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Abstract

Recent debate in the medical literature has brought attention to issues with the pre-match

interview process for residency and fellowship positions at hospitals. However, little is known

about the economics of this decentralized process. In this paper, I build a game-theoretic model

in which hospitals simultaneously decide on which doctors to interview, in order to learn their

preferences over doctors. I show that increased interview activity by any hospital imposes an

unambiguous negative welfare externality on all other hospitals. In equilibrium, both hospitals

and doctors may be better off by a coordinated reduction in interview activity. The strategic

externality is more subtle, and conditions are derived under which the game exhibits either

strategic complementarities or substitutes. Moreover, an increase in market size may exacerbate

the interview externalities, preventing agents from reaping the thick market benefits that would

arise in the absence of the costly interviews. This effect increases participants’ incentives to

match outside of the centralized clearinghouse as markets become thicker, jeopardizing the

long-term viability of the clearinghouse. The model also provides new insights into several

market design interventions that have recently been proposed.

Keywords: Matching with Interviews, Market Design, Strategic Complementarities, Negative

Welfare Externalities, Inefficient equilibrium, Residency match, NRMP, Market Thickness

∗For useful commments and advice I thank Alvin E. Roth, Doug Bernheim, Mira Frick, Ryota Iijima,

Nadia Kotova, Negar Matoorian Pour, Paul Milgrom, Thayer Morrill, Muriel Niederle, Akhil Vohra, Daniel

Walton, Anthony Lee Zhang, David Zuckerman and seminar participants at Stanford University. I gratefully

acknowledge financial support from the Leonard W. Ely and Shirley R. Ely Graduate Student Fellowship.

†Stanford University, Department of Economics: erling.skancke@gmail.com

1

https://ssrn.com/abstract=3960558


1 Introduction

Many matching markets involve various forms of costly information acquisition through which mar-

ket participants learn about their preferences. Examples include students attending visit days at

schools, colleges or universities before deciding where to embark on their education; people dating

before finding a partner they want to settle down with; and home buyers visiting a number of differ-

ent homes before deciding to place an offer. A similar costly process is also evident in many labor

markets, in which both firms and workers spend significant time and resources conducting either

in-person or virtual job interviews, in addition to the sending and processing of job applications.

Despite the prevalence of this costly search activity, little is known about the economics of this

process: What incentives do firms and workers face when making their interview decisions? How

do participants’ interview decisions affect the welfare and interview decisions of others? How does

agents’ interview activity respond to changing market conditions, such as a change in the interview

costs/technology, or an increase in market size? Finally, how does the costly search activity affect

agents’ incentives to participate in a centralized clearinghouse?

This paper considers the above questions in the context of the entry- and intermediate-level

markets for doctors in the US, through the analysis of a game-theoretic model of matching with

interviews. These are interesting markets in their own right, in part due to their size: In 2021,

participation in the matches organized by the National Residency Matching Program (NRMP)

reached record numbers, with a total of more than 48,700 applicants and 38,100 residency positions

participating in the Main Residency Match, and more than 12,900 applicants and 11,700 fellowship

positions participating in additional matches across 68 subspecialties. These markets are also

some of the best known examples of labor markets that make use of a centralized clearinghouse

for matching workers to firms. Indeed, the NRMP employs a variant of the celebrated deferred-

acceptance algorithm developed by Gale and Shapley (1962) and Roth and Peranson (1999), which

has been shown to have many desirable properties (Roth and Sotomayor (1992), Roth (1991)).

The use of a stable matching mechanism makes these markets particularly convenient to study,

as it simplifies the link between market participants’ preferences/rank-order lists submitted to

the clearinghouse and the match outcome. On the other hand, contrary to the centralized final

matching of doctors to positions at hospitals, participants’ pre-match job search and interview

activity is a largely decentralized process. The interview process has recently been the subject of

debate in the medical literature: Some raise concerns about the high level of costs (Watson et al.
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(2017), Agarwal et al. (2017)), while others point to excessive interview activity as both sides of the

market seek to ensure a successful match (Strand and Sonn (2018)), a situation which may result

in interview hoarding (Bernstein (2021)). Despite being some of the most widely studied markets

in the matching literature, the pre-match search and interview process has largely been ignored.

In this paper, I build a game-theoretic model in which hospitals simultaneously invite doctors

to conduct costly interviews, in order for hospitals to determine doctor compatibility with their

program. I show that an increase in hospital interview activity imposes unambiguous negative

welfare externalities on all other hospitals. When hosptials’ interview costs are sufficiently low,

the strategic externalities cause hospitals to increase their number of interviews whenever their

competitors do, leading to a game of strategic complementarities and equilibria characterized by

inefficiently many interviews. When doctors’ interview costs are sufficiently high, they too may be

worse off as hospitals decide to interview more candidates. As a result, there may be equilibria

in which both sides of the market can be made better off by a coordinated reduction in interview

activity. I also explore the effect of changing market conditions that parallel those seen in the

entry-level market for doctors in the US; such as the apparent reduction in interview costs during

the 2020-2021 match season when most candidates and programs moved to virtual interviews. I

show that the welfare effects of this change are generally ambiguous. I also investigate the effect

of increasing the number of both available positions and participating candidates, and find that

hospital equilibrium welfare may fall as markets thicken. While not unique, this result is in stark

contrast to the many papers that emphasize the positive effects of thick markets. Moreover, as

market participants’ equilibrium welfare decreases, participants’ incentives to match outside the

centralized clearinghouse increase. This effect could jeopardize the long-term viability of clearing-

houses such as the NRMP in the absence of an appropriate market design intervention. Finally,

the model allows us to assess several market design interventions that have been proposed in the

medical literature, but whose theoretical properties remain unknown.

In the model, hospitals have partial pre-interview information about their match values which

rank doctors uniformly and independently, but must conduct interviews to learn their full pref-

erences. Doctors are assumed to accept all interview offers they receive, an assumption meant

to represent the empirical fact that most of the interview selection happens on the hospital side.

Indeed, most doctors tend to accept the vast majority of the interviews they are offered (Na-

tional Residency Matching Program and Committee (2017)). When doctors’ interview costs are

sufficiently low, I show that it is individually rational for them to accept all interviews. After the in-
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terviews are conducted, and participants learn their preferences, hospitals and doctors are matched

according to a deferred-acceptance algorithm in which doctors and hospitals only rank those that

they previously interviewed with. My focus is on Bayesian interview equilibria: Hospitals optimally

choose to interview doctors until the marginal cost of an additional interview exceeds the marginal

benefit, given other hospitals’ interview strategies. My focus is on equilibria in anonymous strate-

gies, strategies which do not depend on doctors’ identities, such that hospitals cannot condition

their interview decisions on the identity of the doctors interviewed by their competitors.

Having set up the model, I show that a hospital is always worse off as its competitors increase

their interview activity. I also analyze the effect of the competitors’ increased interview activity

on the hospital’s benefit of an additional interview. I show that the effect can be decomposed into

two terms: The competition effect reduces the value of any interview that the hospital conducts.

As hospital h’s competitors interview more, it increases the probability that any of the candidates

interviewed by h is also interviewed by its competitors, and potentially match with them. This

reduces h’s incentives to interview any doctor. The competition effect is partially offset by the

probability reallocation effect : During the deferred-accpetance algorithm, if hospital h must go far

down on its rank-order list to find a match, it is likely because some of the higher ranked doctors

were matched with other hospitals, and thus more of the hospital’s competitors already filled their

positions. As hospital h is less likely to compete for its lower ranked doctors, this increases the

marginal benefit of having a longer rank-order list, and thus interviewing more doctors. Thus,

when the hospital’s interview costs are sufficiently low and its competitors increase their interview

activity, the hospital’s best-response is to increase its own number of interviews.

From the doctors’ perspective the situation is more complicated. On the one hand, I show that

doctors’ expected match values are monotonically increasing in the number of interviews hospitals

conduct. On the other hand, I also assume doctors incur interview costs (even though in the game

they do not have the option to reject any interviews). The more interviews hospitals conduct,

the more likely a doctor is to receive any interview, and the more likely they are to get matched

during the deferred-acceptance algorithm. However, doctors’ expected number of interviews always

increases faster than their expected match rate. As a result, when doctors’ interview costs are

sufficiently high, their marginal increase in expected interview costs exceed their marginal increase

in expected match quality, as hospitals increase their interview activity. Interestingly, if doctors’

interview costs are not too large, it may be individually rational for them to accept all interviews

even though they would be better off with hospitals reducing their interview activity.
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Combining the above, my analysis shows that when interview costs are sufficiently low, and the

game exhibits strategic complementarities, the set of pure equilibria in the interview game forms

a lattice ordered according to how many interviews each hospital conducts. As the equilibrium

number of interviews increases, all hospitals are worse off. Moreover, if doctors’ interview costs are

sufficiently high, doctors’ welfare is also decreasing in the equilibrium number of interviews. Thus,

welfare on both sides of the market is decreasing in the equilibrium number of interviews. This

may be surprising, as classical results in the theory of stable matching state that if one side of the

market is worse off, then all agents on the other side of the market are better off. Once market

participants’ search and interviewing costs are taken into account, this classical result no longer

holds. As a result, participants on both sides of the market could benefit from reduced interview

activity, a fact that becomes relevant for my later discussion of market design interventions.

After characterizing the model’s set of equilibria, I next turn to comparative statics: First, as

the market for residency and fellowship positions largely moved to virtual interviews during the

2020-2021 job market season, a natural question is whether this relatively low-cost interview method

improved participants’ welfare compared to more traditional and high-cost in-person interviews.

Intuitively, lower per-interview costs make everyone better off through the direct positive effect

on each interview conducted. However, it also provides incentives to hospitals to increase their

interview activity, exposing other hospitals to increased negative welfare externalities, as described

above. The overall effect is ambiguous, and equilibrium welfare may not be monotonic in interview

costs, because of the counter-acting forces. Second, the past decades have seen increasing trends

in the participation of both hospitals and doctors in the NRMP. Intuition suggests that hospitals

benefit from an increase in the number of doctors, but are worse off as the number of hospitals

increases, due to increased competition. What happens to welfare and the equilibrium number

of interviews when both sides of the market increase proportionately is ambiguous. If interview

costs are low, hospitals will be better off as they expand their search for candidates. As markets

become sufficiently thick, the benefits of improved match utilities fade against the negative welfare

externalities and increased interview costs, making hospitals worse off. Under the assumption

of no pre-interview information, I prove the existence of a symmetric equilibrium in anonymous

strategies that maximizes hospital welfare, and I construct an algorithm to find this equilibrium.

Through numerical simulations, I compare the welfare-maximizing equilibrium for different levels of

market thickness and interview costs, which confirms the above intuition. That welfare decreases as

markets become thicker is in stark contrast to the results in many existing papers which highlight
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the benefits of thick markets. However, these papers typically ignore the search costs incurred by

agents. In the presence of search costs, market participants may not be able to reap the full benefits

of market thickness. I illustrate this point by comparing the equilibrium welfare with interview

costs to the welfare that would result in the case with zero interview costs. As markets become

sufficiently thick, the two measures of welfare indeed diverge.

These results also cast doubt on the long-term viability of the centralized clearinghouse. Both

hospitals and doctors may have access to matching opportunities outside of those offered by the

match (such as the hiring of medical students who previously interned at hospitals). Such oppor-

tunities will not pursued as long as agents expect to obtain an even better outcome through the

centralized match. If the expected utility from participating in the match decreases as markets

thicken, then the incentives to pursue opportunities outside of the match increase. Eventually, this

may lower participation in the clearinghouse, causing agents to forego the benefits of the centralized

match. Taken to its extreme, the decrease in equilibrium welfare may trigger markets to unravel.

I finally turn to analyze several market design interventions that have recently been proposed

in the medical literature, such as imposing a limit on the number of applications doctors can send

(Burbano et al. (2019)). Major advantages of this intervention is that it could be easy to enforce and

inexpensive to implement, while it may also provide large benefits if hospitals’ costs of processing

applications are high. That said, this intervention does not address the fundamental issue of welfare-

and strategic externalities in the interview process. Other proposed market interventions that

impose restrictions on the number of interviews agents conduct (e.g. Wapnir et al. (2021)) address

these issues more directly. By way of example, I illustrate that a policy that limits the number of

applications doctors are allowed to send indeed improves upon the unconstrained equilibrium, but

is less efficient than an appropriate two-sided restriction on interview activity.

The rest of the paper is organized as follows: Section 2 discusses the related literature. Section 3

introduces the model and the interview game, introduces the solution concept used throughout, and

establishes key intermediary results on hospitals’ optimal strategies and the existence of equilibrium.

In Section 4, I consider the externalities that result from hospitals’ interview decisions. I analyze

the welfare consequences from the perspective of both hospitals and doctors, and derive conditions

under which the interview game exhibits either strategic complementarities or substitutes. Section

5 explores comparative statics: I first show that equilibrium welfare is generally non-monotonic in

interview costs, before investigating the effect of market thickness. In Section 6, I discuss several

market design interventions that have been recently been proposed. Section 7 concludes.
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2 Related Literature

While there is a large literature on post-interview matching, relatively few papers have studied the

pre-match application and interview processes. In the computer science literature, some papers

have looked at “matching with partial information”, although the research agenda is typically far

removed from that of my paper: For instance, Rastegari et al. (2013) derive the minimum number

of interviews needed to ensure a stable matching with respect to the underlying true preferences,

noting that the problem is NP-hard, while Rastegari et al. (2014) show that one can decide in

polynomial time whether such a stable matching exists or not. While this analysis may prove

crucial to the design of appropriate market design interventions, it does not provide too many

insights into the nature of any market failure that may result in inefficiencies. The primary focus

in my paper is on the equilibrium interview assignments that result from the strategic interaction

between hospitals and doctors, and the nature and direction of the externalities to which hospitals

and doctors are exposed.

In the economics literature, early work focused on models with correlated preferences, i.e.

when doctors agree on the ranking of hospitals, and hospitals agree on who the top candidates

are. These papers drew attention to candidates who “fall through the cracks”, leading to non-

assortative matches. This may result from hospitals deciding to spread their interviews between

the very top candidates and lower ranked “safety candidates”, creating a vacuum for medium

quality candidates (Lien (2009), Kadam (2015)), or by firms simply making mistakes in noisy

environments (Das and Li (2014)). Contrary to my focus on excessively high interview activity,

a main concern in these papers has been that some agents fail to attract enough interviews. I

abstract from the difficulties of correlated preferences, and assume that all agents have independent

preferences. While a simplification, the assumption seems more relevant after the United States

Medical Licensing Examination moved from reporting a three-digit numeric score to reporting only

pass/fail (USMLE (2020)), providing less basis for hospitals to agree on a common ranking of

candidates.

A recent paper by Manjunath and Morrill (2021) introduces welfare results that, on the surface,

echo some of those presented in this project. In an intriguing analysis that is solely based on

the properties of the deferred-acceptance algorithm, they show that all agents on the proposing

side are made worse off when their side decides to increase their interview capacities. While

compelling, their analysis ignores agents’ strategic considerations in their interview decisions, and
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the interview allocations they consider generally do not form equilibria of any underlying game.

That increasing interview capacities is not unambiguously positive has already been shown in

Kadam (2015), who shows that high quality candidates may benefit from interviewing more, while

lower quality candidates are made worse off. The overall match rate may also fall from increased

interview capacities. However, Kadam (2015) only considers changes in the interview capacities of

candidates, who are on the receiving side in the associated interview game. Specifically, he does

not consider changes in firms’ interview capacities. My analysis is fundamentally different, in that

the focal point is on equilibrium interview decisions when firms must trade off the marginal benefit

of an additional interview against its marginal cost.

The model in my paper is most closely related to the one analyzed in Lee and Schwarz (2017).

The structure of their interview game is almost identical, but they consider a case where hospitals

have no pre-interview information about their preferences, hence their game is not one with private

information. My model generalizes their setup. More importantly, the purpose of the analysis in

Lee and Schwarz (2017) is very different: Their focus is on the properties of particular interview

assignments, and they restrict attention to deriving conditions on the market environment (inter-

view costs) under which these assignments form equilibria. In contrast, I fix the market conditions

and then characterize the properties of hospitals’ best-response correspondences, the qualitiative

and quantitative nature of the welfare externalities emerging from hospitals’ interview decisions,

and in some cases, the properties of the set of equilibria under a particular equilibrium selection

criterion. My approach allows me both to compare the different equilibra for a given set of market

conditions, and more importantly, to compare the set of equilibria as market conditions change.

The concept of interviewing is also closely related to that of applications, which has received a

lot of attention in the college admission literature (see e.g. Chade et al. (2014)). As with interviews,

matching games with applications typically exhibit inefficient equilibria. While considering different

contexts, both Arnosti et al. (2021) and Beyhaghi and Tardos (2021) show that lower caps on

applications may lead to welfare improvements. In the medical literature, Burbano et al. (2019)

cite Arnosti et al. (2021) to claim that the introduction of a cap on applications is “the most

reasonable approach to address the issue [of application and interview costs]”. On the contrary, my

project helps to highlight the differences between applications and interviews. While placing a cap

on doctors’ applications may have positive effects on the market performance, it far from solves the

issue of negative welfare externalities from excessive interview activity.
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3 Model

3.1 Notation, main assumptions, timing of the game and agents’ strategies

Consider a two-sided matching market consisting of a set of hospitals, H = {h1, ..., h|H|}, and

a set of doctors, D = {d1, ..., d|D|}. Each hospital has one position they seek to fill, and each

doctor is looking for at most one position. Agents will be matched using the hospital-proposing

deferred-acceptance algorithm (HPDA), with outcome denoted by µ.

Hospitals are endowed with pre-interview information about their match values with doctors,

contained in a real-valued vector θh = (θhd1 , ..., θhd|D|), referred to as the hospital’s type. θh is

drawn from a distribution G with support Θ. Conditional on θhd, hospital h’s value of matching

with doctor d, denoted vhd, is drawn according to a distribution Fθhd . Let β := P
(
vhd > 0

)
> 0

denote the probability that h finds d acceptable, assumed the same for all hospital-doctor pairs.1

Denote by v+
hd the positive part of vhd, and F+

θ the positive part of Fθ. From Section 4 onward,

we will also make use of the following notation: For any S ⊂ D, define v+
h(k,S) to be the k-th

highest values of (v+
hd)d∈S , conditional on all the doctors in S being found acceptable. We refer to

E
[
v+
h(k,S)

]
as the k-th rank-order statistic of the set S. For k > |S|, define v+

h(k,S) ≡ 0. We assume

the following:

Assumptions

(A1) E[v+
hd − y|v+

hd > y] is decreasing in y for every θhd

(A2) there exists bounds 0 < vH ≤ vH <∞ such that vH ≤ E[v+
hd] ≤ vH for every θhd.

(A3) if θhd ≥ θhd then vhd first-order stochastically dominates vhd′

(A4) vhd independent of both vhd′ and vh′d′′ for d′ 6= d, h′ 6= h, and d′′ ∈ D, conditional on θh.

(A5) hospitals’ pre-interview information θh are draws from a distribution G such that:

(a) for any hospital h, conditional on θh, all other hospitals look the same: PG,h′
(
θ|θh

)
=

PG,h′′
(
θ|θh

)
for all θ, all h′, h′′ 6= h, and

1It is possible to relax the assumption of a common probability of acceptability. Since, however, this complicates

the algebra without adding much economic intuition, we have made the simplifying assumption of a common β for

all doctors. In the appendix, we briefly discuss how the model can be extended to account for differences in the

probability of acceptability.
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(b) for every pair (h, h′), conditional on h’s pre-interview information θh, for every set

D ⊂ D and h′ type θh′ such that θh′d > 0 for all d ∈ D, for every permutation πD over

D, we have P
(
πDθh′ | θh

)
= P

(
θh′ | θh

)
.

(A6) doctors find all hospitals acceptable, their match utilities vd = (vdh)h∈H are private infor-

mation and are independent draws from a distribution FD with supp(FD) = [vD, vD]|H| > 0.

Assumptions[for Sections 4.2 and 4.3]

(A5∗) Hospitals’ pre-interview information θh are independent draws from a distribution G such

that for every permutation πD over D, we have P(πDθ) = P(θ).

(A7) for any doctor d′ ∈ D and any set S ⊂ D \ {d′}, if θhd ≥ θhd′ ∀ d ∈ S, then E[v+
h(k,S∪{d′}) −

v+
h(k,S)] ≤ E[v+

h(k+1,S∪{d′}) − v
+
h(k+1,S)] for any k ≤ |S|.

(A8) there exists ε ∈ (0, 1] such that for any set S ⊂ D and any pair of doctors d′, d′′ 6∈ S, if

θhd′ ≥ θhd′′ and θhd ≥ θhd′′ for all d ∈ S, then

E
[
v+
h(|S|+2,S∪{d′,d′′}) −

(
v+
h(|S|+1,S∪{d′,d′′}) − v

+
h(|S|+1,S∪{d′})

)]
≥ εE

[
v+
h(|S|+1,S∪{d′′})

]
While we have alluded to many of the elements of the interview game, we here formalize the

timing of the game and explicitly describe agents’ strategy spaces:

Timing of the Interview Game:

1. Hospitals learn their pre-interview information θh.

2. Hospitals simultaneously choose which doctors to interview. Doctors accept all interviews.

3. Hospitals and doctors learn their match utilities, vh and vd, only for those agents with whom

they interviewed.2

4. Hospitals and doctors all submit rank-order lists. Doctors rank hospitals according to their ex

ante match utilities. Hospitals rank according to their post-interview preferences all doctors

they both (i) interviewed and (ii) found acceptable, and do not rank the remaining doctors.

2As noted by Lee and Schwarz (2017), the exact timing of when doctors learn their match utilities is not of

significance for any of the results: All results would go through if doctors knew their match utilities from the very

beginning of the game.
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The tuple (H,D, cH, G, (F )θ∈Θ) describes an interview game of incomplete information between

the hospitals in H (doctors are passive players). Hospitals’ strategies consist of choosing which

doctors to interview: For each realization of ex ante preferences, θh, hospital h’s strategy specifies

a subset (or a mixing over subsets) of D:

Definition 3.1 A mixed Bayesian interview equilibrium is a tuple
(
σh(θh)

)
θh∈Θ, h∈H such

that for each h ∈ H and each θh ∈ Θ

σh(θh) ∈ ∆ arg max
S⊆D

{∑
d∈S

P
(
µ(hj) = d

∣∣σ−h)E[vhd ∣∣µ(h) = d, σ−h
]
− cH|S|

}
(1)

where Vθh(S, σ−h) :=
∑

d∈S P
(
µ(hj) = d

∣∣σ−h)E[vhd ∣∣µ(h) = d, σ−h
]

denotes h’s expected match

value from interviewing the set S, conditional on θh and conditional on the other hospitals’ strategies

σ−h.

For the rest of the paper, we will restrict attention to equilibria in anonymous strategies:

Definition 3.2 A strategy σ is called anonymous if for any θ ∈ supp(G) and for any permutation

π, σ(πθ) = πσ(θ).

Note that in the case of no pre-interview preferences (θhd ≡ θ for all d ∈ D), an anonymous

strategy implies that h interviews each doctor with the same probability.3

Before proceeding with our analysis and results, we will discuss some of the main assumptions we

have made: Assumption (A1) ensures that the benefit of an additional interview decreases the more

interviews a hospital is conducting, allowing us to employ standard tools from convex optimization

when studying hospitals’ optimization problem. (A2) ensures that hospitals’ optimization problems

are well-defined, and that a hospital would be willing to interview any doctor, as long as the

interview cost is sufficiently small. As we will show, (A3) implies that hospitals find it optimal

to interview the doctors in descending order of the pre-interview preferences, while (A4)-(A5)

imposes no correlation (neither conditional nor unconditional) in ’ preferences both prior and post

3It is worth contrasting the above definitions to those used in Lee and Schwarz (2017). They refer to “mixed-

strategy equilibrium” as an equilibrium in which hospitals interview x doctors at random. In our terminology, their

“mixed-strategy equilibrium” corresponds to an equilibrium in anonymous strategies in which all hospitals conduct

x interviews each (and have no pre-interview information). As will become apparent later, I allow for an additional

kind of mixing, e.g. one where hospitals mix between conducting x and x + 1 interviews. As I show in Section 3.2,

this allows us to state general existence result without imposing additional conditions on interview costs, as do Lee

and Schwarz (2017).
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interviews, on both sides of the market. (A6) states that doctors find all hospitals acceptable. This

is without loss of generality: If doctors found hospitals unacceptable with positive probability (and

this probability was independent and identical across both doctors and hospitals), then doctors’

probability of unacceptability could be subsumed in the hospital probability of unacceptability, β.

(A6) also states that doctors’ preferences over hospitals are independent draws from a bounded

distribution. The independence assumption plays an important role for most of the results of the

paper, while the boundedness is only used to evaluate doctor welfare in Sections 4.1 and 4.3.

The model and its assumptions are either fully or partially consistent with much of the earlier

work on matching with interviews. First, (A1)-(A4) and (A6) satisfy the no learning setup studied

in Manjunath and Morrill (2021) in which |supp(Fθ)| = 1 for all θ. From an individual hospital’s

perspective, Kadam (2015) imposes all of assumptions (A1)-(A4), although he considers a case

with correlated preferences, violating (A5). Note that our assumption (A6) encompasses the case

in which doctors fully agree on the ranking of hospitals when |supp(FD)| = 1. Our model is perhaps

most closely related to the one in Lee and Schwarz (2017), who explicitly or implicitly assume (A1)-

(A4) and (A6). However, they do not consider pre-interview preferences, meaning that (A3) and

(A5) are automatically satisfied. Moreover, Lee and Schwarz (2017) consider the case in which all

hospitals are treated the same by doctors, while our assumption (A6) is more general, and allows

for doctors to agree on their ranking of hospitals.

It is also worth noting that different authors address the rationale for the existence of interviews

in different ways: For instance, Manjunath and Morrill (2021), who consider a context with no

learning, simply take the presence of the interview step as given, assuming interviews are allocated

according to a many-to-many stable mechanism with interview capacities exogenously given, before

agents are eventually matched in a second-stage in which participants can only rank those with

whom they interviewed. An immediate objection to their model is that the interview stage serves

no purpose. Indeed, since all agents know their own preferences prior to the interviews, one could

immediately run the second-stage final matching. Lee and Schwarz (2017) take the antithetical

route, imposing the strict assumption that firms’ expected match value with any worker is negative

(meaning they would be unacceptable), implying that no firm would ever want to be matched

with any worker without first having interviewed them, which indeed justifies the presence of the

interview stage. In this paper, we will remain mute about the exact justification for the interview

stage. As long as the probability a hospital finds a doctor unacceptable is positive (β < 1), the

model is consistent with the justification in Lee and Schwarz (2017). However, it is also worth
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pointing out that it may be in both hospitals’ and doctors’ best interest to conduct interviews even

if they believe all doctors to be acceptable (β = 1), as long as the interviews provide a sufficient

amount of new information about their post-interview preferences. Finally, in many of the examples

I present in subsequent sections, I will often consider cases in which the interview stage may seem

superfluous, although this is done in order to present the simplest example possible to illustrate

the point at hand.

Related to the justification of the presence of an interview stage, a discussion of the exact

process through which interviews are allocated is also warranted. Again, authors differ widely in

their assumptions. As mentioned above, Manjunath and Morrill (2021) assume that interviews

are allocated according to the hospital-proposing deferred acceptance algorithm, citing it as “an

approximation of the decentralized process by which hospitals invite doctors in rounds, extending

invitations to further doctors when invitations are declined”. An immediate issue with this assump-

tion is that it is in neither hospitals’ nor doctors’ best interest to report their preferences truthfully,

as can easily be verified formally, and is also perfectly illustrated by many of the results Manjunath

and Morrill (2021) present. As such, the assumption that interviews are allocated according to an

ordinal stable mechanism is not immediately consistent with optimal behavior by agents. Kadam

(2015) also studies an equilibrium model of interview allocation, considering a two-step game in

which firms first send out interview invitations followed by a round of acceptances by workers. Im-

portantly, contrary to Manjunath and Morrill (2021), Kadam (2015) does not allow firms to send

new interview requests after some of the original ones may have been declined. While he does not

completely characterize agents’ optimal strategies, due to the assumption that all workers agree on

the ranking of firms, and firms are aware of this ranking, the game can be solved by iterated elim-

ination of dominated strategies. In equilibrium, doctors accept the interview requests they receive

in order of their preferences, up to their (exogenously given) interview capacities, while firms take

into account the strategies of all higher ranked firms, and need not find it optimal to invite doctors

according to their pre-interview preferences. Note that this solution concept hinges on the assump-

tion of the perfect and commonly known agreement of the ranking of firms. If this assumption

were to be relaxed, the assumption that firms only need one round of interview requests to fill their

capacities would likely no longer hold. Lee and Schwarz (2017) choose an approach that is similar

to the one in this paper. In particular, they assume that workers accept all interview requests,

which they justify on the basis of their assumption that workers have zero interview costs, and

that any rejection at the interview stage could equivalently be accomplished by failing to list the
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relevant hospitals at the final matching stage. They further impose assumptions on the distribution

of doctors’ match values to ensure that doctors will always want to truthfully report their prefer-

ences, thus effectively circumventing the issue. In contrast, while I maintain the assumption that

doctors accept all interviews, I also allow for doctors to incur interview costs. This immediately

raises the concern that doctors could be better off rejecting some of their interviews. On the other

hand, empirical evidence suggests that doctors tend to accept the overwhelming majority of the

interviews they are offered (National Residency Matching Program and Committee (2017)), in line

with the view that most of the interview selection happens on the hospital side. Moreover, under

certain assumptions (see Section 4 and Theorem 4.6) it is indeed in the best interest of doctors

to accept all interviews they are offered, despite the fact that they may be worse off as hospitals

increase their interview activity. On a more technical note, constructing a model in which hospitals

and doctors reach a “stable” interview assignment, one in which agents on both sides choose the

optimal set of interviews among those offered, and all mutually beneficial interview opportunities

are pursued, may not be a fruitful avenue: Indeed, due to the strategic externalities, the core in

matching markets with interviews may be empty, hence the existence of a stable interview assign-

ment cannot be guaranteed. While efforts to better understand the incentives faced by agents on

both sides of the market is a promising avenue for future research, a model in which doctors play

an entirely passive role at the interviewing stage has the benefit of both being tractable while also

shedding light on the many issues raised in, for instance, the medical literature.

The assumption of uncorrelated preferences on the hospital side of the market is the most

substantive of the assumptions above. Perhaps not surprisingly, some empirical evidence suggests

a certain degree of correlation in agents’ preferences (see, for instance, Agarwal (2015)). The

reason for focusing on the case of uncorrelated preferences is two-fold: First, while based on strong

assumptions, this simple model still allows us to understand many of the important phenomena

that are at play in matching markets with interviews. It is indeed instructive to study the effect

of preference formation on market outcomes in the simplest and most tractable setting possible.

Second, previous work on matching with interviews has shown that the characteriation of equilibria

can be untractable once one allows for correlation in preferences. Moreover, previous work also

makes clear that certain conclusions are very sensitive to the assumptions on agents’ preference

structure. To illustrate, suppose all doctors agree on the ranking of hospitals, and that this ranking

is common knowledge among all market participants. Then the most preferred hospital, let’s denote

it by h∗, will always be matched to its post-interview top choice, regardless of other hospitals’
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interview decisions. Although h∗ imposes an externality on other hospitals, the actions of other

hospitals will neither impose a welfare externality nor a strategic externality on h∗. As a result,

absent any transfers, no equilibrium will be Pareto inefficient, since h∗ can never be made better

off. While this conclusion is valid, it is likely not illustrative of the current state of the entry- and

intermediate-level markets for doctors in the US. As will become apparent in later sections, our

model based on uncorrelated preferences will be well-equipped to speak to many of the issues raised

in the medical literature, while also formalizing the discussion in a tractable model. Third, in private

conversations, individuals involved in interview decisions at Stanford Hospital, both for residency

and fellowship positions, have revealed that once one disregards the very top and the bottom of the

spectrum of doctors in the market, one is left with a large set of doctors who either may be difficult

to differentiate, or for whom it may be difficult to infer the assessment other hospitals may have of

said candidates. Finally, starting in 2022, the United States Medical Licensing Examination Step

1 score will transition from a three-digit numeric score to pass/fail outcomes only, providing less

basis for hospitals to agree on a common ranking of doctors (USMLE (2020)).

3.2 Optimal Strategies and Equilibrium Existence

Having set up the model, the rest of this section establishes the existence of a Bayesian interview

equilibrium and provides a general characterization of hospitals’ optimal strategies. These result

will prove useful for our analysis in subsequent sections.

Lemma 3.3 A Bayesian interview equilibrium in anonymous strategies always exists.

The proof is in the appendix, and is similar to standard proofs of equilibrium existence in games

of incomplete information, with the additional argument that if an interview set S maximizes a

hospital’s utility at θh, then πS maximizes the hospital’s utility at πθh, for any permutation π. In

essence, the hospital’s problem looks “identical” from the perspective of every permutation of their

pre-interview information. This shows that whenever all other hospitals are playing anonymous

strategies, a hospital always has an optimal best response that is anonymous.

It is also worth contrasting the above existence result with those stated in Lee and Schwarz

(2017): Their focus is on symmetric equilibria in which all hospitals conduct x ∈ {0, .., |D|} in-

terviews each. They then show that there exist interview costs such that this indeed forms an

equilibrium. Since we allow for hospitals to mix between multiple optimal sets of doctors, our exis-

tence result is more general, and an equilibrium (not necessarily symmetric) exists for all possible
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interview costs.

Lee and Schwarz (2017) focus on the case where each hospital conducts an exact number of

interviews, and argue that this is a result of hospitals’ decreasing benefits of adding doctors to their

interview lists (a consequence of Assumption (A1)). This logic extends to our setting, and it turns

out that for any optimal strategy (holding other hospitals’ strategies fixed), there exists a kh such

that hospital h either finds it strictly optimal to conduct exactly kh interviews, or is indifferent

between conducting kh and kh − 1 interviews, as the following result shows:

Lemma 3.4 Suppose all other hospitals are playing anonymous strategies. Given θh, any optimal

pure strategy by hospital h consists of adding the doctors to its interview list in descending order

of pre-interview signals, until the benefit of an additional interview falls short of the additional

interview cost. That is, any optimal pure strategy consists of choosing S = {d(1), ..., d(|S|)} ⊂ D
such that θhd(1) ≥ ... ≥ θhd(|S|) ≥ θhd for d 6∈ S, such that

(i) Vθh(S, σ−h)− Vθh(S \ {d(|S|)}, σ−h) ≥ cH

(ii) Vθh(S ∪ {d}, σ−h)− Vθh(S, σ−h) ≤ cH for all d 6∈ S

Remark: In the case where pre-interview preferences are strict, there are at most two sets, S

and S∪{d′}, that satisfy the above two conditions. This happens whenever h is indifferent between

adding the last doctor d′ to its interview list or not. Similarly, in the case where pre-interview

preferences are not strict, the size of the optimal sets take at most two values, i.e. there exists

k ≤ |D| such that for every optimal set S we have |S| ∈ {k− 1, k}. This is illustrated in Figure 1.

The above result is a corollary of the following two lemmas; one stating that the benefit of adding

a doctor to an interview lists is smaller the bigger is the set of doctors already being interviewed,

and the other stating that it’s always better to add a doctor with higher pre-interview information

to any interview set. The proofs of all three results are in the appendix.

Lemma 3.5 Suppose all other hospitals are playing anonymous strategies. Hospital h’s benefit of

adding a doctor to a small interview list is larger than adding the doctor to a large interview list:

Let S ⊂ S′ ⊆ D and d∗ ∈ D, then for any θh

Vθh(S ∪ {d∗}, σ−h) ≥ Vθh(S′ ∪ {d∗}, σ−h)

Lemma 3.6 Suppose all other hospitals are playing anonymous strategies. Let S ⊂ D, and d, d′ ∈
D \ S. Suppose θhd ≥ θhd′, then the benefit of adding d to the interview list S is greater than the

benefit of adding d′: V (S ∪ {d}, σ−h) ≥ V (S ∪ {d′}, σ−h).
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Figure 1: Optimal interview strategy given θh and other hospitals’ strategies σ−h

An optimal strategy interviews doctors in descending order according to θh until the benefit of an additional

interview no longer exceeds the interview costs cH. The marginal benefit curve is decreasing in the number

of total interviews. In the case where the benefit of the last interview exactly equals cH, the hospital is

indifferent between adding the last doctor to its interview list or not.
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Note that Lemma 3.4 is a generalization of Lemma 2 in the appendix of Lee and Schwarz (2017).

First, they indeed focus on the case in which a hospital’s competitors play the same strategies, while

our results are stated for all anonymous strategies (which may differ across hospitals). Second, we

also generalize the result by allowing for pre-interview preferences.4

4 Interview Externalities

In this section, we explore the externalities that arise as hospitals increase their interview activity.

We start by formally defining what we mean by “increased interview activity”: First, conditional

on the pre-interview information θh, a (mixed-) strategy σh specifies a probability distribution

Pσh(·|θh) over subsets of D (with underlying probability space Ω). We write σ′h(θh) ≥ σh(θh) if

4The proof of Lemma 3.5 also fixes a minor mistake in the proof of Lemma 2 in Lee and Schwarz (2017): Indeed,

they claim that the probability that a hospital h is matched to the same doctor d after adding dk to its interview list

equals the sum of the probability h prefers d after interviewing dk and the probability that h prefers dk, but is rejected

by d. However, one can show that even if h and dk block the matching that would prevail if h did not interview

dk, it is still possible that h is matched to d after interviewing and proposing to dk. Our proof circumvents this

issue, and is based on an appropriate partitioning of the probability space and the fact that the hospital-proposing

deferred-acceptance algorithm is strategy-proof for the hospitals. See the appendix for details.
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there exists a partition Ψ of Ω such that for every ψ ∈ Ψ we have σ′h(θh, ψ) ⊇ σh(θh, ψ). For any

two anonymous strategies σ′h and σh we write σ′h ≥ σh if σ′h(θh) ≥ σh(θ) for all θh ∈ Θ.5 We write

σ′−h ≥ σ−h if σ′h′ ≥ σh′ for all h′ 6= h and σ′ ≥ σ if σ′h ≥ σh for all h ∈ H.

We will first explore welfare externalities in Section 4.1, by first considering how a hospital’s

welfare is impacted if all its competitors increase their interview activity, and then looking at the

welfare impact for doctors as hospitals all increase their interview activity. In Section 4.2, we

reinterpret the welfare externalities imposed on hospitals in terms of the probability a hospital will

match with its most preferred doctors, and we use this to further study how increased interview

activity by a hospital’s competitors impact the hospitals incentives to conduct more or fewer in-

terviews. We finally combine the results from these two Sections in Section 4.3 where we explore

the possibility of strategic complementarities combined with negative welfare externalities on both

sides of the market.

4.1 Welfare Externalities

We start by exploring welfare externalities as they pertain to agents’ expected match utilities. We

then later explore the consequences of including interview costs, both for hospitals and doctors.

Theorem 4.1 An increase in competitors’ interview activity reduces the expected match utility of

a hospital: For any h ∈ H and any set of doctors S ⊆ D interviewed by h, for any two anonymous

strategies profiles σ−h, σ
′
−h such that σ′−h ≥ σ−h we have Vθh(S, σ′−h) ≤ Vθh(S, σ−h).

Moreover, as all hospitals conduct more interviews, the doctors’ expected match utilities increase:

If σ and σ′ are two anonymous strategies such that σ′ ≥ σ, then Vd(σ
′) ≥ Vd(σ) for all d ∈ D.

The proof is in the appendix. The idea behind the theorem is that as hospitals conduct more

interviews, they are more likely to arrive at the final matching stage with longer rank-order lists

(ROLs). Using Assumption (A5) and the fact that we’re considering anonymous strategies, by an

appropriate partitioning of the probability space, I show that an increase in interview activity can

be interpreted as an increase in the probability that a hospital appends previously unacceptable

doctors to the end of its ROL at the final matching stage. Using a result by Gale and Sotomayor

5To illustrate, consider the case with no pre-interview information (Θ = {θ}) in which σh mixes between interview-

ing {d1} and {d2}, each with probability 1/2, while σ′h is the strategy that mixes between {d1}, {d2}, each with prob-

ability 1/4, and {d1, d2} with probability 1/2. Letting Ψ = {ψ1, ψ2, ψ3, ψ4}, we can define σh(ψ1) = σh(ψ2) = {d1},

σh(ψ3) = σh(ψ4) = {d2} and σ′h(ψ1) = {d1}, σ′h(ψ3) = {d2} and σ′h(ψ2) = σ′h(ψ4) = {d1, d2} such that σ′h(ψ) ⊇ σh(ψ)

for all ψ ∈ Ψ.
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(1985)6, it follows that at every element of the partition of the probability space, hospitals are

worse off and doctors are better off.

A consequence of the above result is that, from the hospitals’ perspective, the negative welfare

persist when we also consider hospitals’ interview costs and we allow hospitals to best respond to

an increase in their competitors’ interview activity. As a result, we obtain a partial ordering of the

set of equilibria in anonymous strategies:

Corollary 4.2 Suppose hospital h’s competitors increase their interview activity. Even as h best

responds to its competitors’ strategies, h is worse off. That is, let σ′−h and σ−h be two anonymous

strategy profiles such that σ′−h ≥ σ−h, and let σh ∈ B(σ−h), σ′h ∈ B(σ′−h). Then

Vθh(σ′h(θh), σ′−h)− cH|σ′h(θh)| ≤ Vθh(σh(θh), σ−h)− cH|σh(θh)|

As a consequence, if σ, σ′ are two equilibria in anonymous strategies with σ′ ≥ σ, then all hospitals

prefer σ to σ′.

Proof: Using the above lemma and the definition of the best response we get

Vθh(σ′h(θh), σ′−h)− cH|σ′h(θh)| ≤ Vθh(σ′h(θh), σ−h)− cH|σ′h(θh)|

≤ Vθh(σh(θh), σ−h)− cH|σh(θh)|

Example 1 Consider H = {h1, h2}, and |D| = 2, with vhd, vdh
iid∼ U(0, 1), with β = 1. Assume

cH ∈ (1/12, 1/2). Suppose first h2 does not conduct any interviews; σh2 = ∅. If h1 interviews one

doctor at random, its expected utility is 1/2 − cH > 0, while with 2 interviews h1 gets 2/3 − 2cH.

Then h1 prefers to conduct 1 interview as long as cH > 1/12. Suppose now that h2 decides to

interview one of the doctors at random; |σ′h2 | = 1. If h1 continues to conduct one interview, the

two hospitals interview the same doctor 50% of the time, and each hospital hires the doctor 25%

of the time. h1’s expected match utility decreases to 3
41/2. If h1 rather interviews both doctors, h1

achieves an expected utility of 3
42/3 + 1

41/3− 2cH. It’s in the best interest for h1 to interview both

doctors as long as cH < 5/24. In either case, h1 is worse off as h2 increases its interview activity.

When only h1 conducts one interview, doctors each match with h1 50% of the time, with expected

match utility of 1/2. If h2 also decides to conduct an interview, then doctors’ match probability

increases to 75%. Moreover, 25% of the time, a doctor will receive two proposals at the final

matching stage, and achieve a match utility of 2/3.

6See also Theorem 2.25 in Roth and Sotomayor (1992).
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We next further explore the implications for doctors of increased interview activity by hospitals.

Recall that our model allows for doctors to incur interview costs, cD, despite the fact that they are

otherwise assumed to be passive players in the game. Our interest is in doctors’ trade-off between

improved match quality and increased interview costs. As we established in Theorem 4.1, doctors’

expected match values increase the more interviews hospitals conduct. In a series of lemmas,

however, we will show that the increase in doctors’ expected match utility (as hospitals interview

more) slows down the higher are hospitals’ probabilities of getting matched. On the other hand,

doctors’ expected interview costs increase linearly with the number of interviews hospitals conduct:

Indeed, given an anonymous strategy profile σ, all doctors are equally likely to get matched, and,

for each hospital conducting a positive amount of interviews, any doctor is equally likely to receive

one of the hospital’s interviews.

Lemma 4.3 Consider two anonymous strategy profiles σ and σ′ such that σ′ ≥ σ. The upper

bound on the increase in doctors’ expected match rate is negatively related to hospitals’ match rates

under σ. That is,

E
[
|µ(σ′)| − |µ(σ)|

]
≤ β

∑
h∈H

E
[(

1− µh(σ)
)(
|σ′h| − |σh|

)]
≤ β

∑
h∈H

(
1− |µh(σ)|

)
E
[
|σ′h| − |σh|

]
where µh(σ) := minθ E

[
µh(σh(θ), σ−h)

]
is the minimum match probability hospital h achieves.

The proof is in the appendix. The easiest way to illustrate the point of the above lemma is to

consider the case in which there’s a single hospital, as we explore in the following example:

Example 2 Consider a market with a single hospital, H = {h}, and multiple doctors, |D| > 1,

with β = 1. If h interviews multiple doctors, the hospital will match with its most preferred doctor

at the final matching stage. Hence it may be in the best interest of the hospital to conduct multiple

interviews. Suppose h randomly interviews k doctors. Then each doctor will be interviewed with

probability k/|D|. In order to match with h, a doctor must also be the highest ranked doctor according

to h’s post-interview preferences. This happens with probability 1/k. Therefore, the expected utility

of a doctor, as a function of the number of interviews, k, that h decides to conduct, is given by

vdh
|D| −

k

|D|cD

Note that the expected match utility of the doctors does not increase in the number of interviews

h conducts (as long as k ≥ 1), while doctors’ expected interview costs do. Moreover, as long as
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cD < vD/k, it’s individually rational for the doctors to accept the interview, despite the fact that

they would be better off if h conducted fewer interviews.

As we observed in Example 1, the effect on doctors of increased interview activity by hospitals

can be divided into two components: Doctors probability of being matched, and doctors’ probability

of receiving multiple proposals during the final matching stage. The following lemma states the

probability of the latter is small when hospitals’ match probabilities are already high:

Lemma 4.4 Suppose σ′ and σ are anonymous, with σ′ ≥ σ. As hospitals increase their interview

activity, for any d ∈ D, conditional on being matched under σ, the upper bound on the increase in

d’s expected match utility is negatively related to hospitals’ match rates under σ. That is,

E
[
vdµd(σ′) − vdµd(σ) |µd(σ) 6= ∅

]
≤ vDβE

[∑
h∈H

(
1− |µh(σ)|

)(
|σ′h| − |σh|

)]
≤ vDβ

∑
h∈H

(
1− |µh(σ)|

)
E
[
|σ′h| − |σh|

]
where |µh(σ)| := minθ E

[
|µh(σh(θ), σ−h)|

]
.

The proof is in the appendix. The intuition behind the proofs of both Lemma 4.3 and Lemma

A.2 follows the logic behind Theorem 4.1: As hospitals increase their interview activity, they are

more likely to show up at the final matching stage with longer rank-order lists. By Assumption

(A5) and the fact that we’re only considering anonymous strategy profiles, the increased interview

activity can be interpreted as the appending of doctors to the bottom of hospitals rank-order lists.

However, a hospital appending doctors to the end of its rank-order lists only has a chance of

changing the match outcome if the hospital would otherwise be unmatched: Indeed, if all hospitals

are already able to match, then the deferred acceptance algorithm ends at exactly the same step as

before even after hospitals append doctors to the end of their ROLs. It turns out that the extent

to which hospitals are more likely to receive multiple offers at the final matchin stage depends on

the market tightness, i.e. the fraction of doctors relative to hospitals, as the following example

illustrates:

Example 3 Consider again the setup in Example 1, with D = {d1, d2}, vhd, vdh iid∼ U(0, 1) and

β = 1, but assume now that there are more hospitals than doctors, e.g. |H| = 3. If all hospitals

conduct 1 interview each, then a doctor will receive two proposals at the final matching stage with

probability 1
2

(
3
2

)(
1
2

)3
= 3

16 and will receive three proposals with probability 1
16 . Note that hospitals’
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probability of getting matched is less than 2/3. If instead hospitals all conduct 2 interviews each,

both doctors will always receive at least two proposals at the final matching stage: Even if some of

the hospitals first propose to d1, only one of them can be accepted, and hence any hospital rejected

by d1 will then make a proposal to d2.

Having established respective upper bounds on doctors’ match rates and match utility from

increased hospital interview activity, we can combine the two lemmas to establish an upper bound

for the increase in doctors’ unconditional match utility:

Corollary 4.5 As hospitals increase their interview activity, the upper bound on the increase in

doctors’ expected match utilities is negatively related to hospitals’ match rates: Consider two anony-

mous strategy profiles σ′ and σ such that σ′ ≥ σ. Then

E
[
vdµd(σ′) − vdµd(σ)

]
≤ β

|D|
[
vD + (vD − vD)E[|µ(σ)|]

]∑
h∈H

(
1− |µh(σ)|

)
E
[
|σ′h| − |σh|

]
where |µh(σ)| := minθ E

[
|µh(σh(θ), σ−h)|

]
.

As we pointed out in Example 2, doctors’ expected interview costs increase linearly in hospitals’

interview activity, while the previous results established that the increase in doctors’ expected match

utility is negatively related to hospitals’ match probabilities. Example 2 also illustrated that it’s

possible for doctors to be worse off as hospitals increase their interview activity, while it still being

individually rational for them to accept all interviews, a result we generalize below:

Proposition 4.6 Consider two anonymous strategy profiles σ and σ′ such that σ′ ≥ σ. Let |µH|
denote the lowest match probability for any hospital-type under either σ or σ′. If |µH| > β|D|

β|D|+1 ,

then there exist constants γ and cD < cD such that if vD > γ(vD − vD)

1. if cD < cD, it is individually rational for doctors to accept all interviews under both σ and σ′.

2. if cD > cD, doctors are worse off under σ′ than under σ.

The proof is in the appendix. Intuitively, when γ is large, the difference vD − vD is small, and

doctors only care about the probability of getting matched. If all hospitals match with very high

probability under both σ and σ′, then the benefits to doctors from the increased interview activity

under σ′ is small, while their interview costs increase proportionally to E[|σ′| − |σ|].
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4.2 Strategic externalities

As we saw in Example 1, an increase in the interview activity by a hospital’s competitors affected

the probability that the hospital matched with its first and second highest ranked doctor. We also

illustrated that, for certain interview costs, the increase in competitor interview activity changed

a hospital’s optimal interview strategy In this section, we further generalize these observations

and draw the connection between the welfare externalities and a hospital’s match probabilities

and hence the incentives to change its interview strategy. We begin by introducing the following

notation:

Definition 4.7 For any h, θh, for any set S ⊆ D of doctors interviewed by h, for any set S ⊆ S

of doctors found acceptable by h after interviewing S, and any ranking P over S, let qh,j(σ, S, S, P )

denote the probability that h matches to its j-th highest ranked doctor in S, conditional on σ−h:

q
(j)
h,θh

(σ−h, S, S, P ) := P
(
µ(h) = P (j)

∣∣ vhd > 0 ∀ d ∈ S, vhd ≤ 0 ∀ d ∈ S \ S, P, σ−h
)

Drawing once again on Example 1, we noticed that when h2 conducted no interviews, then h1

would match with its post-interview highest ranked doctor with probability 1, regardless of the

identity of this doctor. Similarly, when h2 conducted one interview at random, the probability that

h1 would match with its post-interview highest ranked doctor fell to 3
4 , again irrespective of the

identity of this doctor. It turns out that when hospitals play anonymous strategies, this property

holds more generally:

Lemma 4.8 Assume σ−h is anonymous. Then qj(σ−h, ·, ·) does not depend on the set of doctors

interviewed by h, nor on the set of doctors found acceptable by h, nor h’s ranking P of the acceptable

doctors: For any S, S′ ⊆ D, for any S ⊆ S, S
′ ⊆ S′, and any rankings P and P ′ over S and S

′

respectively, for every j ≤ min(|S|, |S′|) we have q
(j)
h,θh

(σ−h, S, S, P ) = q
(j)
h,θh

(σ−h, S
′, S
′
, P ′)

Essentially, the Lemma says that the probability a hospital matches to its j-th choice does not

depend on the identity of this doctor, nor the way in which the hospital ranks all of its acceptable

doctors. Of course, the probability that a hospital matches to its j-th choice if it only found k < j

doctors acceptable is zero. Keeping this in mind, with some abuse of notation, we can drop the

dependence of q
(j)
h,θh

on S, S and P , and simply write it as a function of the competitors’ strategies;

q
(j)
h,θh

(σ−h). In the following, it will be useful to also specify the conditional probabilities, i.e. the

probability that a hospital matches with its j-th choice, conditional on not matching with any of
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its j − 1 higher ranked choices:

p
(j)
h,θh

(σ−h) :=
q

(j)
h,θh

(σ−h)

1−∑i<j q
(i)
h,θh

(σ−h)
⇒ q

(j)
h,θh

(σ−h) =
∏
i<j

(
1− p(i)

h,θh
(σ−h)

)
p

(j)
h,θh

(σ−h)

Recall that we denote by vh(i,S) the i-th highest match value among the doctors in the set S

(all assumed acceptable). Combining this with the notation above, we can now rewrite hospital

h’s expected match utility, given h’s interview set S, and given that all other hospitals play an

anonymous strategy σ−h, as

Vθh
(
S, σ−h

)
=
∑
S⊂S

∏
d6∈S

(
1− βθhd

)∏
d∈S

βθhd

|S|∑
i=1

q
(i)
h,θh

(σ−h)E
[
vh(i,S)

]

=
∑
S⊂S

∏
d6∈S

(
1− βθhd

)∏
d∈S

βθhd

|S|∑
i=1

∏
j<i

(
1− p(j)

h,θh
(σ−h)

)
p

(i)
h,θh

(σ−h)E
[
vh(i,S)

]

=
∑
S⊂S

∏
d6∈S

(
1− βθhd

)∏
d∈S

βθhdE
[
vh(1,S)

]
+

|S|∑
i=1

∏
j≤i

(
1− p(j)

h,θh
(σ−h)

)(
∑
S⊂S
|S|>i

∏
d6∈S

(
1− βθhd

)∏
d∈S

βθhdE
[
vh(i+1,S) − vh(i,S)

]
−
∑
S⊂S
|S|=i

∏
d∈S

(
1− βθhd

)∏
d 6∈S

βθhdE
[
vh(i,S)

])

Having introduced this notation, we can now reinterpret the welfare externalities analyzed in

the previous section. Indeed, the statement “h is worse off when its competitors increase their

interview activity” can be reinterpreted in terms of h’s match probabilities:

Lemma 4.9 Assume σ−h and σ′−h are anonymous, with σ′−h ≥ σ−h. Then for all k, the prob-

ability h matches with any of its k highest choices under σ′−h is lower than under σ−h. That is,∑
j≤k q

(j)
h,θh

(σ′−h) ≤∑j≤k q
(j)
h,θh

(σ−h) and
∏
j≤k

(
1− p(j)

h,θh
(σ′−h)

)
≤∏j≤k

(
1− p(j)

h,θh
(σ−h)

)
for all k.

Proof: In the proof of Theorem 4.1, we show that σ′−h results in a distribution of rank-order

lists that can be seen as appending (at the end of the list) previously unacceptable doctors to the

rank-order lists resulting from σ−h. By an appropriate partitioning of the probability space (over

agents’ strategies and preferences), we then argue that h is worse off under σ′−h than under σ−h

at every element of that partition. Specifically, h is matched to a doctor further down on their

rank-order list. Therefore, for all elements of the partition in which h is not matched to any of its

k highest ranked acceptable doctors under σ−h, h is not matched to any of its k highest ranked

acceptable doctors under σ′−h. Since this holds for all k, the result follows.
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Our interest is in understanding how h’s benefit of adding a doctor d to an interview set S is

affected by an increase in its competitors’ interview activity, i.e. evaluating

Vθh
(
S ∪ {d}, σ′−h

)
− Vθh

(
S, σ′−h

)
−
(
Vθh
(
S ∪ {d}, σ−h

)
− Vθh

(
S, σ−h

))
Keeping in mind that the benefit of adding d to the interview list is only relevant in the cases where

d is found acceptable by h, some algebra reveals that for S ⊂ D \ {d} we have

Vθh
(
S ∪ {d}, σ−h

)
− Vθh

(
S, σ−h

)
= βθhd

{∑
S⊂S

∏
d∈S

(
1− βθhd

)∏
d6∈S

βθhdE
[
vh(1,S∪{d}) − vh(1,S)

]
+

|H|−1∑
i=1

∏
j≤i

(
1− p(j)

h,θh
(σ−h)

)(
∑
S⊂S
|S|>i

∏
d∈S

(
1− βθhd

)∏
d6∈S

βθhdE
[
vh(i+1,S∪{d}) − vh(i+1,S) −

(
vh(i,S∪{d}) − vh(i,S)

)]

+
∑
S⊂S
|S|=i

∏
d∈S

(
1− βθhd

)∏
d6∈S

βθhd E
[
vh(i+1,S∪{d}) −

(
vh(i,S∪{d}) − vh(i,S)

)]

−
∑
S⊂S
|S|=i−1

∏
d∈S

(
1− βθhd

)∏
d 6∈S

βθhd E
[
vh(i,S∪{d})

])}

To further study the strategic externalities, we will impose Assumption (A5∗) and (A7)-(A8)

stated in Section 3. Neither assumption is implied by the previously stated assumptions. However,

Lee and Schwarz (2017) mention that log-concavity of the distribution F is a sufficient condition

for their assumption (A1). It turns out that log-concavity also implies (A7), as is shown in the

appendix.

Note that by Assumptions (A7)-(A8), the terms E
[
vh(i+1,S∪{d})−vh(i+1,S)−

(
vh(i,S∪{d})−vh(i,S)

)]
and E

[
vh(i+1,S∪{d}) −

(
vh(i,S∪{d}) − vh(i,S)

)]
are all positive.

Using the above lemma and the additional distributional assumptions, the strategic effect of

an increase in the interview activity by h’s competitors can now be decomposed into two parts; a

negative competition effect

−βθhd
∑

Si−1⊂S
|Si−1|=i−1

∏
d∈Si−1

(
1− βθhd

) ∏
d 6∈Si−1

βθhd E
[
vh(i,Si−1∪{d})

]
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and a positive probability reallocation effect

βθhd

( ∑
S>i⊂S
|S>i|>i

∏
d∈S>i

(
1− βθhd

) ∏
d 6∈S>i

βθhdE
[
vh(i+1,S>i∪{d}) − vh(i+1,S>i) −

(
vh(i,S>i∪{d}) − vh(i,S>i)

)]

+
∑
Si⊂S
|Si|=i

∏
d∈Si

(
1− βθhd

) ∏
d 6∈Si

βθhd E
[
vh(i+1,Si∪{d}) −

(
vh(i,Si∪{d}) − vh(i,Si)

)])

The competition effect captures the idea that when the other hospitals increase their interview

activity, h is less likely to be matched to any of its k-th highest ranked doctors, for k < |H|. This

unambiguously reduces h’s value of interviewing doctors who are likely to be ranked among its k

highest ranked after the interviews are conducted. The probability reallocation effect represents

the increased benefit of submitting longer rank-order lists when the competing hospitals conduct

more interviews. Indeed, the more h’s competitors interview, the more likely h is to match with a

doctor far down on its rank-order list, which increases h’s incentives to improve the expected match

value of its lower ranked doctors. The two effects are illustrated both separately and combined in

Figure 2 below. Note that the probability reallocation effect is always zero when the hospital is

conducting only one interview.

Further algebra shows that the marginal interview benefit can be rewritten as

Vθh
(
S ∪ {d}, σ−h

)
− Vθh

(
S, σ−h

)
= β

{∑
S⊂S

(1− β)|S|−|S|β|S| E
[
vh(1,S∪{d}) − vh(1,S)

]
+

|H|−1∑
i=1

∏
j≤i

(
1− p(j)

h,θh
(σ−h)

)(
∑
S⊂S
|S|>i

(1− β)|S|−|S|β|S|E
[
vh(i+1,S∪{d}) − vh(i+1,S) −

(
vh(i,S∪{d}) − vh(i,S)

)]

+
(1− β)|S|−iβi−1

i

∑
S⊂S
|S|=i−1

[

β
∑
d∈S\S

E
[
vh(i+1,S∪{d,d}) −

(
vh(i,S∪{d,d}) − vh(i,S∪{d})

)]
− (1− β)iE

[
vh(i,S∪{d})

]])}

By Assumption (A8), for each i ≤ |H|− 1, the last term (in which |S| = i− 1) can be bounded
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Figure 2: The competition and probability reallocation effect, with two hospitals

The competition effect reduces the benefit of any interview, and can be illustrated as a negative “shift” of

the marginal benefit curve. The probability reallocation effect increases the benefit of long rank-order lists,

and hence many interviews. The net effect (right panel) is negative for the “first” interviews but is positive

for doctors ranked low according to pre-interview information θ.
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from below as

β
∑
d∈S\S

E
[
vh(i+1,S∪{d,d}) −

(
vh(i,S∪{d,d}) − vh(i,S∪{d})

)]
− (1− β)iE

[
vh(i,S∪{d})

]
≥
[
β
(
|S|+ 1− i

)
ε− (1− β)i

]
E
[
vh(i,S∪{d})

]
We can now combine Lemma 4.9 with the above expressions to determine how a hospital’s

incentives to either increase or decrease its own number of interviews change as its competitors

increase their interview activity. Specifically, our notion of strategic externalities will be based on

the properties of h’s best-response correspondences: In the following, we will consider the strong

set order induced by the set inclusion order (where meet is intersection and join is union).

Definition 4.10 A best-response correspondence B(·) exhibits strategic complementarities ( strategic

substitutes) if B(·) is increasing (decreasing) in the strong set order. A game exhibits best-response

strategic complementarities ( best-response strategic substitutes) if all players’ best-response cor-

respondences exhibit strategic complementarities ( strategic substitutes).

A consequence of the above lemma, combined with the above expression for the benefit of a marginal
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interview is the following:

Proposition 4.11 Restrict attention to anonymous strategies, and suppose Assumptions (A5∗),

(A7)-(A8) hold. Then there exists a constant 0 < c such that

1. if interview costs satisfy cH > c, the game exhibits best-response strategic substitutes.

2. if βε|D| ≥ (1 − β + εβ)|H|, then there exists a constant c ≤ c such that if interview costs

satisfy cH < c, then the game exhibits best-response strategic complementarities.

The proof is in the appendix. The idea behind Part 2 of the above Proposition is that when the

marginal interview costs are low, hospitals will always want to conduct many interviews. Moreover,

when the number of interviews are sufficiently high, then the positive probability reallocation

effect always outweighs the negative competition effect, leading to the strategic complementarity

in interviews. To see this, note that for each S ⊂ D, there are
( |S|
i−1

)
sets of size i − 1, while there

are
(|S|
i

)
=
( |S|
i−1

) |S|+1−i
i sets of size i. As |S| grows, i.e. the more interviews h conducts, the ratio

of subsets of S of size i relative to subsets of size i− 1 increases. By Assumptions (A7)-(A8), the

probability reallocation effect “eventually” grows faster than the competition effect, as |S| becomes

large.

The following example illustrates part 2 of the above Proposition:

Example 4 Assume supp(F+
θ ) = θ for all θ, and that θhd 6= θhd′ for all d 6= d′. Moreover, assume

βθhd ≡ β for all θhd. In this case, for any set S, such that |S| = k, if θhd′ < θhd for all d ∈ S, then

E
[
vh(j,S∪{d}) − vh(j,S)

]
= 0 for all j ≤ k. As a result, the inequality in (A6) holds with equality for

ε = 1. Using this, the marginal interview benefit reduces to

V
(
S ∪ {d′}, σ−h

)
− V

(
S, σ−h

)
= β

{
(1− β)nθhd′ +

min(|S|+1,|H|−1)∑
i=1

∏
j≤i

qj(σ−h)

(
(
n

i

)
(1− β)n−iβiθhd −

(
n

i− 1

)
(1− β)n+1−iβi−1θhd

)}

= β

{
(1− β)nθhd′ +

min(|S|+1,|H|−1)∑
i=1

∏
j≤i

qj(σ−h)

(
θhd
i

(
n

i− 1

)
(1− β)n−iβi−1

[
β(n+ 1)− i

])}
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Figure 3: Strategic substitutes (left) and complementarities (right)

The direction of the strategic externalities depends on hospital interview costs. When costs are high, a

hospital finds it optimal to reduce its number of interviews when its competitors increase their interview

activity, while the hospital prefers to increase its own number of interviews when interview costs are low

(and the number of doctors is sufficiently large)
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As a result, if cH is such that h ever finds it optimal to interview a set S∪{d} satisfying β|S∪{d}| ≥
|H|− 1, then an increase in interview activity by h’s competitors will never cause h to best-respond

by reducing its own number of interviews.

4.3 Strategic complementarities and negative welfare externalities

In the previous two sections, we analyzed both the welfare externalities that agents on both sides of

the market incur as hospitals increase their interview activity, as well as the strategic externalities

to which hospitals are exposed when their competitors interview more. Combining these results,

we can characterize the set of (pure) strategy equilibria that emerge when hospitals’ interviews are

sufficiently small. Moreover, these equilibria can be ranked according to the Pareto criterion:

Theorem 4.12 Restrict attention to equilibria in anonymous strategies, and suppose Assumptions

(A5∗) and (A7)-(A8) all hold. Suppose H and D satisfy βε|D| ≥ (1 − β + εβ)|H|. There exists a

threshold cH and a constant γ > 0 such that if cH < cH

1. The set of pure equilibria forms a complete lattice ordered by the number of interviews each

hospital conducts. Hospital welfare is decreasing in the equilibrium number of interviews.
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2. Suppose, in addition, that vD ≥ γ(vD − vD). Then there exists cD < cD such that

(a) if cD > cD, then doctors’ welfare is decreasing in the equilibrium number of interviews.

(b) if cD ≤ cD, it is individually rational for doctors’ to accept all interviews.

Proof:

1. From Proposition 4.11 we know the game exhibits strategic complementarities, meaning

the best-response correspondences are increasing. By the Knaster-Tarski fixed-point theo-

rem, the set of fixed points of
(
Bh(σ−h)

)
h∈H forms a complete lattice. These fixed-points

constitute (pure) equilibria in anonymous strategies of the interview game. For two fixed

points/equilibria σ and σ′ such that σ′ ≥ σ, all hospitals weakly conduct more interviews

under σ′ than under σ. From Corollary 4.2 it follows that all hospitals are worse off under

σ′ than under σ.

2. By Proposition 4.6, it’s sufficient to show that E[|µ(σh(θh))|] > |D|
|D|+1 for all hospital-types

(h, θh) in all equilibria σ. In the appendix, I show that, conditional on finding |H|−1 doctors

acceptable, any hospital is matched with a probability that exceeds
( |D||H|−1)−1

( |D||H|−1)
. Letting A(σh)

denote the number of doctors h finds acceptable when playing σh, then for each θ, A(σh(θ))

follows a binomial distribution with parameters β and |σh|. Let |σh| denote the minimum

number of interviews conducted by h under σ. By Hoeffding’s inequality, we have

P
(
A(σh) ≥ |H| − 1

)
= 1− exp

(
− 2η(σ)2|σh|

)
with η(σ) :=

β|σh|−|H|+1
|σh|

. Therefore, as long as
[
1 − exp

(
− 2η2|σh|

)
]
( |D||H|−1)−1

( |D||H|−1)
> |D|
|D|+1 ,

the conditions of Proposition 4.6 are satisfied. By Part 1, |σh| increases as we move up the

lattice of equilibria, hence it’s sufficient to verify that the condition is met for the equilibrium

involving the smallest number of interviews. By setting cH sufficiently low, then either (i)

all hospitals will conduct enough interviews in all equilibria such that the above condition

is satisfied, or (ii) all hospitals interview all doctors in the market, in which case there’s a

unique equilibrium and only doctors’ individual rationality constraint needs to be satisfied.

One significant aspect of the above result is that, contrary to classical results in the matching

literature, preferences on opposing market sides are not conflicting. Indeed, the final matching
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stage of our model includes the use of a stable matching mechanism. However, the set of stable

matchings have the property that if you make one side of the market worse off, then the other side

of the market is necessarily better off (Knuth (1976)). However, as we have just demonstrated, this

central result in the theory of stable matchings no longer holds when we also consider interview

costs: It is indeed possible to make both sides of the market worse off. Due to the presence of the

interview stage, despite the use of the stable matching mechanism in the final matching stage, the

resulting match need not be stable in the classical sense: Hospitals may optimally choose not to

interview all doctors. Moreover, even if hospitals do interview all doctors, and the resulting match

indeed is stable, this does not imply that hospitals could not be made even better off when we

account for their interview costs. In short, the introduction of the costly interview stage implies

that some of the central results from the matching literature no longer hold when we take an

extended view of the entire matching process, which includes the costly process through which

agents learn about their preferences.

It is also worth emphasizing that the interview allocations described in Theorem 4.12 are not

simply imposed on the agents: These are equilibrium interview allocations that result from hos-

pitals optimally choosing their interview strategies in response to their competitors’ strategies.

Furthermore, while doctors play a passive role in the interview game, under the conditions of the

Theorem, it is still individually rational for doctors to accept all the interviews they are offered.

An immediate consequence of Theorem 4.12 is that, in the case in which hospitals coordinate on

the equilibrium that involves the most interviews, then agents on both sides of the market can be

made better off with coordinated reduction in interview activity. We will explore this and related

points when we discuss the role of market design interventions in Section 6.

Before we proceed with our analysis of comparative statics in Section 5, we will briefly discuss

the results in some more detail: Specifically, why is the characterization of strategic complemen-

tarities so involved? Does there exist a more straightforward model under which strategic com-

plementarities in hospitals’ interview decisions would hold more generally, and would not require

additional assumptions on market tightness (|D|/|H|) and hospitals’ interview costs? For instance,

in supermodular games, the characterization of strategic complementarities is more straightforward,

since it’s essentially build into agents’ payoff functions. The issue turns out to combine this type

of strategic complementarity with negative welfare externalities. Specifically, supermodular games

cannot exhibit negative welfare externalities. Since we are considering a game with negative welfare

externalities, this explains why hospitals’ payoff functions are not supermodular in their own and
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competitors’ interview decisions:

Observation 4.13 Consider a strategic form game
(
I, (Si)i∈I , (ui)i∈I

)
where the strategy space

has a partial order for each i ∈ I, and each player has an “lowest” action, a
(0)
i , that guarantees

a constant payoff regardless of others’ actions: a
(0)
i ≤ ai for all ai ∈ Si and ui(a

(0)
i , a−i) ≡ ui for

all a−i. Suppose the game exhibits negative welfare externalities; i.e. an increase in the action by

other players make all other players worse off. Then the players’ payoff functions do not exhibit

increasing differences.

Proof: Consider an action ai 6= a
(0)
i and a sequence of actions (a

(k)
i )nk=0 such that ak−1

i ≤ a(k)
i for

k = 1, ..., n. Write u(ai, a−i)− ui =
∑n

k=1 ui(a
(k)
i , a−i)− ui(a(k−1)

i , a−i). Consider a′−i ≥ a−i, then

u(ai, a
′
−i)− u(ai, a−i) =

n∑
k=1

ui(a
(k)
i , a′−i)− ui(a(k−1)

i , a′−i)−
(
ui(a

(k)
i , a−i)− ui(a(k−1)

i , a−i)
)

Suppose ui satisfies increasing differences. Then each term on the right-hand side is positive.

However, negative welfare externalities imply that the left-hand side is negative, leading to a con-

tradiction.

5 Comparative statics

The previous sections have analyzed the structure and properties of hospitals’ optimal strategies

and best-response correspondences, in addition to determining the qualitative nature of the welfare

externalities to which agents are exposed. This analysis considered the case in which the economic

environment was held constant. We next turn to an analysis of comparative statics, in which we

will explore the effect of changing certain features of the economic environment, in particular the

effect of changing agents’ interview costs or the number of participants in the market.

5.1 Varying interview costs

We start our analysis by exploring the effect of changing agents’ interview costs. Such an analysis

seems particularly relevant in light of recent changes to the interview technology: Traditionally,

most interviews were conducted in person, with candidates (doctors) usually being responsible

for bearing the costs of travel and accommodation. The in-person interviews would also require
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coordination of the hospital program directors (interviewers) to be physically present for both the

interview and any tour of the premises which the candidates would attend. During the 2020-2021

job market cycle, however, due to the COVID-19 pandemic, most interviews moved to a virtual

format. It stands to reason that such a change may have altered agents’ interview costs. For

instance, candidates/doctors would no longer have to pay for expensive air travel. For hospital

program directors, the change in the costs may have been less pronounced, but still significant:

For hospitals the primary cost of the interview is likely the opportunity cost of the interviewers,

who may be high-paying doctors who could otherwise be performing procedures with high profit-

margins for the hospital. Still, the ability to conduct virtual interviews likely eases any coordination

issues the hospital may face, in particular when more than one hospital employee is involved in the

interview process: Allowing program directors to conduct the interviews from the comfort of their

personal offices may lower any “down time” otherwise caused by the interview process.

Having argued that the move to virtual interviews likely implied lower interview costs, both

for hospitals and for doctors, the obvious question that arises is what effect such a change has

on equilibrium welfare. Clearly, holding the interview allocations fixed, a decrease in interview

costs make agents better off (as illustrated in the left panel of Figure 4). However, a reduction in

(hospital) interview costs may also drive hospitals to increase their interview activity. By Theorem

4.1, this imposes a negative welfare externality on other hospitals. In a symmetric world, in which

all hospitals initially conduct, say, k interviews, a decrease in hospital interview costs may drive

all hospitals to increase their interview activity. In equilibrium, hospitals gain from the lower costs

they incur, but incur a loss from the increased welfare externalities to which they are exposed.

The net effect is ambiguous, and depends on the relative sizes of the gain (green area in the right

panel of Figure 4) and the negative welfare externalities (red areas in the right panel of Figure

4) to which hospitals are exposed. In Example 5, we show how hospitals may indeed be strictly

worse off as they move from an equilibrium with high interview costs and low interview activity,

to an equilibrium with lower interview costs and higher interview activity. The insights from this

example and the discussion above is summarized in the following observation:

Observation 5.1 Equilibrium welfare need not be monotonic in agents’ interview costs.
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Figure 4: A reduction in hospitals’ interview costs may decrease equilibrium welfare

Consider a symmetric equilibrium. A reduction in hospital interview cost from c to c′ has an unambiguous

positive effect (illustrated by the green area in the left figure), as long as the decrease does not change the

equilibrium strategy of any hospital. As costs further decrease from c′ to c′′, a hospital finds it optimal

to increase its interview activity. Since this applies to all hospitals, every hospital is also exposed to the

negative welfare externalities of the increase in its competitors interview activity (illustrated by the red areas

in the figure to the right). The net effect is ambiguous.
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Example 5 Consider the case with |H| = |D| = 3, with vhd, vdh
iid∼ U(0, 1) and β = 1. Let

[j, 1]−h denote the anonymous strategy profile in which all of hospital h’s competitors conduct j

interviews each with probability 1. One can show that q
(1)
h ([1, 1]−h) = 76

108 , q
(2)
h ([1, 1]−h) = 26

108 , and

that q
(1)
h ([2, 1)]−h) = 69

108 , q
(2)
h ([2, 1]−h) = 26

108 . Based on this, it’s an equilibrium for all hospitals

to conduct one interview each when cH ∈ (128/648, 228/648), two interviews each when cH ∈
(80/648, 121/648), and three interviews each when cH < 80/648. Equilibrium expected utilities are

V (1, [1, 1])− cH = 228/648− cH for cH ∈ (128/648, 228/648)

V (2, [2, 1])− 2cH = 328/648− 2cH for cH ∈ (80/648, 121/648)

V (3, [3, 1])− 3cH = 408/648− 3cH for cH < 80/648

Consider a reduction in interview costs from 130/648 to 120/648. In equilibrium, hospitals all

increase their number of interviews from 1 to 2. Despite the decrease in interview costs, hospitals’

equilibrium expected utilities decrease from 98/648 to 88/648, making all hospitals worse off. Since
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β = 1, the third interview any hospital conducts imposes no externality on the other hospitals.

Thus, when cH < 121/648, a reduction in interview costs always make hospitals better off.

The discussion above focused on hospitals’ perspective. However, the logic extends to doctors:

Doctors are indeed better off if their interview costs decrease, as long as the (expected) number

of interviews they conduct, as well as the expected match utilities they achieve are unchanged.

Therefore, if doctors’ interview costs only decrease, and hospitals’ costs are changed, then the set

of equilibria is unchanged, and in each eqquilibrium doctors are unambiguously better off. If both

doctors’ and hospitals’ interview costs decrease, the effect is more complicated: If the decrease in

hospital interview costs is such that hospitals, in equilibrium, conduct more interviews, the effect

on doctors’ welfare is ambiguous. From Theorem 4.1, doctors’ expected match utilities increase.

On the other hand, the total effect on doctors’ expected interview costs is ambiguous. On the

one hand, the per-interview costs cD may decrease, but the overall costs may increase as long the

increase in the expected number of interviews is sufficiently large. As a result, the increase in

doctors’ expected match utilities may be too low to offset the increase in their interview costs,

similar to the logic of Corollary 4.5 and Proposition 4.6.

5.2 Varying the Number of Market Participants and Market Thickness

We next turn to the analysis of a change in the number of market participants. This is empirically

relevant for the entry-level market for doctors in the US. Indeed, Figure 5, taken from nrmp.org,

documents the number of total applicants and total post-graduate year 1 (PGY-1) positions at

US hospitals participating in the Main Residency Natch organized by the NRMP, over the years

1952-2020. As is immediately clear, the number of positions has more than tripled over the almost

70 year period, while the number of applicants has increased by a factor of more than 8. It is worth

noting, however, that in recent decades, a non-negligible fraction of applicants represent candidates

who received their medical education outside of the US. Few among these candidates are successful

at obtaining a match, and foreign applicants typically receive fewer interview offers than their US

counterparts.

To get a sense of what the effect of increasing the number of market participation, consider the

following: On the one hand, increasing the number of doctors allows hospitals to interview more

candidates, which may yield higher expected match utilities. On the other hand, increasing the

number of hospitals exposes hospitals to increased negative welfare externalities, potentially making
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Figure 5: Evolution of the number of applicants and positions participating in the

NRMP residency match, 1952-2020. Source: nrmp.org

it harder for hospitals to match with their top choices. Which effect dominates in equilibrium is

ambiguous, and will depend on hospitals’ interview costs. The following simple example illustrates

the trade-off that are involved:

Example 6 Suppose for all h ∈ H, d ∈ D, we have vhd ∼ U(0, 1), with β = 1. Consider first the

case in which |H| = |D| = 1. If the hospital interviews the doctor, the hospital’s expected utility

will be 1/2− cH, which is strictly positive as long as cH < 1/2.

Consider now the case in which |H| = |D| = 2. Suppose both hospitals conduct one interview

each, at random. In this case, the two hospitals will overlap with probability 1/2, in which case

any hospital will “lose” the doctor in question with probability 1/2, leading to an expected utility

of 3
4 1/2− cH. If a hospital chooses to interview both doctors, it will not be matched with its most

preferred doctor with probability 3
4 , hence the expected utility is 3

42/3+ 1
41/3−2cH. Conducting both

interviews will be an equilibrium as long as cH < 5/24. In either case, equilibrium welfare under

|H| = |D| = 2 is lower than under |H| = |D| = 1 as long as cH ≥ 1/12.

The purpose of our analysis will be to understand how the number of market participants

affects both equilibrium welfare and hospitals strategies, and to quantify the extent of the welfare

externalities and strategic externalities to which hospitals are exposed in equilibrium. Our focus

will be on proportional changes in the number of hospitals and doctors, usually referred to changing

36



market thickness. To facilitate our analysis, we will make additional simplifying assumptions, which

are detailed below. First, throughout this section, we will consider the case in which agents have

no pre-interview information, in particular vhd ∼ FH for all (h, d). Second, our focus will be on

symmetric equilibria in anonymous strategies, i.e. equilibria in which all hosptials play the same

strategy. There are multiple reasons for this shift in focus: Restricting attention to environments

with no pre-interview information, while also only considering symmetric equilibria, allows us to

abstract from the complicating cases in which some hospital types may benefit from increased

market thickness, while other hospital types may be hurt by the same change. While these cases

are certainly both interesting and important, they lie outside of the scope of this paper. Finally,

even when we restrict attention to symmetric equilibria, the set of equilibria is potentially large,

and it is not immediately clear how to compare the set of equilibria as we change the number of

market participants. To make such comparisons more straightforward and coherent, our focus will

be on the symmetric equilibrium in anonymous strategies that maximizes hospital welfare, which

we show below, indeed exists.

Recall that any equilibrium in anonymous strategies can be characterized by the number of

interviews that each hospital is conducting. By Proposition 3.4, all equilibria are either pure, in

which all hospitals conduct exactly k interviews, for some k ≤ |D|, or the number of interviews each

hospital conducts is mix between two consecutive numbers k−1 and k, with k ≤ |D|. By Corollary

4.2 hospital welfare is decreasing in the equilibrium number of interviews hospitals conduct. Hence,

the hospital welfare-maximizing symmetric equilibrium in anonymous strategies is the one in which

hospitals conduct the fewest interviews possible.

To make further progress, we will introduce additional notation: First, due to the absence of

pre-interview information, assuming every h′ 6= h plays an anonymous strategy, then h is indifferent

between interviewing any subsets S, S′ ⊆ D such that |S| = |S′|. With some abuse of notation,

therefore, for any anonymous strategy profile σ−h, we let V (k, σ−h) := V (S, σ−h) for any S such

that |S| = k (where we also omit the dependence on θ). Second, for any 1 ≤ k ≤ |D|, denote by [k, p]

the mixed strategy which with probability p randomly and uniformly selects k doctors to interview,

and with probability 1−p randomly and uniformly selects k−1 doctors to interview. In particular,

we have [k + 1, 0] = [k, 1] and let [1, 0] be the strategy that involves no interviews. Note that [k, p]

is an anonymous strategy for every (k, p). Denote by ([k, p])h∈H the strategy profile in which every

hospital plays [k, p]. Third, using the above, define gj([k, p]) := V
(
j, ([k, p])−h

)
−V

(
j−1, ([k, p])−h

)
.

Using this notation, ([k, p])h∈H is an equilibrium if every hospital h is indifferent between conducting
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k and k−1 interviews, given that all other hospitals are mixing between k and k−1 with probability p

and 1−p, respectively. This implies that the marginal benefit of conducting the k-th interview must

equal the marginal cost: gk([k, p]) = cH. Note that in the case of p ∈ {0, 1}, either ([k − 1, 1])h∈H

or ([k, 1])h∈H is a pure strategy equilibrium. It turns out that, as a function of p, gk([k, p]) has

certain convenient properties:

Lemma 5.2 For every k ≤ |D|, gk([k, p]) is a polynomial function in p, and hence (uniformly)

continuous on [0, 1].

Proof: For any p ∈ [0, 1], the probability that exactly n of h’s competitors will conduct k

interviews is
(|H|−1

n

)
pn(1 − p)|H|−1−n. Since every firm randomly selects the doctors to interview,

the identity of the firms that conduct k interviews does not influence h’s expected match utility.

For n ≤ |H|−1, denote by (k, n)−h the strategy in which n of h’s competitors conduct k interviews,

while the others conduct k − 1 interviews. With a slight abuse of notation, we can now write

V
(
j, ([k, p])−h

)
=

∑
n≤|H|−1

(|H| − 1

n

)
pn(1− p)|H|−1−nV

(
j, (k, n)−h

)
which is a polynomial in p, and the result follows.

This result has immediate consequences for the existence of equilibrium which we will rely on

in the following analysis:

Proposition 5.3 A hospital welfare-maximizing symmetric equilibrium in anonymous strategies

always exists.

Proof: To see that an equilibrium always exists, it’s sufficient for some k ≤ |D|, that

min
{
gk([k, 0]), gk([k, 1])

}
≤ cH ≤ max

{
gk([k, 0]), gk([k, 1])

}
Indeed, since the function gk([k, p]) is continuous in p, thus if the above two inequalities hold, by

the Intermediate Value Theorem there exists a p ∈ [0, 1] such that gk([k, p]) = cH. If the above

inequalities do not hold for any k, then it must be that either

max
{
gk([k, 0]), gk([k, 1])

}
< cH for all k, or

min
{
gk([k, 0]), gk([k, 1])

}
> cH for all k
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In the former case, it is an equilibrium for all hospitals to conduct 0 interviews each. In the latter

case, it is an equilibrium for all hospitals to conduct |D| interviews.

Since for each k, the function gk([k, p]) can be written as a finite polynomial, it also follows that

the equality gk([k, p]) = cH holds for finitely many p. By Corollary 4.2, the welfare-maximizing

equilibrium is the one in which hospitals conduct the lowest number of interviews. Since there are

finitely many equilibria, there must be an equilibrium that maximizes hospital welfare.

Having established the existence of a welfare-maximizing symmetric equilibrium, we next seek

to construct a (theoretical) algorithm that can find the equilibrium in question. The idea behind

the algorithm, which we describe in detail below, is to increase the number of interviews hospitals

conduct, at most by an increment of 1, until we arrive at a situation in which gk ≤ cH. Key to this

procedure will be our ability to determine whether we can say with certainty that gk([k, p]) > cH

for all p in some interval of mixing probabilities [p0, p1]. The following lemma will be useful:

Lemma 5.4 For any k ≤ |D| and any 0 ≤ p0 < p1 ≤ 1 we have gk([k, p]) > cH for all p ∈ [p0, p1]

as long as

V
(
k, ([k, p1])−h

)
− V

(
k − 1, ([k, p0])−h

)
> cH

Proof: Using that V (j, ([k, p̂])−h) is decreasing in p̂, for any p ∈ (p0, p1) we get

gk([k, p]) := V
(
k, ([k, p])−h

)
− V

(
k − 1, ([k, p])−h

)
≥ V

(
k, ([k, p1])−h

)
− V

(
k − 1, ([k, p0])−h

)

We next construct an algorithm that allows us to find the hospital welfare-maximizing symmet-

ric equilibrium in anonymous strategies. The idea behind the algorithm is, conditional on reaching

k, to check whether ([k, p0])h∈H is an equilibrium for p0 = 0, by evaluating if
(
k, ([k, 0])−h

)
−V

(
k−

1, ([k, 0])−h
)
≤ cH. If it’s not, then algorithm evaluates the condition of Lemma 5.4 for p0 = 0 and

p1 = 1. If the condition is satisfied (with p1 = 1) then the algorithm increases k by 1, and starts

over with the new value of k. If the condition of the lemma is not satisfied, then the algorithm

decreases p1 to (p0 + p1)/2, and checks the condition of Lemma 5.4 again with the new values of

p0 and p1. If the condition of the lemma is satisfied for some p1 < 0, then p0 is increased to the

current value of p1, and p1 is increased to its next lowest value. If the condition of the lemma is not

satisfied, then if p1 − p0 < δ, the algorithm ends. Otherwise, p0 is held at its current level, while

p1 is decreased to (p1 + p0)/2, before the algorithm again evaluates the condition of Lemma 5.4.
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An algorithm for approximating the welfare-maximizing symmetric equilibrium

Fix δ > 0 and initialize k = STOP = 0. While STOP = 0

Step 0: k = k + 1.

(a) If k > |D|. Stop the algorithm. [|D|, 1] is an equilibrium.

(b) Else: Initialize n = 0, and pn0 = 0, pn1 = 1. Proceed to Step 1.

Step 1: If n = 0, and gk([k, p
0
0]) ≤ 0: End the algorithm, [k, 0] = [k − 1, 1] is an equilibrium. Else:

(a) If V
(
k, ([k, pn1 ])−h

)
− V

(
k − 1, ([k, pn0 ])−h

)
> cH:

i. If pn1 = 1: Proceed to Step 0.

ii. Else: n = n+ 1. Set pn0 = pn−1
1 , pn1 = min

0≤i≤n−2
(pi1 : pi1 > pn0 ). Proceed to Step 1.

(b) Else if pn1 − pn0 < δ: End the algorithm; STOP = 1.

(c) Else: n = n+ 1. Set pn0 = pn−1
0 , pn1 = (pn−1

1 − pn0 )/2. Proceed to Step 1.

It turns out that the algorithm indeed converges to the welfare-maximizing symmetric equilib-

rium as δ → 0, as the following result show, the proof of which is in the appendix. Results from

numerical simulations of the hospital welfare-maximizing symmetric equilibrium are provided in

Section 5.2.1.

Lemma 5.5 For every δ > 0 the algorithm finishes in a finite number of steps. Moreover, for every

ε > 0 there exists δ > 0 such that the algorithm ends with an evaluation of hospital welfare within

ε of the welfare achieved in the hospital welfare-maximizing symmetric equilibrium, and within δ of

the corresponding mixing probability p.

5.2.1 Simulation Results of the Hospital Welfare-Maximizing Symmetric Equilibrium

In this section, we present results from numerical simulations of the hospital welfare-maximizing

symmetric equilibrium in anonymous strategies, based on the algorithm described in the previ-

ous section. Specifically, the algorithm described above is based on knowledge of the values of

V (k, ([k, p])−h) and V (k− 1, (k, p])−h) for different values of p. Since these values are unknown, we

estimate them using simulations. Since everything is symmetric, it suffices to estimate the values

for one hospital, which we will refer to as hospital h1. Specifically, for every (k, p), we generate

N independent draws of the vectors vh and vd for each hospital and doctor from the distributions
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FH and FD. For each hospital h 6= h1, we next generate N (independent) vectors ih of interview

indicators which, with probability p randomly assign a 1 for k different doctors, and with prob-

ability k − 1, randomly assign a 1 for k − 1 doctors, and in both cases assigns a 0 for all other

doctors. The hospital’s preferences are then calculated as the element-wise product of the vectors

vh and ih. To estimate V (k, ([k, p])−h) we generate N independent draws of interview indicators ih1

for hospital h1, all indicating exactly k (random) interviews, and generate corresponding interview

indicators of length k − 1 to estimate V (k − 1, ([k, p])−h). For each strategy [k, 1] and [k, 0] for

hospital h1, we can now calculate the match outcome and corresponding match utility for h1 in all

N market instances. Taking the average over all N instances provides an estimate of h1’s expected

match utility, holding the strategies of all other hospitals constant, which allows us to estimate the

benefit to h1 of the k-th interview. Each of the N market instances also allows us to estimate the

average expected match utility that doctors achieve in the hospital welfare-maximizing symmetric

equilibrium. Throughout this sections, all simulations were based on match utilities drawn from

the uniform U(0, 1) distribution, with all doctors acceptable (β = 1), and with expected utilities

estimated from N = 250, 000 market instances. The precision of the equilibrium-finding algorithm

was set to δ = 10−5. Finally, we restricted attention to the case of balanced markets (|H| = |D|),
and simulated equilibrium outcomes for the cases of |H| ∈ {2, 3, 5, 10, 20, 30, 50, 75, 100}. We also

considered different levels of interview costs; cH ∈ {0, 0.01, 0.05}.
Figure 6 shows the results from the numerical simulations of the hospital welfare-maximizing

symmetric equilibrium for different hospital interview costs, and for different levels of market thick-

ness. We included results for the case with cH = 0, in which all hospitals interview all doctors. The

evolution of hospital and doctor welfare in this case is known theoretically, and the results were

included as a reference only. Note that with cH = 0 hospital welfare is monotonically increasing in

market thickness. This stands in stark contrast to the two other curves we included (the numbers

below the curves indicate the equilibrium number of interviews hospitals conduct):

Panel (a) shows hospitals expected match utilities, net of interview costs. For cH = 0.01,

hospitals all optimally choose to interview all the doctors in the market as long as |D| ≤ 10,

and hospitals’ equilibrium welfare is increasing to this point. From |H| = |D| = 20 onward,

however, hospitals no longer find it optimal to interview all the doctors in the market. Moreover,

hospital equilibrium welfare is lower at this level of market thickness than under |H| = |D| = 10,

and continues to fall as the market further thickens. In particular, equilibrium welfare under

|H| = |D| = 100 is barely higher than under |H| = |D| = 2. As a result, the gap between
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the welfare curve under cH = 0.01 and cH = 0 is widening as the market thickens. Within

the range of market sizes we’re considering, the results indicate that the equilibrium number of

interviews (with cH = 0.01) increases as the market thickens, albeit very slowly: The equilibrium

number of interviews are 17 when |H| = |D| = 20 and agents mix between 19 and 20 interviews

as |H| = |D| = 100, meaning that the fraction of doctors that each hospital interviews decreased

from 85% to less than 20%. One possible explanation for the non-monotonic nature of hospitals’

expected utilities as a function of market thickness could be the increase in interview costs that they

incur. Panel (b), which displays hospitals’ expected match utilities shows that this is only part of

the story: Expected match utility under |H| = |D| = 20 is indeed higher than under |H| = |D| = 10,

but is monotonically decreasing beyond |H| = |D| = 20, with expected match utilities being similar

under |H| = |D| = 100 and |H| = |D| = 10. Therefore, not only does market thickness provide

incentives for hospitals to increase their interview activity and thus incur additional interview costs,

it also exposes them to increased welfare externalities, lowering their expected match utilities.

The simulation results for the higher interview costs (cH = 0.05) indicate a similar tendency,

although the contrast to the case with zero interview costs is even starker. Equilibrium welfare

(Panel (a)) indicates that welfare is barely higher under |H| = |D| = 3 than under |H| = |D| = 2,

and is monotonically decreasing thereafter. Since interview costs are relatively large, hospitals do

not find it in their best interest to increase their interview activity by a lot; within the range of

market sizes under consideration, hospitals at most mix between 5 and 6 interviews. As Panel (b)

indicates, hospital expected match utility is also monotonically decreasing beyond |H| = |D| = 3,

with an ever widening gap between the case of zero interview costs.

Figure 7 shows the expected match utilities achieve in the hospital welfare-maximizing symmet-

ric equilibrium for different interview costs and market sizes. As for hospitals, doctors’ expected

match utilities are monotonically increasing for cH = 0, although at a different rate than for hospi-

tals. When hospitals’ interview costs are cH = 0.01, the simulation results suggest doctors’ expected

match utilities are still monotonically increasing, at least within the range of market sizes we are

considering. Moreover, the gap between the case with low interview costs (cH = 0.01) and zero

interview costs is much less pronounced than for hospitals. For the higher hospital interview costs

(cH = 0.05), however, doctors’ equilibrium expected match utilities evolve very differently. Beyond

|H| = |D| = 10, doctors’ expected match utilities seem to have reached a plateau, and very little

variation is discernible. That said, the numerical estimate of the expected match utilities under

|H| = |D| = 100 is indeed strictly lower than under |H| = |D| = 30.
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Figure 6: Hospital equilibrium net utility, match utility and equilibrium strategies, for

different market sizes and interview costs

Notes: Simulation of the hospital welfare-maximizing symmetric equilibrium, based on balanced markets

(|H| = |D|), with β = 1 and vhd, vdh
iid∼ U(0, 1), and δ = 10−5. Expected match utilities estimated from

250,000 realization of market instances, given the (mixed) strategies. The numbers in square brackets

represent the equilibrium number of interviews each hospitals conducts.

(a) Equilibrium expected match utility net of interview costs

(b) Equilibrium expected match utility
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Figure 7: Doctor equilibrium match utility, for different market sizes and hospital

interview costs

Notes: Simulation of the hospital welfare-maximizing symmetric equilibrium, based on balanced markets

(|H| = |D|), with β = 1 and vhd, vdh
iid∼ U(0, 1), and δ = 10−5. Expected match utilities estimated from

250,000 realization of market instances, given hospitals’ (mixed) strategies.

The two previous figures provides a convenient comparison to the “idealized” scenario in which

there are no interview costs, and all hospitals interview all doctors. However, the simulation results

themselves say little about the exact extent of the welfare externalities and strategic externalities to

which hospitals are exposed. To investigate this in more detail, for every level of market thickness

and interview costs, we consider the case in which only one hospital conducts interviews. That

is, we consider the optimal number of interviews a hospital would choose, as well as the resulting

welfare the hospital would achieve, in the case in which none of its competitors conducted any

interviews. In this case, a hospital is always matched to its highest ranked doctor according to

its post-interview preferences. Using the fact that match utilities are drawn from the uniform

distribution, if the hospital conducts k interviews, it will achieve an expected match utility of k
k+1 .

The increase from k−1 to k interviews is therefore 1
k(k+1) . Formally, the hospital’s optimal strategy

is therefore given by the set of k’s satisfying

gk([1, 0]) =
1

k(k + 1)
≥ cH ≥

1

(k + 1)(k + 2)
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Figure 8: Hospital optimal strategy and net utility under when no other hospital con-

ducts interviews, relative to hospital equilibrium match utility and equilibrium strate-

gies, for different market sizes and interview costs

Notes: Simulation of the welfare-maximizing symmetric equilibrium, based on balanced markets (|H| = |D|),
with β = 1 and vhd ∼ U(0, 1), and δ = 10−5. Match utilities estimated from 250,000 independent market

simulations. The numbers in square brackets represent the equilibrium strategies under different costs.

(a) Expected net utility and strategies with cH = 0.01

(b) Expected net utility and strategies with cH = 0.01
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In the case of cH = 0.01, the unique optimal number of interviews for the single hospital is

k = min{9, |D|}, i.e. the hospital interviews all doctors as long as there are no more than 9, but

stops interviewing at 9 whenever the number exceeds this level. The achieved expected utility net of

interview costs is 0.81 (for |D| ≥ 9). The comparison to the hospital welfare-maximizing symmetric

equilibrium is illustrated in Panel (a) of Figure 8. Unsurprisingly, there’s a substantial gap between

the welfare the hospital obtains as the sole interviewing hospital and the welfare obtained in the

symmetric equilibrium. For |H| = |D| ≥ 50, in the symmetric equilibrium the hospital is exposed

to net welfare externalities that amount to around 25% of the utility achieved when the hospital

is alone in the market. The strategic externalities are also quantifiably large: Compared to the

case in which the hospital is alone in the market, the hospital more than doubles its number of

interviews in the hospital welfare-maximizing symmetric equilibrium.

When cH = 0.05 and the hospital is alone in the market, the hospital is indifferent between

conducting 4 and 5 interviews, and the maximum expected utility is given by 0.6. Panel (b) of

Figure 8 plots the equilibrium utility relative to the utility achieved under the hospital welfare-

maximizing equilibrium. For |H| = |D| ≥ 30, the net welfare externalities are around 40% of

the utility the hospital achieves when it’s alone, which is higher than in the case of cH = 0.01.

However, the strategic externalities are less substantial with cH = 0.05, as the optimal number of

interviews increase from an indifference between 4 and 5 interviews to an indifference between 5

and 6 interviews.

Before we proceed, we point out that Lee and Schwarz (2017) also did include simulation

results for equilibrium strategies for different market sizes. However, their focus were on fixing

hospitals’ strategies, and then derive conditions on interview costs under which the strategy profile

in question constituted an equilibrium. This makes direct comparisons of a change in market

size, holding interview costs constant, particularly difficult. Our approach, which is based on

a particular equilibrium selection criterion, makes the interpretability of the comparative statics

much more transparent, and is one of the major advantages of our analysis: We can independently

change hospitals’ interview costs and market size, and explore the resulting equilibrium strategy

and equilibrium welfare for each parameter choice.

5.2.2 Incentives to Match Outside the Centralized Clearinghouse

The simulation results in the previous sections illustrate how hospitals and doctors, when the

number of interviews they conduct is limited by agents’ interview costs, may not be able to reap
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the full benefits of market thickness. Indeed, the simulation results suggest there is a widening

gap between the welfare that would result in the case of zero interview costs, and the equilibrium

welfare that results under strictly positive interview costs. More precisely, due to the presence of

the costly interviews, agents on both sides of the market may be worse off as the market thickens.

This raises questions about the usefulness of the centralized match in thick markets. At least since

Roth (1991), a widely held view has been that the use of a stable matching mechanism is crucial

to prevent the centralized market from disintegrating, which among other things, could lead the

market to unravel. Roth (2008) further argue that market thickness is a crucial component for the

success of the centralized clearinghouse: For agents to find it useful to participate in a centralized

match, the clearinghouse must attract a sufficiently large proportion of the market participants.

Numerous authors have pointed to the benefits of thick markets.7 However, Roth (2008) also point

out that the clearinghouse must “overcome the congestion that thickness can bring”. Early work

on congestion considered the cases in which congestion resulted from the bottlenecks caused by the

available communication technology (Roth and Xing (1997)). In the case of interviews, the primary

issue may not be a technological bottleneck, but rather the costs incurred by agents as they acquire

information about their preferences.8

While formally extending the model to account for agents’ participation decision in the cen-

tralized match is beyond the scope of this paper, a brief discussion is still warranted. In many

cases, hospitals and doctors may have access to better information about their match qualities

with certain potential market participants than with others. For instance, a doctor who worked as

an intern at a hospital during their medical education may have a decent idea about what life as a

resident at this particular hospital may be like. Similarly, the doctor may have interacted with the

residency program director at the hospital, and the program director may have formed an opinion

about the medical student’s suitability for their program. If both the doctor and the residency

program director expect that they will have to go through a particularly costly interview process

in order to successfully obtain a good match outcome through the centralized clearinghouse, both

the medical student and the residency program director may find it in their best interest to agree

to match and simply circumvent the centralized match. In such a scenario, the presence of the

7See, for instance, Allen and Gale (1994), Ngai and Tenreyro (2014), Gan and Li (2016), Akbarpour et al. (2020),

and Loertscher and Muir (2021)
8There may be other technological constraints that are relevant for interviews: For instance, the practical con-

siderations around the decentralized scheduling of interviews may be an additional issue which we ignore in this

paper.
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costly interviews may lower participation in the centralized match, which potentially could cause

the market to unravel.

The above discussion opens the door to explore the role of market design interventions, which

we will discuss in more detail in the next section.

6 Lessons for Market Design Interventions

In recent years, alongside various descriptions of the issues related to the interview process in the

market for residency and fellowship positions, many authors have also proposed market design

interventions to address some of these issues. Many of these interventions have been suggested

in medical journals, and relatively little work on the topic has been published in the economics

literature. Some recent proposals in the medical literature include the geographic fragmentation

of the residency market, through a “geographically linked consortium match” (Wong (2016)), such

that hospitals in a given geographical location all end up interviewing the same candidates; the

introduction of a preference signalling mechanism, similar to the one used by the American Eco-

nomic Association for the job market for economists (Talcott and Evans (2021)); the introduction

of an early decision option, similar to the early decision used by many colleges for in their admis-

sions process (Monir (2020)); the introduction of a limit on the number of applications doctors

can send (Burbano et al. (2019)); and the coordination of participants’ interview activity through

a centralized mechanism that imposes restrictions on the number of interviews participants are

allowed to conduct (Melcher et al. (2018)). Some of these proposals draw on insights developed in

the economics literature, either explicitly or inadvertently. For instance, Burbano et al. (2019) cite

the work on application restrictions by Arnosti et al. (2021) as a justification for the usefulness of

their proposal. Similarly, fragmenting the market such that all hospitals in a given geographic area

interview the same set of applicants is reminiscent of the idea of interview overlap introduced by

Lee and Schwarz (2017).

It turns out that our model of matching with interview provide new insights into some of the

market design interventions mentioned above. In this section we will consider two such interven-

tions: The introduction of either one- or two-sided restrictions on market participants’ interview

activity; and the introduction of a limit on the number of applications that doctors can send.
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6.1 One- vs Two-sided Restrictions on Interview Activity

As shown in Section 4, one source of equilibrium inefficiency is the inability of hospitals to coordinate

on the most efficient equilibrium: Indeed, it would be in the interest of all hospitals to coordinate

on an equilibrium where each hospital conducts as few interviews as possible. Moreover, even

when hospitals are able to coordinate on the most efficient equilibrium, the equilibrium may be

inefficient, and both hospitals and doctors could potentially benefit from reduced interview activity

by the hospitals. One way to achieve more efficient outcomes would be to impose restrictions on

the number of interviews hospitals conduct. As the following example illustrates, however, there

may be only a limited benefit to imposing such one-sided restricitons on interview activity:

Example 7 Consider again the market in Example 5 with |H| = |D| = 3, with F = U(0, 1) and

β = 1, in which we found symmetric pure-strategy equilibria involving either 1, 2, or 3 interviews

per hospital, depending on interview costs. The equilibrium expected utilities were given by

V (1, [1, 1])− cH = 228/648− cH for cH ∈ (128/648, 228/648)

V (2, [2, 1])− 2cH = 328/648− 2cH for cH ∈ (80/648, 121/648)

V (3, [3, 1])− 3cH = 408/648− 3cH for cH < 80/648

Since β = 1, the third interview any hospital conducts imposes no externality on the other hospitals.

Thus, from the hospitals’ perspective, it is never in their interest to limit their number of interviews

to 2. Consider a restriction on interview activity that limit hospitals to conduct no more than 1

interview each. This one-sided restriction only improves on the pure-strategy equilibrium whenever

cH ∈ (100/648, 121/648). When interview costs are such that in equilibrium hospitals conduct 3

interviews each, no one-sided restriction on interview activity improves hospital welfare.

One of the issues highlighted in the previous example is that the one-sided restriction on in-

terview activity does not allow hospitals to better coordinate on the limited number of interviews

they conduct: Indeed, when hospitals are restricted to one interview each, it is still possible that

all hospitals end up interviewing the same doctor, which would be inefficient. Such an outcome

would imply that one doctor conducts three interviews, while the others conduct zero. Intuitively,

to reap the benefits of reduced interview activity, one needs to limit the number of interviews on

both sides of the market, as the following example shows:
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Example 8 Consider again the market in Example 7. Suppose a two-sided interview restriction

is imposed, with an interview capacity of 1 interview per agent, such that each hospital ends up

interviewing a unique doctor. From each hospital’s perspective, this is equivalent to the case in which

|H| = |D| = 1, with hospital welfare at 1/2−cH. Such a restriction always improves hospital welfare

relative to the pure-strategy equilibria involving 1 or 2 interviews, and is preferred by hospitals to

the equilibrium with 3 interviews each as long as cH > 42/648. Furthermore, it always improves

upon the one-sided interview restriction in which hospitals are limited to one interview each.

Having reached the conclusions that the benefits from a reduction in interview activity likely are

larger if the reduction is coordinated on both sides of the market, two questions immediately arise:

(1) what is the “best” interview allocation on which market participants should strive to coordinate?

and (2) what are mechanisms through which such interview allocations can be implemented? Lee

and Schwarz (2017) provide partial answers to both questions: First, an interview allocation that

provides full overlap minimizes the number of unmatched agents.9 Second, under no pre-interview

information, full overlap interview allocations can be sustained in equilibrium for certain values of

interview costs.10 Hence, in principle, no complicated mechanism design is needed to implement

the unemployment-minimizing interview allocation.

While Lee and Schwarz (2017) provide invaluable insights into how to address the mis-coordination

of interview activity, there are several issues with their proposed solution: First, their theory is

only explored under restrictive assumptions involving balanced markets in which agents have no

pre-interview information about their match utilities. Second, even under the assumption of bal-

anced markets and no pre-interview information, their results say nothing about what avenues to

pursue when interview costs are such that the unemployment-minimizing interview allocation does

not form an equilibrium. To illustrate this issue, consider an extension of Example 8 above:

Example 9 Consider again the market in Examples 7 and 8, and consider the interview allocation

in which each hospital and doctor conducts only one interview each. Under what values of cH does

the allocation form an equilibrium (in non-anonymous strategies)? If, say, h1 decides to add the

doctor interviewed by h2 to its interview list, then h1 would match with this doctor 25% of the

9In simple terms, an interview allocation with full overlap is one in which, whenever two hospitals h1 and h2

both interview the same doctor d, then any doctor d′ that is interviewed by h2 is also interviewed by h1. In balanced

markets (|H| = |D|) with β = 1, if all hospitals conduct the same number of interviews, such interview allocations

guarantee that every hospital will be matched.
10This would constitute an equilibrium in non-anonymous strategies.
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time (h1 needs to prefer this doctor to “its own” doctor, and the doctor needs to prefer h1 over

h2), but would prefer “its own” doctor 50% of the time. Thus, h1 would achieve expected utility of

3
42/3 + 1

41/3− 2cH with the two interviews. Hence, the two-sided interview restriction in which all

agents conduct 1 interview each does not form a non-anonymous equilibrium as long as cH < 5/24,

which covers the range (42/648, 121/648) over which the two-sided restriction would be beneficial.

When interview costs are such that an interview allocation that improves on the equilibrium

in anonymous strategies cannot itself be sustained in equilibrium, other means are needed. For

instance, if a social planner was able to increase hospitals’ interview costs, the increased interview

costs could be used to prevent deviations from the welfare-improving interview allocation. However,

it is unclear how this could be implemented in practice. Another option would be for the social

planner to simply impose the welfare-improving interview allocation. However, this would also not

be straightforward to implement in cases in which agents have private pre-interview information

about their match values, in which case it may be difficult for a social planner to find a welfare-

improving interview allocation.

Several authors have considered the case in which interviews are allocated by a deferred-

acceptance style interview assignment mechanism (e.g. Melcher et al. (2018) and Manjunath and

Morrill (2021)). Such interview assignment mechanisms have the potential to allow market partici-

pants to coordinate on a welfare-improving interview allocation when such interview allocations do

not form an equilibrium. The idea behind a centralized ordinal interview assignment mechanism

is to impose an interview limit/cap for each agent in the market, elicit participants’ pre-interview

preferences over agents on the other side, and allocate interviews according to an algorithm that

takes as input the interview limits and agents’ preferences.

Thus far, work that has considered the use of a centralized match for allocating interviews,

which includes Manjunath and Morrill (2021) and Lee and Schwarz (2007), has focused on the

use of a deferred-acceptance algorithm with exogenously given interview capacities. Despite the

reliance on the deferred-acceptance procedure, the incentive properties of such mechanisms are not

well understood. One potential problem is the fact that such mechnaisms are based on ordinal

information about agents’ preferences, while, as we have seen, the interview game involves the

trade-off of agents’ (cardinal) match utilities and the interview costs they incur. The following

example illustrates that, even when the mechanism designer has the ability to prevent partici-

pants from conducting interviews outside of those recommended by the mechanism, it is still not

straightforward to ensure that participants necessarily conduct all the interviews recommended by
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the mechanism:

Example 10 Consider the case with |H| = 2 and |D| = 4, with β = 1, vdh
iid∼ U(0, 1) and

vhd
iid∼ θhU(0, 1) with P(θh = 1) = P(θh = 1

3) = 1/2 and θh ⊥ θh′. Assume cH ∈ (1/18, 1/12). Due

to the abundance of doctors relative to hospitals, one possible interview recommendation would be to

divide the doctors equally between hospitals, to avoid any negative welfare externalities. Note that

when θhd = 1, the hospital is happy to follow the recommendation from the mechanism, and conduct

both interviews. However, when θhd = 1/3, the benefit of the second interview to the hospital is

1
3(2/3 − 1/2) = 1/18 < cH, meaning the hospital would not want to follow the recommendation.

On the other hand, conditional on the other hospital only conducting one interview, a hospital

with θhd = 1 would want to conduct three interviews, since the benefit of the third interview is

3/4 − 2/3 = 1/12 > cH. Hence, in the case where the two hospitals have different draws of θ, the

interview recommendation that assigns two (different) doctors to each hospital will not be followed,

and results in an inefficiency. However, the cases with θh = 1 and θh = 1
3 contain exactly the same

ordinal information about the hospital’s match utilities, and therefore would be treated equally by a

mechanism that only takes as input ordinal information about agents’ preferences.

Hence, such interview assignment mechanisms may have advantages over relying on market

participants coordinating on an equilibrium of their own accord. However, a centralized interview

allocation mechanism does not in itself guarantee that market participants will adhere to the

mechanisms recommendations.

6.2 Limiting Interview Activity vs. the Number of Applications

Another market design intervention that has been proposed is the introduction of a limit on the

number of applications doctors are allowed to send to hospitals. Indeed, some see the introduction

of the Electronic Residency Application Service (ERAS) in 1995 as an important contributor to

the issues market participants are currently experiencing in the residency matching in the US. The

argument is based on the idea that ERAS lowered doctors’ costs of sending residency applications,

increasing the number of applications doctors would send. As a result, hospitals would, on average,

receive more applications. Moreover, hospitals knew that the doctors from whom they received

applications likely had also sent applications to many other hospitals. As Burbano et al. (2019)

write: “The high application volume imparts significant time and financial burden for applicants and

programs alike. Furthermore, it makes distinguishing between applicants with a genuine interest in
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a specific program and those who are merely hoping to improve their chances vastly more difficult.”

Based on this argument, Burbano et al. (2019) argue that the increased volume of applications

increases hospitals’ incentives to conduct more interviews. They cite the work by Arnosti et al.

(2021) to conclude that “an application limit is the most reasonable approach to address this issue”.

Indeed, Arnosti et al. (2021) consider a two-sided matching problem in which firms seek to hire

workers through a platform. Firms need time to process applications from applicants, and are

willing to hire the first applicant they find acceptable. However, since each worker sends multiple

applications, by the time a firm finds an applicant acceptable, with some probability the worker has

already been hired by another firm, and the firm must return to its pile of applications. Arnosti

et al. (2021) indeed show that the market may benefit from imposing a limit on the number of

applications workers are allowed to send. Intuitively, whenever a firm finds a worker acceptable,

the application cap reduces the probability that the worker is hired by another firm.

Introducing a limit on the number of applications doctors are allowed to send may have several

benefits. If hospitals’ costs of processing the applications are high, then an application limit should,

on average, reduce hospitals processing costs. With regards to the effect on hospitals’ interview

decisions, the effect of an application limit is less clear-cut: First, as suggested by Burbano et al.

(2019), an application cap may also drive hospitals to lower the number of interviews they conduct.

However, this conclusion does not necessarily follow from the analysis in Arnosti et al. (2021): Their

model is intended to capture firms’ application processing decisions, and not interview decisions.

Moreover, firms have no pre-interview preferences, and are equally likely to hire any of the workers

from whom they receive an application. Given the complicated nature of the strategic externalities

we explored in Section 4.2, it is not immediate that an application limit will necessarily lower

the number of interviews hospitals conduct in equilibrium. Second, even if the application limit

leads to a reduction in hospital interview activity, it does not in itself help market participants

better coordinate their interviews. Third, an application limit opens up an additional source of

mis-coordination: Doctors do not necessarily know where other doctors will send their applications.

As a result, the distribution of applications across hospitals may have a high variance, which may

lead to inefficient outcomes at the interview stage. In this section, we will formally extend our

model of interviews to include an application stage for doctors. We will argue that the application

limit indeed may improve upon the decentralized interview equilibrium in which all doctors apply

to all hospitals. However, we will also illustrate some limitations of an application limit, and show

that a two-sided interview restriction may, in principle, lead to even better outcomes. As such, we
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will debunk the claim that “an application limit is the most reasonable approach” to address the

issues currently experienced in the entry-level market for doctors in the US.

In the model analyzed in the previous sections doctors played an entirely passive role, accepting

all interview offers they receive. By allowing doctors to choose the hospitals to which they will

send their applications, doctors immediately take on a more active role. Several issues emerge:

Intuitively, given the underlying uncorrelated and uniform preference structure, if doctors are con-

strained to only send KD < |H| applications, then doctors should want to send their applications

to their KD highest ranked hospitals. However, due to a logic similar to the one showing that the

deferred-acceptance algorithm is not strategy-proof for agents on the receiving side, this need not

be the case: it will depend on the distributions from which doctors’ match utilities are drawn (and

how informative doctors’ pre-interview preferences are). Moreover, as with hospitals’ interview

decisions, a doctor’s application sending strategy will, in general, depend on the strategy pursued

by the other doctors. For the main body of the paper, we will simply assume that doctors send

their applications to hospitals at random, reminiscent of an anonymous interview strategy with no

pre-interview information. In this case, we can again treat doctors as passive players in the game.

In the appendix, we show that under certain conditions on the distribution of doctors’ preferences,

we construct an extended game in which doctors play an active role, and show that whenever

hospitals play anonymous interview strategies, and all doctors play anonymous application-sending

strategies, anonymous application-sending strategies are indeed optimal from doctors’ perspective.

The equilibria in anonymous strategies of this extended game are therefore outcome-equivalent to

the equilibria in anonymous strategies in the following simplified game:

Timing of the interview game with application limits KD

1. Doctors send KD applications at random to hospitals.

2. Hospitals learn their pre-interview information θh for the doctors from whom they received

an application.

3. Hospitals simultaneously choose which doctors to interview among the doctors from whom

they received an application. Doctors accept all interviews.

4. Hospitals and doctors learn their match utilities, vh and vd, for those whom they interviewed.

5. Hospitals and doctors all submit rank-order lists, only listing agents (i) with whom they

interviewed and (ii) found acceptable.
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The definition of equilibrium in this alternative game is identical to before, with hospitals now

restricted to only interviewing those doctors from whom they received an application.

Definition 6.1 Let
(
H,D, cH, GH,KD

)
be an interview game with application caps. A (mixed)

Bayesian interview equilibrium with application caps is a tuple
(
σh(θh, σd(vd)

−1)
)
h∈H,θh∈Θ

such that for each h ∈ H, each θh ∈ Θ, and for each (vd)d∈D,

σh(θh, σd(vd)
−1) ∈ ∆ arg max

S⊂
(
σd(vd)

)−1

d∈D
(h)

{∑
d∈S

P
(
µ(h) = d

∣∣σ−h)E[vhd ∣∣µ(h) = d, σ−h
]
− cH|S|

}

where
(
σd(vd)

)−1

d∈D(h) denotes the applications h receives from all the doctors at the preference

profile (vd)d∈D, with σd(vd) denoting the KD highest ranked hospitals according to vd.

In words, an equilibrium with applications is one in which hospitals, for any pre-interview

preferences, and for any set of applications they receive, optimally choose which doctors to interview

among those from whom they received applications, given the strategies of all other hospitals. The

previous definition of anonymous strategies given in Section 3 still applies to this alternative game.

Note: Receiving an application from a doctor provides a signal about the doctors’ interest in

the hospital. In particular, the hospital knows it’s only competing with KD − 1 other hospitals for

the doctor in question. On the other hand, under the same assumption as we introduced in Section

3, receiving an application from, say, doctor d does not provide any additional information about

(i) which other hospitals received the remaining KD − 1 applications from d, and (ii) how other

hospitals rank d relative to all the other doctors from whom they received applications. Therefore,

the model with application limits is equivalent to the original interview game with the addition

that hospitals will treat a doctor as unacceptable as long as they did not receive an application

from said doctor. Formally:

Lemma 6.2 Suppose pre-application preferences satisfy Assumptions (A1)-(A4), (A5∗), and (A6).

Then the extended game with applications is equivalent to the standard interview game (with As-

sumptions (A1)-(A6) in which hospitals find unacceptable all doctors from whom they didn’t receive

an application.

It suffices to verify that the model satisfies Assumption (A5). Note that the applications do

introduce a dependency in hospitals’ pre-interview preferences. Specifically, conditional on receiving

an application from a doctor d, hospital h knows that only KD − 1 other hospitals received an
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application from this doctor. On the other hand, if h did not receive an application from d, then

more other hospitals will have received an application from this doctor. As a result, the stronger

independence assumption in (A5∗) cannot be satisfied. The proof is in the appendix. Note that

the definition of anonymous strategies introduced in Section 3 can immediately be applied to the

model with interview caps. As a consequence, we have the following:

Corollary 6.3 All the results from Sections 3.2 and 4.1 hold for the model with application caps.

Since the model with interview caps satisfy all of Assumptions (A1)-(A6) of the original in-

terview game, all the results pertaining to negative welfare externalities still hold. The extent of

the externalities may be lower, as hospitals face “less competition” for each doctor they interview,

but the negative welfare externalities are still present. In particular, this means that a game with

application caps has the potential to lead to equilibria with inefficiently many interviews.

We wrap up our discussion of the introduction of application limits by considering an example

that both illustrates the benefits of the application restriction, points out the potential for mis-

coordination of the applications from doctors’ perspective, and compares the application restriction

to the two-sided interview restriction:

Example 11 Consider again the market in Example 1 with |H| = |D| = 2, with vhd, vdh
iid∼ U(0, 1)

and β = 1. As long as cH < 5/24, the unique equilibrium in anonymous strategies involves both

hospitals conducting two interviews each, yielding equilibrium welfare of 7/12− 2cH.

Assume now that doctors are constrained to sending only one application each, while no restric-

tion is placed on interview activity. Doctors send their applications at random, or, alternatively,

to their most preferred hospital according to their pre-interview preferences. With probability 1/2,

the doctors send their applications to different hospitals, and the hospitals conduct one interview

each. With probability 1/2, the doctors will send their applications to the same hospital, in which

case the hospital in question will interview both doctors if cH < 1/6, or otherwise interview one

doctor at random. In either case, the hospital that didn’t receive any applications will not conduct

any interviews. As a result, hospital expected utility under the restricted application scenario is

1

2

(
1/2− cH

)
+

1

4
max

{
1/2− cH, 2/3− 2cH

}
=


3
4

(
1/2− cH

)
if cH ∈ (1/6, 1/2)

5/12− cH if cH < 1/6

The application restriction improves upon the equilibrium as long as cH ∈ (1/6, 1/2), while hospitals

prefer the equilibrium for cH < 1/6.
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Consider now a two-sided restriction on interview activity that limits agents to one interview

each, which yield hospital welfare of 1/2−cH. The two-sided interview restriction is preferred to the

application restriction for any cH < 1/2, and is only dominated by the equilibrium when cH < 1/12.

As the example above makes clear, an application restriction alone does not prevent market

participants from coordinating on an equilibrium that may lower the expected number of matched

agents compared to the decentralized equilibrium. Ignoring any costs associated with hospitals’

processing of the applications they receive, the example shows the existence of cases in which an

application restriction is not “the most reasonable approach” to address the issues caused by the

costly process through which agents’ learn about their preferences.

7 Concluding Remarks

This paper has highlighted new features of matching markets with interviews which to date have

not been explored. In particular, hospitals’ interview decisions impose negative welfare externalities

on other hospitals. Moreover, we have identified two channels that may amplify the extent of these

welfare externalities. First, hospitals’ decisions to increase their interview activity can prompt

other hospitals to also increase their interview activity. Second, hospitals may be exposed to

larger welfare externalities as markets become thicker. In both cases, in conjunction with the

strategic externalities, the interview strategies that can be supported equilibrium may potentially

be Pareto ranked, meaning there some equilibria may be better than others from the perspective

of all hospitals. Moreover, even the most efficient equilibrium (in anonymous strategies) may

be inefficient and, in particular, involve an inefficiently high number of interviews. Furthermore,

when both sides of the market incur interview costs, the equilibrium may be inefficient from the

perspective of all market participants, meaning both sides of the market could potentially be

made better off with an appropriate market design intervention. Moreover, absent a market design

intervention, agents’ incentives to participate in the centralized match may decrease as the negative

welfare externalities to which they are exposed magnify.

Many market design interventions to address the negative aspects of the pre-match interview

process have been proposed, especially in the medical literature, but careful analysis of the proposed

mechanisms’ properties is still needed to properly evaluate their effects on the market outcomes.

In this paper, we have pointed to the benefits and limitations of two interentions that have recently

been proposed: We showed that imposing a limit on the number of applications doctors are allowed
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to send may improve the market outcome, mirroring some earlier results. However, we also pointed

out that an application limit does not specifically target the mis-coordination of interviews, and

other market interventions may be better suited to achieve this goal. Moreover, the introduction of

an application may create a new source of mis-coordination, leading to an inefficient distribution

of applications across hospitals. We also discussed the use of interview assignment mechanisms

that limit agents’ number of interviews, and argued that they are likely to be more successful

if they limit/coordinate interview activity on both sides of the market. Early work on the use

of such mechanisms has failed to consider their incentive properties. Since mechanisms that are

based on variations of the deferred-acceptance algorithm usually take as input ordinal information

about participants’ preferences, we illustrated some difficulties that arise as a result of the cardinal

nature of agents’ true preferences. The analysis and design of interventions that could help market

participants better coordinate on more efficient interview allocations remains a promising direction

for future research.

A Appendix

A.1 Proofs for Section 3.2

Proof of Proposition 3.3: The proof is in three steps:

1) First, conditional on all other hospitals playing anonymous strategies, each hospital has an

optimal strategy that is anonymous: Indeed, conditional on θh, the expected utility of any

interview set S is equal to the expected utility of the set πS at πθh, for any permutation

π. Therefore, if S maximizes utility at θh given the anonymous strategies σ−h, then πS

maximizes utility at πθh given σ−h.

2) We next define an “expanded game” and apply the standard Nash equilibrium existence

theorem to the expanded game: The set of players (hospitals) remains the same. Define S
as the set of all anonymous strategies, and hospitals’ payoff functions as

ĝ(sh, s−h) =
∑
θh∈Θ

∑
θ−h∈Θ|H|−1

∏
h′∈H

PG(θh′)g(sh(θh), s−h(θ−h))

This expanded game consists of finitely many players with finite strategies, and hence an

equilibrium exists.
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3) Finally, because each type has positive probability, this ex ante formulation requires that for

each type θh, h’s best response specify an interview set S such that∑
π

PG(πθh)
∑
θ−h

PG(θ−h)g(πS, s−h(θh)) ≥
∑
π

PG(πθh)
∑
θ−h

PG(θ−h)g(πS′, σ−h(θ−h))

for all S′, whenever σ−h is anonymous. But any such S must also maximize h’s utility at θh:

If not, by the argument in 1), there exists an alternative interview set S′′ which maximizes

utility at θh, such that πS′′ maximizes utility at πθh, in which case S would not satisfy the

above inequality. Therefore, any Nash equilibrium in the expanded game in 2) specifies, for

each hospital h, an anonymous strategy that for each hospital type θh stipulates a (mixed)

interview set that is optimal given the hospital’s type.

Proof of Lemma 3.5: Denote by µ(h|S) hospital h’s match when interviewing the set S. Suppose

when interviewing the set S′, h is matched with d′, and when interviewing S, h is matched with d.

Let S ⊂ S′.
First, consider a preference realization ω in which µ(h|S) = d and µ(h|S′) = d′. Then d′ ∈

{d}∪S′ \S: Since the HPDA algorithm is strategy proof, h cannot be worse off when interviewing

S′, since h could then profitably manipulate the algorithm by only listing the doctors in S. If d′ = d,

then there’s noting to prove, so assume d′ 6= d. If d′ ∈ S, then h must prefer d′ to d also when

only interviewing the set S. If h matches to d′ when interviewing S′ but not when interviewing S,

then h could profitably manipulate the algorithm by listing the doctors in S′ \S in the appropriate

order, violating the strategy-proofness of the algorithm. So we cannot have d′ ∈ S \ d. Since this

must hold for each such preference realization, it follows that we can write, for each d ∈ S ∪ {∅}

1
(
µ(h|S) = d

)
=

∑
d′∈{d}∪S′\S

1
(
µ(h|S) = d, µ(h|S′) = d′

)
and, for each d′ ∈ S′ ∪ {∅}

1
(
µ(h|S′) = d′

)
=


1
(
µ(h|S′) = d′, µ(h|S) = d

)
if d′ = d ∈ S∑

d∈S 1
(
µ(h|S) = d, µ(h|S′) = d′

)
if d 6= d′ ∈ S′ \ S

Second, consider still a realization of preferences ω in which µ(h|S) = d and µ(h|S′) = d′.

Suppose d = d′. If, at the same preference realization, we have µ(h|S′ ∪ {dk}) = dk, then dk must

be preferred to d. Then we must also have µ(h|S ∪ {dk}) = dk: If h could not match with dk when

only listing the doctors in S, this would violate the strategy-proofness of the HPDA algorithm.
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Suppose instead d′ 6= d. Then d′ is preferred to d and d′ 6∈ S′ (by strategyproofness of µ(·|S′)
for hospitals). If, at the same preference realization, we have µ(h|S′ ∪ {dk}) = dk, then dk must

be preferred to d′, and hence also preferred to d. Then we must also have µ(h|S ∪ {dk}) = dk.

Indeed, if h could not match with dk when only listing the doctors in S, this would violate the

strategy-proofness of the HPDA algorithm. In both cases (d = d′ and d 6= d′), since this must hold

at every such preference realization, it follows that for every d ∈ S and d′ ∈ {d} ∪ S′ \ S

1
(
µ(h|S′ ∪ {dk}) = dk, µ(h|S′) = d′, µ(h|S) = d

)
≤ 1

(
µ(h|S ∪ {dk}) = dk, µ(h|S′) = d′, µ(h|S) = d

)
Third, while the match outcome µ does reveal information about others’ preferences, it does

not reveal additional information about h’s preferences, other than h’s ordinal ranking of doctors:

Suppose h matches with d when interviewing S, with d′ when interviewing S′ ⊃ S, and with dk

when interviewing S′ ∪ {dk}. Then the match outcome µ does not reveal any other information

about the differences vhdk − vhd′ and vhdk − vhd than the fact that vhdk > vhd′ ≥ vhd. It therefore

follows that

E
[
vhdk − vhd′

∣∣∣µ(h|S′ ∪ {dk}) = dk, µ(h|S′) = d′, µ(h|S) = d
]

= E
[
vhdk − vhd′

∣∣∣ vhdk > vhd′ ≥ vhd
]

and

E
[
vhdk − vhd

∣∣∣µ(h|S ∪ {dk}) = dk, µ(h|S′) = d′, µ(h|S) = d
]

= E
[
vhdk − vhd

∣∣∣ vhdk > vhd′ ≥ vhd
]

By Assumption (A1), it now follows that

E
[
vhdk − vhd′

∣∣∣µ(h|S′ ∪ {dk}) = dk, µ(h|S′) = d′, µ(h|S) = d
]

= E
[
vhdk − vhd′

∣∣∣ vhdk > vhd′ ≥ vhd
]

≤ E
[
vhdk − vhd

∣∣∣ vhdk > vhd′ ≥ vhd
]

= E
[
vhdk − vhd

∣∣∣µ(h|S ∪ {dk}) = dk, µ(h|S′) = d′, µ(h|S) = d
]
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Finally, combining the above steps, we get

V (S ∪ {d,′ dk}, σ−h)− V (S ∪ {d′}, σ−h)−
(
V (S ∪ {dk}, σ−h))− V (S, σ−h)

)
=

∑
d∈S∪{∅}

∑
d′∈{d}∪S′\S

P
(
µ(h|S′) = d′, µ(h|S) = d

)
P
(
µ(h|S′ ∪ {dk}) = dk

∣∣µ(h|S′) = d′, µ(h|S) = d
)

× E
[
vhdk − vhd′

∣∣µ(h|S′ ∪ {dk}) = dk, µ(h|S′) = d′, µ(h|S) = d
]

−
∑

d∈S∪{∅}

∑
d′∈{d}∪S′\S

P
(
µ(h|S′) = d′, µ(h|S) = d

)
P
(
µ(h|S ∪ {dk}) = dk

∣∣µ(h|S′) = d′, µ(h|S) = d
)

× E
[
vhdk − vhd

∣∣µ(h|S ∪ {dk}) = dk, µ(h|S′) = d′, µ(h|S) = d
]}

=
∑

d∈S∪{∅}

∑
d′∈{d}∪S′\S

P
(
µ(h|S′) = d′, µ(h|S) = d

){

P
(
µ(h|S′ ∪ {dk}) = dk

∣∣µ(h|S′) = d′, µ(h|S) = d
)
E
[
vhdk − vhd′

∣∣ vhdk > vhd′ ≥ vhd
]

− P
(
µ(h|S ∪ {dk}) = dk

∣∣µ(h|S′) = d′, µ(h|S) = d
)
E
[
vhdk − vhd

∣∣ vhdk > vhd

]}
≤ 0

Proof of Lemma 3.6: Consider any set S and rank-order list P that ranks a subset of the

doctors in S. Let d′, d′′ 6∈ S and let P ′ and P ′′ be two rank-order lists that rank the doctors in S

the same way as P but also rank d′ and d′′, respectively, in the same spot. First, by assumption

(A5) and the fact that h’s competitors are playing anonymous strategies, all competitors are equally

likely to interview any of the doctors in the market, and hence equally likely to rank any doctor

in the deferred acceptance stage. Second, by assumption (A6), no doctor is more likely to rank h

higher than any other doctor. As a result, the probability h is matched to d′ under P ′ is the same

as the probability h is matched with d′′ under P ′′. Moreover, for any P̃ ′′ that ranks all doctors

in S the same as P ′′, but ranks d′′ higher than under P ′′, the probability that h matches with

d′′ is weakly higher than under P ′′ (by the strategy-proofness of the hospital-proposing deferred-

acceptance algorithm). This holds for any rank-order list P that ranks a subset of the doctors in

S. As a result, it follows

P
(
µ(h|S ∪ {d′′} = d′′

∣∣ vhd′′ > vhµ(h|S), vhµ(h|S)

)
= P

(
µ(h|S ∪ {d′} = d′

∣∣ vhd′ > vhµ(h|S), vhµ(h|S)

)
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Moreover, the increment in the match utility from matching with d when interviewing S ∪ {d}
relative to matching with µ(h|S) when only interviewing S, does not depend on other agents’

preferences, only on h’s own match utilities. Hence

E
[
1
{
vhd > vhµ(h|S)

}(
vhd − vhµ(h|S)

) ∣∣µ(h|S ∪ {d} = d, vhµ(h|S)

]
E
[
1
{
vhd > vhµ(h|S)

}(
vhd − vhµ(h|S)

)
| vhµ(h|S)

]
Note that for every y, the function 1{x > y}(x − y) is increasing in x. By first-order stochastic

dominance, we therefore get

V (S ∪ {d′′}, σ−h)− V (S, σ−h) = E
[
1
{
µ(h|S ∪ {d′′}) = d′′

}(
vhd′′ − vhµ(h|S)

)]
= E

[
E
[
1
{
µ(h|S ∪ {d′′}) = d′′, vhd′′ > vhµ(h|S)

}(
vhd′′ − vhµ(h|S)

) ∣∣ vhµ(h|S)

]]
= E

[
P
(
µ(h|S ∪ {d′′}) = d′′ | vhd′′ > vhµ(h|S)

)
E
[
1
{
vhd′′ > vhµ(h|S)

}(
vhd′′ − vhµ(h|S)

)]]
≥ E

[
P
(
µ(h|S ∪ {d′}) = d′ | vhd′ > vhµ(h|S)

)
E
[
1
{
vhd′ > vhµ(h|S)

}(
vhd′ − vhµ(h|S)

)]]
= V (S ∪ {d′}, σ−h)− V (S, σ−h)

Proof of Proposition 3.4: For every θ ∈ Θ, and for every k ∈ {1, ..., |D|}, let d
(k)
θ denote (any

of) the k-th highest ranked doctors according to θ, such that Skθ := {d(1)
θ , ..., d

(k)
θ } is a selection of

the k highest ranked doctors according to θ.

1. For any k ≤ |D|, conditional on conducting k interviews, it is always optimal to interview a

selection of the k highest ranked doctors. Suppose not, then there exists a k and a set S ⊂ D
with |S| = k such that V (S, σ−h) > V ({d(1)

θ , ..., d
(k)
θ }, σ−h), but S is not a selection of the k

highest ranked doctors. Let {d1, ..., dm} be an ordering of the doctors in S according to θ.

Then for every j = 1, ..., k, θjh ≥ θhdj . Replacing, for each j, doctor dj in S with d
(j)
θ in S

(k)
θ

we find, using Lemma 3.6

V
({
dθh(1), ..., dθh(k)

}
, σ−h

)
− V

(
S, σ−h

)
=

k∑
n=1

V
(
S ∪nj=1

{
d

(j)
θ

}
\ ∪nj=1

{
dj
}
, σ−h

)
− V

(
S ∪n−1

j=1

{
d

(j)
θ

}
\ ∪n−1

j=1

{
dj
}n−1

j=1
, σ−h

)
≥ 0

contradicting V (S, σ−h) > V ({d(1)
θ , ..., d

(k)
θ }, σ−h)
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2. Combining Lemma 3.5 with Part 1 above, we find that the marginal benefit curve, while

interviewing a selection of the k highest ranked doctors, is a decreasing function of k:

V
({
d

(1)
θ , ..., d

(k+1)
θ

}
, σ−h

)
− V

({
d

(1)
θ , ..., d

(k)
θ

}
, σ−h

)
≥ V

(
{d(1)

θ , ..., d
(k−1)
θ } ∪

{
d

(k+1)
θ

}
, σ−h

)
− V

(
{d(1)

θ , ..., d
(k−1)
θ }, σ−h

)
≥ V

({
d

(1)
θ , ..., d

(k)
θ

}
, σ−h

)
− V

({
d

(1)
θ , ..., d

(k−1)
θ

}
, σ−h

)
Whenever the marginal benefit exceeds the interview costs

V
({
d

(1)
θ , ..., d

(k)
θ

}
, σ−h

)
− V

({
d

(1)
θ , ..., d

(k−1)
θ

}
, σ−h

)
> cH

it is optimal to interview at least k doctors. If

V
({
d

(1)
θ , ..., d

(k)
θ

}
, σ−h

)
− V

({
d

(1)
θ , ..., d

(k−1)
θ

}
, σ−h

)
< cH

then it’s optimal to interview strictly less than k doctors. If

V
({
d

(1)
θ , ..., d

(k)
θ

}
, σ−h

)
− V

({
d

(1)
θ , ..., d

(k−1)
θ

}
, σ−h

)
= cH

then hospital h is indifferent between conducting k and k − 1 interviews.

A.2 Proofs for Section 4.1

For the proof of Lemma 4.1 we will use a known result pertaining to agents’ welfare when a hospital

extends its rank-order list in the final matching stage (see Theorem 2 in Gale and Sotomayor

(1985) or Theorem 2.24 in Roth and Sotomayor (1992). For convenience, we state their result here,

rephrased to fit the context of hospitals and doctors. For notation, let Pi denote the rank-order

list of agent i, and write P ′i ≥ Pi if i adds previously unacceptable agents to the bottom of Pi (i.e.

appending to the rank-order list, leaving the ranking of acceptable agents under Pi unchanged):

Lemma A.1 (Gale and Sotomayor (1985)) Suppose P ′h ≥ Ph for all h ∈ H and let µ′H, µH,

µ′D, and µD be the corresponding hospital- and doctor-optimal matchings. Then under the pref-

erences P the hospitals are not worse off and the doctors are not better off in (H,D, P ) than in

(H,D, P ′), no matter which of the two optimal matchings are considered. That is

µH(h)Ph µ
′
H(h) ∀ h ∈ H (so µH(d)Pd µ

′
H(d) ∀ d ∈ D by the stability of µ′H), and

µD(d)′Pd µD(d) ∀ d ∈ D (so µD(h)Ph µ
′
D(h) ∀h ∈ H by the stability of µD)
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Proof of Theorem 4.1: First, if σ′−h ≥ σ−h, then we can create a finite sequence
(
σ

(i)
−h
)n
i=0

with σ
(0)
−h = σ−h and σ

(n)
−h = σ′−h such that for any i, σ

(i)
−h and σ

(i−1)
−h differ for only one competitor

hospital, such that σ
(i)
−h ≥ σ

(i−1)
−h . The conjectured result must hold for every i, and it therefore

suffices to prove the result for σ′−h ≥ σ−h, with σ′−h =
(
σ′h′ , σ−h,h′

)
for any h′, i.e. when only one

of the hospitals increases its interview activity.

Every σh′ induces a distribution Pσh′ over rank-order lists P, which can further be refined by

conditioning on θh′ , which we denote by Pσh′ (θh′ ). For any θ, denote by Pσh′ (S(θ)) the distribution

over rank-order lists conditional on θh ∈ S(θ), the set of all permutations of θ. If σh′ is anonymous,

as a consequence of Assumption (A5), for every rank-order list P and every permutation π we have

Pσh′ (P ) = Pσh′ (πP ). More specifically, for every θ ∈ Θ, and every P ∈ supp
(
Pσh′ (θ)

)
, we have

Pσh′ (S(θ))(πP ) = Pσh′ (S(θ))(P ).

If σ′h′ ≥ σh′ , then σ′h′ induces a distribution over rank-order lists whose lengths first-order

stochastically dominate those of the rank-order lists induced by σh′ . Moreover, if σh′ , σ
′
h′ are

both anonymous and σ′h′ ≥ σh′ , then for every θ ∈ Θ, for every P ∈ supp
(
Pσh′ (S(θ))

)
and P ′ ∈

supp
(
Pσ′

h′ (S(θ))

)
, if |P ′| ≥ |P | then ∃π such that P ≤ πP ′. By Assumption (A5), if σ′h′ ≥ σh′

it therefore follows that for every θ ∈ Θ, and every P ∈ supp
(
Pσh′ (θ)

)
we have Pσh′ (S(θ))(P ) ≤∑

P ′:P ′≥P Pσ′
h′ (S(θ))(P

′). Since this holds for all P , by Lemma A.1, it follows all hospitals other

than h′ are worse off under σ′h′ than under σh′ .

Note: Lemma A.1 also implies that doctors’ expected match utilities are higher under σ′h′ than

under σh′ .

Proof of Lemma 4.3:

E
[
|µ(σ′)| − |µ(σ)|

]
= E

[∑
h∈H

∣∣µh(σ′)
∣∣− ∣∣µh(σ)

∣∣] ≤ E
[∑
h∈H

∣∣µh(σ′h, σ−h)∣∣− ∣∣µh(σ)∣∣]
≤
∑
h∈H

E
[(

1−
∣∣µh(σ)

∣∣)(∣∣σ′h∣∣− ∣∣σh∣∣)] =
∑
h∈H

∑
θ∈Θ

E
[(

1− µh(σh(θ), σ−h)
)(∣∣σ′h(θ)

∣∣− ∣∣σh(θ)
∣∣)]

=
∑
h∈H

∑
θ∈Θ

E
[(

1− µh(σh(θ), σ−h)
)]
E
[∣∣σ′h(θ)

∣∣− ∣∣σh(θ)
∣∣] ≤∑

h∈H
E
[
|σ′h| − |σh|

](
1− µh(σ)

)
The first inequality follows from Theorem 4.1: the negative welfare externalities of other hospitals’

interview activity can never increase the match rate of any individual hospital. The second inequal-

ity uses that an increase in h’s interviews only affects h’s match rate when both (i) the preference

realizations are such that h would otherwise be unmatched, i.e. |µh(σ)| = 0, in which case the

match rate can only increase by 1, and (ii) the strategy is such that at the particular instance of
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pre-interview information, h is increasing its interview activity, i.e. |σh(θh)| − |σh(θh)| > 0. The

last equality follows from the fact that
(
1−µh(σh(θ), σ−h)

)
and

∣∣σ′h(θ)
∣∣− ∣∣σh(θ)

∣∣ are uncorrelated,

since σ′ and σ are anonymous. The third inequality is immediate from the definition of µh(σ).

Proof of Lemma : First, from Theorem 4.1 we know that an increase in hospital interview

activity can be seen as hospitals appending previously unacceptable doctors to the bottom of

their rank-order lists, implying that E
[
vdµd(σ′) − vdµd(σ) |µd(σ) 6= ∅

]
≥ 0. Second, since doctors’

match utilities are bounded above vD, any increase in utility must be bounded by vD. Third, as

hospitals extend their rank-order lists, any rejection chain can only be set off by a hospital which

is unmatched under σ. (Conditional on some hospital setting off a rejection chain, other hospitals

may benefit from extending their rank-order lists.) Hence, a doctor’s match utility increases only

in the cases in which (i) some hospital h is unmatched under σ, i.e. |µh(σ)| = ∅, and (ii) h increases

its own interview activity. Fourth, an increase in interview activity by any hospital h increases the

expected number of acceptable doctors by βE
[
|σ′h| − |σh|

]
. The last inequality follows from the

fact that σ′ and σ are anonymous, hence for all θ ∈ Θ, the random variables |µh(σh(θ), σ−h)| and

|σ′h(θ)| − |σh(θ)| are uncorrelated.

Proof of Corollary 4.5: First, by Assumption (A5), any doctor is equally likely to be matched,

meaning P(µd(σ)) = E[|µ(σ)|]/|D| for every d ∈ D. Second, as the number of matches increases,

every previously unmatched doctor is equally likely to “obtain” any of the new matches: the prob-

ability of matching under σ′, conditional on not matching under σ, equals the expected increments

in matches relative to the initial match rate. Third, combining the first two points, the probability

of being matched under σ′ but not under σ is equal to the incremental number of matches, divided

by the number of doctors. Conditional on matching under σ′, the match utility can be no higher
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than the maximum vD. Using this, together with Lemmas 4.3 and A.2 we get

E
[
vdµd(σ′) − vdµd(σ)

]
= E

[
1{µd(σ′) 6= ∅, µd(σ) = ∅}vdµd(σ′)

]
+ E

[
1{µd(σ′), µd(σ) 6= ∅}(vdµd(σ′) − vdµd(σ))

]
= P

(
µd(σ) = ∅

)
P
(
µd(σ

′) 6= ∅ |µd(σ) = ∅
)
E
[
vdµd(σ′)

∣∣µd(σ) = ∅ 6= µd(σ
′)
]

+ P
(
µd(σ) 6= ∅

)
E
[
vdµd(σ′) − vdµd(σ)

∣∣µd(σ) 6= ∅
]

≤ βvD
|D|

∑
h∈H

(
1− |µh(σ)|

)
E
[
|σ′h| − |σh|

]
+

E[|µ(σ)|]
|D| β(vD − vD)

∑
h∈H

(
1− |µh(σ)|

)
E
[
|σ′h| − |σh|

]
≤ β

|D|
[
vD + |H|(vD − vD)

]∑
h∈H

(
1− |µh(σ)|

)
E
[
|σ′h| − |σh|

]

Proof of Proposition 4.6: First, by Assumptions (A5) and (A4), every doctor is equally likely

to receive any interview and equally likely to be hired when hospitals play an anonymous strategy

σ. Since vdh ∈ [vD, vD], the worst that can happen to a matched doctor is to achieve a utility of

vD. At the same time, any doctor d can receive an offer from at most all of the hospitals. Using

that vD ≥ γ(vD − vD, the expected utility of doctors under any (anonymous) strategy σ can be

bounded below by

E
[
vdµ(σ) −

cD
|D|

∑
h∈H
|σh|

]
≥ vD

∑
h∈H E

[
|µh(σ)|

]
|D| − cD

∑
h∈H E

[
|σh|

]
|D|

≥ vD

|D|E
[
|µ(σ)|

]
− cD|H| ≥

vD
|D|

γ − 1

γ
E
[
|µ(σ)|

]
− cD|H| ≥

vD
|D|

γ − 1

γ
|H|µ− cD|H|

where |µH(σ)| is the lowest match probability for any hospital type under σ. Assuming |µH(σ)|, |µH(σ′)| >
µ, we find that it’s individually rational for doctors to accept all interviews under both σ and σ′

as long as

cD ≤
vD
|D|

γ − 1

γ
µ

Second, every doctor is equally likely to receive any of the additional interview under σ′ relative to

σ, hence the expected increase in interview costs are given by cD
|D|
∑

h∈H E
[
|σ′h|−|σh|

]
. By Corollary

4.5, we can bound the increase in doctors’ expected match utilities from above as a function of
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vD − vD and hospitals’ match probabilities. Using that vD > γ(vD − vD) and |µh(σ)| > µ, we get

E
[
vdµd(σ′) − vdµd(σ)

]
≤ β

|D|
[
vD + (vD − vD)E[|µ(σ)|]

]∑
h∈H

(
1− |µh(σ)|

)
E
[
|σ′h| − |σh|

]
≤ βvD
|D|

[
1 +
|H|
γ

]∑
h∈H

(
1− |µh(σ)|

)
E
[
|σ′h| − |σh|

]
≤ βvD
|D|

[
1 +
|H|
γ

](
1− µ

)∑
h∈H

E
[
|σ′h| − |σh|

]
≤ cD
|D|

∑
h∈H

E
[
|σ′h| − |σh|

]
⇔ cD ≥ βvD

[
1 +
|H|
γ

](
1− µ

)
Combining the two inequalities, we can find an open interval between both constraints as long as

βvD

[
1 +
|H|
γ

](
1− µ

)
<
vD
|D|

γ − 1

γ
µ

⇔ µ >
β|D|

(
1 + |H|/γ

)
1− 1/γ + β|D|

(
1 + |H|/γ

) γ→∞→ β|D|
β|D|+ 1

That is, by choosing γ sufficiently large, there exists ε > 0 such that if µ ∈ ( β|D|
β|D|+1 + ε, 1), then

both constraints on cD are satisfied, and the result follows.

A.3 Proofs for Section 4.2

Proof of Lemma 4.8: Fix θh. Let S, S′ ⊆ D and S ⊆ S, S
′ ⊆ S′ and orderings P, P ′ over S and

S′, respectively.

σ−h induces a distribution Pσ−h
over other hospitals’ rank-order lists. By Assumption (A4),

the realization of h’s match utilities, for any set of doctors interviewed by h, does not provide

any additional information about the (distribution over the) other hospitals’ rank-order lists. By

Assumption (A5) and the fact that σ−h is anonymous, for any P−h in the support of the distribution

of rank-order lists induced by σ−h, we have Pσ−h
(π̃P−h) = Pσ−h

(P−h) for any permutation π̃. As

a result, regardless of h’s actual realization of preferences, any rank-order list P submitted by h of

length k must lead to a match with the j-th ranked doctor with the same probability, for j ≤ k.

Moreover, suppose P ′ ≥ P , i.e. P ′ appends to (the bottom of) P doctors listed as unacceptable

under P . If for some j ≤ |P |, the probability h matches with its j-th highest ranked doctor differs

under P and P ′, then there must exist a realization of preferences at which h could profitably deviate

by either reporting P ′ when h’s real preferences are P , or vice versa. However, this contradicts

the hospital-proposing deferred-acceptance algorithm being strategy-proof for the hospitals. The

result follows.
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Proof of Proposition 4.11: For every θ ∈ Θ, and for every k ∈ {1, ..., |D|}, let d
(k)
θ denote (any

of) the k-th highest ranked doctors according to θ, such that Skθ := {d(1)
θ , ..., d

(k)
θ } is a selection of

the k highest ranked doctors according to θ.

1. Since |Θ| is finite, there exists a θ ∈ Θ such that Vh,θ(S
2
θ , σ−h) − Vh,θ(S

1
θ , σ−h) for every

strategy profile σ−h played by the competitors: The benefit of the additional interview is a

continuous function in the mixing of the competitors’ strategies. Since every competitor has

a finite number of pure strategies and a finite number of pre-interview information θ−h with

which they could be endowed, for every hospital-type (h, θ) there exists a competitor strategy

profile σ−h which maximizes Vh,θ(S
2
θ , σ−h) − Vh,θ(S

1
θ , σ−h). Since there’s a finite number

of types θ, there also exists a type that achieves the largest maximum of Vh,θ(S
2
θ , σ−h) −

Vh,θ(S
1
θ , σ−h) (as a function of σ−h. Letting c exceed this maximum, no hospital with any

pre-interview information would ever interview more than one doctor for any cH > c. As

competitors’ increase their number of interviews, because of Lemma 4.9, no hospital will

optimally increase its own interview activity in response, and the result follows.

2. There are two cases to consider:

Case (i): β ∈ (0, 1) : The benefit of an additional interview is always strictly positive. Since |Θ|
is finite, we can choose c low enough such that for any cH < c, any hospital-type pair

(h, θ) would, when no other hospital is conducting any interview, want to interview at

least a set of doctors S satisfying βε|S| ≥ (1−β+ε)|H|. Using Lemma 4.9, hospital h’s

benefit of an additional interview beyond S never deacreases as its competitors increase

their interview activity, and the result follows.

Case (ii): β = 1: The condition reduces to |D| ≥ |H|. Since |Θ| is finite, we can find c1 small

enough such that if cH < c1, then for every θ ∈ Θ and any strategy σ−h we have

V(h,θ)

(
{d(1)

θ }, σ−h
)
> cH, that is, if interview costs are sufficiently low, then every hos-

pital will always (strictly) want to conduct at least one interview, regardless of other

hospitals’ strategies. For any hospital conducting no more than |H|−1 interviews, with

positive probability, the hospital will be unmatched, while interviewing |H| doctors will

guarantee a match. By assumption (A2), Vθ
(
S

(|H|)
θ , σ−h

)
− Vθ

(
S

(|H|−1)
θ , σ−h

)
> 0 for

any competitor strategy profile σ−h. By an argument similar to the previous, we can

find c2 > 0 such that every hospital will want to conduct at least |H| interviews. But
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then, for any S with |S| ≥ |H| − 1, we have

Vθh
(
S ∪ {d}, σ−h

)
− Vθh

(
S, σ−h

)
= E

[
vh(1,S∪{d}) − vh(1,S)

]
+

|H|−1∑
i=1

∏
j≤i

qj(σ−h)

(

E
[
vh(i+1,S∪{d}) − vh(i+1,S) −

(
vh(i,S∪{d}) − vh(i,S)

)])
Since

∏
j≤i qj(σ−h) is increasing in σ−h, and E

[
vh(i+1,S∪{d}) − vh(i+1,S) −

(
vh(i,S∪{d}) −

vh(i,S)

)]
≥ 0, a hospital who finds it optimal to interview any k ≥ |H| when all hospitals

interview at least 1 doctor each, will never want to reduce its number of interviews as

its competitors increase their interview activity.

Lemma A.2 Suppose |D| ≥ |H|. For every h ∈ H, θh ∈ Θ we have
∑|H|−1

i=1 qθh,i ≥
( |D||H|−1)−1

( |D||H|−1)
.

Proof: By Lemma 4.8, for every permutation π we have qπθ,i = qθ,i for every i. Consider the

case in which h lists exactly |H|− 1 doctors at the final matching stage. There are
( |D|
|H|−1

)
different

combinations of |H| − 1 doctors that could be listed by h (i.e. different hospital h types). For a

hospital h type to be unmatched, all of the |H|− 1 doctors listed by h must be matched to another

hospital. But then every other h type that lists at least one other doctor not in the set of |H| − 1

doctors matched to the other hospitals will necessarily be matched. This holds for every realization

of preferences: At most one of the
( |D|
|H|−1

)
combinations of h types will be unmatched, hence at

least a fraction
( |D||H|−1)−1

( |D||H|−1)
of the hospital h types will be matched at every preference realization.

The result follows.

A.4 Proofs for Section 5.2

Proof of Lemma 5.5: For each k, p0 is monotonically increasing, and strictly increases after no

more than n steps defined as the smallest n such that 1− p0 < δ. Every time p0 increases, the step

size is at least δ. Hence, for every k, the algorithm finishes in a finite number of steps. Since k is

increases monotonically from 0 to no more than |D|, the algorithms converges in finite time.

Hospital welfare in the symmetric equilibrium equals V (k, ([k, p])−h)− kcH: Either the equilib-

rium is pure, and all hospitals conduct exactly k interviews, or the equilibrium is mixed, and every

hospital is indifferent between conducting the (k + 1)-th interview or not.
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In the former case, we have gk([k, 0]) ≤ cH, in which case the algorithm ends at step 1 (upon

reaching k), and the algorithm finds the exact optimum hospital welfare in any symmetric equi-

librium in anonymous strategies. In the latter case, the welfare-maximizing equilibrium satisfies

gk([k, p
∗]) = cH for some p ∈ (0, 1). For a given k, gk([k, p]) is a (finite) polynomial function

in p, and hence uniformly continuous on [0, 1]. If p∗ is the minimum p satisfying the equilib-

rium condition, there exists εg > 0 such that gk([k, p]) > cH + εg for all p < p∗. Moreover,

there exists δ such that |p − p∗| < δ1 then |gk([k, p]) − gk([k, p∗])| = |gk([k, p]) − cH| < εg. Sim-

ilarly, V (k, ([k, p])h′ 6=h) is continuous, meaning for every ε > 0 there exists δ2 > 0 such that

|V (k, ([k, p])h′ 6=h) − V (k, ([k, p∗])h′ 6=h)| < ε whenever |p − p∗| < δ2. By choosing δ = min(δ1, δ2),

the algorithm ends at the first time p∗ − p < δ, hence the evaluated welfare at p will satisfy

|V (k, ([k, p])h′ 6=h)− V (k, ([k, p∗])h′ 6=h)| < ε.

A similar argument shows that if there is no equilibrium for j < k, then the algorithm will not

converge for j and continue to j + 1 when δ is chosen sufficiently small, meaning the algorithm

eventually arrives at k and stops within ε of the equilibrium value.

Proof of Lemma 6.2: It suffices to show that Assumptions (A5) and (A6) are satisfied. Since

doctors’ send applications at random to hospitals, receiving an application does not provide addi-

tional information to hospitals about doctors’ preferences over hospitals. As a result, Assumption

(A6) is satisfied. Similarly, since hospitals underlying pre-application preferences satisfy Assump-

tion (A5∗), conditional on receiving applications from a set D ⊂ D, hospital h does not learn

anything about (i) the identity of the hospitals who received the remaining KD − 1 applications

from the doctors in D, (ii) the identity of the hospitals who received the KD applications from

the doctors in D \D, and (iii) how any other hospital rank the doctors from whom they received

applications. As a result, both parts (a) and (b) of Assumption (A5) are satisfied.

A.5 An extended interview game with applications

Definition A.3 Let
(
H,D, cH, GH,KD

)
be an interview game with application caps. A (mixed)

Bayesian interview equilibrium with application caps is a tuple((
σh(θh)

)
h∈H,θh∈Θ

,
(
σd(vd)

)
d∈D,vd∈FD

)
such that for each h ∈ H, each θh ∈ Θ, and for each
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(vd)d∈D,

σd(vd) ∈ ∆arg max
S⊂H

{∑
h∈S

P
(
µ(d) = h

∣∣ (σh′)h′∈H, σ−d)vdh
σh(θh) ∈ ∆ arg max

S⊂
(
σd(vd)

)−1

d∈D
(h)

{∑
d∈S

P
(
µ(h) = d

∣∣σ−h)E[vhd ∣∣µ(h) = d, σ−h
]
− cH|S|

}

where
(
σd(vd)

)−1

d∈D(h) denotes the applications h receives from all the doctors at the preference

profile (vd)d∈D. That is, doctors optimally choose which hospitals to apply to, and, given the

received applications, hospitals optimally choose which doctors to interview, given the strategies of

all others.

Proposition A.4 Assume doctors’ match values are bounded within some interval [vD, vD]. Sup-

pose hospitals are playing anonymous strategies as described in Section 3. There exists α > 0 and

c such that if vD > α(vD − vD) and cD < c, then doctors find it optimal to send their applications

to their KD highest ranked hospitals.

Proof: A doctor may deviate from the prescribed strategy in two ways: Either (i) sending strictly

fewer applications or (ii) sending an application to a hospital h′ and not to h even though vdh > vdh′ .

Since every application is equally likely to result in an interview, for a given number of applications

the doctor sends, deviation (ii) is equivalent to the doctor misreporting their preferences at the

final matching stage. However, as shown in Lee and Schwarz (2017) (see the proof of Lemma 1 in

their appendix), one can find α > 0 such that if the distribution of doctors’ match values satisfies

the above condition, such a deviation is never optimal. Deviation (i) is similar to listing a hospital

as unacceptable at the final matching stage, with the added benefit that the doctor also avoids the

potential interview cost incurred by sending the application. However, since every application has

the chance of being the sole proposal the doctor receives during the deferred-acceptance algorithm

at the final matching stage, there exists a sufficiently low interview cost, in combination with the

restriction on doctors’ match utilities, such that the doctor finds it optimal to send all applications.
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