
n−1) by Proposition 2.

4. For any n and k, Proposition 6 and the remark following its proof allow an ε-approximation
of the distribution of ‖SSSn,k‖p

p,www in O
(
log 1

ε

)
time.

Observations 1,3 and 4 in particular render the generalized Greenwood statistics as promising
statistics for hypothesis testing.

4.5 Application to non-parametric hypothesis tests
Having developed a thorough distributional understanding of both Greenwood’s and Dixon’s
statistics as well as their various generalizations, we are now in a position to illuminate their
role in the hypothesis tests that motivated them. We begin by carrying out the original test of
uniformity proposed by [Gre46]. We demonstrate its power in comparison to other commonly used
test statistics, and describe its implications for the wider class of one-sample tests. Our second
application is then devoted to clarifying completely the two-sample test described in [Dix40] by
replacing low-order approximations and lifting limiting sample size constraints that were assumed
therein; in addition to illustrating how the flexibility that comes with our family of generalized test
statistics can substantially improve power.

Tests of uniformity and one-sample tests
Recall from Section 4.1 that the null hypothesis to be queried in [Gre46] concerned determining the
distributional family of k sample times T1, . . . ,Tk. Namely,

H0 :
{

Tj
}

j∈[k]
i.i.d.∼ E (λ ), for some λ ∈ R+, (4.49)

where E (λ ) denotes the exponential distribution of rate λ . It is of particular interest to be able
to detect alternatives consisting of point-processes whose inter-arrival times show either under-
or overdispersion with respect to this homogeneous Poisson(λ )-process; that is, it is desirable to
maximize power against

H1 :
{

Tj
}

j∈[k]
i.i.d.∼ X , where c2

V =
VarX

(EX)2 6= 1. (4.50)
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Through normalizing by ∑ j Tj, Greenwood noticed that this decision problem is tantamount to the
task of distinguishing the null hypothesis

H0 :

(
T1,T1 +T2, . . . ,

k−1

∑
j=1

Tj

)/( k

∑
j=1

Tj

)
∼
(
U(1), . . . ,U(k−1)

)
, (4.51)

where {U j} j∈[k−1]
i.i.d.∼ Uniform([0,1]), and U( j) is the jth order statistic, from a class of alternatives

where points in [0,1] tend to, intuitively, be overly equi-spaced (corresponding to c2
V < 1) or overly

clustered (resulting from c2
V > 1). This, in turn, is translated to the level of spacings as

H0 :
(

T1, . . . ,Tk

)/( k

∑
j=1

Tj

)
∼ µ∆k−1, (4.52)

with spacings in the alternative class exhibiting either smaller (c2
V < 1) or larger (c2

V > 1) variances
than under the null. It is this last formulation (4.52) that motivated Greenwood to introduce his
eponymous statistic

(
∑

k
j=1 T 2

j
)
/
(

∑
k
j=1 Tj

)2, whose law under the null is simply that of ‖SSSk‖2
2,111k

in our notation above. Greenwood successfully treated the case k = 2, but was unable to extend
his results to larger sample sizes. Theorem 2 and Proposition 6 fill this gap by allowing us to
compute p-values efficiently and accurately. Indeed, our algorithm proceeds fast enough to run
large scale power studies for an extensive range of k (computing the p-value of a sample of 10,000
points takes roughly 5 seconds on an ordinary laptop), all of which return results that qualitatively
resemble those depicted in Figure 4.1: both the absolute power of Greenwood’s test, as well as its
performance relative to three other popular test of uniformity (Pearson’s χ2, Kolmogorov-Smirnov,
Cramer-von-Mises), are uniformly high (and particularly pronounced in the case of underdispersed
data), rendering it a suitable hypothesis test to decide (4.49) against (4.50).

This performance is especially encouraging in light of the role that tests of uniformity play
in the larger context of one-sample testing, where one is given a sample Z1, . . . ,Zk of size k, and
wants to ascertain whether these k samples all arose in an i.i.d. fashion from the same continuous
distribution F . To ask whether {Zi}i∈[k] are i.i.d. F however, is the same as to ask whether
{F(Zi)}i∈[k] are distributed i.i.d. as U ∼Uniform([0,1]), which is nothing but the test of uniformity
we just conducted. Naturally, the classes of alternatives likely encountered in this new setting
will most often differ from those in our previous considerations. However, part of the benefit
of having substantial analytical control on the entire family of generalized Greenwood statistics{
‖SSSn,k‖p

p,www
}

p∈N,www∈Rk is the ability to accommodate various, even strongly disparate, alternatives by
means of adjusting p and www. As this is best illustrated in the framework of two-sample tests, and
readily reduced to one-sample tests from there, we will not delineate the details here, but rather
develop them in the following subsection on two-sample tests, while being careful to point out any
particular adjustments that may be necessary for application to one-sample tests.
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Figure 4.1: One-sample test results. ROC and power curves of tests based on the Greenwood
statistic ‖SSSk‖2

2,111k
on under- and overdispersed data for k = 10, compared to three other commonly

used tests of uniformity (Pearson’s χ2, Kolmogorov-Smirnov, Cramer-von-Mises): each experiment
consists of 1000 independently drawn samples from the null (µ∆k−1) and alternative (Erlang and
Hyperexponential, either as individual classes as in the top two panels, or mixed into one class
and presented at equal probability as in the bottom left panel) distributions matching the stated
coefficients of variation; α denotes the type I error, while β is the type II error (and 1−β is power).

Two-sample tests
One-sample tests are in a concrete sense (namely, that of (4.38) in Proposition 5) large sample-size
limits of two-sample tests: Instead of judging whether the generating distribution of one given
sample {Zi}i∈[k] matches a suspected given continuous F , the task is to decide whether two drawn
samples {Xi}i∈[k−1] and {Y j} j∈[n] have identical generating mechanisms. That is, assuming that
{Xi}i∈[k−1] and {Yj} j∈[n] are generated i.i.d. from F and G, respectively, the null hypothesis to be
tested is

H0 : F = G, (4.53)

which indeed in the n→ ∞ limit (where G becomes fully known) reduces to the one-sample setting.
The equivalent of the uniformizing transformation {Zi}i∈[k]→{F(Zi)}i∈[k] in the one-sample setting
is now given by the discrete uniformization {Xi}i∈[k−1], {Yj} j∈[n]→

{
Sn,kJ jK

}
j∈[k], where Sn,kJ jK

is as defined in (4.1). It is straightforward to verify that SSSn,k = (Sn,kJ1K,Sn,kJ2K, . . . ,Sn,kJkK) is
distributed as Multinomial(n,ααα) with ααα ∼ Dirichlet(1, . . . ,1), and that this law is precisely µDn,k .
Consequently, to probe H0 is really to probe whether SSSn,k is distributed according to µDn,k or not.
An array of test statistics devised to be sensitive against either arbitrary (e.g., the Kolmogorov-
Smirnov test [Kol33, Smi48] or the Cramer-von-Mises test [Cra28, VM13]) or specific (e.g., the
Mann-Whitney test [MW47]) families of alternatives have surfaced over the last century, yet, to the
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best of our knowledge, a clear understanding of their relative power against each such family of
alternatives has remained elusive. In other words, given various classes of alternatives A1, . . . ,Ad
that a practitioner might deem likely to present themselves, it is often unclear how an appropriate
test statistic is to be chosen. Having access to fast numerical evaluations of ‖SSSn,k‖p

p,www and their laws
for arbitrary p and w offers one attractive solution to this problem: it allows the user to optimize any
quantity of interest (like power) over this family of generalized Greenwood statistics quickly. To wit,
assuming for now a sufficiently well-behaved class of alternatives A , i.e. H1 : G∈A , and denoting
by Hp,www

n,k the law of ‖SSSn,k‖p
p,www on R induced by discretely uniformizing {Yj} j∈[n]

i.i.d.∼ H ∈A through
{Xi}i∈[n], the (two-sided) power at significance threshold α is computed as

min
H∈A

{
1−β

α
p,www(H)

}
= min

H∈A

{
1−Hp,www

n,k

(
[z−p,www(α),z+p,www(α)]

)}
, (4.54)

where z±p,www(α) are the α

2 - and (1−α)
2 -quantiles of ‖SSSn,k‖p

p,www under µDn,k (i.e. µDn,k

(
[z−p,www,z

+
p,www(α)]

)
=

1−α). z±p,www(α) are efficiently computed from the moments of µDn,k , so in principle, if A is tractable
enough (relative to F) to allow for an explicit characterization of Hp,www

n,k for every H ∈A , (4.54) is
amenable to fast numerical optimization. Alas, in practice we can hardly expect ‖SSSn,k‖p

p,www under H
to be as accessible as under the null, so computing (4.54) to arbitrarily high accuracy will likely
prove unfeasible. Nevertheless, reasonable approximations to (4.54) are often available under
mild assumptions on A . The following two examples illustrate the process of performing such
approximate optimization, its impact on statistical power, as well as how to extend this selection
process to composite hypotheses.

Example 1 (Detecting heteroskedasticity). Assume without loss of generality that EX = 0,VarX = 1,
and that we would like to test against alternatives of the form G = F ◦ (y 7→ y/σ), i.e. Y = σX, for
any constant σ ∈ R+. It is straightforward to see that as σ → ∞, SSSn,k will be concentrated mostly

on its far ends Sn,kJ1K and Sn,kJkK weighted by F(0), i.e., SSSn,k
d−→ SSS∞

n,k := N∞1{1}+(n−N∞)1{k} =

(N∞,0, . . . ,0,n−N∞), where N∞ ∼ Binomial(n,F(0)) and P
(
SSSn,k 6= SSS∞

n,k
)
= O

(
σ−1). Likewise,

the limiting law of SSSn,k as σ→ 0 is quickly verified to be that of a SSS0
n,k := n1{N0} variable, where N0∼

Binomial(n,F(0)) as before, again with P
(

SSSn,k 6= SSS0
n,k

)
=O(σ). It is therefore plausible to assume

that most mass of ‖SSSn,k‖p
p,www is tightly concentrated around ‖SSS∞

n,k‖
p
p,www = (w1N p

∞ +wk(n−N∞)
p) and

‖SSS0
n,k‖

p
p,www = np‖1{N0}‖

p
p,www, respectively, and that thus (4.54) is appreciably large whenever

µDn,k

(
‖SSSn,k‖p

p,www /∈
[
‖SSS0

n,k‖
p
p,www,‖SSS∞

n,k‖
p
p,www

])
=

n

∑
i=0

n

∑
j=0

P(N∞ = i)P(N0 = j)

×µDn,k

(
‖SSSn,k‖p

p,www /∈
[
‖SSS0

n,k‖
p
p,www,‖SSS∞

n,k‖
p
p,www

]
| N∞ = i,N0 = j

)
. α, (4.55)

where by slight abuse of notation we use [a,b] to denote the interval
[min{a,b},max{a,b}]. This motivates solving the approximate, yet computationally tractable,
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Figure 4.2: Two-sample test results. The null hypothesis tested is F = G using samples
X1, . . . ,Xk−1

iid∼ F = Normal(0,1) and Y1, . . . ,Yn
iid∼ G = Normal

(
µ,σ2), for k = 10 and n = 30

(different parameter choices led to minor qualitative changes only). The experimental setup is
similar to that of Figure 4.1. A. ROC and power curves for detecting heteroskedasticity. Our new test
based on the generalized spacing-statistics ‖SSSn,k‖p

p,www exhibits substantially improved performance
over the other non-parametric two-sample tests. B. Power against joint variations in location and
scale. G = Normal

(
µ,σ2), with µ ∈ {−2,−1,0,1,2} and σ2 ∈ {1,2,3,4,5}. Colors of bubble in-

dicate the test statistic used—generalized spacing-statistics ‖SSSn,k‖p
p,www (red), Mann-Whitney (black),

Kolmogorov-Smirnov (dark gray), Cramer-von-Mises (light gray)—while its radius indicates power
1−β . The column for µ = 0 corresponds to the results illustrated in the bottom panel of A.

optimization problem of finding

argmin
p,www

µDn,k

(
‖SSSn,k‖p

p,www /∈
[
‖SSS0

n,k‖
p
p,www,‖SSS∞

n,k‖
p
p,www

])
, (4.56)

for any given F(0), instead of optimizing (4.54) directly. To verify empirically that any such
minimizers do indeed give rise to a powerful test of heteroskedasticity, we ran large scale sim-
ulations for various F and G in the assumed family of distributions. As Figure 4.2A illus-
trates, where performing the optimization in (4.56) yielded parameter choices of p = 1 and
www = 1

10(10,2,1,0,0,0,0,1,2,10), our new two-sample test based on the generalized spacing-
statistics ‖SSSn,k‖p

p,www compares favorably with other non-parametric tests (Mann-Whitney, Kolmogorov-
Smirnov, and Cramer-von-Mises) commonly used for such tasks.
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Although the alternatives in Example 1 are composite, the laws they induce on Dn,k are all
tightly clustered around two universal ones, thereby effectively reducing the decision task to a
semi-simple hypothesis test. The extension to truly composite settings is standard:

Example 2 (Sensing location and scale). We enrich the class of alternatives in Example 1 by
location shifts, i.e. we consider G of the form G = F ◦ (x 7→ (x−µ)/σ) for µ ∈ R,σ ∈ R+. The
laws Gµ,σ induced on Dn,k now exhibit infinitely many accumulation points, barring any simple
optimization of the kind we performed before. Indeed, even if we had the capacity to identify
maximizers of (4.54) explicitly, they likely would not deliver satisfactory power, for we have

max
p,www

min
H∈A

(
1−β

α
p,www(H)

)
≤max

p,www
min

H∈Aµ∪Aσ

(
1−β

α
p,www(H)

)
, (4.57)

where Aσ = {G : G = F ◦ (x 7→ x/σ) for some σ ∈ R+} ⊂ A and
Aµ = {G : G = F ◦ (x 7→ x−µ) for some µ ∈ R} ⊂A are the pure location shifts and pure scales,
respectively. Computations as in Example 1 successfully yield powerful parameter choices against
Aµ and Aσ individually, yet fail to do so for Aµ and Aσ jointly, producing values of 1−β not
exceeding≈ 0.6. To mend this shortcoming, we can capitalize on the successful optimizers (pµ ,wwwµ)
and (pσ ,wwwσ ) against Aµ and Aσ individually by considering their ensemble; that is, we optimize

argmax
pµ ,wwwµ ,pσ ,wwwσ

max
{

min
Hµ∈Aµ

(
1−β

α

2
pµ ,wwwµ

(Hµ)
)
, min

Hσ∈Aσ

(
1−β

α

2
pσ ,wwwσ

(Hσ

)}
, (4.58)

which, again employing strategies as in Example 1, is done efficiently. To verify the utility of
(pµ ,wwwµ) and (pσ ,wwwσ ) we, as before, resorted to extensive numerical simulations of which a typical
outcome is depicted in the Figure 4.2B. Since the choices of n and k in this particular instance
match those of Figure 4.2A, the resulting (pσ ,wwwσ ) are identical to (p,www) of Example 1. pµ = 1 and
wwwµ = 1

10(10,8,7,5,1,1,0,0,0,0), on the other hand, turned out to closely resemble the parameter
configurations that gave rise to Mann-Whitney’s U statistic, which does not surprise since the latter
was designed with locations shifts in mind. As a consequence, our test based on ‖SSSn,k‖

pµ

pµ ,wwwµ
and

‖SSSn,k‖pσ

pσ ,wwwσ
boasts power comparable to the Mann-Whitney test when sensing location shifts, while

extending sensitivity to heteroskedastic alternatives as well. Notably, this comparative advantage in
detecting scale changes persists even against tests like Kolmogorov-Smirnov and Cramér-von-Mises
whose design is not centered around mean shifts.

Examples 1 and 2 provide manifestations of (4.54) in two concrete two-sample instances, for
which the optimal choice of p happened to be p = 1. As mentioned before, these optimization tools
are easily adapted to the one-sample setting, which often requires mere replacement of SSSn,k with
SSSk. The following example illustrates such adaptation in practice, while also supplying a family of
circumstances in which choices of p greater than 2 lead to greater power.

Example 3 (Spiked spacing model and higher p-norms). We revisit the one-sample test in (4.49),
where we sought to distinguish Markovian arrival times from over- or underdispersed alternatives.
In our present case, however, we investigate an alternative hypothesis H1 consisting of a distribution
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Figure 4.3: Analysis of spiked spacing model (described in detail in Example 3). A. Illustration of
tail probabilities on ∆2 in the cases of p = 2 and p = ∞, and the samples (denoted by solid dots)
giving rise to them. While a fixed sample near line segments in L+ (purple, dashed lines in top panel)
produces smaller sub-level sets in `2 than `∞ (thereby increasing the p-value of said sample, which
corresponds to 1 minus the shaded area), this trend reverses for observations near line segments in
L− (orange, dashed lines in bottom panel). B. ROC and power curves. The spiked spacing model
largely concentrates around L+ in ∆k−1, with the degree of this concentration increasing with spike
size. As a consequence, p-norms of samples generated under such alternative tend to separate
more markedly for larger p, which in turn affords increases in power of ‖SSSk‖p

p,111k
when p > 2. The

experimental design and choice of under- and overdispersed distributions match those of Figure 4.1;
in particular, k = 10.

Gk of T1, . . . ,Tk that is both over- and underdispersed in the following sense: Under Gk, arrival
times are again drawn iid from an underdispersed distribution H− (that is, c2

V (H−)< 1), with the
exception of a single randomly chosen TK (i.e., K ∼ Uniform([k])) whose law H+ now exhibits
overdispersion (c2

V (H+) > 1). In other words, Gk mixes k− 1 underdispersed arrivals with 1
uniformly chosen overdispersed spacing. We will call this overdispersed TK the spiked or outlier
arrival time, and refer to the just described model of Gk as the spiked spacing model. Though the
subsequent analysis is phrased in terms of this spiked spacing model, much of its reasoning pertains
to similar outlier or correlation models of this kind as well.

To design a test capable of reliably detecting this spiked spacing model, we first observe that the
symmetry in T1, . . . ,Tk (induced by the uniform choice of K) suggests little benefit of choices for www
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other than 111k, leaving p as the sole parameter to optimize in (4.54). To choose among the candidates
for p then, it is useful to clarify and compare the geometry that various `p balls give rise to when
intersected with ∆k−1: as the 2-dimensional illustrations of Figure 4.3A demonstrate, the growth
of the (normalized) intersection volume V p

k (sss) = µ∆k−1

(
‖SSSk‖p

p,111k
≤ ‖sss‖p

p,111k

)
depends noticeably

on the precise location of our observation sss. If sss localizes exactly along any of the line segments

L+ =

{←−−−→
1
k 111k,eeei

}
i∈[k]

, where eeei is the ith standard basis vector, then V p
k (sss)⊂V q

k (sss) whenever p < q,

while V p
k (sss) ⊃ V q

k (sss) in case sss falls precisely on any of the line segments L− =

{←−−−→
1
k 111k,mmmi

}
i∈[k]

,

where mmmi =
1

k−1 (111k− eeei) is the midpoint of the (k−2)-dimensional face opposite of vertex eeei. Since
p-values are nothing but 1−V p

k (sss), it follows that tests based on ‖SSSk‖∞

∞,111k
should be most powerful

in the former scenario, while ‖SSSk‖2
2,111k

-based tests shine in the latter scenario, with intermediate
localizations giving rise to optimal p∗ between 2 and ∞. In our spiked spacing model at hand, the
support of Gk gravitates towards the line segments L+, and so we expect choices of p larger than
2 to be profitable. Indeed, carrying out simulations as in Figure 4.3B reveals this to be true, with
precise values of p∗ depending on the distributional details H+ and H−. Generally, p∗ is attained
around 4 or 5 for modest amplitudes of the spiked TK and/or moderate degrees of underdispersion
in the remaining arrival times, and stabilizes at 6 for more pronounced levels of spiking and/or
underdispersion. Past p = 6, ROC and power curves tend to change only slightly.

We close this section with a few remarks on the scope and availability of our proposed hypothesis
tests:

1. Even though our entire discussion is phrased around continuous null and alternative distri-
butions F and G, the extension to discrete variables is straightforward: it merely requires
recourse to a source of independent noise to randomly break ties when forming SSSn,k.

2. Due to their widespread use, our primary focus lies on applications of generalized Greenwood
statistics ‖SSSn,k‖p

p,www to unpaired one- and two-sample test. However, they can naturally be
deployed in any other goodness-of-fit context in which null distributions effectively reduce to
µDn,k or µ∆k−1 , e.g. paired two-sample tests.

3. (4.54) and its derived optimization problems are stated so as to incorporate rare events (under
H0) in both the left and right tail of ‖SSSn,k‖p

p,www. Of course, a one-sided hypothesis test can be
enforced by only considering one such tail.

4. The significance threshold adjustment α/2 in (4.58) when considering the ensemble of
two generalized Greenwood statistics is exact only if their individual rejection regions
are disjoint; in all other circumstances it is conservative. To extract additional power,
it is possible to apply the same tools we developed throughout this chapter to compute
the joint moments E

(
‖SSSn,k‖p

p,www · ‖SSSn,k‖q
q,v
)m, and recover from those the joint distribution

P
(
‖SSSn,k‖p

p,www ≤ s,‖SSSn,k‖q
q,v ≤ t

)
, which would allow for more refined adjustment of signifi-

cance thresholds.
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5. An implementation of both the one- and two-sample test in Mathematica together with pre-
computed parameter configurations optimal against shifts in location, scale, skewness and kur-
tosis (as well as combinations thereof) is available at https://github.com/songlab-cal/
mochis.

4.6 Conclusions
Since early on, Greenwood’s statistic and its relatives were theorized to be powerful candidates
for a variety of goodness-of-fit tasks, yet proving them to be such, either rigorously or empirically,
has, due to a lack of distributional understanding, largely remained open. Here we contribute to
such distributional understanding by embedding Greenwood’s statistic into a larger family of laws,
the generalized Greenwood statistics ‖SSSn,k‖p

p,www, whose distributional properties are more amenable
to analysis. In particular, we were able to obtain explicit, efficiently computable, expressions for
their associated moment sequences, and glean both qualitative (e.g., convergence, regularity and
monotonicity results) as well as quantitative (convergence rates, tail behaviour, CLT) insights from
them. By providing an algorithmic procedure to recover a given distribution to arbitrary accuracy
from its truncated moment sequence, we are able to quickly compute quantiles and p-values,
which in turn enables accurate and adaptive hypothesis tests based on said generalized Greenwood
statistics. As a consequence, we were in a position to empirically verify the gains in power in
two such goodness-of-fit settings, namely one- and two-sample tests, compared to conventional
non-parametric test statistics widely used for these tasks.

https://github.com/songlab-cal/mochis
https://github.com/songlab-cal/mochis
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Appendix A

Supporting Information: Chapter 2

A.1 The hydrodynamic limit of the inhomogeneous `-TASEP
We derive here the PDE governing the hydrodynamic limit of the open-boundaries inhomogeneous
`-TASEP. To do so we exploit a representation of its dynamics in terms of another interacting particle
system, the so-called zero range process (ZRP), whose hydrodynamics can be found explicitly. This
TASEP-ZRP duality provides an expedient and general tool for identifying explicit TASEP formulas;
however, rigorously proving the validity of these formulas often requires more technical tools from
probability theory. Since this work’s emphasis is on the application of TASEP to unraveling the
key parameters of translation dynamics, we will here concentrate on showcasing the TASEP-ZRP
framework, and keep a rigorous existence proof of the hydrodynamic limit, combining techniques
from [Rez91, CR97] and [Bah12], to a separate manuscript.

Reduction to periodic boundaries and mapping to the ZRP.
The purpose of the hydrodynamic limit is to describe the local evolution of the macroscopic particle
density in the large system limit. As such, it does not explicitly rely on the precise formalism by
which particles enter and exit the lattice at the boundaries (which will only later be needed to impose
boundary conditions on the resulting PDE [Bah12]). In particular, we are free to choose periodic
boundary conditions for our limiting procedure without changing the resulting PDE [SS04]. This
has the advantage of preserving the total number of particles, which is essential for establishing the
correspondence between TASEP and ZRP. In the following, we thus consider the `-TASEP with M
particles on a ring of N sites jumping to the right at rate pi, and take M,N→ ∞ while M/N remains
constant.

The ZRP is now obtained by reversing the roles of holes and particles: It consists of N−M`
particles (corresponding to the N−M` holes in the TASEP) distributed across M sites (matching
the TASEP particles) {1, . . . ,M}, with multiple particles allowed to stack up on the same site. A
ZRP configuration (ξi,t)1≤i≤M describes the number of particles ξi,t at each site i ∈ {1, . . . ,M} and
time t, and can be seen as a representation of spacings between particles i and i+1 in the TASEP.
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As a result, the TASEP dynamics are translated into ZRP dynamics as follows: If a site i at time t
is occupied by at least one particle, then the topmost particle jumps to the left with rate mi,t = pk(i,t),
where k(i, t) is the position of the ith TASEP particle (see formula (A.1) below) at time t. This jump
occurs regardless of whether the destination site is occupied or not. That is, neither exclusion nor
long range interactions are present, which will be key to establishing the hydrodynamic limit.

The correspondence between TASEP and ZRP states described above is so far only determined
up to rotations of the TASEP lattice, hence we introduce one further variable ξ0,t ∈ {1, . . . ,N} to
trace the position of particle 1. More explicitly, at time t, TASEP particle i is located at site

k(i, t) =
i−1

∑
j=0

ξ j,t + `(i−1) (A.1)

on the TASEP ring. An illustration of this correspondence is given in Figure A.1.

A

B

Figure A.1: Correspondence between inhomogeneous `-TASEP (A) and the ZRP (B). `-TASEP
particles (rods) correspond to ZRP sites, and holes (empty squares) become ZRP particles.

The hydrodynamic limits of the ZRP and TASEP.
The connection between the TASEP and the ZRP has been fruitfully used to derive hydrodynamic
limits for homogeneous systems [SS04, Sch05]. Here we generalize this approach to heterogeneous
lattices and supply appropriate boundary conditions to the PDE, which become necessary when
working with open rather than periodic boundaries.

We start with the master equation associated with the ZRP:

∂tξi,t = mi+1,tzi+1,t−mi,tzi,t , (A.2)
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where zi,t = P(ξi,t > 0) is the probability that site i is non-empty at time t. Our goal is to identify a
PDE that describes the limit of (A.2) under Euler scaling, i.e., on time scale at and spatial scale
ia. Denoting these scaled variables as t again in time and x,y in space such that k = bx/ac and
i = by/ac, and assuming the existence of a continuously differentiable rate function λ such that
λ (x) = pk, the master equation (A.2) becomes

a∂tc(y, t) = λ (x(y+a, t))z(y+a, t)−λ (x(y, t))z(y, t)

= a∂y[λ (x(y, t))z(y, t)]+
a2

2
∂yy[λ (x(y, t))z(y, t)]+O(a3), (A.3)

where c(y, t) and z(y, t) are the continuum limits of ξi,t and zi,t , respectively. Under local stationarity
[KL13], we may replace z in (A.3) using the fugacity-density relation z = c(1+ c)−1 to obtain the
final hydrodynamic limit of the inhomogeneous ZRP as

∂tc = ∂y

(
λ

c
1+ c

)
+

a
2

∂yy

(
λ

c
1+ c

)
. (A.4)

The assumption of local stationarity is essentially justified by the one-block estimates in [CR97], as
long as one can ensure slow enough variation of λ (x(y, t)) in t. In our case, this smooth dependency
is given, since in a small (on the Eulerian scale) time interval N∆t, we expect a particle to perform
O(N∆t) jumps, and whence λ (x(y, t +N∆t))−λ (x(y, t)) ∈ O(∆t).

To derive the corresponding PDE for the TASEP, we use (A.1) to establish the continuum
relation between x,y and t. More precisely,

x(y, t) = ak(i, t) = a
( i−1

∑
j=0

ξ j,t +`(i−1)
)
=
∫ y

0
c(u, t) du− a

2

(
c(y, t)−c(0, t)

)
+`(y−a)+O(a2).

(A.5)
Upon recognizing that particle densities are related by ρ = (c+ `)−1 and changing coordinates
according to (A.5), (A.4) yields the hydrodynamic limit of the TASEP

∂tρ =−∂x [λ (x)ρG(ρ)]− a
2

∂xx [λ (x)G(ρ)]+O(a2), (A.6)

where G(ρ) = 1−`ρ
1−(`−1)ρ .

A.2 Phase diagram analysis
We now use (A.6) to provide a detailed derivation of the phase diagram described in Chapter 2.

Reduction to conservation law.
Solutions of (A.6) converge locally uniformly (under mild conditions on λ , see Section A.2) to
viscosity solutions of the scalar conservation law

∂tρ(x, t) =−∂x[λ (x)H(ρ(x, t))︸ ︷︷ ︸
J(ρ(x,t),x)

], (A.7)
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where H(ρ) = ρG(ρ), which thus determines the phase diagram in the hydrodynamic regime.
Setting ∂tρ = 0 identifies the stationary profiles of the TASEP as distributions satisfying

J (ρ,x) = Jc, (A.8)

where Jc = Jc(α,β ,λ ) is the critical current, set to belong to [0,Jmax], where Jmax is the transport
capacity of the lattice

Jmax = min
x∈[0,1]

max
ρ∈[0,1/`]

J(ρ,x) =
λmin

(1+
√
`)2

. (A.9)

(A.8) has two solutions (see Figure A.2A) of the form

ρ±(x) =
1
2`

+
Jc(`−1)
2`λ (x)

±

√(
1
2`

+
Jc(`−1)
2`λ (x)

)2

− Jc

`λ (x)
, (A.10)

any mixture of which may be a potential attractor picked by the system as t→∞. Deciding precisely
which mixture dominates requires analysis of the characteristic curves.

Solving the characteristic ODE.
Denoting the characteristic curves by xt and ρ t with initial data x0,ρ0, their evolution is described
by the system of ODE [Eva10]

dxt

dt
= λ (xt)H ′(ρ t), (A.11)

dρ t

dt
=−λ

′(xt)H(ρ t), (A.12)

where H ′ and λ ′ respectively denote the derivatives of H and λ with respect to their arguments. The
solutions are easily verified to be

xt = F−1(t) (A.13)

ρ
t = H−1

(
J(ρ0,x0)

λ (xt)

)
(A.14)

as long as J(ρ0,x0) ∈ [0,Jmax]. The form of F follows from formally separating variables:

F(x) =
∫ x

x0

1
λ (y)H ′ ◦H−1(J(ρ0,x0)/λ (y))

dy, (A.15)

while H−1(J(ρ0,x0)/λ (xt)) is understood to be the preimage compatible with ρ0, see Figure A.2A.
For the homogeneous `-TASEP (A.13) and (A.14) depend linearly on each other, giving rise to
straight line characteristic curves (see Figure A.2B). In the more general heterogeneous setting,
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A: Characteristic speeds

0 1

ℓ+ ℓ
ρt 1

ℓ

0

1

 ℓ +1
2

ρ

H

LD HD

dxt

dt
∝ H'(ρt)

D: Characteristics in MC
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C: Characteristic curves for inhomogeneous rates
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Figure A.2: H(ρ) and its effect on characteristic curves. A: The rate-normalized flux H(ρ) =
J(ρ,x)/λ (x) is depicted, with characteristic velocity of xt indicated. If J(ρ0,x0)< Jmax, ρ t stays
within the regions marked LD (blue) or HD (orange), depending on the sign of ρ0− (`+

√
`)−1.

Otherwise, ρ t may cross (`+
√
`)−1 forcing xt to return to its origin x0. B,C: Characteristic curves

starting at lattice start (black solid curves) and end (red solid curves) for different regions of the phase
diagram. Dotted curves represent shock fronts, with colors indicating which characteristic drives
the shock. B: Homogeneous rates give rise to straight line characteristics with speed ∂ρJ(ρ0) and
∂ρJ(ρ1), respectively. C: Inhomogeneous rates produce complicated behavior, with curves slowing
down (and potentially reversing direction) near the troughs (x1 and x2) of λ . D: If J(ρ0,x0)> Jmax
the characteristic xt (left and right colored solid curves) reverse directions at times tc and return to
their origin. At tc, ρ t switches from LD (blue) to HD (orange) (if associated with x0 = 0) or HD to
LD (if associated with x0 = 1, cf. A). The same happens on all associated rarefaction waves (dashed
curves), which interpolate between xt and the stationary shock of xt

max (solid black curve).
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however, more complicated behavior emerges (Figure A.2C). In particular, if J(ρ0,x0)< Jmax, then
for all t ≥ 0,

J(ρ0,x0)

λ (xt)
<

1
(1+
√
`)2

,

so ρ t < 1
`+
√
`

for all t if ρ0 < 1
`+
√
`
, while ρ t > 1

`+
√
`

for all t if ρ0 > 1
`+
√
`
. Hence, the sign of

dxt

dt = λ (xt)H ′(ρ t) remains the same for all t, and any characteristic curve xt starting at the left
lattice boundary x0 = 0 or right lattice boundary x0 = 1 propagates towards the opposite end and
fills the lattice entirely.

On the other hand, if J(ρ0,x0)> Jmax, then J(ρ0,x0)
λ (xmin)

> 1
(1+
√
`)2 , where xmin = argminx λ (x), so

H−1
(

J(ρ0,x0)
λ (xmin)

)
> 1

` . Recalling (A.14) and noting that it is physically not possible to have ρ t > 1
` ,

we conclude that the characteristic curve xt cannot reach xmin. Indeed, it follows from (A.11) and
(A.12) that at some critical time tc before reaching xmin, the characteristic curve xt reverses direction
while ρ t crosses argmaxρ H(ρ) = (`+

√
`)−1, resulting in xt returning to its origin. Figure 2.1E of

Chapter 2 and Figure A.2D illustrate this behavior.

Computing initial densities ρ0.
As a consequence of the above, determining phase transitions in the α-β phase diagram reduces to
establishing regimes in which J(ρ0,x0) exceeds or falls short of Jmax, which in turn is equivalent
to finding an expression for ρ0 in terms of α and β . This is done by considering each lattice end
separately and balancing currents:

The right lattice end x0 = 1:

As described in Chapter 2, ρ1 = ρ(1) decomposes into a sum of two contributions, the periodic part
ρ
+
1 and the troughs ρ

−
1 [CL04]. More explicitly,

ρ1 =
1
`

[
(`−1)ρ−1 +ρ

+
1

]
. (A.16)

Since the current Jc is a conserved quantity of the system, the local currents across the last lattice
site, the second to last lattice site and within the last ` sites must all be the same:

JR := J(ρ1,1) = βρ
+
1 = λ1ρ

−
1 . (A.17)

Solving for ρ1 gives exactly 1
` (1−

β

λ1
). Consequently, JR ≤ Jmax iff

β < β
∗ =

1
2

[
λ1−

`−1
(1+
√
`)2

λmin−

√(
λ1−

`−1
(1+
√
`)2

λmin

)2

− 4λ1λmin

(1+
√
`)2

]
. (A.18)
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The left lattice end x0 = 0:

Computing α∗ is more delicate as the effective jump rate is a combination of entrance rate and
particle exclusion. To bypass this problem, we investigate the current of holes rather than particles,
which is running in the opposite direction. With the loss of the particle-hole symmetry present in
the simple 1-TASEP [DEHP93], the hole density ρh here assumes a more complicated form. It
satisfies its own conservation law given by

∂thρ
h = ∂x[Jh(ρh,x)], (A.19)

where

Jh(ρh,x) = λ (x)ρh 1−ρh

1+(`−1)ρh (A.20)

and th = `t is the time scale of the holes, moving slower as their density is higher. Thus by balancing
hole currents rather than particle currents at x0 = 0, we obtain, noting that the effective exit rate (of
holes) is still α (as ` holes need to accumulate for exiting to happen),

Jh(ρh
0 ,0) = αρ

h
0 . (A.21)

Solving for ρh
0 and using ρh

0 = 1− `ρ0, we obtain ρ0 = α/[λ0 +(`−1)α]. Defining JL := J(ρ0,0),
we obtain α∗ by solving for α, JL = Jmax.

Phase transitions and profiles.
Using the densities obtained from (A.17) and (A.21) in the characteristic curves (A.11) and (A.12)
yields the HD and LD regimes for parameter configurations (α >α∗,β < β ∗) and (α <α∗,β > β ∗),
respectively. To describe the phase transition between HD and LD, we observe that for α < α∗ and
β < β ∗ both characteristic curves move into the lattice, meet, and move along a common shock
with speed

vshock =
JR− JL

ρr−ρl
, (A.22)

where ρl and ρr are the densities left and right of the shock. As ρr−ρl > 0 as long as α < α∗ and
β < β ∗ (cf. Figure A.2A), vshock > 0 if and only if JR > JL. That is, the slower current pushes the
faster one past the lattice boundaries and dominates the stationary behavior of the system. The HD
and LD regimes are thus separated by incoming currents of equal magnitudes

JL =
α(λ0−α)

λ0 +(`−1)α
=

β (λ1−β )

λ1 +(`−1)β
= JR. (A.23)

Lastly, we can use the behavior of characteristic curves for J(ρ0,x0)> Jmax to describe stationary
profiles in the MC regime (α > α∗ and β > β ∗): Each characteristic curve reverses direction at a
critical time tc and returns to its respective lattice boundary, while the density ρ t it carries transitions
from ρ− to ρ+ (on the left characteristic) or ρ+ to ρ− (on the right characteristic). Since the reversal
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of directions occurs strictly before reaching xmin, these characteristics provide density information
on only part of the lattice. The uncovered regions are determined by the simultaneously propagating
rarefaction waves [Eva10], which interpolate between xt and the characteristic curve xt

max associated
with J(ρ0,x0) = Jmax (see Figure A.2D). Together, these observations combine to produce the high
density and low density profiles to the left and right of xmin, respectively, with critical current
Jc = Jmax, as described in Chapter 2.

If λ has exactly one global minimum xmin, this description captures the density profile on the
entire lattice. In the case of multiple global minima at {xmin,1, . . . ,xmin,n} however, it describes
ρ on [0,xmin,1] ∪ [xmin,n,1] only, leaving open fluctuations on the middle segment (xmin,1,xmin,n).
Although unlikely to be encountered in practice, these singular rate functions exhibit interesting
stochastic phenomena: The presence of high densities on the initial interval and low densities
on the terminal one suggest the formation of a coexistence phase in-between. Indeed, the sub-
system restricted to [xmin,1,xmin,n] may be regarded as a TASEP with entrance and exit rates
α = β = λmin/(1+

√
`), positioning it at the triple point of the phase diagram, and computing the

characteristics reveals one or multiple stationary shock fronts in the interior. Such macroscopic
phenomenon in the homogeneous 1-TASEP has previously been associated on the microscopic
level with a shock performing a random walk on the lattice with reflecting boundaries [DLS97].
Numerical simulations seem to locate these shock around local maxima disproportionately often (cf.
Figure A.3), which might reflect dependencies of its diffusivity on λ .

Applicability to discrete lattices

The existence of a continuous limiting rate function λ : [0,1]→ R+ extending the discrete jump
rates pk = λ (ak) is an important ingredient in our treatment of the hydrodynamic limit. That is,
in order for density profiles to be accurately approximated by solutions to the PDE (2.3), the pk
must vary smoothly across lattice sites. Microscopic systems like the translation machinery in cells,
however, are typically subjected to substantial amounts of fluctuations, resulting in far rougher
elongation profiles (see Figure 2.2A). Despite this lack of regularity, the hydrodynamic limit can
still be employed to describe local averages of such a system. More precisely, fixing r ∈ {1, . . . ,N},
we associate with an elongation rate profile {p1, . . . , pN} and the corresponding density profile
{ρ1, . . . ,ρN} their smoothed profiles {p1, . . . , pN−r+1} and {ρ1, . . . ,ρN−r+1}, respectively, obtained
through a moving r-codon average: pk = ∑

k+r−1
i=k pi/r, and ρk = ∑

k+r−1
i=k ρi/r. Moreover, we define

{σ1, . . . ,σN−r+1} to be the steady state density profile under the elongation rates {pk}. If {pk}
extends to a smooth λ : [0,1]→ R+, then since |pk− pk| ∈ O(N−1), {pk} extends to this same
λ , and hence {ρk},{ρk} and {σk} all converge to the solution ρ of (2.3). When {pk} does not
extend to a continuous limit, then {ρk} generally does not either. However, by the same reasoning
that establishes the hydrodynamics for the 1-TASEP with quenched disorder [S+99], {ρk} should
still be close to {σk}, which, due to the greater regularity of {pk}, is well approximated by the
hydrodynamic density profile under {pk}. Thus, {ρk} is ultimately well approximated by the
hydrodynamic limit under {pk}.

To confirm this, we carried out an extensive simulation study on elongation rate profiles obtained
from ribosome profiling data of yeast (see Section A.2 for more details on data). Specifically, we
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Figure A.3: Atypical behaviour of MC branch switching in the presence of two global minima.
Hydrodynamic predictions suggest that branch switching is bound to occur between any two global
minima, but do not provide explicit information about the precise location of these singularities.
Simulations indicate that branch switching is preferentially situated around local maxima. A:
Elongation rates. B: Circles are averaged counts over 5×107 Monte-Carlo steps after 107 burn-in
cycles on a lattice of size N = 2000 with parameters α = β = `= 1 and elongation rate function
shown in A We compare these simulated densities to the theoretical profile obtained from the upper
(red) and lower (black) branch solutions (described in (A.10)).

performed the smoothing {pk}→ {pk} (Figure 2.2A,B), simulated density profiles {ρk} under {pk}
(Figure 2.2A,C), and compared the corresponding smoothed densities {ρk} with the hydrodynamic
prediction under {pk} (Figure 2.2D). A choice of r = 10, which is equal to the particle (ribosome)
size ` in translation and the smallest window size guaranteeing smoothness of {pk} due to the
`-periodicity induced by traffic jams, resulted in excellent agreement both in densities and currents
uniformly across transcripts while maintaining local structure.

Boundary conditions

The computation of initial densities in Section A.2 yielded precise boundary values for x = 0 in
the LD regime and x = 1 in the HD regime, respectively. Using the same principle of balancing
currents, boundary conditions for all locations in the phase diagram can be computed. The results
are listed in Table A.1, which extend previous results obtained in [LC03] (who derived entries (1,1),
(2,2) and (2,3) of Table A.1). More precise information about the boundary layers can be gleaned
from direct analysis of (A.6) rather than its limit (A.7).
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Figure A.4: MC branch switching is determined by locally averaged elongation rates rather
than raw elongation rates (A-D), and the averaging scale depends on the particle size (E,F).
Both the value as well as the location of the minimal elongation rate may differ significantly when
measured with respect to the discrete elongation profile (Panel A) or smoothed elongation profile
(Panel B). Panels C and D demonstrate that our hydrodynamic prediction is very accurate, and
show that MC branch switching is governed by the smoothed elongation profile rather than its
discrete counterpart. Several of the yeast transcripts we analyzed are affected by this phenomenon,
suggesting that a codon’s local neighborhood is a stronger determinant of translation dynamics
than the absolute elongation rate at that site. Whether smoothed elongation rates (as opposed
to unsmoothed rates) describe the translation dynamics more accurately is strongly linked to the
particle size (`) and the long-range correlations (in particular, `-periodicity after traffic jams)
it induces. To demonstrate this point, we performed the same analysis as in Panels A-D using
particles of size `= 1. We found that our hydrodynamic predictions based on the raw, unsmoothed
elongation rates (Panel E) does indeed provide an accurate approximation of simulated densities
(Panel F). In short, the fact that the ribosome occupies 10 codons (i.e., the “particle” size is `= 10)
provides another reason (in addition to alleviating the irregularity of elongation rates that cause
analytical difficulty) for why smoothing the elongation rates is the right thing to do when applying
the hydrodynamic limit of the `-TASEP to study mRNA translation.
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Table A.1: Boundary conditions by phase. Expected densities at the left (x = 0) and right (x = 1)
end boundaries of the lattice.

Phase ρ0 ρ
+
1 ρ

−
1

LD
α

λ0 +(`−1)α
1
β

[
α(λ0−α)

λ0 +(`−1)α

]
1
λ1

[
α(λ0−α)

λ0 +(`−1)α

]
HD

1
`

−
1
`α

[
β (λ1−β )

λ1 +(`−1)β

] λ1−β

λ1 +(`−1)β
1
λ1

[
β (λ1−β )

λ1 +(`−1)β

]

MC
1
`
− 1

`α

[
λmin

(1+
√
`)2

]
1
β

[
λmin

(1+
√
`)2

]
1
λ1

[
λmin

(1+
√
`)2

]

Data processing

Initiation, elongation, and termination rates were obtained from an earlier work [DDS18], where
the rates were estimated from ribosome profiling data of S. cerevisiae for a set of 850 genes selected
based on length and footprint coverage. The initiation and termination rates (α and β ) were taken
directly from that previous work. To compute the elongation rates relevant to the hydrodynamic
limit, we applied a ten-codon moving average to their elongation rates (see Section A.2). To
demonstrate replicability on larger datasets, we took ribosome profiles directly from [WJW14] and
[PRI+14] (combined with polysome profiling from [MLF+04] for normalization purposes, yielding
3098 and 2536 genes, respectively), smoothed them by moving averages of length ` = 10, and
inverted the solution of (2.3) to obtain initiation rates, termination rates, and smoothed elongation
profiles.

A.3 Agreement between theoretical prediction and simulation
In order to empirically verify our theoretical justification of the hydrodynamic limit, we simulated
ribosome profiles and currents for all 850 S. cerevisiae genes studied in [DDS18]. For each gene,
we considered four conditions: LD, HD, MC, and under the actual initiation and termination rates
inferred in [DDS18]; these four conditions correspond to different rows in Figure A.5. Absolute
errors in ribosome density profiles and currents (first and last columns of Figure A.5) are accurately
predicted across all gene lengths—with a slight increase in prediction accuracy for longer genes (as
expected, since the hydrodynamic limit becomes exact in the infinite length limit)—and across all
regimes of the phase diagram. Due to two or more bottlenecks occasionally competing on the same
transcript (i.e., when |{x : λ (x) = λmin}|> 1, cf., last paragraph of Section A.2), error distributions
in MC exhibit heavier tails than in LD and HD. However, overall these outliers do not affect the
quality of our theoretical prediction significantly. In particular, correlations between simulated and
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theoretical transcript-by-transcript quantities—ribosome density profiles and mean occupancies
(middle column), as well as currents (last column)—are consistently high, demonstrating good
predictive power of our hydrodynamic framework.

In HD, predicted and simulated ribosome density profiles had quite low mean squared differences
(second row, first column of Figure A.5), but poor correlation (histograms in second row, second
column). This seemingly contradictory result can be explained by typical fluctuations in theoretical
density profiles being of the same order as typical fluctuations in the random noise (mean ratio
of fluctuations = 0.037). That is, generic HD profiles are close to flat, allowing uncorrelated
site-by-site noise to substantially reduce overall correlations.

Quantification and statistical analysis
To establish significance of a subset X of genes with respect to a statistic f (e.g., α,J or xmin)
relative to a background set Y , we performed hypothesis testing on the median m f of f over samples
in X . Under the null distribution of X being drawn uniformly at random, the probability of this
test statistic exceeding m equals the probability of a hypergeometric variable with parameters
N = |Y | ,K = 2 |Ym| ,n = |X |, where Ym is the set of genes in Y whose f exceeds m, exceeding
b|X/2|c. This p-value can be computed explicitly. Sets of ribosomal and stress response genes were
taken from the Saccharomyces Genome Database [CHA+11].
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Figure A.5: Comparison between simulation and theoretical prediction of our hydrodynamic
approximation. Errors in ρ (first column) and J (third column) are low for all gene lengths, for
different regimes (first three rows), and for biologically relevant initiation and termination rates (last
row) inferred in [DDS18]. Moreover, ρ and mean ribosome occupancies ρ correlate well between
simulated data and our hydrodynamic predictions (middle column), as do currents (third column).
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Figure A.6: Inferences on the efficiency of yeast’s translational system are consistent across
datasets. To test the replicability of our analysis using the previously inferred elongation rates in
[DDS18] and to exclude any possible systematic biases, we repeated our inference on elongation
rates obtained by inverting (2.3) on two independent ribosome profiling datasets: One compiled
by [WJW14] (A, C, total of 3098 genes), and one by [PRI+14] (B, D, total of 2536 genes). The
clear localization of genes within LD and at the LD/MC boundary, together with a characteristic
ramp-shaped distribution of the minimum elongation location remain apparent, lending support to
our proposed design principles holding true not only on the 850 genes analyzed in Chapter 2, but
more generally as a framework governing translation efficiency.
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Appendix B

Supporting Information: Chapter 3

B.1 Methods
Below we present the mathematical details that justify our design choices in formulating RNA-Sieve.
For the reader interested in more high-level guidance on when to use RNA-Sieve and what potential
preprocessing steps to take, we compiled Table B.3 as an accessible overview.

Notation
To ease parsing of technical equations, we briefly introduce our notation here. We generally refer to
vector quantities with boldfaced lowercase letters, while plain lower- and uppercase symbols are
reserved for scalars (or scalar functions) and matrices, respectively. The kth column vector of a matrix
A =

(
ai j
)

i j is written as aaak, and inner products between vectors vvv,www are typically denoted 〈vvv,www〉.
To distinguish observed, random quantities from their underlying deterministic, ground truth objects
we add tildes to the former and asterisks to the latter; e.g., b̃bb are observed bulk gene expressions,
while bbb∗ are the true bulk gene expression means. Estimates of latent parameters carry hats; e.g., α̂αα

is the vector of mixture weights inferred by our deconvolution procedure. Finally, we denote by [n]
the set of n elements {1, . . . ,n}, and by ∆K−1 =

{
x ∈ RK : ‖x‖1 = 1 and xk ≥ 0 for all k

}
the K−1

dimensional simplex.

Mathematical Model
We assume that for each gene g ∈ [G] and cell type k ∈ [K], there exists a distribution νg,k describing
the expression of gene g in cell type k. As multiple cell types comprise any given organ/tissue,
the expression of gene g in a cell drawn at random from a organ/tissue is governed by the mixture
distribution

ρg =
K

∑
k=1

α
∗
k νg,k, (B.1)
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where ααα∗ = (α∗k )k∈[K] ∈ ∆K−1 contains the proportions of each cell type in the organ/tissue of
interest. Despite the a priori infinite-dimensional setting, if G > K and ρg, {νg,k}k∈[K] are fully
known and sufficiently distinct, the convex combination of (B.1) immediately implies that ααα∗ can
be recovered as the unique solution of the finite-dimensional problem f (ν1,1) . . . f (ν1,K)

...
...

...
f (νG,1) . . . f (νG,K)


︸ ︷︷ ︸

M

·

α1
...

αK


︸ ︷︷ ︸

ααα

=

 f (ρ1)
...

f (ρG)


︸ ︷︷ ︸

bbb

, (B.2)

where f is any suitable linear function on the space of probability distributions on R (i.e., f (∑ j w jµ j)=

∑ j w j f (µ j) for any convex combination of distributions µ j). Natural f to consider include point
evaluations at x ∈ R; i.e., f (ν) = Fν(x), where Fν denotes the cumulative distribution function
(CDF) of ν , or its ith moments f (ν) =

∫
xiν(dx), both of which enjoy a wealth of statistical theory

and proposed estimators.
In experimental settings, exact gene expression distributions are not accessible and instead must

be estimated, so utilizing easily and robustly inferrable f becomes crucial. In addition to not having
direct access to {ρg}g∈[G], any analysis is further complicated by the fact that bulk sequencing only
yields gene expression levels over whole samples and not for particular cells or cell types. That
is, the output is effectively a random variable Xg = ∑

n
i=1 Xg,i where Xg,i

iid∼ ρg gives the measured
expression of gene g aggregated over the n ∈ N individual cells comprising the sample. It is thus
expedient to choose an f in (B.2) that is not only linear on the space of probability distributions, but
also for sums of random variables. The essentially unique such f is the expectation f (ν) = EX∼νX ,
which turns (B.2) into

Mααα =
bbb
n
, where mg,k = EY∼νg,kY and bg = EXg. (B.3)

Incorporating the fact that we only observe noisy bulk samples Xg instead of bg directly results in

b̃bb
n
=

(bbb+ εbbb)

n
= Mααα +

εbbb

n
, (B.4)

where (εbbb)g ∼ Xg−bg = ∑
n
i=1(Xg,i−bg/n)∼N (0,n ·σ2

g (M,ααα,S)) for large n by the central limit
theorem (CLT), with σ2

g (M,ααα,S) := Var(ρg) as a function of M,ααα , and S =
(
sg,k
)

g,k := Var(νg,k).

Incorporating the dependence of σ2
g on ααα: If the dependence of σ2

g on ααα is ignored, (B.4) lends
itself to a simple (weighted) non-negative least squares scheme solving

Mααα =
b̃bb
n
. (B.5)

This yields a solution α̂ααLS of roughly ‖α̂ααLS‖1 ≈ 1 that simply requires re-scaling to fit onto the
simplex. This together with data-driven modifications is the approach pursued in [DTU+20,
TDC+19, WPS+19], where it is argued that (B.5) outperforms previous methods.
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The first improvement of RNA-Sieve over previous approaches stems from explicitly incorpo-
rating the dependence of σ2

g on ααα . More concretely, we first make explicit this ααα-dependence by
computing

σ
2
g = σ

2
g (M,ααα,S) = Var(ρg) = EX∼ρgX2−

(
EX∼ρgX

)2

=

(
K

∑
k=1

α
∗
kEY∼νg,kY

2

)
−b2

g

=

(
K

∑
k=1

α
∗
k

[
sg,k +m2

g,k

])
−b2

g. (B.6)

The likelihood of observing data b̃bb then follows straightforwardly from the central limit theorem:

Pααα,n
M,S

(
b̃bb ∈ d ppp

)
=

G

∏
g=1

1√
2πnσ2

g (M,ααα,S)
exp

{
−[pg−n(Mααα)g]

2

2nσ2
g (M,ααα,S)

}
. (B.7)

Accounting for uncertainty in the design matrix: The above assumes exact knowledge of the
individual distributions νg,k (or rather their expectations mg,k), which is implausible in experi-
mental settings. Instead, M needs to be estimated from data through some estimator M̃, which
we conveniently take to be the sample mean of expression across cells within each cell type,
m̃g,k =

1
ck

∑
ck
i=1Ci

g,k, where Ci
g,k

iid∼ νg,k, and ck denotes the number of single cells of cell type k. With
this additional correction, (B.4) becomes

b̃bb
n
= M̃ααα +

εbbb

n
and M̃ = M+ εM (B.8)

where εM is a matrix of entries (εM)g,k independently following N (0,sg,k/ck) distributions. The
second major difference between RNA-Sieve and existing tools (especially those based on least-
squares methods) is the correction of the least-squares-type likelihood (B.7) by this stochasticity in
the design matrix:

Pααα,n,ccc
M,S

(
b̃bb ∈ d ppp,M̃ ∈ dO

)
=

G

∏
g=1

1√
2πnσ2

g (M,ααα,S)
exp

{
−[pg−n(Mααα)g]

2

2nσ2
g (M,ααα,S)

}

× ∏
g∈[G],k∈[K]

1√
2πsg,k/ck

exp
{
−(og,k−mg,k)

2

2sg,k/ck

}
. (B.9)

Our method utilizes the likelihood shown in (B.9), the suitability of which depends on a few
implicit assumptions that are worth examining. The first is that the large number of cells assayed in
an experiment permits us to use asymptotic theory and apply the classical CLT. As a result, we can
write down a likelihood for our observations using normal distributions as long as Var(νg,k)< ∞,



APPENDIX B. SUPPORTING INFORMATION: CHAPTER 3 96

which is true since gene expression profiles are necessarily bounded. Secondly, we suppose
that the errors arising from estimating bbb and M are independent. This is appropriate as the bulk
and single-cell experiments are performed separately. We additionally presume that expression
levels in different genes are independent, as are those in different cells. It is unclear whether the
latter is completely true in practice, though there is little evidence to the contrary. On the other
hand, expression levels across genes within samples (either bulk or individual cells) are liable to
be somewhat dependent due to expression co-regulation and the nature of the sampling process
performed in RNA-seq. Given the large number of genes assayed, the latter co-dependence is apt
to be fairly small. Meanwhile, co-expression estimation in single cells remains an open problem
independent of deconvolution tasks, and so is not accounted for in RNA-Sieve. Once correlation
structure is known however, it is straightforwardly incorporated into the likelihood we propose.

Joint deconvolution of multiple bulk samples: If it is known that multiple bulk gene expression
vectors share the same constituent cell type expression profiles, we can gain statistical strength
and decrease the computational burden by inferring their mixture proportions jointly rather than
individually. Assuming statistical independence of the bulk sample observations, we must simply
augment the likelihood in (B.9) by including the N−1 additional mixtures in A = (ααα1, . . . ,αααN) ∈
RK×N , B̃ = (b̃bb1, . . . , b̃bbN) ∈ RG×N and nnn = (n1, . . . ,nN):

Pααα,n,ccc
M,S

(
B̃ ∈ dP,M̃ ∈ dO

)
=

N

∏
b=1

G

∏
g=1

1√
2πnbσ2

g (M,αααb,S)
exp

{
−[(pppb)g−nb(Mαααb)g]

2

2nbσ2
g (M,αααb,S)

}

× ∏
g∈[G],k∈[K]

1√
2πsg,k/ck

exp
{
−(og,k−mg,k)

2

2sg,k/ck

}
. (B.10)

This increase in power depends solely on the statistical independence of distinct bulk samples
rather than their respective cell type compositions. In fact, for the purposes of denoising the
reference M, samples of dissimilar compositions are preferable because they provide non-redundant
information. Conversely, bulk samples exhibiting heterogeneity in gene expression patterns (e.g.,
through differential expression) without corresponding reference matrices M amount to model
misspecification, and thus may negatively impact inference. This impediment is information-
theoretically unavoidable and therefore a challenge for all deconvolution methods. In our particular
applications we did not find a strong effect of sample heterogeneity on our results; for instance,
simultaneous deconvolution with mice of different ages yielded highly similar results to when
we stratified by age. In the case of cell types with strong expression differences across different
phenotypes, this may not hold, however.

Data Pre-processing Procedure
Due to the well-known influence of technical variability in scRNA-seq data, we suggest that users
of RNA-Sieve perform their own quality control filtering of cells and genes prior to running our
software in addition to their preferred normalization. Given the potential complexity of these
patterns in general, we feel that manual cleaning is more reliable than automated procedures.
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Nonetheless, we implement a simple, largely optional, cell filtering and normalization scheme to
ensure the accuracy of results when the user has chosen not to perform their own quality control.
Our procedure attempts to do the following:

1. Remove low-quality cells with anomalously low or high library sizes (≥ 3 median absolute
deviations away from the median value of total number of reads per cell in each cell type)

2. Normalize read counts in cells (re-scale reads so that all cells have the median number of
reads from across all cells);

3. Identify and remove cells which may be mislabeled or are simply extremely different from
other cells with the same cell type label (≥ 3 median absolute deviations away from the
median value of inter-cellular pairwise distances in each cell type)

4. Identify and retain genes which are expressed sufficiently often (≥ 20% non-zero measure-
ments in at least one cell type).

We note that the first three steps are optional whereas step 4 is necessary to remove lowly expressed
genes, whose presence may result in poor optimization outcomes due to creating biologically
implausible expressions (a non-zero bulk expression can never be realized as a convex combination
of zero or almost zero, low variance, single cell expressions).

We implemented two additional layers of gene filtering which we found improved robustness to
cross-protocol differences in reference and bulk gene expression measurements. The motivation
behind these steps is as follows:

1. By virtue of being a convex combination of expression levels from different cell types (under
our generative model (B.9)), a gene’s true expression bg must necessarily lie between its
smallest and largest corresponding expressions mg,k across cell types k ∈ [K]. That is,

bg ∈
[

min
k∈[K]

mg,k,max
k∈[K]

mg,k

]
, (B.11)

which naturally motivates a filtering scheme based on violations of these constraints. Of
course, these inequalities do not necessarily hold in the presence of observational noise, which
may push a gene’s bulk expression outside of its theoretical extremes. However, a stochastic
version of (B.11) persists in that

Pααα,n,ccc
M,S

[
δ

(
b̃g,

[
min
k∈[K]

m̃g,k,max
k∈[K]

m̃g,k

])
≥ t
]

(B.12)

decays in t with sub-Gaussian tails (with constants depending on
{

σg,k
}

k∈[K]
), where δ (p,A)=

infa∈A |p− a| is the shortest distance of the point p to a set A. It is thus plausible to filter
out all genes for which (B.12) is sufficiently small (in principle, computing the precise tail
bounds (B.12) requires access to the true parameter ααα , which prior to deconvolution is not
available; however, reasonable upper bounds of (B.12) can be calculated independently of ααα).
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2. Gene expression profiles may experience (occasionally drastic) shifts when measured with
distinct protocols. For example, mean and variance estimates of some gene expression levels
may correlate little, or even not at all, across data generated using Smart-Seq2, UMI-based,
or bulk RNA-seq technologies. To identify and remove these genes, we resort to a handful
of empirically effective filtering steps. Specifically, we remove a gene if it presents as an
outlier (as measured by median absolute deviations from the median) in any of the following
summary statistics:

TM(g) = max
k∈[K]

m̂g,k, TS(g) = max
k∈[K]

ŝg,k,

RS/M(g) = max
k∈[K]

ŝ
1
2
g,k

m̂g,k
= max

k∈[K]
cV (Cg,k), Rbbb/M(g) = min

k∈[K]

b̂g

m̂g,k
, (B.13)

where cV (Cg,k) denotes the coefficient of variation associated with expression profiles of gene
g in cell type k. While the choice of these summary statistics was primarily guided by empiri-
cal considerations, they do reveal intuitively plausible and previously observed patterns: TM,TS
and RS/M reflect the fact that severe over- or under-expression, or high degrees of variability
in expression are not well-preserved across protocols, whereas Rbbb/M(g) = b̂g/maxk∈[K] m̂g,k
directly assesses any abnormal conversion factors between bulk and reference protocols.

In our experience, applying these filters based on (B.12) and (B.13) on top of the basic cell filter
retains between 3,000−12,000 genes on which to perform the deconvolution task.

Optimization and Estimation
We estimate ααα , the cell type proportions for a given bulk sample, using the MLE which arises
from maximizing (B.9). Given the number of free parameters (GK +K in total, corresponding to
M,ααα , and n) and structure of the likelihood, this is non-trivial, with standard optimization schemes
commonly failing or returning sub-optimal solutions. On its face, the shape of (B.9) is reminiscent
of loss functions appearing in so-called Total Least Squares formulations (see, e.g., [GVL80]),
whose minimizers can typically be found through SVD-decompositions. However, the presence of
entry-wise uncertainties εM and the dependence of εbbb on ααα render such spectral tools inapplicable
to our setting; indeed, the corresponding linear algebraic problem consists of finding low-rank
approximations to the concatenation of M and bbb in a Frobenius norm with ααα-dependent weights,
for which no satisfactory theory exists. We thus propose an alternating maximization scheme which
iteratively estimates and updates ααα , M, and n (and consequently σ2

g ) via a combination of quadratic
programming and gradient descent. Despite the increased computational burden relative to W-NNLS
or similar techniques, we find that convergence times remain reasonable, requiring between 15-40
minutes on typical data sets of 10,000+ genes and 6 cell types using a modern laptop computer.
We sketch an overview of our optimization procedure below in Algorithm 1 (where Pααα,n,ccc

M,S|σσσ2(M′,ααα ′,S)

refers to (B.9) with σσσ2(M,ααα,S) kept fixed at σσσ2(M′,ααα ′,S)).
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Algorithm 1: Find MLE of ααα

Data: Single cell expression vectors {ṽvvk,i}k∈[K],i∈[ck] ⊂ RG, bulk gene expression vector
b̃bb ∈ RG

Result: Mixture proportions {α̂k}k∈[K] of cell types in the bulk, number of cells n̂ ∈ R+ in
bulk, mean expression M̂ ∈ RG×K of cell types

1 begin
2 m̃g,k←− 1

ck
∑

ck
i=1(ṽg)k,i, sg,k←− 1

ck
∑

ck
i=1
(
(ṽg)k,i− m̃g,k

)2

3 ααα0←− argmin
ααα∈RK

+
‖M̃ααα− b̃bb‖2

2, n0←− ‖ααα0‖1, ααα0←− ααα0/‖ααα0‖1 M0←− M̃

4 while Pααα j+1,n j+1,ccc
M j+1,S

(
dM̃,db̃bb

)
−Pααα j,n j,ccc

M j,S

(
dM̃,db̃bb

)
> δ do

5 M j+1←− argmaxM Pααα j,n j,ccc
M,S|σσσ2(M j,ααα j,S)

(
dM̃,db̃bb

)
6 ααα j+1←− argmaxααα∈∆K−1 Pααα,n j,ccc

M j+1,S|σσσ2(M j+1,ααα j,S)

(
dM̃,db̃bb

)
7 n j+1←− argmaxn∈R+ P

ααα j+1,n,ccc
M j+1,S

(
dM̃,db̃bb

)
8 end
9 (ααα`,M`,n`)←− Last (ααα j,M j,n j) iterate returned in line 7

10 while Pααα`+1,n`+1,ccc
M`+1,S

(
dΩ̃,db̃bb

)
−Pααα`,n`,ccc

M`,S

(
dΩ̃,db̃bb

)
> δ do

11 M`+1←− argmaxM Pααα`,n`,ccc
M,S

(
dΩ̃,db̃bb

)
12 ααα`+1←− argmaxααα∈∆K−1 Pααα,n`,ccc

M`+1,S

(
dΩ̃,db̃bb

)
13 n`+1←− argmaxn∈R+ P

ααα`+1,n,ccc
M`+1,S

(
dM̃,db̃bb

)
14 end
15 (α̂αα,M̂, n̂)←− Last iterate returned in line 13
16 α̂αα ←− argminααα∈∆K−1 ‖M̂ααα− b̃bb‖2

σσσ2(M̂,α̂αα,S)

17 Return (α̂αα,M̂, n̂).
18 end

Implementations of Algorithm 1 are currently available in Python and Mathematica. While
these implementations differ slightly, they both agree on the following fundamental design choices:

1. Instead of maximizing Pααα,n,ccc
M,S , we minimize − logPααα,n,ccc

M,S , rendering lines 5 and 6 as quadratic
programs which can be solved efficiently.

2. Lines 7 and 13 can be solved explicitly by differentiating (B.9) and finding the zeros of the
resulting algebraic fractions in n. Thus, these steps do not require any explicit optimization
scheme.

3. The optimizations in lines 11 through 13 proceed via gradient descent (or a variation thereof),
and so could possibly require long runtimes. However, the coarser maximization (minimiza-
tion, cf. item 1) in lines 5–7 typically improves the objective function to such an extent that
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only two or three more iterations are required. Moreover, both sets of optimizations are
amenable to parallelization.

4. Algorithm 1 straightforwardly generalizes to the setting of jointly inferring mixture propor-
tions in an arbitrary number N of bulk samples (cf., the remark in Section B.1). Both of our
implementations support this generalized deconvolution.

Lastly, we note that although the alternating optimization in lines 5–7 is not guaranteed to converge,
the second round of maximization in lines 11–13 is a proper coordinate descent and is therefore
guaranteed to reach a local minimum.

Confidence Intervals
As indicated in Section 3.2, the explicit generative modeling of (B.9) allows us to not only compute
precise point estimators of ααα and n, but also to quantify this precision through confidence regions.
More concretely, since our model is well-behaved in the sense of satisfying all assumptions in, say,
Theorem 9.14 of [Kee11], we expect our estimates α̂αα and n̂ to be distributed normally around the
true configuration ααα∗,n∗ with covariance matrix given by the inverse of the Fisher information
Iccc
M,S(ααα

∗,n∗)≈ Iccc
M̂,S

(α̂αα, n̂). Given such asymptotic normality, it is straightforward to construct both

marginal confidence intervals (from the diagonal entries of
[
Iccc
M̂,S

]−1) as well as K-dimensional
confidence regions around α̂αα . Generically, there are infinitely many possibilities for choosing
such confidence regions from Iccc

M̂,S
(α̂αα, n̂), which we acknowledge by providing the entire (inverse)

Fisher information to the user to allow computation of the confidence volume of their choosing.
One option is to calculate the canonical (that is, Lebesgue volume-minimizing) q-confidence
region Cq = {ααα ∈ RK−1

+ : ∑
K−1
k=1 ak ≤ 1,‖ααα − α̂αα‖2

Iccc
M̂,S
≤ F−1

χ2
K−1

(q)}, where ‖vvv‖Σ = 〈vvv,Σ−1vvv〉 is the

Mahalanobis norm of vvv associated with covariance matrix Σ, F
χ2

K−1
denotes the CDF of a χ2 variable

with K−1 degrees of freedom, and where we reparameterize ααα in order to account for the simplex
constraint in our computation of the Fisher information matrix; this option is included as the default.

Confidence intervals derived in this manner are, as a consequence of the aforementioned
Theorem 9.14 in [Kee11], necessarily well-calibrated if data adhere to our generative model
(B.9). As we have observed in Section A.2, this may not hold when the use of different protocols
in the reference and bulk experiments induce significant distributional shifts. Nonetheless, we
can still provide conservative, yet well-calibrated, confidence regions generalizing the Fisher
information Iccc

M̂,S
(α̂αα, n̂) to the Godambe information matrix Gccc

M̂,S
(α̂αα, n̂) of the data [God60]. If

protocol mismatches result in the true generating distribution Q of the data not lying within
our model family M =

{
Pααα,n,ccc

M,S

}
M,ααα,n∈Θ

, where Θ ⊂ RG·K+(K−1)+1 is the space of all possible

parameter configurations, then Gccc
M̂,S

(α̂αα, n̂) describes the Gaussian fluctuations of (α̂αα, n̂) around

the relative-entropy-projection of Q onto M ; i.e., (αααπ ,nπ ,Mπ) = argminααα,n,M∈Θ KL(Q ‖ Pααα,n,ccc
M,S ),

where KL(ν ‖ µ) denotes the relative entropy (also known as Kullback-Leibler divergence) between
two probability distributions ν and µ . Thus confidence regions for α̂αα based on Gccc

M̂,S
(α̂αα, n̂) are still
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well-calibrated, assuming that ααα∗ ≈ αααπ , which is plausible given that distributional shifts induced
by protocol differences appear to affect expression means (the entries of M) primarily through
global scaling. In the absence of distributional mismatches, the Godambe information matrix
Gccc

M̂,S
(α̂αα, n̂) automatically collapses to the (empirical) Fisher information matrix Iccc

M̂,S
(α̂αα, n̂), and so

our confidence region estimation proceeds through Gccc
M̂,S

(α̂αα, n̂) in both within- and cross-protocol
settings by default, though can be adjusted manually if so desired. Occasionally, especially when
constituent cell types are closely related to each other, the resulting covariance matrices may be
nearly singular, in which case their inversion poses computational difficulties. To sidestep potential
numerical instabilities, we subsample genes according to their incurred residual values. This reduces
the probability of collinearities and produces more well-behaved confidence intervals. Simulations
both across and within protocols confirm the utility of our confidence regions, and therefore the
validity of the αααπ ≈ ααα∗ assumption, assessed in this manner (cf. Figure 3.7). Namely, our estimated
95%-confidence intervals contain the true cell type proportions 96.7% and 91.8% of the time in the
Tabula Muris Senis pseudobulks, 95.8% of the time in the Monaco et al. bulk samples, and 90.3%
of the time in the Newman et al. bulk samples.

A Note on n

One of the parameters inferred by our model is n, the number of cells in the bulk sample. This
parameter is accurate and physically meaningful in within-protocol deconvolutions, or cross-
protocol experiments where relative amplification factors are explicitly known. However, it loses
interpretability when the relative scales across protocols are unclear, and so we sought to verify
that both our inferred proportions and computed confidence intervals are robust even in such
situations. Numerical experiments in which we re-scaled the bulk samples to artificially manipulate
the inference of n showed no degradation in performance over a wide range of values, providing
additional support beyond the observed high-quality results in both in silico and real bulk cross-
protocol deconvolutions (Figure B.10). Moreover, theoretical computations suggest a fairly weak
dependence of confidence intervals on n, which are instead driven primarily by the total number of
genes available for deconvolution.

Comparison of runtimes
We found that all considered deconvolution algorithms could be successfully run in no more than
a few hours on a laptop computer for the data sets we considered. RNA-Sieve runtimes ranged
from 15-40 minutes, as did those of Scaden. Because of the straightforward manner in which we
construct the signature and variance matrices for cell types, RNA-Sieve’s runtime is not sensitive
to the size of the scRNA-seq reference. This is not the case for DWLS, whose runtime we found
grew quickly with the size of the data set due to the model fitting involved in its signature gene
inference procedure. For most cases, DWLS runtimes were also in the 15-40 minute range, but for
some of the larger single-cell reference panels with many cell types, the runtime could extend to a
few hours. CIBERSORTx typically ran in 5-15 minutes. The remaining methods (SCDC, MuSiC,
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Bisque, and NNLS) were quite fast, with runtimes of no more than a couple of minutes, though
SCDC and MuSiC may take a few extra minutes if their tree-based deconvolution modes are used.

Benchmarking procedures
We employed two distinct approaches to benchmark computational deconvolution methods. The
first, the construction of so-called “pseudobulk" experiments, is a common strategy which aggregates
scRNA-seq measurements across cells in order to construct gene expression mixtures which we treat
as bulk samples with known ground-truth cell type proportions. For this task, we used data from the
Tabula Muris Senis Consortium which covers many organs/tissues and cell types in two different
single-cell experimental protocols–Smart-Seq2 and 10x Genomics Chromium. Specifically, we
utilized bladder, kidney, large intestine, limb muscle, liver, lung, mammary gland, marrow, pancreas,
skin, thymus, tongue, and trachea in these in silico experiments (see Table B.1). For each tissue,
four different deconvolutions were performed. For cross-protocol deconvolutions, one in which
the reference came from Smart-Seq2 data with 10x Chromium pseudobulk and one in the reverse
configuration. For within-protocol deconvolutions, the reference and pseudobulk were built using
(non-overlapping) cells from the same protocol. For all pseudobulk deconvolution scenarios, a
single reference set and pseudobulk was constructed. All eligible cells from each protocol were used.
For scRNA-seq data from Tabula Muris Senis, the cell filtering procedure described in Section A.2
was applied.

Our second approach exploited the availability of bulk RNA-seq data sets with knowledge about
true cell type proportions. For the PBMC and neutrophil scRNA-seq data sets, cells were filtered
after manual inspection. Due to the large number of neutrophils in the available data set, 250 cells
were randomly sampled from one individual for use with the Newman et al. reference and 1250
across three individuals were randomly sampled for use with the 10x Genomics reference. We
considered four different scenarios:

1. Breast cancer and fibroblast cell lines and mixture from [DTU+20];

2. Reference PBMCs and neutrophils from [NSL+19] and [XSW+20], respectively, with bulk
whole blood from [NSL+19];

3. Reference PBMCs and neutrophils from 10x Genomics and [XSW+20], respectively, with
bulk whole blood from [MLX+19];

4. Pancreatic islets from [XKO+16] and [FVL+14].

The same data were used for all algorithms in each deconvolution, and all were run as described
in their respective tutorials using default settings unless otherwise noted. When MuSiC was run,
NNLS results were taken from MuSiC’s implementation; otherwise, the DWLS implementation
was used. The corresponding scRNA-seq and bulk RNA-seq data files will be available at the Song
Lab GitHub repository: https://github.com/songlab-cal/rna-sieve.

We chose to utilize the L1, L2, and L∞ distances, in addition to the Kullback-Leibler (KL)
divergence, as our performance metrics for their ease of interpretation and ability to capture different

https://github.com/songlab-cal/rna-sieve
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aspects of algorithm performance. While the L1 and L2 distances, which we further average across
cell types, are related to common notions of error such as the mean absolute deviation and root
mean square error, the L∞ distance measures the largest difference between true and inferred values
across all cell types and quantifies the worst-case performance in a deconvolution task. The KL
divergence is a popular manner by which to compare probability distributions and so fits nicely
with the deconvolution setting in which cell type proportions can be thought of as the sampling
probability for an individual cell. It is also more sensitive to rarer cell types than the other considered
metrics. We specifically chose to compute KL(α̂αα ‖ ααα∗) because it corresponds to the false positive
rate when testing H0 : ααα = ααα∗ against H1 : ααα = α̂αα through a likelihood ratio test, and so is more
relevant than KL(ααα∗ ‖ α̂αα).
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B.2 Supporting Tables and Figures

Organs # cell types Cell types
Bladder 2 bladder cell, bladder urothelial cell
Kidney 7 B cell, epithelial cell of proximal tubule, fenestrated cell,

kidney collecting duct principal cell, kidney loop of Henle
ascending limb epithelial cell, macrophage, T cell

Large intestine 3 enterocyte of epithelium of large intestine, epithelial cell of
large intestine, intestinal crypt stem cell

Limb muscle 6 B cell, endothelial cell, macrophage, mesenchymal stem cell,
skeletal muscle satellite cell, T cell

Liver 5 B cell, endothelial cell of hepatic sinusoid, hepatocyte, Kupf-
fer cell, myeloid leukocyte

Lung 12 adventitial cell, B cell, bronchial smooth muscle cell, CD4+
αβ T cell, CD8+ αβ T cell, classical monocyte, fibroblast
of lung, myeloid dendritic cell, neutrophil, natural killer cell,
non-classical monocyte, vein endothelial cell

Mammary gland 3 basal cell, luminal epithelial cell of mammary gland, stromal
cell

Marrow 9 granulocyte, granulocytopoietic cell, immature B cell, late
pro-B cell, macrophage, megakaryocyte-erythroid progenitor
cell, naive B cell, precursor B cell, promonocyte

Pancreas 3 pancreatic A cell, pancreatic B cell, pancreatic D cell
Skin 2 basal cell of epidermis, epidermal cell
Thymus 2 DN4 thymocyte, thymocyte
Tongue 2 basal cell of epidermis, keratinocyte
Trachea 5 basal epithelial cell of tracheobronchial tree, chondrocyte,

endothelial cell, fibroblast, macrophage

Table B.1: Cell types for each organ in pseudobulk experiments. These were the cell types used
in pseudobulk experiments with the Tabula Muris Senis data. The order in which they are listed
here matches their order in any figures based off of these experiments.
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(a) Smart-seq2 reference and 10x Chromium pseudobulk

RNA-Sieve Bisque CIBERSORTx DWLS MuSiC NNLS Scaden SCDC
Bladder 0.081 0.047 0.082 0.072 0.106 0.378 0.099 0.113
Kidney 0.095 0.109 0.028 0.055 0.110 0.249 0.062 0.083
Large intestine 0.076 0.082 0.300 0.123 0.108 0.226 0.042 0.136
Limb muscle 0.199 0.108 0.037 0.039 0.199 0.310 0.030 0.144
Liver 0.137 0.129 0.030 0.054 0.139 0.340 0.076 0.027
Lung 0.056 0.078 0.071 0.064 0.056 0.149 0.057 0.029
Mammary gland 0.020 0.258 0.072 0.029 0.047 0.371 0.083 0.058
Marrow 0.061 0.101 0.071 0.073 0.070 0.166 0.072 0.049
Pancreas 0.011 0.029 0.050 0.030 0.067 0.130 0.059 0.067
Skin 0.019 0.270 0.048 0.123 0.098 0.462 0.182 0.128
Thymus 0.017 0.050 0.098 0.331 0.127 0.482 0.030 0.120
Tongue 0.016 0.289 0.068 0.293 0.047 0.448 0.217 0.017
Trachea 0.108 0.097 0.166 0.165 0.142 0.252 0.110 0.154

(b) 10x Chromium reference and Smart-seq2 pseudobulk

RNA-Sieve Bisque CIBERSORTx DWLS MuSiC NNLS Scaden SCDC
Bladder 0.002 0.066 0.059 0.085 0.156 0.044 0.167 0.261
Kidney 0.082 0.045 0.036 0.028 0.113 0.173 0.044 0.046
Large intestine 0.117 0.158 0.089 0.152 0.186 0.448 0.066 0.007
Limb muscle 0.137 0.132 0.037 0.013 0.122 0.142 0.102 0.177
Liver 0.107 0.056 0.032 0.050 0.126 0.164 0.052 0.070
Lung 0.092 0.069 0.029 0.021 0.130 0.153 0.074 0.045
Mammary gland 0.009 0.244 0.062 0.013 0.160 0.228 0.196 0.157
Marrow 0.070 0.110 0.124 0.097 0.113 0.147 0.111 0.121
Pancreas 0.121 0.085 0.137 0.054 0.023 0.117 0.111 0.173
Skin 0.037 0.191 0.162 0.050 0.168 0.676 0.109 0.192
Thymus 0.002 0.110 0.114 0.208 0.298 0.317 0.036 0.275
Tongue 0.006 0.254 0.022 0.143 0.672 0.672 0.191 0.672
Trachea 0.092 0.098 0.067 0.080 0.166 0.151 0.105 0.153

Table B.2: Deconvolution errors for different algorithms in pseudobulk experiments. Decon-
volutions were performed using the specified methods in thirteen organs using both Smart-seq2 and
10x Chromium data from the Tabula Muris Senis experiment. Presented errors show the L1 distance
between the ground truth and inferred values divided by the number of present cell types. These
values correspond to Table 1 and Figure 2 of Chapter 3.
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Data attribute RNA-Sieve requirements
Cell counts The asymptotic analysis of RNA-Sieve relies primarily on the Cen-

tral Limit Theorem, and so any cell counts that allow its applica-
tion are sufficient. Because most gene expression counts reasonably
follow Poisson or negative binomial distributions, having at least 30
cells is typically sufficient for accurate approximations. Unusually
skewed distributions may necessitate ∼100-400 cells. Xg, necessary
cell counts can be computed through the Berry-Esséen Theorem which
(conservatively) bounds the deviation from Gaussian tail probabilities by
0.475 ·E|Xg|3/

(√
# cells ·Var3/2Xg

)
. The above reasoning equally ap-

plies to the number of cells in the reference matrix (denoted c in Chapter
3) as well as the bulk cell count (n).

Number of reference
individuals

RNA-Sieve does not rely on the presence of multiple individuals in the
reference and performs inference reliably with any number of individu-
als. If multiple reference individuals are available, RNA-Sieve simply
operates on the pooled mean and variance matrices. We currently do
not recommend mixing data from different experimental protocols in the
reference.

Reference and bulk
protocols

In the case of differences in the data due to protocol mismatch in the
scRNA-seq reference and bulk samples, potential nonlinear distributional
shifts may need to be accounted for (linear differences are absorbed into
the inference of n, see the A NOTE ON n section in Appendix B.1).
Empirically, we found such the largest driver of such nonlinear shifts
to be differences in the rates of null inflation. In some cases, this is
compensated for by increased sequencing depth. Thus, deeply sequenced
libraries can be analyzed without further correction, while sparser data
sets may benefit substantially from the filtering steps detailed in the
DATA PREPROCESSING PROCEDURE section of Appendix B.1.

Jointly deconvolving
multiple bulks

If each cell type is expressed similarly across bulk samples (i.e., cells
are not differentially expressed in different bulk samples), joint deconvo-
lution is recommended as it increases statistical power regardless of any
heterogeneity in mixture proportions. If cell types display differential ex-
pression (due to biological or technical reasons), model misspecification
becomes a concern and inference results may depend on the nature of the
misspecification. In such cases, it is advisable to deconvolve different
bulk samples separately.

Table B.3: Guidance on RNA-Sieve usage across diverse data sets. RNA-Sieve’s is based on a
generative model in an asymptotic regime. The mild criteria outlined above guarantee that the data
to be deconvolved behaves in accordance with this generative model.
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Figure B.1: Comparison of other methods to RNA-Sieve across 13 murine organs. Pseudobulk
experiments were performed using data from the Tabula Muris Senis experiment, and average L1
errors across cell types computed. For each organ, the difference in errors was computed between
other methods and RNA-Sieve. A: Smart-seq2 reference, 10x Chromium pseudobulk; B: 10x
Chromium pseudobulk, Smart-seq2 pseudobulk. Horizontal black bars correspond to the mean
difference in error, and positive values indicate better comparative performance for RNA-Sieve.
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Figure B.2: Direct comparison of other methods to RNA-Sieve. Pseudobulk experiments were
performed in 13 different organs using data from the Tabula Muris Senis experiment. Errors were
computed as the average L1 error across cell types in each organ. For each method, the difference
in errors was computed between it and RNA-Sieve across each of the 13 organs. A: Smart-seq2
reference, 10x Chromium pseudobulk; B: 10x Chromium pseudobulk, Smart-seq2 pseudobulk.
Horizontal black bars correspond to the mean difference in error, and positive values indicate better
comparative performance for RNA-Sieve.
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Figure B.3: Minor per-cell-type differences may result in major individual-cell-type devia-
tions. The average improvement of RNA-Sieve artificially appears minor because of our chosen
error metric (average deviation from the true values) and averaging across cell types. This can be
seen in the above (real) example of deconvolving a 10x mammary gland bulk from a Smart-seq2
reference in which RNA-Sieve (0.02), Scaden (0.08), and CIBERSORTx (0.07) may appear to
perform similarly when only the raw error values are compared. However, closer inspection reveals
that Scaden and CIBERSORTx exhibit large errors for some cell types whereas RNA-Sieve does
not.
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Figure B.4: Deconvolution with extra cell types in the reference matrix. Deconvolution was
performed in pseudobulk experiments in four different organs (A – Kidney; B – Marrow; C – Limb
muscle; D – Liver). For each organ, we followed a leave-one-out procedure in which one cell type
is removed from the pseudobulk at a time. Deconvolution was then performed with this extra cell
type in the reference in order to examine RNA-Sieve’s specificity. The top row shows the inferred
proportions with no extra reference cell types. Darker colors indicate a higher estimated proportion
value. Here we used 10x Chromium data for the reference and Smart-seq2 for the pseudobulk.
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Figure B.5: Deconvolution with missing cell types in the reference matrix. Deconvolution was
performed in pseudobulk experiments in four different organs (A – Kidney; B – Marrow; C – Limb
muscle; D – Liver). For each organ, we followed a leave-one-out procedure in which one cell type
is removed from the reference at a time. Deconvolution was then performed with an extra cell
type in the pseudobulk in order to examine RNA-Sieve’s ability to handle such a misspecification.
The top row shows the inferred proportions with no missing reference cell types. Darker colors
indicate a higher estimated proportion value. Here we used 10x Chromium data for the reference
and Smart-seq2 for the pseudobulk.
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Figure B.6: Deconvolution results on validation data. Single-cell expression data in pancreatic
islets from Xin et al. (2016) was used as reference to deconvolve bulk RNA-seq data from Fadista et
al. (2014). Each point represents the estimated beta pancreatic islet cell proportion one of 77 bulks
with recorded HbA1c levels. The p-value is for a univariate regression on the estimated proportions.
Circles correspond to healthy samples while triangles represent samples from diabetic patients.
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Figure B.7: RNA-Sieve results with confidence intervals in pseudobulk experiments. Decon-
volution results for pseudobulk experiments. A: Within-protocol, 10x Chromium data; B: Across-
protocol, 10x Chromium reference and Smart-seq2 pseudobulk.
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Figure B.8: Confidence intervals with real bulk samples. A–Limb muscle; B–Marrow; C–Spleen,
with five randomly chosen samples (out of ∼40) each.
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Figure B.9: Histograms of CI radii with real bulk samples. The radius of the 95% confidence
interval for inferred cell type proportions was computed using RNA-Sieve for each real bulk sample
in the listed organs (∼40 per organ). A–Limb muscle; B–Marrow; C–Spleen.
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Figure B.10: Effects of different bulk scalings. Pseudobulks were amplified by various factors
and RNA’s robustness investigated. A–Smart-seq2 reference, 10x Chromium pseudobulk; B–10x
Chromium reference, Smart-seq2 pseudobulk.
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Appendix C

Supporting Information: Chapter 4

C.1 Computing Taylor coefficients
Proposition 7 (Taylor coefficients). Let f p,www

k be the density (with respect to Lebesgue measure) of
‖SSSk‖p

p,www, then on [1/2,1], we have

f p,www
k =

∞

∑
j=k−2

cwww
j (1− x) j, (C.1)

where cwww
r can be computed in O

(
r
p log r

p logk+[r logr]2
)

time.

Proof. We recall from (4.27) that µm = E(‖SSSk‖p,www)
pm can be written as

µm =
1(pm+k−1

k−1

) ∑
ηηη∈Dm,k

( m
η1,...,ηk

)( pm
pη1,...,pηk

) k

∏
j=1

wη j
j =

swww
m(pm+k−1

k−1

) , (C.2)

where swww
m = ∑

∞
j=0 σwww

j (m) ·m− j with σwww
j (m) remaining constant σwww

j past some threshold mw
j . By

Lemma 1 and the geometric interpretation of ‖SSSk‖p,www, f p,www
k is analytic on [1/2,1], and hence we

also have

µm =
∫ 1

0
xm f p,www

k (x) dx =
∞

∑
j=0

cwww
j

∫ 1

0
xm(1− x) j dx+O

(
e−m)

=
∞

∑
j=0

cwww
j

[
(m+ j+1)

(
m+ j

j

)]−1

+O
(
e−m) , (C.3)

which suggests that by matching coefficients in (C.2) and (C.3) we should be able to translate
between σwww

j and cwww
j . For this to be helpful, we need to understand σwww

j :
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Lemma 2 (σwww
j recursion). Defining b j

r = [m−r]
(m

j

)
/
(pm

p j

)
and employing notation as in (4.3), we

have

σ
www
r =

r′

∑
j=0

(
σ
(wk,0)
j ·σwww−k

r− j +1wk=1swww−k
j ·b j

r

)
, (C.4)

with initial condition σ
w1,w2
r = ∑

r′
j=0 b j

r

(
1w2=1w j

1 +1w1=1w j
2

)
, where r′ = br/(p−1)c. In particu-

lar, we can compute σwww
r in O

(
r′ logr′ logk+[r logr]2

)
time.

Proof of Lemma 2. Slightly abusing notation, we have

σ
www
r =

[
m−r]swww

m =
[
m−r]

∑
ηηη∈Dm,k

( m
η1,...,ηk

)( pm
pη1,...,pηk

) k

∏
j=1

wη j
j

=
[
m−r] m

∑
ω=0

(m
ω

)(pm
pω

)wω
k ∑

ηηη∈Dm−ω,k−1

( m−ω

η1,...,ηk−1

)( p(m−ω)
pη1,...,pηk−1

) k−1

∏
j=1

wη j
j

=
[
m−r] m

∑
ω=0

(m
ω

)(pm
pω

)wω
k · s

www−k
m−ω

=
[
m−r] r′

∑
ω=0

(m
ω

)(pm
pω

)wω
k · s

www−k
m +

[
m−r] r′

∑
ω=0

(m
ω

)(pm
ω

)wm−ω

k · swww−k
ω

=
[
m−r] r′

∑
ω=0

swww−k
m

∞

∑
j=0

bω
j wω

k m− j +
[
m−r] r′

∑
ω=0

wm−ω

k swww−k
ω

∞

∑
j=0

bω
j m− j

=
r′

∑
j=0

σ
www−k
r− j ·σ

wk,0
j +1wk=1

r′

∑
ω=0

s
w[1:k−1]
ω ·bω

j

=
r′

∑
j=0

(
σ

wk,0
j ·σwww−k

r− j +1wk=1swww−k
j ·b j

r

)
,

as desired. To see that (C.4) can be computed in O
(

r′ logr′ logk+[r logr]2
)

time, we notice that

calculation of swww−k
r is O(r′ logr′ logk) by the same reasoning as in Theorem 2, and b j

r , written as,

b j
r =

[
m−r] (m

j

)(pm
p j

) = (p j−1)!p
[
m−r] pm−1

∏
`=p(m− j)+1

p - `

1
pm
· 1

1− `
pm

= (p j−1)!p
[
m−r] pm−1

∏
`=p(m− j)+1

p - `

R
(

`

pm

)
, (C.5)
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where R(x) = ∑
∞
j=0 x j is again a convolution of (p−1) · r′ = r polynomials and hence computable

in O
(
[r logr]2

)
.

With a proper understanding of σwww
j at hand from Lemma 2, we may rewrite (C.2) as

µm =
∞

∑
j=0

(
j

∑
ω=0

ak
ω ·σwww

j−ω

)
m− j +O

(
e−m) , (C.6)

where ak
ω = [m−ω ]

(pm+k−1
k−1

)−1
. Similarly, expanding (C.3) yields

µm =
∞

∑
j=0

(
j−1

∑
ω=0

dω
j · cwww

ω

)
m− j +O

(
e−m) , (C.7)

where dω
j =

[
m− j][(m+ω +1)

(m+ω

ω

)]−1. Consequently, matching the rth coefficients in (C.6)
and (C.7) allows to solve for cwww

r :

cwww
r =

1
r!

[
r+1

∑
j=k−1

ak
j ·σwww

r+1− j−
r−1

∑
j=k−2

d j
r+1cwww

j

]
, (C.8)

where in the choice of summation indices we have used the fact that ak
j = 0 for j ∈ {0, . . . ,k−2} and

cwww
j = 0 for j ∈ {0, . . .k−3} by Proposition 3. Now {d0

r+1, . . . ,d
r−1
r+1} can be found in O

(
r (logr)2

)
time, and given a,b and d, the recursion is solved in O

(
r2) steps, amounting to a total complexity

of O
(

r (logr)2 + r2 + r′ logr′ logk+[r logr]2
)
= O

(
r′ logr′ logk+[r logr]2

)
.

C.2 Alternative scaling limits
Proof of Proposition 5. We will show that the moments of Zn,k,p,www converge to the respective
limiting moments of a N (0,1) variable, which together with Theorem 30.2 of [Bil95] implies the
desired result. Hence we investigate

E
(

Zm
n,k,p,www

)
= σ

−m/2
n,k,p,wwwE

(
‖SSSn,k‖p

p,www−µn,k,p,www
)m

= σ
−m/2
n,k,p,wwwE

 k

∑
j=1

w j
[(

Sn,kJ jK
)p−µn,k,p

]︸ ︷︷ ︸
=:X j


m

= σ
−m/2
n,k,p,www

m

∑
t=1

∑
aaa∈D≤m,t

Caaa ∑
i1,...,it
distinct

E [(wi1Xi1)
a1 · · ·(wit Xit )

at ] , (C.9)
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where Caaa is a combinatorial factor to be determined later, and D≤m,t is the set of ordered (strong)
compositions of m into t parts (which is in bijection with the set of partitions of m into t parts). We
will argue that for case 1 of (4.37), all summands in (C.9) vanish in the limit of n→ ∞, while only
the t = m/2,a1 = a2 = · · ·= at = 2 term survives in the k = αn regime. We begin by determining
the asymptotics of µn,k,p:

Lemma 3 (Asymptotics of µn,k,p). We have

µn,k,p =
n ·qp(n,k)
〈k〉p

= O
(

np

kp

)
, (C.10)

where qp(n,k) = O(np−1) is a polynomial in n and k, and 〈k〉p = k · (k+ 1) · · ·(k+ p− 1) is the
rising factorial.

Proof of Lemma 3. Let us first rewrite µn,k,p into a form more amenable to extract asymptotics:

µn,k,p = k−1E‖SSSn,k‖p
p,111k

= k−1
k

∑
j=1

E
(
Sn,kJ jK

)p
= E

(
Sn,kJ1K

)p

=
1(n+k−1

k−1

) n

∑
j=0

jp
(

n− j+ k−2
k−2

)
, (C.11)

whose RHS sum we claim can in general form be expressed as

n

∑
j=0

jp
(

n− j+ `

`

)
=

n+`

∑
j=`

(n− j+ `)p
(

j
`

)
=

(
n+ `−1

`

)
(n+ `)(n+ `+1)
〈`+1〉p+1

q′p(n, `), (C.12)

for some polynomial q′p(n, `) = O
(
np−1) if p≥ 1 and q′0(n, `) = n−1. We prove (C.12) by induction

on p.
Base case: When p = 0, (C.12) simply becomes the hockey stick identity

n+`

∑
j=`

(
j
`

)
=

(
n+ `+1
`+1

)
=

(
n+ `−1

`

)
(n+ `)(n+ `+1)

(`+1)
·n−1

=

(
n+ `−1

`

)
(n+ `)(n+ `+1)
〈`+1〉1

q′0(n, `). (C.13)

Inductive step: Using the binomial recursion
(n+1

k+1

)
=
(n

k

)
+
( n

k+1

)
, we find for p≥ 1

n+`

∑
j=`

(n− j+ `)p
(

j
`

)
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=
n+`

∑
j=`

(n− j+ `)p
(

j+1
`+1

)
−

n+`

∑
j=`

(n− j+ `)p
(

j
`+1

)

=
n+`

∑
j=`+1

(n+ `+1− j)p
(

j
`+1

)

−
n+`

∑
j=`+1

[
p

∑
i=0

(
p
i

)
(n+ `+1− j)i(−1)p−i

](
j

`+1

)

=
p−1

∑
i=1

(
p
i

)
(−1)p−i−1

[
n+`+1

∑
j=`+1

(n+ `+1− j)i
(

j
`+1

)]

+(−1)p−1
n+`

∑
j=`+1

(
j

`+1

)

=

[
p−1

∑
i=1

(
p
i

)
(−1)p−i−1

(
n+ `

`+1

)
(n+ `+1)(n+ `+2)

〈`+2〉i+1
q′i(n, `+1)

]

+(−1)p−1
[(

n+ `+2
`+2

)
−
(

n+ `+1
`+1

)]
=

(
n+ `−1

`

)
(n+ `)(n+ `+1)
〈`+1〉p+1

[
〈`+3〉p−1

+
p−1

∑
i=1

(
p
i

)
(−1)p−i−1(n+ `+2)〈`+3+ i〉p−1−iq′i(n, `+1)

]

=

(
n+ `−1

`

)
(n+ `)(n+ `+1)
〈`+1〉p+1

q′p(n, `), (C.14)

where the second equality follows from binomial expansion of (n− j+ `)p = (n+ `+1− j−1)p,
while the fourth equality follows from applying the inductive hypothesis. Note that q′p(n, `) is a sum
of polynomials in O(np−1), and hence it itself is a polynomial in O(np−1).

To finish the proof of the lemma, it suffice to observe from (C.10) and (C.12) with `= k−2 that

µn,k,p =

(n+k−3
k−2

)(n+k−1
k−1

) (n+ k−2)(n+ k−1)
〈k−1〉p+1

q′p(n,k−2) =
n ·qp(n,k)
〈k〉p

, (C.15)

where qp(x,y) = q′p(x,y−2).

With the dependence of µn,k,p on n and k in hand, we can elucidate the asymptotics of the
summands in (C.9):
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Lemma 4 (Asymptotics of summands). For ` ≤ t ≤ m and aaa ∈ D≤m,t such that a1 = · · · = a` = 1
and a j ≥ 2 for all j ∈ {`+1, . . . , t}, we have

σ
−m
n,k,p,www ∑

i1,...,it
distinct

E

[
`

∏
j=1

wi jXi j

t

∏
j=`+1

(wi jXi j)
a j

]
= O

[(
k
n

)p(m−t) kt−m/2

n`

]
. (C.16)

Proof. Three cumbersome applications of (C.12) to the computation of the variance show that
σn,p,k,w = O

((n
k

)p√k
)
, which takes care of the denominator on the LHS of (C.16). To treat the

enumerator, we use exchangeability of the Xi as well as the compact support of the weights w j to
upper bound the magnitude of the sum on the LHS by the magnitude of

ktW m
max ·E

[
`

∏
j=1

X j

t

∏
j=`+1

Xa j
j

]

= ktW m
maxE

{
E [X1 | X2, . . . ,Xt ]

`

∏
j=2

X j

t

∏
j=`+1

Xa j
j

}
. (C.17)

For fixed n and growing k, we expect the bin occupations to decorrelate, and hence the conditional
expectation on the RHS of (C.17) to vanish. Indeed, referring once more to (C.12) and writing
X t

2 := ∑
t
j=2 X j, we have

E [X1 | X2, . . . ,Xt ] = E
[
X1 | X t

2
]
= µn−X t

2,k−t+1,p−µn,k,p

=
n−X t

2
〈k− t +1〉p

qp
(
n−X t

2,k− t +1
)
− n
〈k〉p

qp (n,k)

= O
(

np−1

kp

)
, (C.18)

as long as X t
2 = ∑

t
j=2 Sn,kJ jK = o(n). Whence the magnitude of (C.17) is bounded above by

ktW m
maxE

{
O
(

np−1

kp

)
1X t

2=o(n)

`

∏
j=2

X j

t

∏
j=`+1

Xa j
j +1X t

2 6=o(n)

`

∏
j=1

X j

t

∏
j=`+1

Xa j
j

}

≤ ktW m
maxO

(
np−1

kp

)
E

[
1X t

2=o(n)

`

∏
j=2

X j

t

∏
j=`+1

Xa j
j

]
+ ktWmaxP

[
X t

2 6= o(n)
]

nm

= ktW m
maxO

(
np−1

kp

)
E

[
`

∏
j=2

X j

t

∏
j=`+1

Xa j
j

]
︸ ︷︷ ︸

A

+2nmktWmaxP
[
X t

2 6= o(n)
]
. (C.19)
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Repeating the same reasoning used in (C.17) and (C.19) ` times on A yields an upper bound for the
magnitude of (C.16) of

ktW m
maxO

(
n`(p−1)

k`p

)
E

[
t

∏
j=`+1

Xa j
j

]
︸ ︷︷ ︸

B

+2(`−1)ktnmP
[
Sn,kJ1K 6= o(n)

]︸ ︷︷ ︸
C

. (C.20)

We will argue below in Lemma 5 that bin sizes concentrate around their means n/k, which implies
that C is exponentially small in k, while B scales like (n/k)p(t−`). Combining these with the
O(
√

k(n/k)p) scaling of σn,k,p,www gives the final upper bound

O

[
kt 1

km/2

(
k
n

)pm(k
n

)`−p` 1
k`

(
k
n

)p(`−t)
]
, (C.21)

which simplifies to (C.16) as desired.

To substantiate the claims about B and C in the proof of Lemma 4, we establish the following
lemma:

Lemma 5 (Large deviations for bin sizes). If k = O(nβ ), then for all 0 < ε < β there exists Cε > 0
so that

P
[
X j ≥ n1−ε

]
<Ce−nβ−ε

. (C.22)

Proof. We can compute explicitly

P
[
Sn,kJ1K≥ n1−ε

]
=

(n−n1−ε+k−1
k−1

)(n+k−1
k−1

) =

[
n

∏
j=n−n1−ε+1

(
1+

k−1
j

)]−1

≤C exp
[
−(k−1) log

(
1

1−n1−ε

)
+O

(
k2

n1+ε

)]
≤C exp

[
−nβ−ε +O

(
nβ−2ε +n2β−1−ε

)]
, (C.23)

which is dominated by the nβ−ε term as long as ε < β .

At last, we are now in shape to establish Proposition 5 from (C.16), for we see that

1. if t < m/2, the RHS is of O
[( k

n

)m/2kt−m/2
]

and hence vanishes as n→ ∞;

2. if t > m/2, then since `≥ 2t−m (because `+2(t− `)≤ m), the RHS is of O
[
(k/n2)t−m/2

]
and vanishes as n→ ∞;

3. if t = m/2 and k = o(n), we obtain asymptotics of O
[
(k/n)pm/2

]
, which vanishes once again

as n→ ∞.
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Hence, the only terms in (C.9) contributing to the limiting moments are those for which t = m/2
(and consequently `= 0,a j = 2 for all j ∈ {1, . . . , t},C2,...,2 = (m−1)!! and m must be even), when
k = Θ(n). That is,

E
(
Zm

n,αn,p,www
)
= (m−1)!! ·E

m/2

∏
j=1

[
(Sn,kJ jK)p−µn,kp

k−1/2σn,k,p,w

]2

, (C.24)

which by decorrelation computations very similar to (C.18) is readily seen to converge to (m−1)!!.
These are precisely the normal moments, which proves the first half (4.37) of Proposition 5. To
show the second half (4.38), we sidestep individual moment computations and resort directly to
Lévy’s continuity theorem. To wit, we have

Ee−t‖SSSn,k‖
p
p,www = P

(
‖SSSn,k‖∞ ≤ 1

)
·E
[
e−t‖SSSn,k‖

p
p,www
∣∣ ‖SSSn,k‖∞ ≤ 1

]
+P

(
‖SSSn,k‖∞ > 1

)
·E
[
e−t‖SSSn,k‖

p
p,www
∣∣ ‖SSSn,k‖∞ > 1

]
=

1(k
n

) ∑
S⊂[k]
#S=n

e−t ∑ j∈S w j +O
(
k−1)

=
1

k(k−1) · · ·(k−n+1)

k

∑
s1=1

k

∑
s2=1
s2 6=sq

· · ·
k

∑
sn=1

sn /∈{s1,...,sn−1}

e−t ∑
n
j=1 w

( s j
k

)

+O
(
k−1) , (C.25)

which, since w is bounded and continuous almost everywhere (and hence Riemann integrable)
converges, as k→ ∞, to (∫ 1

0
e−tw(x) dx

)n

= Ee−t ∑
n
j=1 w(U j) (C.26)

as desired.
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