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This document provides a list of supplemental materials that ac-
company this paper.

• Labeling vs segmentation - We demonstrate performance of
our method on segmentation benchmark relative to existing
alternatives.

• Exploring ShapeNetCore - We demonstrate examples of
leveraging our part labels for exploring collections of shapes
(see exploration.mp4 file and Section 2).

• Optimality of Verification Set - We prove optimality of our
verification set selection procedure in Section 3 of this docu-
ment.

• User Interfaces Video - We submit a video demonstrating
key features of annotation and verification user interfaces (see
interface.mp4 file).

• ShapeNetCore Analysis - We provide the full set of analysis
results for each category of ShapeNetCore showing number
of verified models vs human time (Figure 4), and FMF vs
fraction of data that has been verified (Figure 5).

1 Labeling vs segmentation

Although the focus of our work is labeling, not segmentation, we
found that our simple method for generating segmentation from the
labels gives reasonable boundaries. We evaluate our method on
PSB benchmark [Chen et al. 2009] using leave-one-out setup pro-
posed in Kalogerakis et al. [2010] and ELM-OPT [Xie et al. 2014].
We tested our method on 7 categories of rigid objects excluding ar-
ticulated shapes such as human, since our method is not designed
for those. One could use intrinsic mapping algorithms to extend our
method to non-rigidly deforming shapes. We report the results in
Table 1.

Training Kalo ELM-
OPT

Ours

Cup 9.8 9.9 10.3 10.8
Airplane 7.4 7.9 8.9 8.6
Chair 5.2 5.4 7.1 5.9
Table 5.9 6.2 5.9 7.5
Mech 8.5 10.0 15.9 14.8
Bearing 6.8 9.7 15.4 9.6
Vase 10.5 16.0 15.6 20.9

Table 1: This table shows the quality of the segmentations our
method produces by comparing the rand index scores on some cat-
egories of PSB achieved by our method and the prior segmentation
algorithms Kalo (Kalogerakis et al.) and ELM-OPT (Xie et al.).
Lower rand index scores indicate better performance and are high-
lighted in bold.

In the paper, we compare our method with supervised labeling ap-
proaches based on an F1 measurement. Also we evaluate different
design choices of our pipeline based on F1 measurement. For a bet-
ter understanding of the labeling quality of these experiments, we

Figure 1: This comparison corresponds to the one shown in Figure
12 of the paper, but with precision and recall as evaluation metrics.

also provide the precision and recall for the final labeling results in
Table 2 and 3 correspondingly. In addition, we use precision and re-
call as evaluation metrics and show the comparison with supervised
labeling approaches in Figure 1. Notice unlike traditional retrieval
tasks, our experiment does not involve in any parameters influenc-
ing the tradeoff between precision and recall, so we show how the
average precision and recall change under different training data
percentages.

Precision/Recall Wu et al.
[2014]

Kalogerakis
et al. [2010]

Ours

Lamp 0.823/0.786 0.873/0.801 0.907/0.827
Chair 0.824/0.818 0.924/0.905 0.935/0.922

Table 2: This table gives the average per part precision and recall
corresponding to the comparison conducted in Figure 12 of the pa-
per. The numbers reported here are generated when the training
data percentage is 5%.

Precision/Recall Chair-400 Vase-300
with all component 0.950/0.953 0.909/0.889
no active selection 0.928/0.946 0.873/0.857
no verification step 0.889/0.896 0.825/0.830
no ensemble learning 0.917/0.933 0.867/0.883
no correspondence term 0.899/0.915 0.821/0.815
no feature-based term 0.913/0.927 0.859/0.878
no learning of weights 0.940/0.948 0.887/0.877
no smoothness term 0.949/0.951 0.902/0.886

Table 3: This table gives the average per part labeling precision
and recall corresponding to the experiment conducted in Figure 13
of the paper. Different variants of our method were tested, each
without some feature. The numbers reported here correspond to the
end point of each curve in Figure 13 of the paper.

2 Exploring ShapeNetCore

We can leverage the obtained annotations to explore and gain in-
sights about the data in ShapeNetCore. Instead of considering only



Chair Backs Chair Legs

Figure 2: We demonstrate that our annotations can facilitate ex-
ploration of large collections of 3D models. We show embeddings
of chairs based on the shape of their backs and legs (see video for
an interactive example).
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Figure 3: Part annotations can facilitate shape retrieval. In this
example for ShapeNetCore chairs, we show models retrieved based
only on the shape of the base (a), the shape of the back (b), and by
searching for chairs that combine both of these criteria (c).

global shape similarities, understanding salient regions enables us
to organize data by comparing features in specific regions only. For
example, we can embed the models based on their part-to-part sim-
ilarity as shown in Figure 2 (where part similarity is computed with
lightfield descriptors). Note how this quickly allows the user to see
different regions due to variations in a particular part. We also en-
able faceted search in the spirit of Kim et al. [2013] allowing users
to select parts of interest and search for shapes that have the desired
arrangement of parts (see Figure 3 and video).

3 Optimality of verification set

We demonstrate optimality of our method for selecting the ver-
ification set V m

k (see Section 4 of our paper). Recall that at
this stage our method selected annotation set Am

k , and it will
greedily add models to Vm

k = {vmk } based on annotation con-
fidences Cm

ver until the utility function Em
U =

Nm
good

Tm stops in-
creasing. The input to our algorithm is sorted confidence values:
1 � Cm

ver[k] � Cm
ver[k]... � Cm

ver[k] � 0 (we assume that sort-
ing does not change shape indexing since it does not affect our
derivations), we want to determine vmk 2 {0, 1} so that E(Vm

) =

Nm�1
good +

PN
k=1 vm

k Cm
ver [k]

Tm�1+
PN

k=1 vm
k (⌧ident+(1�Cm

ver [k])⌧click)
is maximized. Notice that

terms that depend on annotation set A are absorbed into Tm�1 and
can be kept constant at this stage without affecting our derivation.

The optimality of our greedy approach is guaranteed by two obser-
vations. First, given a constant number of models to be verified n
(i.e.,

P
k v

m
k = n), the optimal values are vmk = 1 8k  n and

0 everywhere else since it minimizes the denominator and maxi-
mizes the numerator. Thus, our algorithm is optimal if the number
of models to be verified is fixed to n. Let us denote this optimal
energy for n models by:

f(n) = max

V m
k s.t.

P
k V m

k =n
Em

U (V m
k )

=

Nm�1
good +

Pn
k=1 C

m
ver[k]

Tm�1
+ n⌧ident + n⌧click �

Pn
k=1 C

m
ver[k]⌧click

(1)

We denote numerator in the equation above by fnum and denomina-
tor fdenom. We now prove that our utility function is monotonically
decreasing after we greedily pick optimal n: f(n + 1)  f(n) )
f(n+ i+ 1)  f(n+ i) 8i > 0.

Suppose f(n+ 1)  f(n) is true, then this is equivalent to:

fnum(n)+Cm
ver [n+1]

fdenom(n)+⌧ident+⌧click�Cm
ver [n+1]⌧click

 fnum(n)
fdenom(n)

, Cm
ver [n+1]

⌧ident+⌧click�Cm
ver [n+1]⌧click

 fnum(n)+Cm
ver [n+1]

fdenom(n)+⌧ident+⌧click�Cm
ver [n+1]⌧click

(2)

by utilizing a simple algebraic equality: a+c
b+d  a

b , c
d  a+c

b+d

(note that all our terms are positive). Also, since Cm
ver[n + 2] 

Cm
ver[n+ 1]:

Cm
ver[n+ 2]

⌧ident + ⌧click � Cm
ver[n+ 2]⌧click

 Cm
ver[n+ 1]

⌧ident + ⌧click � Cm
ver[n+ 1]⌧click

(3)

Now combining Equations 2 and 3 yields:

Cm
ver [n+2]

⌧ident+⌧click�Cm
ver [n+2]⌧click

 fnum(n)+Cm
ver [n+1]

fdenom(n)+⌧ident+⌧click�Cm
ver [n+1]⌧click

(4)

By definition:

, Cm
ver [n+2]

⌧ident+⌧click�Cm
ver [n+2]⌧click

 fnum(n+1)
fdenom(n+1) (5)

and applying c
d  a

b , a+c
b+d  a

b :

, fnum(n+1)+Cm
ver [n+2]

fdenom(n+1)+⌧ident+⌧click�Cm
ver [n+2]⌧click

 fnum(n+1)
fdenom(n+1) (6)

Or equivalently, f(n+ 2)  f(n+ 1).
Thus, by induction f(n+ i+ 1)  f(n+ i) for i > 0. ⇤
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Figure 4: These plots depict how FMF relates to fraction of labeled data for different labels in different categories of ShapeNetCore. See our
paper (Section 8) for more details.
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Figure 5: These plots depict how number of positively-verified models relates to total human work time for different labels in different
categories of ShapeNetCore. See our paper (Section 8) for more details.


