Syllabus

CEE241: Managing Fabrication and Construction

Tuesday, Thursday: 8:00 to 9:50 AM
CIFE iRoom: Y2E2, 292A&E

Instructor: Martin Fischer, Y2E2, 297, e-mail: fischer@stanford.edu
Teaching Assistant: Maria Brilaki, e-mail: mbrilaki@stanford.edu

Class Summary
Sustainable building projects require the selection of the best possible building systems that are then produced and built in the most productive way achievable. This does not happen by accident, but only by the integrated design and management of the project’s product, organization, and process. This class will teach you how to set up and use model-based project and production management methods to manage the scope, schedule, and cost of projects.

The class is project-based: teams with three students will study the pros and cons of DCHGlobal’s innovative building system (see pictures and information below) for new markets. At the end of the quarter, each team will make a recommendation about the value of the DCHGlobal building system to a specific market. This recommendation will need to be supported by a thorough analysis of the project with an integrated 3D-schedule-cost model.

DCHGlobal: An innovative company
As mentioned above, deploying sustainable building projects globally requires innovative building systems and production and project management methods. DCHGlobal has developed such a system. Through "learning by doing," you will immediately apply knowledge about project and production management to real-world case studies of DCHGlobal buildings. In doing so, you will not only learn project management concepts and methods, but also gain hands-on experience with integrated 3D-schedule-cost models with one of three suites of industry-leading software tools: Autodesk, VICO Software, or TEKLA (with support by BDS VirCon).

Elements of learning:
You will learn through:
1. Class lectures and discussions including accomplished and successful guests from industry.
2. Tutorial and example project: Through a series of tutorials and assignments, each of you will create an integrated 3D-schedule-cost model of a 21’ x 21’ DCHGlobal Schoolhouse.
3. Final project: In groups of three, you will create the integrated 3D-schedule-cost model of a residential DCHGlobal building to enable your analysis of the pros and cons of the DCHGlobal system in a new market.

1 DCHGlobal is a subsidiary of Optima. Optima has developed, designed and built some of the most striking urban and suburban luxury residential communities in Chicago and Phoenix. DCHGlobal is an innovative company launching a flexible prefabricated steel system and very quick erection times.
1 to 4-month construction schedules for 1,000 - 5,000 s.f. residences
Pre-fabricated architectural, structural and mechanical building system with flexibility and scalability

Tutorial: Schoolhouse

441 s.f. constructed by 1 crew in 80 hours

- provided with design, model components loaded with unit cost and productivity rates
- assemble components into a building model
- develop cost estimate
- create schedule & 4D model
- perform design/schedule/estimate what-if's
- compare with conventional method

Final Project: Residence

1,800-3,200 s.f. Townhouse / House

- 3 students per team; about 10+ teams in total
- each team focuses on a particular project, with a particular technology platform, and a specific market
- perform same steps as schoolhouse tutorial
- come up with models, estimates, schedules and case studies
- insights for vendors, CIFE and optima/dch global
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Assignment</th>
<th>Assignment Description (Duration)</th>
</tr>
</thead>
</table>
| 9/22 | **Lecture 1:** introduction to
1) Course objectives and process
2) Project management challenges for the 21st century
3) The DCH Global building production system and digital warehouse, including an example building, cost, and production schedule
4) Introduce software platforms available
Instructors: Martin Fischer, David Hovey Jr., Calvin Kam | **Assignment 1:** (individual): Assigned | **Assignment 1:** (2 Days – 10 questions)
1) Answer questions about the industry / prefabrication / standardization / mass production
2) Answer questions about the DCH Global system
3) Answer preliminary questions about software platforms
4) Research software options
5) Sign up for vendor preference online (to be activated at 9:00 PM 9/22) |
| 9/24 | **Lab 1:** Understanding the application of the integrated scope-schedule-cost model using the tutorial and DCH Global digital warehouse.
1) Individual students do tutorial with specific software vendor support
Instructor: Maria Brilaki, Software Vendors | **Assignment 1:** Due
Assignment 2
(individual): Assigned | **Assignment 2:** (5 Days – 18 questions)
1) Complete the DCH Global SCH-441 tutorial
2) Answer questions about the DCH Global system
3) Answer questions about the software suite
4) Sign up for student teams including project and identify target market comparable project |
| 9/29 | **Lab 2:** Looking under the hood of the DCH Global digital warehouse, understanding the integrated 3D$ model’s structure, system boundaries, dependent and independent variables, and key relationships.
1) Guided session (use software to answer specific questions)
2) Understand the value of integrated data set
Instructors: Maria Brilaki, Calvin Kam, Vendors via GoToMeeting | **Assignment 2:** Due
Assignment 3
(individual): Assigned
Assignment 4
(group): Assigned | **Assignment 3:** (2 Days – 5 questions)
1) Answer questions about the DCH Global system
2) Answer questions about the software suite
3) Answer questions about the industry / prefabrication / standardization / mass production
4) Answer questions about the value of the integrated model/data set
Assignment 4: (9 Days – 4 questions)
1) Compile scope: PDF of drawings and design data/program
2) Compile schedule: Microsoft project schedule or equivalent schedule
3) Compile cost data: Gather cost and labor information for the design and construction (including entire life-cycle) of a typical building in their target market. |
| 10/1 | **Lecture 2:** Production management and VDC concepts:
1) Product-Organization-Process (POP)
2) WBS
3) CPM
4) 4D models
Instructor: Martin Fischer | **Assignment 3:** Due
Assignment 5
(group): Assigned | **Assignment 5:** (5 Days – 5 questions)
1) Create a Product-Organization-Process (POP) model for the DCH Global building from the perspective of a key stakeholder. Students shall pick from the provided list of stakeholders on a first come first serve basis.
2) Answer questions about the DCH Global system (Answer questions about the POP model) |

Week 2: Students understand DCH Global system, integrated 3D$ model, digital warehouse, key production management concepts, and operational level of software understanding
<table>
<thead>
<tr>
<th>Date</th>
<th>Activity</th>
<th>Details</th>
</tr>
</thead>
</table>
| 10/6 | Lab 3: Production management games | 1) Airplane game
2) Parade of trades (dice) game to introduce the effects of uncertainty on production and buffering and push/pull production management concepts
Instructor: Martin Fischer |
| | Assignment 5: Due | |
| 10/8 | Lab 4: Editing the integrated 3D$ model for the example project and editing the DCH Global digital warehouse | Assignment 4: Due
Assignment 6 (group): Assigned |
| | Assignment 6: (12 Days) | 1) Create a digital production model – schedule and cost estimate – for the comparable building type.
2) Presentation (x min): Student teams present comparable case and explain expected differences of the DCH Global system in their selected target market. |
| 10/13 | Lecture 3: Scheduling concepts | 1) Use DCH Global 4,600 SF residence (Lot 89) to describe schedule / cost estimate process of real life project
Instructor: Martin Fischer |
| 10/15 | Lab 5: Student work session | Instructor: Maria Brilaki |
| | **Week 4** | **Milestone: Students have an initial understanding of the scope, schedule, 4D model, cost, key production factors and context issues, pros/cons of most prevalent approach/solution for the comparable case and a solid understanding of the example project** |
| 10/20 | Presentation 1: Presentations by student teams: | Assignment 6: Due
Assignment 7 (group): Assigned |
| | 1) Assignment 6 – Comparable case
2) DCH Global - Expectations for the performance for their selected market | Assignment 7: (16 Days)
1) Create the production management model for the selected DCH Global building type from the digital warehouse of parts and complete the cost estimate and schedule for the project in their specific market.
2) Presentation (x min): Student teams present findings for the DCH Global system applied in their target market. |
<p>| 10/22 | Lecture 4: Managing the detailing process and managing a fabrication facility | Instructors: Don Engler, Guest speaker from a fabrication facility |
| 10/27 | Lecture 5: Managing a construction site | Instructor: Guest speaker from a construction site |
| 10/29 | Lab 6: Student work session with Detailed Q&A session on the design, fabrication, and installation of the DCH Global system, the integration with other systems, and the challenges of developing an innovative building system | Instructor: David Hovey Jr. |</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Assignment Details</th>
<th>Next Assignment Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/3</td>
<td>Presentation 2: Presentations by student teams on DCH Global system applied in new markets</td>
<td>Assignment 7: Due Assignment 8 (group): Assigned</td>
<td>Assignment 8: (9 Days) 1) Compare the DCH Global system (findings from Assignment # 7) and the prevalent building (findings from Assignment # 6) in the team’s target market. 2) Refine final project model 3) Presentation</td>
</tr>
<tr>
<td>11/5</td>
<td>Lecture 6: Review of student solutions and planning for adjustments and final presentation</td>
<td>Instructors: Martin Fischer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assignment 8 (group): Assigned</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/10</td>
<td>Presentation 3: Review of comparisons by student teams 1) Discussion of assignment 8</td>
<td>Assignment 8: Due Assignment (group): 9 Assigned</td>
<td>Assignment 9: (19 Days) Peer review of the presentation 3 of the groups that used the same software</td>
</tr>
<tr>
<td></td>
<td>2) Refine final project model 3) Presentation</td>
<td>Assignment 10: (19 Days) 1) Finalize final project model, estimate, schedule 2) Produce 3D marketing documents and videos 3) Final presentation and report</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 7</td>
<td>Milestone: Students have developed a solid production model for the application of the DCH Global system for the new markets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/12</td>
<td>Presentation 3: Review of comparisons by student teams 1) Discussion of assignment 8</td>
<td>Assignment 8: Due Assignment (group): 9 Assigned</td>
<td>Assignment 9: (19 Days) Peer review of the presentation 3 of the groups that used the same software</td>
</tr>
<tr>
<td></td>
<td>2) Refine final project model 3) Presentation</td>
<td>Assignment 10: (19 Days) 1) Finalize final project model, estimate, schedule 2) Produce 3D marketing documents and videos 3) Final presentation and report</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 9</td>
<td>Milestone: Students have fleshed out the most important issues/areas relevant for comparison (e.g., business arrangements, labor skills, industry organization, cost, …) of the prevalent method and the DCH Global system</td>
<td>Assignment 9: Due Assignment 10: Due</td>
<td></td>
</tr>
<tr>
<td>11/17</td>
<td>Lecture 7: Managing innovations in project-based industries</td>
<td>Assignment 9: Due Assignment 10: Due</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Instructors: Guest, tba</td>
<td>Assignment 9: Due Assignment 10: Due</td>
<td></td>
</tr>
<tr>
<td>11/19</td>
<td>Lecture 8: Case study of Meadowlands 3D, 4D, RFID project</td>
<td>Assignment 9: Due Assignment 10: Due</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Instructors: Martin Fischer, Sangwoo Cho, and possibly a guest from Skanska</td>
<td>Assignment 9: Due Assignment 10: Due</td>
<td></td>
</tr>
<tr>
<td>12/1</td>
<td>Presentation 4: Final presentations by student teams</td>
<td>Assignment 9: Due Assignment 10: Due</td>
<td></td>
</tr>
<tr>
<td>12/3</td>
<td>Presentation 4 (cont’d): Final presentations (cont’d), conclusions, outlook, next steps</td>
<td>Assignment 9: Due Assignment 10: Due</td>
<td></td>
</tr>
<tr>
<td>Week 10</td>
<td>Milestone: Students have delivered the case studies in the desired output to DCH Global</td>
<td>Assignment 9: Due Assignment 10: Due</td>
<td></td>
</tr>
<tr>
<td>12/9</td>
<td>Final Exam (12:15 to 3:15 PM)</td>
<td>Assignment 9: Due Assignment 10: Due</td>
<td></td>
</tr>
</tbody>
</table>

5