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SUMMARY

The benefits of unstructured grids in hydrodynamic models are well understood but in many cases lead
to greater numerical diffusion compared with methods available on structured grids. The flexible nature
of unstructured grids, however, allows for the orientation of the grid to align locally with the dominant
flow direction and thus decrease numerical diffusion. We investigate the relationship between grid align-
ment and diffusive errors in the context of scalar transport in a triangular, unstructured, 3-D hydrodynamic
code. Analytical results are presented for the 2-D anisotropic numerical diffusion tensor and verified against
idealized simulations. Results from two physically realistic estuarine simulations, differing only in grid
alignment, show significant changes in gradients of salinity. Changes in scalar gradients are reflective of
reduced numerical diffusion interacting with the complex 3-D structure of the transporting flow. We also
describe a method for utilizing flow fields from an unaligned grid to generate a flow-aligned grid with
minimal supervision. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Unstructured grid models are used in a wide variety of computational fluid dynamics applications,
including extensive use in hydrodynamics [1-3]. Unstructured models allow seamless transitions
from large scales to small and efficient adaptation to complex domain geometry. Along with these
advantages come challenges related to grid generation, higher-order methods, and error analysis. In
particular, many higher-order advection schemes are not directly applicable to unstructured grids,
leaving these models to use diffusive low-order advection schemes. Characterizing this numerical
diffusion and finding ways to reduce its impact on global model error are important facets of utilizing
unstructured models.

A standard mathematical tool for evaluating discretization errors is the modified equation
analysis [4, 5], which can be applied to structured grid methods with relative ease. This analysis
is still possible in the case of unstructured grids, but irregular stencils and coupling between coor-
dinate dimensions complicate matters. Special care must be taken to account for heterogeneities in
the grid and the fact that neighboring cells may not be characterized by the same modified equa-
tion and may not be independently consistent with the original PDE being modeled. For example,
Bouche [6] investigated the upwind finite-volume method applied to the scalar advection equa-
tion and observed an apparent loss of consistency when analyzing the method on unstructured
grids. Even discretizations on structured but nonuniform grids can lead to inconsistency, such as
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the nonuniform curvilinear meshes studied by Turkel [7]. The author observed that irregular meshes
led to inconsistent discretizations if the spacing was not quasi-uniform and the staggering placed
the dependent variable at cell centers. In the specific case of finite-volume, first-order upwind on
triangular unstructured grids, the focus of this manuscript, these heterogeneities arise on a uniform
triangular grid because of asymmetries between two classes of cells, distinguished by the number
of inflow faces.

In practice, first-order accurate advection schemes are often too diffusive to accurately predict
scalar gradients [8]. Although there do exist higher-order methods that are commonly implemented
on unstructured grids, such as total variation diminishing and flux-corrected transport, these meth-
ods are generally formulated as corrections or extensions to an underlying low-order method [9].
Monotonic higher-order schemes are necessarily nonlinear, as Godunov’s theorem states that a linear
monotone numerical scheme is at most first-order accurate [10]. This nonlinearity makes a gener-
alized error analysis difficult, and for that reason, we choose to investigate the diffusive behavior
of the underlying low-order method, for which a complete analysis is possible in the case of a
uniform mesh.

The bulk of analysis for numerical methods is focused on the following: (i) consistency (with
particular attention paid to the order of the error terms) and (ii) stability. Together, consistency and
stability imply convergence by way of the Lax equivalence theorem [11], and for some applications,
it is sufficient to identify only the order of the error terms and the presence of stability, without regard
to the coefficients on the error terms. Several aspects of hydrodynamic applications, however, call
for a more quantitative analysis of numerical diffusion. Firstly, hydrodynamic applications often
have well-defined principal velocity directions, whether due to river flows, prevailing winds, or the
major axis of the tidal ellipse. This attribute of marine flows motivates the desire to understand not
just the worst-case behavior of an advection operator but also the expected behavior given a specific
velocity distribution. Additionally, hydrodynamic applications often need to distinguish between lat-
eral, or across-flow, diffusion and longitudinal, or streamwise, diffusion. Secondly, oceanographers
are often interested in quantifying physical mixing because of processes ranging from small-scale
turbulent diffusion to diffusive processes arising from the evolution of the structure of the large-
scale flow. Nonphysical diffusive errors are not just a frustration but significantly raise the noise
floor when the ultimate goal is to quantify diffusion arising from physical processes.

Both physical and numerical diffusions can interact with spatial variations in the velocity field
to modify large-scale mixing and transport. For instance, shear in the velocity field will cause the
spreading of a scalar distribution as fluid parcels sample different portions of the velocity profile.
Diffusion perpendicular to the flow will cause a single parcel to sample a broader swath of the veloc-
ity profile. In the limit of infinite lateral diffusion, all parcels will sample all parts of the velocity
profile equally, such that the mean transport of each parcel is identical and the distribution of parcels
in the direction of the straining will remain constant. This interaction of shear and lateral diffusion
where longitudinal diffusion is inversely proportional to lateral diffusion (i.e., shear dispersion [12])
is an example of the potentially hidden effects of numerical diffusion and motivates the need to
differentiate lateral and longitudinal numerical diffusions.

There have been many methods proposed for reducing numerical diffusion in unstructured
finite-volume schemes while retaining monotonicity. Total variation diminishing methods for 1-D
problems [13] are naturally extensible to multidimensional structured methods by way of oper-
ator splitting and have more recently been extended to unstructured multidimensional problems
(e.g., [14,15]). Another approach, the reservoir method [16], decreases numerical diffusion by time-
shifting fluxes to achieve an effective local Courant number near unity. Grid alignment has long been
known to affect the accuracy of results, which has resulted in a number of approaches for adapting a
grid to flow features. Adapting a grid to the flow may occur before the simulation, such as in appli-
cations focused on resolving boundary layers that use a static grid, which envelopes boundaries
with layers of highly anisotropic, boundary-oriented cells (such as the advancing layers method dis-
cussed in [17]), and the methods described in the current manuscript. Many adaptive methods rely on
runtime error estimates to target areas for refinement, such as the methods described in [18] applied
to quadtree and octree meshes. Adaptive methods for fully unstructured grids such as those of [19]
are able to apply anisotropic stretching and refining of grid elements to better resolve oriented
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features of a flow. Another perspective on adaptive grid methods is the Vofire method of [20] in
which triangular cells are subdivided parallel to the local velocity direction at each step, decreasing
the cross-flow component of numerical diffusion. These runtime adaptive methods require signif-
icant modifications to or complete re-implementation of the numerical core of a simulation code.
Additionally, because of the nonlinear character of most of the schemes, numerical diffusion is both
difficult to predict a priori and may be either positive or negative (such as the oversharpening of
gradients seen with the superbee limiter [15]).

For an important class of finite-volume C-grid hydrodynamic solvers (e.g., [1, 2]), the com-
putational grid must be orthogonal, meaning that the line joining adjacent cell centers must be
perpendicular to their common edge, which is equivalent to requiring that cell centers are the cir-
cumcenters of the cells. Additionally, they require that the cell center falls within the cell itself,
a condition that is violated for triangular cells that are not acute. This constraint both limits
the utility of anisotropic mesh approaches and makes regridding generally too expensive to be
performed dynamically.

Section 2 presents the details of the modified equation analysis for the linear advection equa-
tion on an idealized triangular grid. Using a first-order upwind, finite-volume discretization of the
scalar advection equation, we first analyze numerical diffusion in each of the two classes of grid
cells independently and demonstrate that such an independent analysis is insufficient to capture
the coupling of errors between the two classes of cells. Consequently, the analysis is extended to
consider the aggregate errors due to the interaction of the two classes of cells, leading to analyt-
ical expressions for the components of the 2-D anisotropic numerical diffusion tensor. Section 3
introduces a series of idealized scalar advection test cases from which we calculate empirical numer-
ical diffusion coefficients. These empirical estimates are shown to verify the analytical expressions
derived in Section 2. Section 4 presents an algorithm for generating flow-aligned grids and a simple
test case applying this algorithm and evaluating the effects on numerical diffusion in the test case.
Section 5 describes a physically realistic pair of simulations of San Francisco Bay, where the first
case uses an unaligned grid and the second employs a grid with cells aligned to the principal velocity
directions. Comparisons of salinity model data with observations show significant improvements in
salinity gradients when using the aligned grid, consistent with decreased nonphysical lateral diffu-
sion. Although the first-order upwind advection scheme utilized in these simulations is not state of
the art, it is effective at highlighting the role of grid alignment in numerical diffusion and the effect
of anisotropic numerical diffusion on scalar distributions, both of which are present in higher-order
advection schemes.

2. ANALYTICAL GRID DIFFUSION

As a point of reference for the modified equation analysis [5], we briefly consider the modified
equivalent PDE for 1-D, first-order, forward-in-time, backward-in-space scalar advection. This
scheme can be written as

A =cAl_ +(1-C)AY (1

where A’} is the scalar concentration in cell j and time step n and C = UAf/Ax denotes a
volumetric Courant number, equivalent to the fraction of each cell’s mass displaced by advective
fluxes during each time step. A Taylor series expansion of all scalar values about time » and location
J leads to the modified equivalent equation
Ax? 5 .2
Ay +UA, =EC(1—C)A”+O(A)€ ,At?) (2)
where subscripts denote the corresponding partial derivative and the coefficient on Ay is inter-
preted as numerical diffusion. The stability of this scheme can be related to the sign of the diffusive
term, leading to the conclusion that this method is stable for 0 < C < 1.
In the context of 2-D structured grids, this analysis may be applied directly, but a difficulty arises
in applying a modified equation analysis to an unstructured triangular grid, even when the flow is
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Figure 1. Schematic for derivation of recurrence relation.

uniform and the grid regular. The key hurdle to direct application of modified equation analysis is
the fact that for a uniform and constant flow, half of the cells have one inflow face and two out-
flow faces (type A cells in Figure 1), whereas the other half have two inflow faces and one outflow
face (type B cells). The direct, decoupled analysis is illustrated in the following section in which
we derive the truncation error independently for type A and B cells. The result is unrealistic but
motivates an extension of the analysis that considers the coupling of type A and B cells.

In the following derivation, following the schematic in Figure 1, the scalar concentration at time
step n is denoted A} for type A cells and B;" for type B cells, to reinforce the notion that the two
scalar fields are not interchangeable. Scalar values are cell averages and, for the purpose of gradi-
ents, are located at the circumcenter of each cell. The orientation of the grid relative to the horizontal
is given by 0 < 6 < /3, and the three types of edges are denoted by «, B, and y. The free-stream
velocity U is taken parallel to the x-axis, and the components of the velocity normal to the faces are
given by Uy, = U sin6, Ug = U sin (0 4 /3), and U, = U sin (6 + 27 /3). Because the grid is
congruent over rotations of ns /3, the given range of 6 is sufficient to cover all possible orientations
of the grid relative to the flow. The edge length is /, and the cell area is a, which for the case of
equilateral triangles is a = (v/3/4)I2.

2.1. Independent analysis of A and B cells

We discretize the scalar advection equation for an axis-aligned flow, A; + UA, = 0, for a type A
cell using a first-order upwind, finite-volume discretization:

a (A5 — A%) = 1At (Ug B — Ug A% — Uy, A) 3)

Defining a finite-volume analog to the Courant number for each face C; = U/ At/a and noting
that, from continuity, Cg = Cy + C,,, we rewrite (3) as

AT = (1 - Cp) A + Cp B )

Applying Taylor series expansions in time and space, centered around A%, we find the modified
equation for a type A cell:

A + gcosz (9 - %) UA, + gcos (9 — %) sin (9 - %) vA,
— [% cos (9 - %) Ul — %AZUZ} Arx

+ % cos (9 - %) sin’ (9 - %) Ayy

+ % cos? (0= ) sin (0= 5 ) Awy + 0 (A2 17) )
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The analysis of type B cells follows in the same manner, with the resulting modified equation:

a1 ., 27 .2 27 . T .
B + 3 [sm (0 + T) + sin 9} UB; + 3 [sm (29 + 5) —sin (29)] UB,

21 3 2 1
=|—(sin®{6+ = in0 )| —-UAt |UB
|:3\/§ (sm ( + 3 )—I—sm ) 2 :| Xx

+ % (cos (9 + %) sin’ (9 + %) + cos” 0 sin 9) UByy

4U1 5 AN b4 .2 5 12
+ Wi [cos (9 + 6)sm(9 + 6> cos @ sin 9] Byy + O (A12,17) (6)

With the coefficients on A, and B, denoted as the effective advective speeds U4 and Up and
the coefficients of Axy, Ay, and Ay, as numerical diffusivities K%, K 3‘;, and K%°* (and similarly
for B cells), the modified equations for each type of cell have an apparent loss of consistency, due
to Uy # Up # U. Similar observations of loss of consistency have been made for discretizations
on irregular structured grids (e.g., [7]). However, in this regular, unstructured case, the expected
advective speed U can be recovered by assuming a simple average of the coefficients in (5) and
(6), which also allows the cross-stream advection coefficients on A, and B, to cancel. Similarly,
averaging the diffusion coefficients and simplifying give

1 1 1
KX .= [m sin® 6 + 7 €08 9] Ul — EUZAz (7

1 1
K e = (m cos? 0sinf) + 7 o8 9) Ul (8)

1 2
K& = - — ——cos@sinf | sinQUI 9
mean (6 3 \/g ) ( )

Whereas the cross-stream advection coefficients cancel, coefficients on 9/dx? and 9/dy? in the
Taylor series expansion are always positive and do not cancel, such that the resulting diffusion
coefficients will overpredict both lateral and longitudinal diffusions. Note that the cross term only
provides information on the orientation of diffusion; the magnitude of the total diffusion depends
only on K* and K.

This result is intuitively evident from examining a strip of triangular cells, parallel to the flow,
such as in Figure 2. Cell centers of the two types of cells are offset from each other in the cross-flow

no-flux

£
no-Tiux

Figure 2. Schematic showing vanishing of lateral diffusion for = 0. Solid lines denote zero-flux faces of

the cells, and dashed edges have nonzero flux. The arrows along the center strip show the vector (Ax, Ay)

for which the Taylor series expansion is evaluated for each cell’s upwind neighbor. The nonzero y component
of the vectors leads to an overpredicted K unless the two types of cells are treated simultaneously.
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direction, such that the Taylor series expansion in the lateral direction includes positive coefficients
on Ay, and By,. The positive coefficients lead directly to a nonzero K” in the averaged modi-
fied equation. Geometrically, though, any diffusive spreading is limited to this single-width triangle
strip, as the flow-aligned faces have zero flux. The source of this discrepancy is that a Taylor series
expansion about one type of cell ignores the biases in the other type of cell.

2.2. Combined analysis

One method for amending the analysis is to expand the values B} for type B cells in terms of
values in type A cells, using a recurrence relation rather than a Taylor series expansion. For the
schematic in Figure 1, the update equation for cell B; at time step n, analogous to (4) but for a
type B cell, is

Bl =(1—Co—Cy) By '+ Co AT + C A5 ! (10)

For convenience, we define A = 1 — C, — C,,. Successive application of the recurrence relation

i . . . —i—1 i .
replaces By’ with an expression containing By /" and A] /", such that after k expansions,
we obtain

k k
By =2FByF 4+ G Yy AT ¢, ) AT (11)

J=1 J=1

The upwinded values from A; at past time steps can be expanded as a Taylor series in time around
step n, yielding A;’_J in terms of A and its time derivatives. Because the purpose of the analysis is
to quantify numerical diffusion, we have limited the expansion to the second derivative. Assuming
an n large enough that B is fully decoupled from the initial condition BY, thatis, nAt > [/U and

A" & 0, we allow k to go to infinity resulting in

(e9)
By =30 [caA'; +Cy AL~ + 1) At (Cadl, + Cy AL, (12)
j=0
i+ 1)* Ar?
+% (CaA’f,tz + CyArzl,tt) +0 (At3)i|

for which the infinite sums can be replaced with closed expressions:

At

B = —
! (1—2)?

Co A} + Cy AY] - [CaAll, +Cy A3, ] (13)

1
=zl
(14 1) Ar?

2(1— 1) [C“Arll,tt + C)’Ag,tt] +0 (13)

This expression for BY is now in terms of values at time step n evaluated only at the centers of
type A cells. For the purposes of the modified equation analysis, A} and corresponding derivatives
are then expressed as Taylor series expansions around A% and its derivatives. After substitution, we
obtain the modified equation (now dropping the subscript on A3, as all values have been expanded
about this point)

At + UepAx = [2K] Axx + 2K>] Ayy + K] Axy + O (A12,1?) (14)

The simplified expressions (see Appendix A for details of the simplification) for the anisotropic
numerical diffusion coefficients are
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VK — [%5 (0082 0 cos (9 4 %) -+ sin 6 cos? (9 — %))

—.L Ul —U?At (15)
4 sin (9 + %)
2K = S‘;‘%@) Ul (16)
cross __ 4 . _ TN _ d
2K = [% sin 6 sin (9 E) sin (9 g):| Ul 17

Ui =U

The factor of 2 arises from the fact that the analysis includes truncation errors both for the update
of a B cell from its upwind A neighbors and for an A cell updated from its upwind B neighbor.
The effective mean numerical diffusion coefficients are consequently one-half the coefficients that
appear in the modified equation.

For the special case of a flow-aligned grid, & = 0, and the longitudinal numerical diffusion
simplifies to

1 1
K*=-Ul—--U?*At (18)
4 2

Employing the fact that the longitudinal spacing of cell centers is Ax = [/2 when 8§ = 0
and the Courant number C = UAt/Ax, we can further simplify the longitudinal diffusion to
K, = (1/2) (UAx —U?At) = (Ax?/2A1)C (1 —C). Thus, in the case of an exactly aligned
flow, the unstructured method reduces to the same behavior as a 1-D structured grid. Likewise,
the lateral diffusion coefficient goes to zero for an aligned grid, consistent with the schematic
of Figure 2.

Because the update equation in the aligned grid case is identical to that for a regular 1-D dis-
cretization, the same conditions apply for stability, namely that 0 < C < 1. For arbitrary 6, the
condition for monotonicity, which is a sufficient condition for stability [9], is

4UAtsin (0 + Z
0<Cy— S\l/ng(l 5)

The worst-case scenario, which occurs at @ = /6, requires 0 < UAt/1 < /3/4. Stability may
also be investigated in terms of the diffusion coefficients. Because stability is related to the fastest-
growing Fourier mode, which may be anisotropic and not necessarily aligned with the axes, the 2-D
case requires consideration of the signs of the eigenvalues of the diffusion tensor

<1 (19)

[I>~

B KX % K cross :| 0

|: % K Cross K> ( )
rather than the total diffusion K* + K7 or the separate axis-aligned diffusion coefficients K* and
K. The condition that the smallest eigenvalue of K be nonnegative can be shown to be equiva-
lent to the monotonicity condition (19), although we omit the lengthy and generally unenlightening
algebra from this manuscript.

For comparison, we include in the following the diffusion coefficients for the same first-order
upwind advection scheme on a regular Cartesian grid. The discretization is

A" = (1—Cy — Cy) A" + Cw A%, + Cn A%, Q1)
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where subscripts W and N denote the respective quantities for the upwind cells to the ‘west’ (nega-
tive x-direction when 6 = 0) and ‘north’ (positive y when 6 = 0) directions. The Courant numbers
are defined as

UAt

Cy =siné ; (22)
UAt

Cw = cos b (23)

where 6 takes on the same sense as in the triangular case, namely a counterclockwise rotation of
the grid relative to a +x-directed mean flow. The modified equation analysis follows the same
conventions as for the triangular grid, although with only a single type of cell, the derivation
is straightforward and as such has been omitted for brevity. The anisotropic numerical diffusion
coefficients for a Cartesian grid then read

1 1

K* = E[sin39+cos3 9] UI—EUZAI (24)
1

K’ = 3 [cos 6 sin 6 + cos? 6 sin olUl (25)

K = [cos® 6 sin 6§ —cos 0 sin> 0] Ul (26)

For the Cartesian case, the edge length / is equal to the cell-center spacing Ax, and 6 is constrained
to the interval [0, 7 /2]. As expected, the flow-aligned (8 = 0) behavior is identical to the 1-D case
and the 2-D flow-aligned triangular case. The condition for monotonicityis0 <1 —Cwy —Cy < 1,
which for arbitrary 6 leads to the condition

UAt 1
0 =< —— . 27)
/2 sin (9 + Z)
The worst-case scenario for monotonicity in the Cartesian case occurs at § = /4, for which

UAt/l < 1/+/2. For equivalent edge lengths /, the Cartesian grid permits a longer time step
by a factor of 24/2/+/3 ~ 1.63. For equivalent cell areas (i.e., equivalent spatial resolution), the

Cartesian grid still permits a longer time step, although by only a factor of +/2/¥/3 ~ 1.075.
3. IDEALIZED SIMULATIONS

To corroborate the modified equation analysis of Section 2, we calculate empirical estimates of
numerical diffusion from a series of idealized scalar transport test cases simulating uniform flow in
a flat-bottomed channel. Given the uniform nature of the test domain and our desire to quantify the
full 2-D diffusion tensor, we employ the method of moments [21], estimating diffusion coefficients
from the time rate of spreading of a Gaussian scalar plume. The domain, shown in Figure 3, extends
L = 50 km in the x-dimension and W = 20 km in the y-dimension, with a constant depth of 10 m.
In all cases, the northern and southern boundaries are closed, and a uniform velocity ¥ = 0.5 m g1
is imposed throughout the domain. Simulations are carried out using the discretization given
by (4) and (10).

The simulations sample a portion of the parameter space relevant to physical simulations of estu-
arine domains, where the parameters are /, the side length of the cells ranging from 75 to 500 m;
0, the smallest positive counterclockwise angle between grid edges; the x-axis, ranging from 0° to
60°; and the time step. The grid is created by taking a tessellation of equilateral triangles, rotating
by 6, and removing all triangles that fall outside the rectangular boundary (leaving the grid with
two or four ‘ragged’ edges). The time step ranges from 40 s for the highest-resolution runs to 120 s
for the low-resolution runs. The corresponding range of the volumetric Courant number is from
0.80 to 0.24.
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Figure 3. Idealized domain with initial condition for passive scalar. / = 500m, 6 = 15°.

The passive scalar field is initialized with a Gaussian plume, centered at (L/4, W/2) with
ox = 0.05L and oy = 0.1W as shown in Figure 3. These dimensions ensure that the plume is
sufficiently free from wall effects as it advects through the domain, while keeping computational
costs reasonable. An additional constraint on the size of the plume is that it should cover a sufficient
number of cells to reasonably approximate a Gaussian distribution.

The simulations run until the domain-integrated scalar mass falls to 99% of its original value,
at which point the trailing 25% of the simulation period is additionally discarded to avoid outflow
boundary effects, leaving the period ¢ € [to,¢]. The tracer field is output every 20 min, and each
snapshot of the tracer distribution is processed to find the centroid, the second central moments in x
and y, and the spatial covariance. The centroid of the scalar plume is computed at each output time
step according to

T Vi A;
PRprLAL (28)
2 Vidi
where r; = (x;, y;) denotes the location of the ith cell center, V; its volume, and A; its tracer
concentration. The second central moments and spatial covariance are then computed as
2
G)% _ Zi (xi — px)” Vi Ay (29)
Zi Vidi
2
2 i i) Vi
02 = (30)
Zi ViA;
(X — i — Vi A;
COVay = Zl( i — Mx) (J’z My) i A 31)
Zi Vid;

We estimate the time-averaged diffusion coefficients K*, K7, and K as one-half the average
rate of growth for the second central moments and covariance [21],

— 2| _ 42
K* = 1 (doz _1! 0x|t/ x |to (32)
2\ dr 2 tr —to
VN 2| _ 42
k=1 doy _! —Oy|tf Oy|’0 (33)
2\ar | T2 =
eSS _ deovay ) _ COVxy |z‘,- — COVxy }to (34)
dr tr —to
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Figure 4. Measured versus predicted numerical diffusion, using the average of the independent modified
equations. (a) Longitudinal diffusion, (b) lateral diffusion, and (c) cross-diffusion. Grid alignment in (a)—(c)
is shown by the orientation of the triangular markers, relative to a left-to-right flow as illustrated in (d).

where 7y corresponds to the time when the initial Gaussian plume is introduced and f s the cutoff
time as described before. Correlation between predicted and measured numerical diffusions, using
the results of the independent modified equation analysis (Section 2.1), is shown in Figure 4. Both
K* and K7 are consistently overpredicted, and for the case of K” with 8 = 0, it is apparent that
measured diffusion is nearly O despite the prediction being only mildly attenuated relative to the
unaligned case. As shown in Figure 5, the analytical predictions for numerical diffusion using the
combined approach of Section 2.2 correlate very well with measured diffusion from simulations,
with slightly more noise in the correlation for K% than K~ or K.

4. AUTOMATED GRID ALIGNMENT IN AN IDEALIZED FLOW

The analytically derived diffusion coefficients (15)—(17) quantify how much the orientation of grid
cells affects grid diffusion, confirming that cells aligned with the velocity field lead to zero lateral
diffusion. This motivates the desire to create computational grids locally aligned with the dom-
inant flow, a common but labor-intensive practice. In this section, we describe an algorithm for
automating this process, demonstrated on an idealized, rigid-body rotation flow field, and evaluate
the efficacy of aligning the grid in terms of the measured and predicted numerical diffusion coef-
ficients. The steps to creating a flow-aligned grid are as follows: (i) run a reference simulation on
an unaligned grid for a representative period; (ii) extract principal velocity directions from the ref-
erence simulation; (iii) construct principal streamlines by integrating trajectories in the principal
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Figure 5. Measured versus predicted numerical diffusion using a recurrence relation to unify the two types
of cells. (a) Longitudinal diffusion, (b) lateral diffusion, and (c) cross-diffusion. Grid alignment in (a)—(c) is
shown by the orientation of the triangular markers, relative to a left-to-right flow as illustrated in (d).

velocity field; and (iv) generate a new grid in which the principal streamlines are embedded in the
grid as cell edges.
The flow for the idealized flow test case is a steady rigid-body rotation,

2
= — 35
U=y (35)
2
v=——;x (36)

such that a full revolution is achieved over a period 7. The domain is the region [—L, L]?, chosen
to be square such that the boundaries do not coincide with streamlines.

The unaligned grid is denoted G, with a velocity field u" (z,), where i € {1,2} indicates compo-
nents of the 2-D depth-averaged velocity field, m an index unique to each cell, and ¢, the time at step
n of the simulation. For the steady rigid-body rotation case, u}" is clearly independent of #,, but in
anticipation of the tidal case described in Section 5, we retain the time variability during the present
description of the algorithm. The upper-right quadrant of the unaligned grid G for the test case is
shown in Figure 6, with L = 1000 m and a nominal edge length / of 20 m. In the more general case,
the nominal edge length, for both the unaligned and aligned grids, is potentially variable in space,
prescribed by the target edge length [ =1 (x, y).

The reference simulation on the unaligned grid is run for a period long enough to obtain accurate
principal velocities from the flow, such as a spring—neap cycle for a tidal flow. In the steady test
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Figure 6. Unaligned grid for rigid-body rotation test case, upper-right quadrant.

case, the reference simulation is run for 12 h after which we extract the principal velocities from
the simulation results. For the purposes of the principal velocities, the velocity field is treated as
constant within each cell. For each cell m, we compute the velocity correlation matrix for N time
steps of the unaligned simulation as

N
— 1
Cl-'j'»l = u;"u;f' = N Z ui" (tn) uT (tn) (37
n=0

as well as the eigenvalues A" and A7' of C™, with AT* > AZ'. The principal velocity direction %" is
then defined as the eigenvector corresponding to A", and the ratio e™ = A}’ /A7 is a measure of how
well defined the principal velocity direction is. A direct analog to a tidal ellipse can be defined with
the orientation of the major axis parallel to the principal velocity direction 7", and the lengths of
the major and minor axes are defined to be A" and A%, respectively, although the principal velocity
captures variability at all frequencies, whereas tidal ellipses are specific to each tidal constituent. For
the steady flow of the test case, the principal velocity directions coincide with the steady velocity
field itself, within a constant factor (as the principal directions are eigenvectors).

A collection of flow-aligned curves, termed principal streamlines, are created by integrating tra-
jectories in the principal velocity field. These contours are similar to streamlines but differ in that
they come from an integration of the principal velocity directions rather than the instantaneous
velocity field. Two aspects of the creation of principal streamlines for grid alignment present a
challenge relative to calculating streamlines in an instantaneous velocity field. The first issue is
that because #; is defined as an eigenvector, it is only determined within a constant factor. We
treat this issue by assuming that when a principal streamline crosses from cell m to cell p, ﬁf’ is
scaled by a factor « = %1 such that ﬁ;”aﬁf’ > 0 (utilizing the Einstein summation notation). For
a well-resolved velocity field, this heuristic has been robust, and in all cases where ﬁ:”ﬁf’ ~ 0, we
found that e™ =~ 1, indicating that the principal velocity direction in cell m was poorly defined
and the local orientation of the grid irrelevant. The second issue is that only a limited number
of curves can be embedded in the aligned grid. The collection of principal streamlines should
be dense enough to force most cells to be aligned but not so dense as to overconstrain the grid
generation process, which would lead to poor-quality cells. We define the lower limit of the prox-
imity between shorelines and principal streamlines as a constant factor €; times the local target
edge length /. We have found that a reasonable trade-off between grid quality and alignment is
achieved with €; = 3, meaning that there is space for three to four cells between any two principal
streamlines or shorelines.
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To evenly distribute principal streamlines throughout the domain while maintaining this lower
bound on proximity between curves, we have implemented the algorithm described in the follow-
ing. Here, T is the constrained Delaunay triangulation of the shoreline, incrementally updated with
principal streamlines as they are calculated. All edges, from both the shoreline and the principal
streamlines, are sampled such that adjacent vertices are separated by at most the local grid scale /.
We define m (x) to be the grid cell in G containing point X, ¢(¢) to be the circumcenter of the
Delaunay triangle ¢, and r(¢) the circumradius of the Delaunay triangle ¢. T’ is defined as the set
of triangles ¢ € T for which m (¢(z)) # @ and e”®) < ¢,. These are the triangles of T that fall
inside the computational domain and for which the circumcenter lies in a region where the principal
velocity direction is well defined. We choose €, = 0.2 from the observed distributions of e”. Each
principal streamline is traced according to the following algorithm:

Find the triangle ¢ € T’ with the greatest circumradius relative to the local scale, r(¢)/ [ (¢(t)).
If r(t) < €1 (e(t)), then terminate.
Add the point ¢(?) to the triangulation 7.
For each og in {41, —1},
(a) Initialize i < 0, xg < ¢(?), @ < .
(b) Loop
i. Calculate the minimum § such that m (X,- + Saﬁm(xi)) =% m (X;), that is, take a step in
the principal velocity direction to reach another grid cell.

Eal e

i, Xjq1 < X; + S ™),
iii. If the distance between X, and any constrained edge of 7T is less than ¢;/, then end
loop.
iv. Insert the point x; 1 into 7', with a constrained edge X;X; 11 .
v, IfamGo) . gm(xivn) < 0, then o < —«.
vi. I <1+ 1.

This process is repeated until the termination condition in step 2 is achieved. The set of all edges
added in step 4(b)iv form the principal streamlines, which will be used as constraints in the grid gen-
eration step. In the rigid-body rotation test case, the principal streamline tracing generates a set of
concentric rings as shown in Figure 7, with a gap of approximately 3/ between each ring and a sim-
ilarly sized gap in each ring. Finally, the set of scale-compatible principal streamlines are included
as additional constraints for the generation of an aligned grid, following the method described in
Appendix B. The upper-right quadrant of the aligned grid for the rigid-body rotation test case is
shown in Figure 8.
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Figure 7. Principal streamlines extracted from the unaligned simulation.
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Figure 8. Upper-right quadrant of the aligned grid for the rigid-body rotation test case.

To quantify the effects on diffusion of orienting the grid with the principal streamlines, we
advect a passive tracer field in both the unaligned and aligned domains, initialized with a Gaussian
concentration distribution centered at (L/2,0) with standard deviation o = L/10, as shown in
Figure 9. The rigid-body rotation flow advects this tracer distribution for one full revolution period
T. Comparing the second central moments of the initial and final concentration distributions, we
can estimate the grid diffusion during one revolution. Although the plume spans some finite range
of angles relative to the center of the domain, for the sake of simplicity, we analyze the Cartesian
moments a)% and 03, approximating the radial diffusion coefficient

Kr

and tangential diffusion coefficient

K? ~

2

~

T

T

_o2(T) —02(0)

02(T) - 62(0)

(38)
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Figure 9. Initial scalar field on the unaligned grid. Grayscale graduations indicate 0.1 contours, with a
maximum concentration of 1.0
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We find K = 0.081 m? s~! and K? = 0.145 m? s~! in the case of the unaligned grid and
K' = 0.020 m? s and K? = 0.134 m? s~ for the aligned grid. In the evaluation of the ana-
Iytical diffusion coefficients at the center of the release, a perfectly aligned grid should have zero
radial diffusion and K% = 0.162 m? s™'. A “perfectly’ unaligned grid, taking 6 = /6, leads to
K" =0.105m? s7! and K% = 0.137 m?s~!. The along-flow diffusion coefficient K? is compara-
ble in both cases and falls within the expected range based on the analytical coefficients. Although
we would expect that along-flow tangential diffusion would be slightly greater on the aligned grid,
the results show a slightly attenuated tangential diffusion. The major difference is of course in the
radial, or across-flow, diffusion. Here, the observed diffusion on the unaligned grid is 77% of the
predicted maximum, whereas the aligned grid sees only 19% of the predicted maximum.

5. APPLICATION TO A PHYSICAL SYSTEM

To further explore the effects of grid alignment and grid diffusion, we describe in this section a
physically realistic tidal simulation of San Francisco Bay, with and without grid alignment, and a
comparison of the resulting salinity fields. We use the SUNTANS [2] code in hydrostatic mode to
solve the 3-D Reynolds-averaged primitive equations with the Boussinesq approximation in a rotat-
ing frame of reference. In accordance with the hydrostatic approximation, the vertical velocity field
w is solved by continuity. We assume that horizontal numerical diffusion is in the order of or larger
than the physical horizontal eddy viscosity, and the latter is omitted from the equations of motion.
The equations of motion are then

ou 1dp 0 ou

Py = D - 4

o7 + V-(uu)— fv oo Ox + e (vV 8z) (40)

v 1dp 0 v

—4+V. =4 —(vy— 41

5 + V. () + fu p08y+3z (vyaz) 41
Vou=0 (42)

where u is eastward velocity, v northward velocity, f = 2w sin¢ the Coriolis parameter with
angular velocity of the Earth @ and latitude ¢, vy the vertical eddy viscosity derived from a
two-equation turbulence model (Mellor—Yamada 2.5 [22]), and po a constant reference density
(po = 1000 kg m~3). The hydrostatic pressure p is defined by dp/0z = — (po + p) g, Where
p = Ps is the density anomaly due to salinity s and coefficient of contractivity 5. These equations
are discretized on a prismatic finite-volume grid comprising unstructured triangles in the horizontal
and structured z-levels in the vertical.

Two nearly identical simulations of San Francisco Bay are carried out, differing only in the
alignment of grid cells. Model outputs from both simulations are compared with observations of
depth-averaged salinity in the study area, South San Francisco Bay. The model domain, shown in
Figure 10, extends to the south through South San Francisco Bay as far as Calaveras Point, beyond
which the basin devolves into a network of tidal sloughs. In the northern end of the bay, the domain
includes San Pablo Bay, Suisun Bay, and a pair of false deltas each with a width of 1 km. The
false deltas are surrogates for the Sacramento and San Joaquin Rivers and have hypsometric curves
matched to accurate delta bathymetry, evenly split between the two channels. The ocean bound-
ary is an arc of 100-km radius, centered on the Golden Gate. The spatial resolution is nominally
5 km in the coastal ocean, gradually decreasing to 250 m in South San Francisco Bay, leading to
approximately 26,000 2-D cells and 430,000 3-D cells. The vertical dimension is discretized with
40 z-levels, with cell thicknesses ranging from 0.5 m at the free surface to 10 m at a depth of 100 m.
Depths below 100 m are lumped into a single layer. The time step is 60 s, and the scalar transport
routines utilize substepping such that the overall hydrodynamic time step is limited only by the
propagation speed of wetting and drying fronts and internal waves.

The ocean boundary is forced with zero velocity and a free-surface height set by observed tides
from Point Reyes. So that a phase and amplitude agreement at the Golden Gate can be reached,
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Figure 10. Computational domain for the San Francisco Bay model runs. Nominal grid edge length is
5000 m in the coastal ocean, 500 m in the North San Francisco Bay, and 250 m in South San Francisco
Bay (SSFB). For computational efficiency and boundary condition simplicity, the Sacramento (Sac)—
San Joaquin (SJ) delta has been replaced by a pair of long dissipative channels. The dashed line represents
the tidal ocean boundary condition. AL, Alameda; Bu, Burlingame; CP, Calaveras Point; GG, Golden Gate;
PR, Point Reyes; SPB, San Pablo Bay; SuB, Suisun Bay; UC, Union City.

Figure 11. South San Francisco Bay bathymetry used in the physically realistic model runs. Contours at
—15, —10, —5 (shaded), and —2.5 m (NAVDS8). Transect sampling locations are shown as black dots, with
the start of the transect (0 km) at the southern end.
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the ocean tides are advanced in time by 17.7 min and attenuated by a factor of 0.97. Winds in the
model were spatially uniform, as measured at Alameda. Wind stress is calculated using the drag law
of Large and Pond [23]. Freshwater inputs are assembled from a wide range of data sources, includ-
ing delta flows from the delta Dayflow [24] measurements, US Geological Survey gaged streams,
and ungaged streams correlated to nearby gages based on drainage area. Discharges from wastew-
ater treatment plants are also included, based on daily data for the larger sources and monthly data
otherwise. Evaporation and precipitation are spatially uniform, with evaporation based on a monthly
climatology at Burlingame and hourly precipitation from a gage in Union City. To avoid introducing
a bias toward the validation of one grid over the other, we avoid any calibration beyond the already
mentioned phase and amplitude tuning at the Golden Gate. The simulations are initialized with a
quiescent velocity field and a salinity distribution extrapolated from salinity observations [25] along
the thalweg of the bay. Following a spin-up period starting on August 1, 2008, and running for
90 days, the analysis period is October 30, 2008, through January 22, 2010.

Although the model domain includes the majority of the San Francisco Bay system, the study
area for the simulations is South San Francisco Bay (Figure 11), a 45-km-long basin form-
ing one of two branches in the larger San Francisco Bay system. Most of this embayment
exhibits a channel-shoal morphology, with channel depths of 15-20 m and shoal depths of
0—4 m. The pronounced channel-shoal geometry leads to significant lateral shear and lateral salinity
gradients.

In the present case of San Francisco Bay, a tidally dominated estuarine and coastal ocean domain,
the depth-averaged principal velocities are essentially stationary over timescales greater than the
spring—neap cycle, such that the representative period for the reference simulation should span at
least one spring—neap tidal cycle. We use model output from the unaligned simulations over the first
90 days of the analysis period to establish a representative principal velocity field. Figure 12 shows
the principal velocity ellipses for a portion of the domain, resampled to a coarse regular grid for clar-
ity as well as normalized such that the length of the major axis is constant. Principal streamlines,
consistent with the grid resolution function / (x, y), are depicted in Figure 13. The flow-aligned grid,
with identical resolution and shoreline data, is then constructed such that the flow-aligned contours
are embedded in the grid as edges of cells (shown in Figure 14). Appendix B gives further details

Figure 12. Principal velocity ellipses in the vicinity of the study area, derived from model output from the
unaligned grid. Ellipses are calculated for all cells but are shown interpolated onto a coarse regular grid and
normalized by major axis magnitude for clarity.
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Figure 13. Flow-aligned contours, traced from the principal velocities, ready for input to the regridding
process. The separation between adjacent contours scales with the grid resolution, leading to sparser contours
in the north and west.
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Figure 14. Details of the computational grids, toward the southern end of the study area. (a) The unaligned
grid. (b) The aligned grid with flow-aligned contours superimposed.

on the mesh generation algorithm. Figure 15 compares distributions of cell-center spacing and cell
skewness between the original unaligned grid and the aligned grid. Cell skewness is defined as
1 —Aeq/ A, where A is the area of the cell and A is the area of an equilateral triangle with the same
circumcircle, such that 0.0 indicates a perfectly equilateral cell and 1.0 a zero-area sliver. These dis-
tributions reflect the entire domain, but because the majority of the cells are in the high-resolution
South San Francisco Bay area, it is this area with a nominal 250-m resolution that dominates the his-
tograms. Cell-center spacings are similar between the two grids, but skewness shows an increase of
moderately low-quality cells in the aligned grid, most likely due to the greater number of constraints
on cell placement.

To quantify the effects of grid alignment in the San Francisco Bay case, we evaluate (15)—(17)
to obtain K*, K”, and K for each grid cell, depth-averaged and averaged over the first 90 days
of the analysis period. Whereas the method of Burchard and Rennau [26] would likely give a more
accurate measure of the total numerical mixing for a specific scalar field, our approach directly
evaluates the numerical diffusion coefficients rather than calculating decay of scalar variance on a
per-scalar basis (although a diffusion coefficient may be obtained by normalizing by the gradient of
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Figure 15. (a) Distribution of cell-center spacing for the unaligned grid. (b) Distribution of skewness for the
unaligned grid. (c) Distribution of cell-center spacing for the aligned grid. (d) Distribution of skewness for
the aligned grid.

the scalar concentration). Our method also retains the distinction between lateral and longitudinal
diffusions, which is helpful in interpreting the effects of numerical mixing on the synoptic evolution
of the scalar field.

The alignment angle € was taken from the cell edge most closely aligned with the instantaneous
velocity vector, modulo /3. Because the expressions of Section 2 give the diffusion tensor in a
coordinate system parallel to the instantaneous velocity, it is necessary to rotate each instantaneous
diffusion tensor into a common coordinate system before averaging over time and depth. The princi-
pal velocity direction of each cell is used as the common coordinate system, such that the resulting
diffusion tensor gives K* as the longitudinal diffusion, parallel to principal flow, and K” as the
lateral diffusion, perpendicular to principal flow. Figure 16 shows the resulting spatial distributions
of longitudinal K* and lateral K”. Volume-averaged and time-averaged diffusion coefficients for
the study area, roughly defined as the southern two-thirds of the region shown in Figure 16, over

days 91-180, are K* = 12.9m? s™!, K¥ = 6.5m? s~ !, and K = 0.25 m? s~ ! for the unaligned
grid. For the aligned grid, the same calculation gives K* = 12.8 m? s7!, K¥ = 32 m? s7!, and

K = 0.1 m? s7!, showing a significant decrease in lateral numerical diffusion whereas the
longitudinal component is essentially unchanged.

5.1. Validation of unaligned and aligned model output
Although the focus of our comparisons is the difference between the two models rather than specific

validation against observations, we include a comparison of both models with observed salinity in
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Figure 16. Distribution of depth-averaged and time-averaged longitudinal and lateral diffusions in square

meters per second. (a) K~ for unaligned grid. (b) K* for aligned grid, showing minimal decrease in numer-

ical diffusion relative to the unaligned grid. (c) K? for unaligned grid. (d) K” for aligned grid, showing a
significant decrease in numerical diffusion.
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Figure 17. Comparison of unaligned and aligned model outputs and observations of salinity along a lon-
gitudinal transect in South San Francisco Bay (shown in Figure 11), from November 5, 2008. (upper)
Depth-averaged salinity and (lower) absolute error of model output compared with observations.

the South San Francisco Bay. A full treatment of model predictive skill would necessarily include
evaluations of forcing data, the turbulence closure and bathymetry, and is beyond the scope of this
manuscript. Model data comparisons of the longitudinal salinity field are shown in Figures 17 and
18. Each set of salinity observations was collected by the US Geological Survey Polaris [25] over
the course of a particular day, starting at the southern end of San Francisco Bay. Model output
has been interpolated in time to match the respective time of each observation along the transect.
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Figure 18. Comparison of unaligned and aligned model outputs and observations of salinity along a
longitudinal transect in South San Francisco Bay (shown in Figure 11), from January 1, 2009. (upper)
Depth-averaged salinity and (lower) absolute error of model output compared with observations.

Both the model and observations resolve the water column at approximately 1-m resolution but have
been depth-averaged for simplicity.

Considering only the portion of the transects that fall within the high-resolution portion of the grid
(the region depicted in Figure 11), we calculate bias (mean error), the Pearson product-moment
correlation coefficient, the index of agreement [27], and the root mean square error in the longi-
tudinal salinity gradient over all transect observations available for the 450-day analysis period.
These results and definitions of the respective metrics are summarized in Table I. Although the
unaligned grid has a marginally smaller bias, both the unaligned and aligned simulations underpre-
dict salinity, and the difference in bias is small relative to the standard deviation of the errors. The
aligned grid, however, has better correlation with observations and a slightly better prediction of
longitudinal gradients.

Table I. Error statistics for comparison with longitudinal salinity transects.

Definition Unaligned Aligned
Mean error (psu) (s —3sm) —0.36 +£0.69 —0.42+0.49
Correlation coefficient () cov(s, $§)/os03 0.945 0.958
o 2
Index of agreement 1— (Z (sl” - sl”) /(|80 = (s)| + |sP — (s)|)2) 0.966 0.971
1/2
RMS gradient error (psu) <[(sl” — §l”) - (sl.”_l — §;’_1)]2> 0.29 0.22

RMS, root mean square.
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Figure 19. Time-averaged and depth-averaged salinity for the unaligned and aligned grids, along the thal-
weg of South San Francisco Bay. Decreased longitudinal gradients in the aligned grid model are consistent
with an increase in longitudinal diffusion.
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The observed transects, such as those shown in Figures 17 and 18, are available only once a
month and are timed to the phase of the tide. As such, there is the possibility of a sampling bias
relative to the true mean salinity distribution. Figure 19 shows predicted long-term average salin-
ity distributions sampled every 20 min. The difference in longitudinal salinity gradients between
the two simulations is persistent and significant, although of similar order to the error relative
to observations.

6. DISCUSSION

A priori estimates of the diffusion tensor have been both verified for idealized simulations and esti-
mated for physically realistic simulations. A distinct advantage to estimation of the diffusion tensor
compared with other error estimates is that it communicates the error back to the modeler in the
same language as the original governing PDE. In this way, the effects of numerical diffusion and
how it compares and interacts with physical dispersion processes are clearer.

Perhaps the greatest advantage of using grid alignment to combat numerical diffusion is that it
is code agnostic. Any simulation code that uses a prismatic triangular grid can potentially benefit
from an aligned grid, although of course the specifics of the numerical diffusion will vary by choice
of numerical scheme. The fact that grid generation in a nonadaptive simulation is decoupled from
the computation itself allows for greater reuse of the grid generation methods across simulation
frameworks. Of course, a key step in the application of these methods to realistic simulations is
the creation of a high-quality grid that enforces cell alignment. Although the method detailed in
Appendix B is able to produce reasonably aligned grids, there are always trade-offs. In particular,
we found that the price of enforcing cell alignment was a slight decrease in cell quality in terms
of cell-center spacing, which in turn affects the maximum scalar advection time step. The 90-day
simulations on the unaligned grid average 20.5-h wall time, compared with 23.1 h for the aligned
grid (with both simulations using 16 cores of a high-performance computing cluster). Still, given
the linear dependence of Kj, on the grid size [, a simple reduction of grid scale to achieve the same
50% reduction in the lateral numerical diffusion would require four times more cells and potentially
twice as many time steps. Although switching to higher-order advection schemes is almost certainly
a more efficient way to achieve the same decrease in numerical diffusion, the two approaches are
complementary, and the results of using a flow-aligned grid in conjunction with a high-resolution
advection scheme can be expected to perform better than either method alone.

The primary observation from comparing the salinity gradients predicted in the unaligned and
aligned simulations is an effective increase in longitudinal diffusion in the aligned grid simulations.
Although estimates of the longitudinal numerical diffusion are essentially equal between the two
grids, the interaction of lateral shear and lateral diffusion leads to an effective increase in the longi-
tudinal diffusion, that is, the shear flow dispersion scaling of [28], Kjon ~ U?h?/ K. In physical
systems, this mechanism is often responsible for the bulk of longitudinal dispersion, and in com-
paring the two simulations, we see this scaling at work, translating the decreased lateral dispersion
of the aligned grid into a more efficient longitudinal shear dispersion process. Enhanced longitu-
dinal diffusion is evidenced by the decreased salinity gradients in Figure 19, most notably around
10 km along the transect, and in fact, the salinity gradients in the aligned case more closely track the
observations. We note, however, that comparisons between either simulation and the observations
should be viewed through a wide-angle lens, as the quality of the validation is affected by a broad
set of factors, ranging from the quality of available data for freshwater flows to the treatment of
unstable stratification by the turbulence closure. It is the comparison between the two simulations,
in particular, the difference in mean gradients shown in Figure 19, that best demonstrates the effect
of grid alignment.

We have considered only velocity fields where the principal velocities are statistically stationary,
a valid assumption for strongly tidal embayments, but there is a clear extension to nonstationary
flows with an adaptive regridding process. Compared with related forms of adaptive mesh refine-
ment, such as the algorithm proposed by Marcuzzi et al. [29] in which directionality in the error
field adaptively controls anisotropy in a finite element mesh, the numerical schemes with which
we are concerned place much tighter constraints on the geometry of the grid. These constraints
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translate to more computationally intensive grid generation procedures; although our current imple-
mentation would be inefficient for frequent, global regridding steps, localized regridding in areas
with nonstationary principal velocities would be feasible even with the current implementation. In
applications such as persistent, meandering ocean currents or morphological hydrodynamic models,
the regridding costs could be amortized over relatively long computational periods.

7. CONCLUSIONS

Numerical diffusion for first-order upwind advection on a regular triangular grid has been analyti-
cally derived and shown to agree with estimates from idealized simulations. Two distinct classes of
cells, when analyzed independently, lead to two distinct modified equations. The sum of these equa-
tions recovers consistency but overestimates numerical diffusion. An analysis that takes into account
the coupling of the two cell types results in a numerical diffusion tensor that correctly quantifies the
known behavior that flow-aligned grids eliminate lateral numerical diffusion.

In the context of a physically realistic simulation, we have presented a largely unsupervised pro-
cess for creating a flow-aligned computational grid and compared model results from an unaligned
grid and an aligned grid. The mean predicted lateral numerical diffusion within the study area, South
San Francisco Bay, was reduced by a factor of 2. Longitudinal salinity gradients were smaller on
the aligned grid, consistent with an increase in longitudinal diffusion. Considering the interaction
of lateral shear and diffusion, this increase in longitudinal diffusion is in turn consistent with a
decrease in lateral diffusion. Model observation comparisons confirm that the salinity gradient is
better predicted by the aligned grid model.

APPENDIX A: CALCULATION OF DIFFUSION COEFFICIENTS

Starting from the closed-form recurrence expression for B,

1 At
B =1— [Cadl +CyAS] ~ a2
(1+2)Ar?

2(1—1)°

[CoAl, + Cy A3, ] (A1)
[CoAl,, +CyAS,, ]+ 00

And the update equation for A3+,
A5 = (1—Cp) A + Cg B} (A2)

Expressions for the volumetric Courant numbers are

C. — 4UAt sin @ (A3)
* V3l '
4AUAtsin (6 + Z
Cp = sin (0 + 5) (A4)
V3l
4U At sin (6 4+ 2=
C, = sin (0 + %) (A.5)

Y «/gl

Taylor expansions of A1, A;, and their respective derivatives, where a lack of subscript on 4 implies
evaluation at A3, are

82, 82,
AP = A" 4+ 8, Ay + 8y Ay + %Axx + %Ayy + 8xi8yi Axy + O (I%) (A.6)
(A7), = =U (Ax + 8xi Axx + 85i Axy) + O (17) (A7)
(A7), = U Axx + O() (A8)
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Although the expansions for first and second time derivatives have been truncated at O (l 2) and
O(l), the coefficients on these terms after substitution retain the overall O (l 3) bound on the
modified equation. Distances between cell centers are defined as

bis

8x1 = —[ cos (9 — 5) (A9)
. T

8,1 = —I sin (9 — 3) (A.10)

8x> = —l cos b (A.11)

8yp = —I sin 6 (A.12)

Substituting (A.3)—(A.12) into (A.1), we can write B} in the form
Bl = DA+ D*Ax + D™ Axx + DV Axy + D>V Ay, + O (13) (A.13)

where the coefficients are identified by superscripts and subscripts continue to denote partial
derivatives. Expressions for each of the coefficients simplify to

D=1 (A.14)
3

4 sin (9 + %)
sin (6 + %) [0052 6 cos (6 + %) + sin 0 cos? (6 — %)] -3

D* = (A.15)

DX* — B o (A.16)
2sin” (6 + %)
3
_ .anm
8sin (0 + %)

DYy — ﬂlz (A.17)

8sin (0 + %)

NEp i
D 7 sinf — cos 0 sin? 6 ’ (A.18)

sin (6 + %)
Now considering (4), which is the update equation for A3, A% *1is replaced by a Taylor series
expansion in time and B{ replaced according to (A.13) to obtain
Ar? 3
A+ AtA + —— A + 0 (Ar7)

=(1—Cg) A+ Cp (DA+ D*Ax + D** Ayx + D™ Ax) + D?V Ayy + O (17))
(A.19)

Canceling A and replacing second-order time derivatives with spatial derivatives and omitting all
higher-order terms for brevity, we obtain the modified equation

Cg Dy CgDyx U2At CgDyy CgD,y
A — Ay = — A A A A.20
oA T [ At 2 L v N PR (4.20)
Considering each term separately, the effective advective speed is
CpgDy
Uetr = — A2l
eff A7 (A.21)
_ 4Usin 6+3%) |: V3l :|
V3l 4sin (6 + %)
=U
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The longitudinal diffusion is

_ CgDyx U2At
N 2

2K* (A.22)

= [% (00529008 (9 + %) + sin 6 cos? (9—%)) —ﬁ} Ul -U?At

The lateral diffusion is

CﬁD
2KV = 2 22Y A.23
N (A.23)

Ul sin (30)
NG
And the cross-diffusion coefficient is
CpDxy
At

Ul [%Sinesm (9—%)sin(6- %)}

APPENDIX B: GRID GENERATION

2 KCross — (A.24)

The San Francisco Bay computational grids were generated using a variant of the advancing front
method [30]. Although many methods for generating triangular meshes guarantee a Delaunay tri-
angulation, the discretization used in SUNTANS and other Arakawa C-grid models places an
additional constraint on the interior angles of cells. These models calculate gradients of cell-centered
quantities under the assumption that the line between adjacent cell centers intersects and is perpen-
dicular to the common edge. The consequence of this requirement is that cell centers must be the
circumcenters of the triangles. For the circumcenter to fall within the cell itself, the cell must be
an acute triangle. The primary motivation for development of a triangular grid orthogonal mesh
generator is to provide automated creation of triangular meshes with all cells obeying the acute-
angle constraints.

Inputs and preprocessing

Inputs to the mesh generation process are the following: (i) a polygon (possibly with holes) repre-
senting the shoreline and computational boundaries; (ii) a set of points and associated length scales
giving the requested grid scales; and optionally (iii) a collection of polylines in the interior of the
domain for controlling cell alignment. The grid scale refers to the nominal edge length and is defined
everywhere within the domain on the basis of a natural-neighbors interpolation from the set of input
points. Before grid creation can begin, the shoreline must be made consistent with the requested
scale. This step ensures that features in the input that are ‘narrower’ than the size of the grid cells
to be created are removed from the input. Starting with a constrained Delaunay triangulation of the
input shoreline (Figure B.1a), Steiner points are added until the circumcenters lie near the medial
axis of the shoreline. Specifically, for each constrained edge in the triangulation, we find the adja-
cent triangle internal to the domain and compare the circumradius of this triangle to the point-line
distance from its center (the Voronoi point) to the constrained edge. If this ratio is greater than
a prescribed threshold (empirically chosen to be 1.2), the edge is subdivided with a Steiner point
inserted at its midpoint (Figure B.1b). The process is repeated until no more edges require subdivid-
ing. This resampling ensures that the circumradius reflects the length scales between features and
not the length scales between successive vertices on the shoreline. Any triangles with a circumradius
smaller than half the requested grid scale are removed, and a new shoreline polygon is constructed
from the union of the remaining triangles (Figure B.1c).
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(a) (b) (c)

Figure B.1. Removal of features smaller than local grid scale. (a) Input shoreline and constrained Delaunay

triangulation. (b) Constrained Delaunay triangulation after adding Steiner points. (c) Smoothed shoreline

after removal of triangles with circumradius smaller than //2 (illustrated by minimum circumcircle shown
on the right).

Alignment of the grid is achieved by embedding a set of polylines in the interior of the domain.
These lines are treated identically to shorelines, with the caveat that both sides of each line are inter-
nal to the domain and by the end of the grid generation each segment of the polyline will be adjacent
to two cells.

Paving

In an advancing front method, the front is the boundary of the region in which no cells have been
created, initially identical to the shoreline. Starting with the preprocessed shoreline polygon and any
interior lines, the paving process iteratively applies the following steps, illustrated in Figure B.2:

1. Find the point along the front with the smallest internal angle, label it B, and keep a reference
to the points A and C that are immediately clockwise and counterclockwise, respectively, from
B along the front. This will be the site of the cell or cells created during this iteration.

Step 1 Internal —J | Step 2b |

polyline “‘/‘ m “‘/‘

(i) Join (i) Cutoff (iii) Bisect (iv) Wall

After several
iterations

Figure B.2. One iteration of the paving algorithm. The node B is chosen on the basis of the smallest internal

angle. The strategy for how to add edges and cells at B is chosen on the basis of the internal angle and

whether the local scale is smaller than, equal to, or greater than the desired scale. After the topology is
updated, node locations are refined by minimizing a cost function involving cell angles and edge lengths.
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2. There are multiple choices or strategies for how new cells will be added at B. Topologically,
these strategies correspond to how the degree of node B, the number of edges adjacent to B,
is modified. For example, adding a line AC to create the cell ABC preserves the degree of
B, whereas adding a new point D to form two new cells increases the degree by 1. In a per-
fectly regular triangular grid, all nodes have a degree of 6. Strategies that result in a greater
degree will tend to create shorter edges, whereas the edge length can be increased by limiting
the degree of B. In this way, the choice of strategy is the key mechanism by which a specific
requested scale can be achieved. In many situations, though, local geometric constraints rule
out some strategies, so it becomes necessary to construct a prioritized list of strategies based
on the local scales and geometry. The steps in constructing the prioritized list are as follows:

(a) Calculate a scale factor s as the ratio of the current scale (the average of edge lengths,
1/2(|AB| 4+ |BC|)) to the requested grid scale L.

(b) Scan the vicinity around B for the possibility of nonlocal connections, that is, when the
advancing front encounters an island, an opposing shoreline, or an internal polyline. If
the nonlocal feature is within 1.25L, the highest-priority strategy will be creating an
edge from B to this feature. In the event that the nearest point on the nonlocal fea-
ture is not a preexisting vertex, a new vertex will be inserted in the feature at the point
closest to B.

(c) From both the interior angle § = ZABC and the scale factor s, the remaining local
strategies are prioritized. For example, if the angle were 60°, a cutoff will add the edge
AC, making a roughly equilateral triangle A BC. The scale factor changes the thresholds
between choosing one strategy over another. If the angle were instead 80° but the current
scale were large compared with the requested scale, the bisect strategy would attempt to
bisect the angle ZABC by adding a new point D and creating two triangles ABD and
BCD (and increasing the degree of B in an attempt to reduce the edge lengths). If the
current scale were small compared with the requested scale, the cutoff strategy would be
tried first, creating a single triangle ABC with longer edge lengths. Aside from nonlo-
cal connections, the strategies (and the range of 8 for which each is the highest-priority
strategy) are as follows:

i. Join: Merge AB and CB into a single edge [6 < 30°].
ii. Cutoff: Add the edge AC [30° < 0 < 85°5~3/2].
iii. Bisect: Add a new node D and edges AD, BD, and CD [85°s3/2 < 6 < 160° —

50° (s — D).
iv. Wall: Add a new node D, but only create the edges AD and BD [0 = 160° —
50° (s —1)].

3. For each attempted strategy, the mesh topology is updated, and a local optimization step adjusts
vertex locations to restore the acute-angle constraints. The cost function minimized during this
optimization is

, IR E ‘ )
max;e; (|¢h; — 60 |)} +exp(max,61 (¢1) ¢max_1)_” B.1)

C(p) =10
(p) [ e — 60° 3

maXeeE (le) 2 L ’
...+2(|: 7 :| +|:minee15 (le):| )

where I denotes the set of internal angles ¢; of triangles that include the vertex p, @nax is the
target maximum internal angle, chosen to be 85°, E the set of edges with p as an endpoint,
and /. the respective length of each of those edges. The first term favors equilateral triangles,
the second term penalizes angles approaching ¢n.x, and the third term favors edge lengths
close to L. If the optimization is not able to satisfy the angle constraints or the optimiza-
tion causes a self-intersection, the mesh is reverted to its original state, and the next strategy
is attempted.
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Postprocessing

Although the paving process creates only cells that respect the interior angle criterion, poor-quality
cells that only barely satisfy the angle requirements may still exist. Two postprocessing methods
are applied to improve overall grid quality: relaxation and repaving. The relaxation steps apply the
same optimization method used during paving to regions containing low-quality cells. By applying
the optimization over a larger group of vertices, it is sometimes possible to nudge the vertices toward
a better layout without modifying the grid topology. Where this approach is unable to improve the
cells, the offending cell and its neighbors are removed, and the paving method is re-applied locally.
Although repaving usually creates cells with better geometry, it may upset the alignment of cells
that are not constrained by an adjacent shoreline or interior line. For the aligned grid created in this
study, only the most borderline low-quality cells were selected for repaving in an effort to preserve
as much of the alignment as possible.

Implementation and complexity

The current implementation of a triangular grid orthogonal mesh generator is primarily in Python,
with broad utilization of the numerical libraries numpy, CGAL, and scipy. Although the asymptotic
complexity is O (nlogn), where n is the total number of cells, in practice, the optimization step is
the most expensive, and for grids of at least up to 5 x 10° cells, the run time is very close to linear
in n. On a standard 64-bit desktop computer, the speed ranges from approximately 40 cells/second
in tightly constrained areas to 110 cells/second in broad, unconstrained areas.
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