
Ocean Modelling 14 (2006) 139–173

www.elsevier.com/locate/ocemod
An unstructured-grid, finite-volume, nonhydrostatic,
parallel coastal ocean simulator

O.B. Fringer *, M. Gerritsen, R.L. Street

Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University,

Stanford, CA 94305-4020, United States

Received 30 August 2005; received in revised form 23 March 2006; accepted 23 March 2006
Available online 3 May 2006
Abstract

A finite-volume formulation is presented that solves the three-dimensional, nonhydrostatic Navier–Stokes equations
with the Boussinesq approximation on an unstructured, staggered, z-level grid, with the goal of simulating nonhydrostatic
processes in the coastal ocean with grid resolutions of tens of meters. In particular, the code has been developed to simulate
the nonlinear, nonhydrostatic internal wave field in the littoral ocean. The method is based on the formulation developed
by Casulli, in that the free-surface and vertical diffusion are semi-implicit, thereby removing stability limitations associated
with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized
explicitly with the second-order Adams–Bashforth method, while the pressure-correction method is employed for the non-
hydrostatic pressure in order to achieve overall second-order temporal accuracy. Advection of momentum is accomplished
with an Eulerian discretization which conserves momentum in cells that do not contain the free surface, and scalar advec-
tion is discretized in a way that ensures consistency with continuity, thereby ensuring local and global mass conservation
using a velocity field that conserves volume on a local and global basis. The nonhydrostatic pressure field is solved effi-
ciently using a block-Jacobi preconditioner, and while stability is limited by the internal gravity wave speed and vertical
advection of momentum, applications requiring relatively small time steps due to accuracy or stability constraints are run
efficiently on parallel computers, since the present formulation is written entirely with the message-passing interface (MPI).
The ParMETIS libraries are employed in order to achieve a load-balanced parallel partitioning that minimizes interpro-
cessor communication, and the grid is reordered to optimize per-processor performance by limiting cache misses while
accessing arrays in memory. Test cases demonstrate the ability of the code to efficiently and accurately compute the non-
hydrostatic lock exchange and internal waves in idealized as well as real domains, and we evaluate the parallel efficiency of
the code using up to 32 processors.
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1. Introduction

Recent measurements in the coastal ocean demonstrate the existence of highly nonlinear internal solitary
waves that propagate along coastal shelves (see, e.g. Klymak and Moum, 2003; Carter et al., 2005). While their
generation mechanism is not clear, it is hypothesized that they form when long, internal waves of tidal fre-
quency (internal tides) interact with topography, leading to a nonlinear cascade that results in a transfer of
energy from wavelengths of tens of kilometers and timescales of tens of hours down to highly nonlinear
and nonhydrostatic solitary waves with wavelengths of tens of meters and timescales of seconds. To date,
no simulation code has captured this cascade, simply because computational resources have made it intracta-
ble. However, recent advances in numerical methods and scientific computing have lead to simulation methods
which now make a solution of the multiscale problem of internal waves, and a host of problems in coastal
oceanography in general, feasible. This paper presents a numerical formulation, built on the successes of many
others, that combines proven numerical and computational tools in an optimal fashion to yield an efficient
simulation code designed to capture the entire multiscale internal wave energy cascade. To this end, the paper
outlines a finite-volume, unstructured-grid, nonhydrostatic, parallel coastal-ocean solver, which was built
from the beginning to be a highly efficient code on parallel processors, under the name of the Stanford
Unstructured Nonhydrostatic Terrain-following Adaptive Navier–Stokes Simulator (SUNTANS). As the
name implies, the ultimate goal is to have an unstructured-grid tool that adaptively simulates multiscale phys-
ics in the coastal ocean. Here we discuss the fundamental hydrodynamic kernel of SUNTANS, including the
nonhydrostatic and Navier–Stokes methodology on an unstructured grid.

The nonhydrostatic formulation in SUNTANS is based on that of Casulli (1999), which has spawned
numerous code efforts (Mahadevan et al., 1996a,b; Hodges et al., 2000; Wadzuk et al., 2004), all of which split
the pressure into its hydrostatic and nonhydrostatic components. The hydrostatic, or predictor, velocity field
that satisfies the depth-averaged continuity equation is computed first. It is then corrected with the nonhydro-
static pressure field to enforce local continuity. This method can be used to convert existing primitive equation
models to their nonhydrostatic counterparts, since it can be done with the addition of a nonhydrostatic pres-
sure solver and a vertical momentum equation, which is replaced by the continuity equation in the primitive
equations. Kanarska and Maderich (2003) demonstrated this by extending the free-surface primitive equation
code POM (Blumberg and Mellor, 1987), while Wadzuk et al. (2004) extended the CWR-ELCOM code
(Hodges et al., 2000). Marshall et al. (1997a,b) describe a similar nonhydrostatic approach to that of Casulli,
in that they split the hydrostatic and nonhydrostatic components of the pressure, and first solve a two-dimen-
sional Poisson equation for the pressure at the free-surface, followed by a solution of the three-dimensional
Poisson equation for the nonhydrostatic pressure field. They also describe a quasi-hydrostatic formulation
that adds the cosine of latitude Coriolis terms to the primitive equations as an intermediate approximation
between the fully hydrostatic and fully nonhydrostatic equation sets. Numerous other works, including the
finite-element formulation of Ford et al. (2004), implement similar nonhydrostatic formulations, all of which
rely on the essential splitting of the hydrostatic and nonhydrostatic pressure fields.

These pressure-split algorithms are often referred to as ‘‘quasi-hydrostatic’’ (not to be confused with the
quasi-hydrostatic definition of Marshall et al., 1997a) algorithms because the position of the free surface at
a given time step is updated in the absence of the nonhydrostatic pressure at that time level. Fully non-
hydrostatic algorithms do not split the pressure, but instead compute the full pressure field and advance
the free surface explicitly using the kinematic free-surface boundary condition, such as the large-eddy
simulation of Hodges and Street (1999) and the finite-element coastal model of Labeur and Pietrzak
(2005). The method of SUNTANS incorporates a pressure-split algorithm and this is inherently quasi-
hydrostatic from the point of view that the nonhydrostatic pressure does not directly affect the free-surface
at a given time step. However, we demonstrate that the present pressure-split algorithm is fully nonhydro-
static from the point of view of the temporal accuracy of the solution method. That is, the effect of the
nonhydrostatic pressure on the free-surface at a given time step is negligible since it is the same order of
magnitude as the error associated with the global second-order temporal accuracy of the overall solution
procedure.

While the pressure-split formulation intelligently reduces the workload of the nonhydrostatic pressure
solver, the three-dimensional elliptic equation that governs the nonhydrostatic pressure still accounts for
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a bulk of the workload for most nonhydrostatic codes. The nonhydrostatic pressure solver in the labora-
tory-scale LES code of Zang et al. (1994) employs a multigrid solver, for which the performance is improved
with the parallel implementation of Cui and Street (2000) using the message passing interface (MPI). For
field-scale applications, the three-dimensional pressure-Poisson equation is poorly conditioned because the
terms containing the vertical second derivatives are typically two orders of magnitude larger than those
containing the horizontal second derivatives. This poses a stringent limitation on the efficiency of the
numerical solver unless preconditioning is employed. For this reason, Casulli (1999) employs the precondi-
tioned conjugate gradient algorithm both for the nonhydrostatic pressure as well as the free-surface solver.
Marshall et al. (1997b) describe this preconditioning approach in their discussion of the block-Jacobi
preconditioner for the preconditioned conjugate gradient algorithm. This preconditioner is ideally suited
to their parallel implementation in MPI because it does not require any additional communication among
processors since its solution is computed via a tridiagonal inverse in each water column, the data for which
is contiguous on each processor. We adopt a similar solution strategy for the parallel unstructured-grid
Poisson solver in SUNTANS, and demonstrate how the effectiveness of the preconditioner is strongly
dependent on the grid aspect ratio.

In addition to developing computationally efficient solutions of the nonhydrostatic pressure, stability with
respect to fast free-surface gravity waves in ocean models is paramount because propagation speeds can be 100
times faster than typical current or internal gravity wave speeds. POM (Blumberg and Mellor, 1987) and
relatives, such as SCRUM (Song and Haidvogel, 1994), the unstructured finite-volume code FVCOM (Chen
et al., 2003), and the higher-order split-explicit formulation of Shchepetkin and McWilliams (2005), stabilize
the fast free-surface gravity waves by employing mode splitting, which advances the barotropic, or external,
mode using smaller time steps than the baroclinic, or internal mode. Marshall et al. (1997b) ensure stability for
the linear and nonlinear free-surface time advances in the MIT General Circulation Model (MITgcm) by
employing a backward Euler scheme for the depth-averaged continuity equation and the barotropic term
in the momentum equations, while the Casulli (1999) formulation employs the semi-implicit theta-method
for these terms. In SUNTANS, the free-surface terms are also treated using the theta-method. Stability
limitations associated with fast free-surface gravity waves can also be removed with the rigid-lid approxima-
tion. This is an option in MITgcm as well as the nonhydrostatic finite-element model of Ford et al. (2004),
which was extended to include a free surface in Piggott et al. (2005).

The horizontal grid in SUNTANS is a Delaunay triangulation (see, e.g. Shewchuck, 1996), which enjoys
the obvious advantages of unstructured grids as pointed out by Pain et al. (2005). In the vertical, like the
Casulli and Zanolli (2002) method and the method of Marshall et al. (1997a), SUNTANS employs a z-level
grid. Although sigma-coordinate grids can also be used in combination with horizontally unstructured grids,
as in FVCOM (Chen et al., 2003), the use of z-levels avoids the well-known pressure-gradient error associated
with sigma-coordinate (see, e.g. Mellor et al., 1994, 2004) and fully unstructured grids (Ford et al., 2004).
Unlike fully unstructured grids, z-levels and sigma-coordinates are more efficient from a memory access point
of view since water columns can be stored contiguously in memory. The primary disadvantage to using z-level
grids is the stair-stepped resolution of bottom topography. While this error can be minimized by aligning
unstructured grid faces with isobaths, the treatment of the bottom boundary can be improved either by rewrit-
ing the finite-volume equations at the bottom-most, or ‘‘shaved’’ cells, using the method of Adcroft et al.
(1997), or by employing the immersed boundary method (Tseng and Ferziger, 2003). In the latter, which is
much more feasible when unstructured prisms are involved, irregular boundaries are immersed into a compu-
tational domain which contains z-levels. The cells adjacent to and inside the immersed boundaries are com-
putational cells, while the values in the cells adjacent to and outside the boundary are updated by
extrapolations that use the values in the computational cells while satisfying boundary conditions at the
immersed boundary.

In SUNTANS, the unstructured, finite-volume grid is staggered such that only the velocity components
normal to the faces are stored, while all other variables are stored at the Voronoi points, which are the
analogue of cell centers on Cartesian grids (see Section 3). This is similar to the method of Casulli and Zanolli
(2002), while differing from FVCOM (Chen et al., 2003), since in that formulation the horizontal components
of the velocity field are stored at the centroids and all other quantities are stored at the vertices. To advect
momentum, Casulli and Zanolli employ the semi-Lagrangian, or Euler–Lagrangian method (ELM), which
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is a natural discretization on unstructured, staggered grids because advection is computed with an interpola-
tion from the velocity field at points in the vicinity of the Lagrangian traceback. As described in detail in the
review of semi-Lagrangian advection schemes by Staniforth and Côté (1991), the accuracy of such schemes is
then dictated by the accuracy of the spatial interpolation scheme, and, to a lesser degree, by the accuracy with
which the position of the traceback is computed. Le Roux et al. (1997), for example, developed an accurate
semi-Lagrangian advection scheme on unstructured grids using the Kriging interpolation scheme. The greatest
advantage of the semi-Lagrangian methods is that they are stable. The drawback, however, is that most imple-
mentations do not conserve momentum. Eulerian schemes for momentum advection have the advantage that
they can be conservative. For unstructured, collocated grids, Chen et al. (2003) devised a conservative Eulerian
scheme for advection of momentum in FVCOM, while the same was done for unstructured, staggered grids by
Perot (2000). The scheme of Perot (2000) is employed in SUNTANS and, while it has the attractive property
of being conservative, it introduces a time step limitation on stability because it is computed explicitly with the
second-order Adams–Bashforth scheme.

Finite-volume, scalar advection does not share the same conservation difficulty as momentum advection on
unstructured, staggered grids because the scalar quantities are stored at the Voronoi points. This makes it
possible to conserve mass on a local and global basis as long as the advection discretization is consistent with
the three-dimensional and depth-averaged continuity equations, as pointed out by Gross et al. (2002), for the
Casulli (1999) method, and Campin et al. (2004), for the method of Marshall et al. (1997b). Once consistency
with continuity is ensured, however, monotonicity of the advected quantity is not necessarily guaranteed when
using higher-order schemes to interpolate the scalar values onto the faces. Gross et al. (1999) compare a num-
ber of advection schemes on a Cartesian grid, including the total variation diminishing (TVD) schemes (see,
e.g. Roe, 1984), while Casulli and Zanolli (2005) extend the concept of the flux limiter used in the TVD
schemes to unstructured grids in order to improve the interpolation accuracy while guaranteeing the min–
max principle of the advected quantity. The TVD concept is also employed on unstructured finite-volume
grids by Darwish and Moukalled (2003). The scalar advection formulation in SUNTANS is consistent with
the three-dimensional and depth-averaged continuity equations, and the interpolation method to obtain the
scalar face values is also monotonic. While the consistent formulation is described in the present paper, details
of the higher-order monotonic interpolation are left to a future paper.

In the next sections we describe SUNTANS and demonstrate its performance, paying particular atten-
tion to the formulation of the nonhydrostatic and Eulerian momentum advection terms. Section 2 gives the
equations of motion, Section 3 describes the unstructured, finite-volume prisms, and Section 4 outlines the
numerical formulation. Section 5 describes some test cases that demonstrate the numerical and physical
aspects of the nonhydrostatic pressure formulation. First, the internal seiche test case highlights the differ-
ences between hydrostatic and nonhydrostatic internal wave propagation and presents fundamental features
of nonhydrostatic physics that a nonhydrostatic code must capture. In addition to demonstrating accurate
physics, this test case is used to demonstrate the second-order temporal accuracy of SUNTANS in Section
6. The internal seiche represents coupling between the nonhydrostatic pressure and the barotropic and
baroclinic pressure fields in the linear regime, and hence is verifiable analytically. As a second test, the
lock-exchange is employed to assess the coupling between the nonhydrostatic pressure and nonlinear advec-
tion of momentum. In the third test, we demonstrate the ability of the code to capture field-scale genera-
tion of internal waves in Monterey Bay, and use this as a test bed to demonstrate the parallel efficiency of
SUNTANS in Section 6. Overall, these tests serve to demonstrate that SUNTANS is an effective and
operational parallel simulation tool, and sets the stage for ongoing and future, production-scale simula-
tions, an example of which is to simulate internal waves in Monterey Bay using horizontal grid resolutions
of 60 m in 200 km domains. We draw our conclusions and describe future directions of the present formu-
lation in Section 7.

2. Equations of motion

The three-dimensional Navier–Stokes equations with the Boussinesq approximation in a rotating frame,
after filtering with either Reynolds-averaging or via a large-eddy simulation and employing an eddy viscosity
model, are given by



O.B. Fringer et al. / Ocean Modelling 14 (2006) 139–173 143
ou
ot
þr � uuð Þ � fvþ bw ¼ � 1

q0

op
ox
þrH � ðmHrHuÞ þ o

oz
mV

ou
oz

� �
; ð1Þ

ov
ot
þr � ðuvÞ þ fu ¼ � 1

q0

op
oy
þrH � ðmHrHvÞ þ o

oz
mV

ov
oz

� �
; ð2Þ

ow
ot
þr � ðuwÞ � bu ¼ � 1

q0

op
oz
þrH � ðmHrHwÞ þ o

oz
mV

ow
oz

� �
� g

q0

ðq0 þ qÞ; ð3Þ
subject to the incompressibility constraint
r � u ¼ 0; ð4Þ

where q0 is the constant reference density and the total density is given by q0 + q, and the sine and cosine of
latitude Coriolis terms are given by f = 2x sin/ and b = 2xcos/, respectively, where / is the latitude, and x is
the Earth’s angular velocity. The horizontal and vertical eddy viscosities are given by mH and mV, respectively,
and the horizontal gradient operator is given by
rH ¼ ex
o
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oy
: ð5Þ
Following the work of Casulli (1999), the pressure is split into its hydrostatic ph and nonhydrostatic q

components with p = ph + q, where the hydrostatic pressure is defined by
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Integrating this equation from z to the free surface, h, and substitution into the momentum equations (1)–(3)
yields
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where ps is the pressure at the free surface, and the baroclinic pressure head is given by
r ¼ 1
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z
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Integrating the continuity equation (4) from the bottom, defined by z = �d(x,y), to the free-surface at
z = h(x,y, t) yields the depth-averaged continuity equation
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where we have employed the kinematic boundary conditions at z = h and z = �d, viz.,
oh
ot
þ uHjz¼h � rHh ¼ wjz¼h; ð12Þ

� uHjz¼�d � rHd ¼ wjz¼�d ; ð13Þ
and the horizontal velocity vector is given by
uH ¼ uex þ vey : ð14Þ

Eqs. (7)–(11) along with the continuity equation (4) comprise a set of equations for the velocity components u,
v, and w, the free surface h, and nonhydrostatic pressure q. The density field is determined by an equation of
state in terms of the salinity s and temperature T such that
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q ¼ qðs; T Þ; ð15Þ

where s and T represent salinity and temperature anomalies from reference states s0 and T0, respectively. After
filtering and employing a scalar diffusivity law, the transport equations for salinity and temperature are given
by
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where cH, cV, jH and jV are the horizontal and vertical turbulent mass and thermal diffusivities, respectively.
In this paper we neglect the effects of temperature stratification and assume a linear equation of state of the
form q = bs, which implies a transport equation for density of the form
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3. Unstructured, finite-volume prism grid cells

We confine ourselves to three-dimensional z-level grids, for which vertical grid spacings remain constant in
the horizontal. In plan, the grid is composed of a two-dimensional Delaunay triangulation (see, e.g., Shew-
chuck, 1996), in which no pointset (which is comprised of the three vertices) of a particular triangle lies within
the circumcircle of any other triangle within the triangulation, as shown in Fig. 1. The dual of the Delaunay
triangulation is the Voronoi diagram, which connects the circumcenters of the Delaunay triangles. The Voro-
noi points make up the nodes of the Voronoi diagram, and the edges that connect the Voronoi points are
perpendicular to the faces of the Delaunay triangles, thus forming an orthogonal, unstructured grid. All dis-
cretizations in the present paper assume this orthogonality condition.

The eddy viscosity, scalar diffusivities, scalars, and nonhydrostatic pressure are defined at the Voronoi
points and vertical centers of the prismatic cells, the free-surface and surface pressure are defined at the Voro-
noi points on the surface of the top cells, and the depth is defined at the Voronoi points at the bottom of the
bottom-most cells. The horizontal velocity U is defined normal to each vertical cell face at the intersection of
the Voronoi and Delaunay edges, and the vertical velocity w is defined at the Voronoi points at the top and
bottom of each cell, as shown in Fig. 2.

Each vertical face with index j has a predefined normal (whose orientation is arbitrary), nj, which indicates
the positive direction of the velocity vector defined on that face, so that, if uj is the velocity vector at face j, then
A Delaunay triangulation, in which the circumcircles (denoted by – –) of the triangles do not contain the pointset of any other
e in the triangulation. The circumcircles can, however, contain the Voronoi points of neighboring triangles. Delaunay points/edges:
Voronoi points/edges: – · –.
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Fig. 2. Depiction of a three-dimensional prismatic grid cell, showing the horizontal velocity U defined normal to the vertical cell faces and
the vertical velocity defined at the Voronoi points at the top and bottom of the cell with height Dz.
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uj � nj ¼ U j: ð19Þ

Every Delaunay edge j with a normal nj has two neighboring cells defined by the Voronoi points that make up
the jth Voronoi edge. The indices to these two cells are given by the pointers G2j and G2j+1. The first index, G2j,
provides the index of the cell in the direction of nj, while G2j+1 provides the index of the cell in the opposite
direction. If xi and yi correspond to the Voronoi points of a given planform cell i, then we can define the
components of the normal vector nj = n1j ex + n2j ey with
n1j ¼
xG2j � xG2jþ1

Dj
; ð20Þ

n2j ¼
yG2j
� yG2jþ1

Dj
; ð21Þ
where the gradient distance is defined by
D2
j ¼ ðxG2j � xG2jþ1

Þ2 þ ðyG2j
� yG2jþ1

Þ2: ð22Þ
Because G2j+1 and G2j are indices to cells, if there are Nc triangular cells that make up the unstructured grid,
then for computational edges, 1 6 G2j 6 Nc and 1 6 G2j+1 6 Nc. By adopting the convention that face-
normals always point into the domain, boundary edges are identified by G2j+1 = �1.

Using the present notation, we can identify the upwind cell iiw corresponding to a given edge j with
iiw ¼
G2jþ1 U j > 0;

G2j otherwise:

�
ð23Þ
We can also define gradients normal to an edge face using the G pointer. As an example, the magnitude of the
free-surface gradient $Hh in the direction of the normal nj and perpendicular to Delaunay edge j is given by
ðrHhÞj � nj ¼
hG2j � hG2jþ1

Dj
þ Eg; ð24Þ
where Eg is the truncation error. If the grid is composed of equilateral triangles, then the truncation error Eg in
Eq. (24) is second order in Dj. Otherwise, face-normal gradients are not centered about the Delaunay edges.

The three outward-pointing normals of each cell can be defined by no
1 ; no

2 ; and no
3, as shown in Fig. 3.

Rather than storing the components of each of these normals, we store the dot product of the outward normal
with the unique normal at every edge nj, and define this as
Nj ¼ no
j � nj ¼ �1: ð25Þ
This is also used to specify the gradient in the direction of the outward pointing normal at a cell face. Since the
gradient of a cell-centered quantity / in the direction of the unique normal n1 in Fig. 3 is defined as
ðn1 � r/Þn1 ¼
/G2j
� /G2jþ1

Dj
n1; ð26Þ
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Fig. 3. Depiction of the relationship between the unique normals nj defined on every edge, the outward normals no
f defined on the faces of

a given cell, and Nj, the dot product of the unique normal with the outward normal.
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where index j corresponds to the edge with normal n1, then the component of the gradient in the direction of
the outward normal of edge j with respect to the cell in Fig. 3 is given by
o/
ono
¼ ðn1 � r/Þn1 � no

1 ¼
/G2j
� /G2jþ1

Dj

� �
N 1: ð27Þ
Denoting the cell for which this outward gradient is defined as cell i and the cell which neighbors this cell on
the opposite side of edge j as cell Ne1, then we can simplify the expression for the outward normal as
o/
ono
¼

/Ne1
� /i

Dj
: ð28Þ
In this manner we can store values of cell neighbors in the Ne vectors and use these to simplify the calculations
of the outward normals.

4. Numerical discretization

4.1. Discretized momentum equations

The horizontal momentum equations are solved at the vertical faces of each cell. To obtain the equation for
the normal component of momentum at each face, the dot product of the face-normal vector n, which is
horizontal, is taken with the horizontal momentum equations (7) and (8) to obtain
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where o/on is the face-normal gradient and n1 and n2 are the components of the normal vector. The vertical
momentum equation is evaluated at the top and bottom of each cell, and is given by
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The first step in the discretization procedure is to use the pressure at the old time step to compute a predicted
velocity field at edge j and level k with
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where the vertical diffusion terms and the free-surface term have been discretized semi-implicitly with the
theta-method (Casulli, 1999) and the explicit term has been discretized with the second order Adams–Bash-
forth method, as in Zang et al. (1994). The old nonhydrostatic pressure is discretized at time step n � 1/2
to be consistent with the pressure-correction method (Armfield and Street, 2000), in which second-order tem-
poral accuracy is attained for q when the old pressure field is assumed to exist at step n � 1/2. This is discussed
in more detail in Section 6.1. The explicit terms are given by
F j;k ¼ �CHðUj;kÞ � CVðUj;kÞ �
1

q0

ops

on
� g

or
on
þ ðfv� bwÞn1 � ðfuÞn2 þ DHðUj;kÞ; ð33Þ

Hi;k ¼ �CHðwi;kÞ � CVðwi;kÞ þ buþ DHðwi;kÞ; ð34Þ
where CH( ), CV( ), and DH( ) are the horizontal and vertical advection and horizontal diffusion operators,
respectively, which are defined in Sections 4.3 and 4.4. The horizontal components of the Cartesian velocity
vector that are required for the Coriolis terms are defined at the Voronoi points, as described in Section 4.3,
and these are interpolated onto the appropriate cell faces.

Boundary conditions on the horizontal velocity at the bottom are given by the drag law
mV

oU
oz

����
nþ1

z¼�d

¼ Cd;BjU njUnþ1; ð35Þ
while at the free surface, depending on the value of stop, we impose either a drag law (stop = 0), or a wind stress
(stop = 1), such that
mV

oU
oz

����
nþ1

z¼h

¼ �ð1� stopÞCd;T jU njUnþ1 þ stopn � ss; ð36Þ
where ss is the imposed wind shear stress. Boundary conditions on the vertical velocity are no-flux at the bot-
tom and gradient-free at the free surface. Following Casulli and Zanolli (2002), the discrete momentum equa-
tions (31) and (32) are solved by inverting tridiagonals for the vertical diffusion operators at each water
column after solving for the free surface, for which the solution procedure is described in Section 4.2.

4.2. Discretized depth-averaged continuity equation

In vector form, the depth-averaged continuity equation (11) is given by
oh
ot
þrH �

Z h

�d
uH dz ¼ 0; ð37Þ
where the horizontal gradient and velocity vectors are given in Eqs. (5) and (14). If Ai is the area of the
unstructured-grid cell with Ns sides and free-surface height hi, following Casulli and Zanolli (2002), a semi-
implicit discretization of Eq. (37) using the theta-method is given by
hnþ1
i � hn

i

Dt
þ 1

Ai
h
XNs

m¼1

XNke

k¼1

Unþ1
m;k Dzuw

i;k N m dfm þ
1

Ai
ð1� hÞ

XNs

m¼1

XNke

k¼1

U n
m;kDzuw

i;k N m dfm ¼ 0; ð38Þ
where the thickness of the uppermost wet cell is evaluated at time level n, and where Nke is the number of faces
in the vertical at side m, dfm is the length of the mth side of the polygon, and Um,k is the normal component of
the velocity at the mth side of the polygon at the kth depth level. Because the cell thickness Dzi,k is stored at
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the Voronoi points, we approximate the face-values with their upwind quantities Dzuw
i;k . In this formulation the

free surface hi represents the location of the top face of the uppermost wet cell, and cells above it are assumed
to have zero height when they are dry. Although the present applications do not incorporate wetting and dry-
ing because of the stability limitation imposed by vertical advection of momentum when Dz becomes small (see
Section 4.7), we have implemented a semi-Lagrangian momentum advection scheme (Le Roux et al., 1997,
2000) for use in estuarine studies with extensive wetting and drying. We leave a discussion of this formulation
and its application to a future manuscript.

Since Eq. (38) employs the velocity at the new time step, this requires that the free surface at the new time
step include the effects of the nonhydrostatic pressure at that time step. If the corrector step for the horizontal
velocity is given by
U nþ1
j;k ¼ U �j;k � Dt

qcG2j;k
� qcG2jþ1;k

Dj

� �
; ð39Þ
where qc denotes the pressure correction (see Section 4.6), substitution into Eq. (38) gives
hnþ1
i � hn

i

Dt
þ 1

Ai
h
XNs

m¼1

XNke

k¼1

U �m;kDzuw
i;k N m dfm þ

1

Ai
ð1� hÞ

XNs

m¼1

XNke

k¼1

U n
m;kDzuw

i;k N m dfm

¼ Dt
Ai

h
XNs

m¼1

1

Dm

XNke

k¼1

ðqcG2m;k � qcG2mþ1;kÞDzuw
i;k Nm dfm; ð40Þ
which gives the position of the free-surface at time step n + 1 in terms of the predictor velocity field and the
nonhydrostatic pressure-correction qc. A ‘‘fully’’ nonhydrostatic method would require an iteration in order
to solve this equation, since qc is computed from the divergence of the predictor velocity field U*, which in turn
requires the new free-surface hn+1. However, as described by Armfield and Street (2000), because qc ¼ OðDtÞ in
the pressure correction algorithm, an iteration is not required in order to attain second-order accuracy. There-
fore, in the present formulation we omit this term from the free-surface equation as the added expense asso-
ciated with a fully nonhydrostatic iteration does not affect the time accuracy of the method.

In a manner similar to that of Casulli (1999) and Casulli and Zanolli (2002), the free-surface equation is
solved via substitution of the discrete horizontal momentum equation for U* given by Eq. (31) into (40). This
yields a symmetric, positive-definite, linear system in which the bandwidth is a strong function of the ordering
of the unstructured cells, and the linear system is solved with the preconditioned conjugate gradient algorithm
using diagonal preconditioning. Once this equation is solved for hn+1, the predicted horizontal velocity field
can be obtained from Eq. (31).

4.3. Advection of momentum

The control volume used to discretize the advection and diffusion terms for the horizontal and vertical
momentum equations is shown in Fig. 4. For a Delaunay triangulation, the Voronoi edges, which are the lines
connecting the cell circumcenters (denoted by the open circles in Fig. 4(a)) are perpendicular to the faces of the
cells, which are the Delaunay edges. The distance from the circumcenter of cell i to face j is given by di,j, and
the distance between two circumcenters adjacent to face j is Dj, as was shown in Section 3. Fig. 4 depicts face j

and its two neighboring cells, whose indices are given by G2j and G2j+1. In what follows, for ease of notation
we assume that G2j = 1 and G2j+1 = 2, so that dG2j;j ¼ d1;j and dG2jþ1;j ¼ d2;j.

Following the work of Perot (2000), a discretization of the vertical advection of horizontal momentum at
face j in Fig. 4 is given by
CVðUj;kÞ ¼
1

Dj
ðd1;jC

vu
1;k þ d2;jC

vu
2;kÞ: ð41Þ
The component of vertical advection at the Voronoi point in cell i in the direction of the normal vector nj is
given by
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Fig. 4. The control volume used to discretize the horizontal momentum equation at face j, showing the (a) planform and (b) side views.
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Cvu
i;k ¼

1

Dzi;k
ðwi;kþ1nj � ui;kþ1=2 � wi;knj � ui;k�1=2Þ; ð42Þ
where ui,k is the approximation of the velocity vector at the Voronoi point, noting that ui,k�1/2 is located at the
same point as wi,k. Following Perot, the velocity vector is defined at the Voronoi points with
ui;k ¼
1

Ai

XNs

m¼1

Umnmdi;m dfm: ð43Þ
Approximating this velocity vector with a linear interpolation at the upper and lower faces yields
ui;k�1=2 ¼
Dzi;k�1

Dzi;k þ Dzi;k�1

ui;k þ
Dzi;k

Dzi;k þ Dzi;k�1

ui;k�1; ð44Þ

ui;kþ1=2 ¼
Dzi;kþ1

Dzi;k þ Dzi;kþ1

ui;k þ
Dzi;k

Dzi;k þ Dzi;kþ1

ui;kþ1: ð45Þ
Vertical advection of vertical momentum is obtained with a similar discretization, which reduces to a second-
order central difference of the form
CVðwi;kÞ ¼
1

Dzi;k�1 þ Dzi;k
ðw2

i;kþ1 � w2
i;k�1Þ: ð46Þ
Conservation of momentum and energy is satisfied everywhere except for cells containing the free-surface,
where conservation is only approximate. This is because the free surface is stored at the Voronoi points, while
the free surface in the formulation of Perot, which employs fully unstructured tetrahedra, is stored at the
Delaunay points, thereby enabling conservation.

Horizontal advection of horizontal momentum at face j in Fig. 4 is discretized in a conservative manner
(Perot, 2000) with
CHðU j;kÞ ¼
1

Dj
ðd1;jC

hu
1;k þ d2;jC

hu
2;kÞ: ð47Þ
The component of horizontal advection of horizontal momentum in the direction of the normal vector nj

within cell i is obtained by integrating the horizontal advection term over the finite volume Vi to yield
Chu
i;k ¼

nj

V i
�
Z

V i

rH � ðuHuÞdV ; ð48Þ
which, after application of Green’s theorem, becomes
Chu
i;k ¼

nj

AiDzi;k
�
Z

S
uðuH � nÞdS; ð49Þ
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where S is the surface of the control volume. This is approximated with
Chu
i;k ¼

1

AiDzi;k

XNs

m

nj � um;kU m;kDzuw
m;kNm dfm; ð50Þ
where the face-centered velocity vector is given by a linear interpolation with the velocity vectors on either side
of face m (which are computed using Eq. (43)) with
um;k ¼
1

Dm
ðdG2mþ1;muG2m;k þ dG2m;muG2mþ1;kÞ: ð51Þ
Horizontal advection of vertical momentum is computed in a similar manner with
CHðwi;kÞ ¼
1

Dzi;k þ Dzi;k�1

ðDzi;k�1Chw
i;k�1 þ Dzi;kChw

i;k Þ; ð52Þ
where
Chw
i;k ¼

1

AiDzuw
i;k

XNs

m

wm;kþ1=2Um;kDzuw
i;k Nm dfm: ð53Þ
Because the vertical velocity is stored at the horizontal faces, it is interpolated to the vertical faces with
wm;kþ1=2 ¼
1

2Dm
ðdG2mþ1;mwG2m;k þ dG2m;mwG2mþ1;kÞ þ

1

2Dm
ðdG2mþ1;mwG2m;kþ1 þ dG2m;mwG2mþ1;kþ1Þ: ð54Þ
4.4. Horizontal diffusion of momentum

Horizontal diffusion of horizontal momentum is discretized using the same conservative discretization as
for advection, such that
DHðUj;kÞ ¼
1

Dj
ðd1;jDhu

1;k þ d2;jDhu
2;kÞ: ð55Þ
The component of horizontal diffusion of horizontal momentum in the direction of the normal vector nj within
cell i is obtained by integrating the horizontal diffusion term over the finite volume Vi to yield
Dhu
i;k ¼

nj

V i
�
Z

V i

rH � ðmHrHuÞdV ; ð56Þ
which, after application of Green’s theorem, becomes
Dhu
i;k ¼

nj

AiDzi;k
�
Z

S
mH

ou

on
dS; ð57Þ
where S is the surface of the control volume. This is approximated with
Dhu
i;k ¼

1

AiDzi;k

XNs

m

ðmHÞm;knj �
ou

on

����
m;k

Dzuw
i;k Nm dfm; ð58Þ
where the face-normal gradient is given by
ou

on

����
m;k

¼ 1

Dm
ðuG2m ;k � uG2mþ1;kÞ; ð59Þ
and the eddy viscosity is approximated with the linear interpolation
ðmHÞm;k ¼
1

Dm
ðdG2mþ1;mðmHÞG2m;k

þ dG2m;mðmHÞG2mþ1;k
Þ: ð60Þ
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For horizontal diffusion of vertical momentum, the discretization is obtained in a similar manner and is
given by
DHðwi;kÞ ¼
1

Dzi;k þ Dzi;k�1

ðDzi;kDhw
i;k þ Dzi;k�1Dhw

i;k�1Þ; ð61Þ
where
Dhw
i;k ¼

1

AiDzi;k

XNs

m

ðmHÞm;k
ow
on

����
m;kþ1=2

Dzuw
m;kN m dfm: ð62Þ
The horizontal gradient of the vertical velocity is approximated with
ow
on

����
m;kþ1=2

¼ 1

2Dm
ðwG2j;kþ1 � wG2jþ1;kþ1 þ wG2j;k � wG2jþ1;kÞ: ð63Þ
For solid vertical boundaries, we impose a drag law for the horizontal and vertical velocities of the form
mH

ou

on

����
b

¼ CdW juG2b juG2b ; ð64Þ

mH

ow
on

����
b

¼ CdW jwG2b jwG2b ; ð65Þ
where the b index denotes a solid vertical wall, and CdW is the drag coefficient for vertical walls. By definition,
the gradient pointer G2b points to the cell adjacent to boundaries and G2b+1 = �1.
4.5. Discretized transport equations

The general advection–diffusion equation for an arbitrary scalar quantity /, which may be either s, T, or q,
is given by
o/
ot
þr � ðu/Þ ¼ r � ða0r/Þ; ð66Þ
where a0 = a0,H + a0,V is the scalar diffusivity. We split a0 into its horizontal and vertical parts later in the
discretization for ease of notation. Integrating (66) over a cross-sectional area A and from z1 to z1 + h and
applying Green’s theorem gives
Z

A

Z z1þh

z1

o/
ot

dzdA ¼
Z

S
ða0r/� /uÞ � ndS; ð67Þ
where S is the surface encompassing the elemental control volume dV = dzdA. Using Leibniz’ rule,
we have
o

ot

Z
V

/dV
� �

�
Z

A
/ðhÞ oh

ot
dA ¼

Z
S
ða0r/� /uÞ � ndS: ð68Þ
If SNF represents all control volume surfaces other than the free surface, this can be rewritten as
o

ot

Z
V

/dV
� �

�
Z

A
/ðhÞ oh

ot
� uðhÞ � nh

� �
dA ¼

Z
SNF

a0r/� /uð Þ � ndS; ð69Þ
where nh is the vector normal to the free surface, and we have assumed no scalar gradients normal to the free
surface, such that $/ Æ nh = 0. Since nh is given by
nh ¼ �rhþ e3; ð70Þ

applying the kinematic free-surface boundary condition at z = h (Eq. (12)) to Eq. (69) yields
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o

ot

Z
V

/dV
� �

¼
Z

SNF

ða0r/� /uÞ � n dS: ð71Þ
In this manner a conservative scalar transport algorithm can be derived for control volumes that include the
free surface. Control volumes that do not include the free surface employ Eq. (71), except with SNF = S.

A conservative time discretization of (71) is given by
Dznþ1
i;k /nþ1

i;k � Dzn
i;k/

n
i;k

Dt
¼ 1

2
ð3Un

i;k � Un�1
i;k Þ �

1

Ai

XNs

m

½hU nþ1
m;k þ ð1� hÞUn

m;k�/
n
m;kDzuw

m;kNm dfm

� h wnþ1
i;kþ1/

nþ1
i;kþ1=2 � wnþ1

i;k /nþ1
i;k�1=2

� 	
� ð1� hÞ wn

i;kþ1/
n
i;kþ1=2 � wn

i;k/
n
i;k�1=2

� 	
þ hD//nþ1

i;k þ ð1� hÞD//n
i;k; ð72Þ
where D/ is the vertical diffusion operator and contains the vertical scalar diffusivity a0,V. The vertical diffusion
and vertical advection have been discretized with the theta-method (Casulli, 1999), and the horizontal diffu-
sion term, Ui,k, is discretized with the Adams–Bashforth method (Zang et al., 1993), and is given by
Ui;k ¼
1

Ai

Z
SH

a0;Hr/ � ndS; ð73Þ
where SH implies integration only over the vertical faces. This is approximated with
Ui;k ¼
1

Ai

XNs

m

ða0;H Þm;k
Dm

ð/G2m;k � /G2mþ1;kÞDzuw
m;kN m dfm; ð74Þ
where the scalar diffusivity a0,H at the cell faces is obtained with a linear interpolation from the neighboring
cells, as in Eq. (60). As discussed in Gross et al. (2002), the discretization given in Eq. (72) is guaranteed to
conserve mass because it is consistent with the discrete depth-averaged continuity equation (38) and the
discrete continuity equation (78) (see Section 4.6).

The value of the scalar quantity at the faces can be determined in a number of ways, depending on the
desired scalar advection scheme. We employ first-order upwinding for the examples in this paper. Although
highly diffusive, we have found it to be suitable to demonstrate code performance and other salient features
of the present formulation.

4.6. Nonhydrostatic pressure

In general, while the predicted velocity field given by U* and w* in Eqs. (31) and (32) satisfies depth-aver-
aged continuity, it does not satisfy local continuity. Therefore, a nonhydrostatic pressure field must be com-
puted that enforces the continuity equation (4). This is done by correcting the horizontal and vertical velocity
fields with the nonhydrostatic pressure-correction qc, as in
U nþ1
j;k ¼ U �j;k � Dt

qcG2j;k � qcG2jþ1;k

Dj

� �
; ð75Þ

wnþ1
i;k ¼ w�i;k � 2Dt

qci;k � qci;k�1

Dzi;k þ Dzi;k�1

� �
; ð76Þ
followed by an update of the nonhydrostatic pressure field with
qnþ1=2
i;k ¼ qn�1=2

i;k þ qci;k: ð77Þ
Following Armfield and Street (2000), the time level of the nonhydrostatic pressure field is specified at the half-
time steps in order to maintain second-order temporal accuracy. This method is termed the pressure-correc-
tion algorithm and differs from the methodology in Casulli (1999) in that it is second-order accurate in time
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while the Casulli method is first-order accurate in time. Second-order temporal accuracy of the present method
is demonstrated in Section 6.1.

A Poisson equation for the pressure correction is derived by integrating the continuity equation (4) at time
step n + 1 over a cell with Ns sides and assuming that the velocity field is divergence-free at time step n + 1 to
yield the discrete continuity equation
Ai wnþ1
i;kþ1 � wnþ1

i;k

� 	
þ
XNs

m¼1

U nþ1
m;k Dzuw

m;kN m dfm ¼ 0; ð78Þ
where Dzuw
m;k is the upwind cell height at face m in order to be consistent with the discrete depth-averaged con-

tinuity equation (38), as discussed in Gross et al. (2002). Substitution of the corrector steps (75) and (76) into
(78) yields the discrete Poisson equation for the nonhydrostatic pressure-correction field as
Lðqci;kÞ ¼ S�i;k; ð79Þ
where the source term is given by
S�i;k ¼
1

Dt
Aiðw�i;kþ1 � w�i;kÞ þ

XNs

m¼1

U �m;kDzuw
m;kNm dfm

" #
; ð80Þ
and the Poisson operator is given by
Lðqci;kÞ ¼
XNs

m¼1

qcNem;k � qci;k

Dm

� �
Dzuw

m;k dfm þ
2Ai

Dzi;k þ Dzi;k�1

qci;k�1

� 2Ai
1

Dzi;k þ Dzi;k�1

þ 1

Dzi;k þ Dzi;kþ1

� �
qci;k þ

2Ai

Dzi;k þ Dzi;kþ1

qci;kþ1: ð81Þ
We solve Eq. (79) with the preconditioned conjugate gradient algorithm with the preconditioner described in
Section 6.2. Following a solution of (79), the divergence-free horizontal velocity field at time step n + 1 can be
obtained with Eq. (75) and the vertical velocity field is obtained by starting with wnþ1

i;1 ¼ 0 at the lower bound-
ary, and using the discrete continuity equation (78) to obtain the velocity field with
wnþ1
i;kþ1 ¼ wnþ1

i;k �
1

Ai

XNs

m¼1

U nþ1
m;k Dzuw

m;kN m dfm; ð82Þ
where k = 1,2, . . . ,Nkc, and Nkc is the number of vertical levels within fluid column i. The nonhydrostatic
pressure field is then updated with Eq. (77).

If the pressure field is hydrostatic, then qc = 0 and we do not need to solve for the vertical momentum in
Eq. (32). In this case, Un+1 = U*, and the vertical velocity is obtained by continuity with Eq. (82). Boundary
conditions on the nonhydrostatic correction are gradient-free at solid boundaries and qc = 0 at the free sur-
face. At open boundaries, since the velocity field at time step n + 1 is known, this allows specification of the
predictor velocity field U �boundary ¼ U nþ1

boundary, which implies a no-gradient condition on the nonhydrostatic pres-
sure after imposing Eq. (75). Justification and details on this strategy can be found in the work of Zang et al.
(1994).

4.7. Stability

The numerical method in this paper is mass- and volume-conservative, and because of the use of the theta-
method for vertical diffusion and the fast free-surface gravity waves, stability is not limited by these terms.
However, in order to avoid oscillations associated with the Crank–Nicolson scheme for the barotropic terms
that would result when h = 0.5 (since it is neutrally stable, as in Casulli, 1990), we have found through trial
and error that h = 0.55 provides enough damping to eliminate the high-frequency oscillations without
adversely affecting the simulations. Stability for the present formulation is limited by internal gravity waves
because the gravity terms in the horizontal momentum equation are discretized explicitly with the
Adams–Bashforth method. Stability is also limited by the explicit discretization of the horizontal and vertical
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advection and horizontal diffusion terms for momentum and horizontal advection and horizontal diffusion for
scalars. Stability of the advection–diffusion terms on unstructured grids can be approximated with the
two-dimensional (horizontal–vertical) stability limitations on Cartesian grids with the horizontal axis parallel
to a face-normal, n. Following the limitations derived by Fletcher (1997) when explicit central differencing is
employed for advection of momentum and horizontal diffusion is treated explicitly, the time step is limited by
jU jDt
Dj
þ jwjDt

Dz

� �2

6
2mHDt

D2
j

6 1: ð83Þ
Assuming a stable interpolation scheme is employed for horizontal advection of scalars, stability for the scalar
advection equations is determined by
Dt 6 min
Dj

jU j ;
D2

j

maxðcH;jHÞ

 !
: ð84Þ
Furthermore, if ci is the maximum internal gravity wave speed, then the time step is also limited by
Dt 6
Dj

ci
: ð85Þ
Although the time step is generally limited by accuracy in our simulations, the most limiting of these stability
conditions for coastal applications is the internal gravity wave limitation, while for estuarine applications, the
most limiting is the vertical advection of momentum. Computational overhead associated with small time
steps is offset by the ability to attain significant speedup by performing simulations in parallel, as discussed
in Section 6.3.

5. Test cases

We present here three test cases that explore the important features of the code, the role of nonhydrostatic
pressure, and the range of applicability of the code from laboratory-scale to field-scale cases. In the internal
seiche and lock-exchange examples, the nonhydrostatic and variable density capabilities are featured. The
internal seiche case also shows the impact of the nonhydrostatic formulation on the free surface behavior.
The examination of internal waves in Monterey Bay demonstrates a field-scale application and provides
the basis for the estimates of code performance used in Section 6.3.

5.1. Nonhydrostatic internal seiche

As a test case, we compute the oscillations of a nonhydrostatic internal seiche to highlight some fundamen-
tal aspects of nonhydrostatic physics that must be captured correctly in nonhydrostatic simulations of internal
waves. This test case is similar to the free-surface seiche computed by Casulli (1999), except the internal seiche
case demonstrates the coupling of the density stratification as well as the free surface to the nonhydrostatic
pressure. As depicted in Fig. 5, the initial density stratification is given by
qðx; z; t ¼ 0Þ ¼ � Dq
2q0

tanh
2tanh�1as

d
zþ D

2
� a cosðkxÞ

� �� �
; ð86Þ
where Dq/q0 is the top–bottom density difference, D is the depth, a is the amplitude of the seiche, k is the
horizontal wavenumber, d is the interface thickness, and as = 0.99. The frequency of oscillation of a small-
amplitude nonhydrostatic internal seiche between two fluid layers separated by a finite-thickness interface
is given by (see, e.g. Kundu, 1990)
x2 ¼ g0k
2

tanh
kD
2

� �
f ðkdÞ; ð87Þ
where g 0 = gDq/q0 is the reduced gravity, and f(kd) accounts for finite-interface effects. From Thorpe (1968),
this function is given to first order in kd as
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f ðkdÞ ¼ 1þ kd
2

� ��1

: ð88Þ
Eq. (87) represents the linearized small-amplitude frequency of the internal seiche in the limit of small
steepness ka. The speed of propagation of the right- and left-propagating waves which superpose to form
the standing wave is given by
c2 ¼ g0

2k
tanh

kD
2

� �
f ðkdÞ; ð89Þ
which demonstrates the important property that the frequency-dispersive behavior of internal gravity waves,
which is a nonhydrostatic effect, arises for linear waves in the limit of small steepness ka. This is not to be
confused with amplitude dispersion for gravity waves, which is a nonlinear effect in the presence of finite steep-
ness ka, and does not necessarily imply nonhydrostatic behavior. In the limit of deep water, for which
kD!1, the phase speed becomes independent of the depth, such that
lim
kD!1

c2 ¼ c2
DW ¼

g0

2k
f ðkdÞ; ð90Þ
whereas in the limit of shallow water, for which kD! 0, the phase speed is no longer frequency dispersive and
reverts to the shallow-water wave speed, for which
lim
kD!0

c2 ¼ c2
SW ¼

g0D
4

f ðkdÞ: ð91Þ
While the finite interface thickness introduces frequency dispersion for a fixed interface thickness d, its disper-
sive character is negligible when compared to the dispersive character of the infinitesimally thin interface case,
for which f(kd) = 1. Dividing (89) by the deep-water limit (90) gives
c
cDW

� �2

¼ tanh
p�
2

� 	
; ð92Þ
and the ratio of the shallow-water to the deep-water limits is given by
cSW

cDW

� �2

¼ p�
2
; ð93Þ
where � = D/L is the aspect ratio of the wave and is a measure of its nonhydrostacy. That is, waves propagate
as hydrostatic waves when the horizontal extent is much larger than the depth, for which �� 1, or when
c = cSW, and they become frequency dispersive when the horizontal extent of the wave is on the order of
the depth or greater.
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To demonstrate the behavior of the numerical method outlined in this paper in the hydrostatic and non-
hydrostatic limits, we compute the effect of varying the depth on the oscillations of the internal seiche depicted
in Fig. 5 with Dq/q0 = 0.06, L = 100 m, d = 5 m, and a = 1 m for a total of 250 s with a time step of
Dt = 0.025 s. We employ an equispaced grid both in the horizontal (one dimension of equilateral triangles
in the planform) and vertical directions, with Nx = 100 horizontal grid cells, and the number of vertical grid
cells is set to maintain a vertical grid spacing of 0.5 m. The boundary conditions are free-slip on the walls, the
free surface is initially at rest, the initial stratification is given in Eq. (86), and there is no eddy viscosity or
scalar diffusivity. Although momentum advection in SUNTANS is theoretically unstable without viscosity,
this inviscid test case remains stable because of the relatively weak effect of the nonlinear terms. Likewise,
the numerical diffusion associated with first-order upwinding has a minimal effect on the results.

In order to analyze the nonhydrostatic behavior of the seiche, we compute the oscillations with and without
the nonhydrostatic pressure with the length fixed at L = 100 m and with D = 10, 20, 40, 80, and 160 m, which
represents aspect ratios of � = 0.1, 0.2, 0.4, 0.8, and 1.6. With these depths, the fastest nonhydrostatic wave is
given by the deep-water limit of cDW = 2.83 m s�1, and the fastest hydrostatic wave is given by the shallow-
water limit for the deepest case, which is cSW = 4.51 m s�1. Stability for the hydrostatic calculation is then
limited by the shallow-water internal wave speed. With a time step of Dt = 0.025 s that is fixed throughout
the calculations, this yields a maximum shallow-water Courant number of CH = cSWDt/Dx = 0.11 for the
hydrostatic calculations and a maximum deep-water Courant number of CNH = cDWDt/Dx = 0.07 for the
nonhydrostatic calculations.

Fig. 6 depicts the velocity vectors plotted over the density contours at t = T/4 for the hydrostatic and non-
hydrostatic calculations when � = 1.6, where T is the wave period for each case. As expected, the hydrostatic
solution approximates the wave as a shallow water wave and hence the velocity fields do not decay with
distance from the interface, as they should and do for the nonhydrostatic calculation. This is demonstrated
by the profile plots in Fig. 7, which compare the velocity profiles of the hydrostatic and nonhydrostatic results
to the first-mode velocity profiles computed with a linearized eigenfunction analysis (see, e.g., Fringer and
Street, 2003) of the density field given in Eq. (86). The first-mode eigenfunctions decay exponentially with dis-
tance from the interface, and this is a linear, nonhydrostatic effect, which is corroborated by the nonhydro-
static results. The hydrostatic horizontal velocity profile, on the other hand, is constant with depth away
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from the interface, while the hydrostatic vertical velocity profile decays linearly with distance from the inter-
face and is nonzero at the free surface, indicating that the free-surface deflection for the hydrostatic case is
much greater than it is for the nonhydrostatic case.

The hydrostatic solution under-approximates the maximum horizontal velocity by roughly 24%, while it
over-approximates the vertical velocity by roughly 68%. This is consistent with the neglect of vertical inertia
in the hydrostatic calculation. The lack of vertical inertia also results in an overprediction of the wave speed in
the hydrostatic calculation when nonhydrostatic effects are important. This is depicted in Fig. 8, which com-
pares the calculations of the internal wave speeds to the theoretical predictions given in Eqs. (92) and (93). The
hydrostatic calculations always yield the shallow water wave speed and hence the hydrostatic results yield
speeds that correspond to the shallow water relation (93). The nonhydrostatic calculations, on the other hand,
include the effects of vertical inertia and as a result the waves are limited in speed by their wavelength once the
aspect ratio becomes large. The nonhydrostatic calculations accurately predict the wave speeds and the results
are consistent with the predictions of the linearized dispersion relation given in Eq. (92). Compared to the pre-
dicted results, the slight under-prediction of the calculated results is due to finite-interface and nonlinear effects
not accounted for in relations (92) and (93).

The frequency and amplitude of the free-surface response are also overpredicted by the hydrostatic solver.
Fig. 9 depicts the response of the free surface to the internal seiche at x = 0 over one period of the nonhydro-
static internal seiche when � = 1.6. This figure shows how the free-surface amplitude is six times greater for the
hydrostatic calculation than it is for the nonhydrostatic calculation. Fig. 10 depicts the frequency spectrum of
the free-surface response for � = 1.6 and shows how, in general, hydrostatic calculations tend to shift the free-
surface spectrum up and to the right, since amplitudes as well as frequencies are overpredicted. The first peaks
in the spectra correspond to the frequency of the internal seiche, while the second peaks correspond to the
natural frequency of the free-surface seiche. Because the free-surface response is large for the hydrostatic
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calculation, third and fourth peaks appear in the hydrostatic frequency spectrum, corresponding to the excite-
ment of higher harmonics. The theoretical frequencies of the free-surface seiche can be calculated with rela-
tions similar to those in (92) and (93), as was done by Casulli (1999).

5.2. Nonhydrostatic lock exchange

Here we present the results of computing an exchange flow using the parameters of the direct numerical
simulations of Hartel et al. (2000) and discuss the differences between the nonhydrostatic and hydrostatic
results. The simulations are performed with SUNTANS in a two-dimensional domain of length L = 0.8 m
and depth D = 0.1 m (one dimension of equilateral triangles in the planform) using 400 · 100 cells, a no-slip
condition at the lower boundary, and free-slip at all other boundaries. This configuration allows the study of
the propagation speed of the gravity currents under a no-slip condition at the bottom and a free-slip condition
at the surface. The horizontal and vertical eddy-viscosities are constant and are set to their molecular values of
mH = mV = 10�6 m2 s�1, and there is no physical scalar diffusivity, since the first-order upwind scheme provides
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sufficient numerical scalar diffusion. This numerical diffusion can be estimated with an analysis of the
one-dimensional advection equation which yields cH = umaxDj/2(1 � Cu) and cV = wmaxDz/2(1 � Cw), where
Cu = umaxDt/Dj and Cw = wmaxDt/Dz are the horizontal and vertical Courant numbers, respectively, and umax

and wmax are estimates of the maximum horizontal and vertical velocity. For the nonhydrostatic simulation,
umax = 0.024 m s�1 and wmax = 0.013 m s�1, while for the hydrostatic simulation, umax = 0.045 m s�1 and
wmax = 0.210 m s�1, which yields Cu = 0.27 and Cw = 0.29 for the nonhydrostatic simulation and Cu = 0.03
and Cw = 0.29 for the hydrostatic simulation. Using these values, cH = 1.76 · 10�5 m2 s�1 and cV = 4.6 ·
10�6 m2 s�1 for the nonhydrostatic simulation and cH = 4.35 · 10�5 m2 s�1 and cV = 7.41 · 10�5 m2 s�1 for
the hydrostatic simulation.

Fig. 11(a) and (b) depict the density contours for the hydrostatic and nonhydrostatic simulations after
t = 10T s, where T ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
D=2g0

p
and g 0 = gDq/q0 = 0.01 m s�2 is the reduced gravity. The hydrostatic simulation

does not capture the generation of the Kelvin–Helmholtz billows and it also does not correctly capture the
speed of the front. Table 1 compares the Froude numbers obtained for the present simulations to those of
Hartel et al. (2000), where the Froude number is the ratio of the speed of the gravity current to the buoyancy
velocity ub ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
g0D=2

p
, and the Grashof number for these simulations is given by Gr = (ubD/2m)2 = 1.25 · 106.

The results demonstrate that the nonhydrostatic simulation captures the correct front speed, both for the
no-slip and free-slip cases, while the hydrostatic simulation underpredicts both speeds. The slight discrepancy
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Fig. 11. Comparison of the resulting density contours for the (a) hydrostatic simulation and (b) nonhydrostatic simulation of the lock
exchange test after t = 10T s. Contours are plotted every 0.1Dq/q0, and L = 0.8 m and h = D/2 = 0.05 m.



Table 1
Comparison of the present Froude number calculations with those of Hartel et al. (2000)

Source No-slip Free-slip

Hartel et al. (2000) 0.574 0.675
Nonhydrostatic 0.562 0.654
Hydrostatic 0.470 0.605

The no-slip results represent the speed of the leftward-propagating front at the bottom while the free-slip results represent those of the
rightward-propagating front at the free surface.
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between the present nonhydrostatic results and the results of Hartel et al. (2000) is likely due to the use of first-
order upwinding for scalar advection, which decreases the effective Schmidt number and hence decreases the
front speed as a result of a thicker interface separating the layers. A small discrepancy also arises due to the
asymmetry in the top–bottom boundary conditions in the present simulations, which leads to a right-propa-
gating free-slip gravity current and a left-propagating no-slip gravity current.

It is interesting to note that, on average per time step, the nonhydrostatic simulation takes 5 times longer
than the hydrostatic simulation. However, due to the hydrostatic approximation, the maximum vertical veloc-
ity for the hydrostatic simulation is 16 times larger than that for the nonhydrostatic simulation. Therefore, the
hydrostatic simulation must be run with a time step 16 times smaller than the nonhydrostatic simulation to
achieve the same vertical Courant number. Neglecting accuracy considerations, even though the nonhydro-
static simulation takes longer per time step, the hydrostatic simulation takes 3.2 times longer overall.

5.3. Internal waves in Monterey Bay

5.3.1. Simulation setup

As a demonstration of field-scale internal wave generation, we simulate the internal wave field in Monterey
Bay by employing SUNTANS on a 100 km · 100 km domain (please see Fig. 19(a)) with a total of 72,700 cells
in the planform and 100 cells in the vertical. Because SUNTANS does not store data associated with inactive
cells that lie beneath the bathymetry, this yields substantial savings because only 59% of the 7.3 million cells
are active. The total number of grid cells for this computation is then reduced to roughly 4.3 million. The cells
were created with the Triangle package (Shewchuck, 1996), and the average Voronoi edge length is
Dj = 290 m. The vertical grid is stretched to refine the grid near the surface, where the density gradients are
larger. The minimum vertical grid spacing at the surface where index k = Nkc can be expressed as
DzN kc ¼ D
r � 1

rN kc � 1
; ð94Þ
where D = 3367.5 m is the maximum depth, r = 1.025 is the algebraic stretching factor, and Nkc = 100 is the
number of vertical levels, yielding DzNkc ¼ 7:8 m. The vertical grid spacings beneath the surface are then given
by Dzk�1 = rDzk, where k = Nkc � 1,Nkc � 2, . . . , 1, which yields a maximum vertical grid spacing of
Dz1 = 89.7 m. The depth is interpolated with data obtained from the MBARI Multibeam Survey CD-ROM
(Hatcher et al., 1998).

The model is initialized with a stagnant velocity field and free surface, and the initial density profie is given
by the average of data from 50 CTD casts obtained in Monterey Bay between November 1989 and December
1992 (Rosenfeld et al., 1994). This density profile and associated buoyancy period are shown in Fig. 12. At the
boundaries of the domain, the velocity field is specified with the semi-diurnal (M2) component of the baro-
tropic tidal currents obtained from the OSU Tidal Inversion Software (Egbert and Erofeeva, 2002). Because
the barotropic tides at this boundary behave linearly, it suffices to impose a gradient-free condition on the free
surface. We employ a sponge layer at the western boundary in order to prevent reflections of the internal tides
from that boundary. The sponge layer is implemented by adding a source term to the horizontal momentum
equation of the form
SU ¼ �
U
ss

exp � x
Ls

� �
; ð95Þ
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where ss = 1000 s and Ls = 1 km. The simulation is run for a total of four M2 tides with a time step of
Dt = 9.315 s, which is governed by the stability of the explicit treatment of the internal gravity waves from
Eq. (85) and by desiring accuracy such that ciDt/Dj = 0.1, which implies an internal gravity wave Courant
number of 0.1. The total simulation time is sufficient to generate semidiurnal internal tidal energy, yet it is
short enough such that internal wave energy reflecting from the boundaries does not affect the results. We
are currently implementing the Sommerfeld radiation condition to radiate internal wave energy from these
boundaries in order to allow for longer simulation times. The horizontal and vertical eddy viscosities are
constant and are chosen to stabilize the central-differencing scheme for advection of momentum, as in Eq.
(83). Accordingly, the vertical eddy viscosity is constant and given by mV = 1.4 · 10�3 m2 s�1, the horizontal
eddy viscosity is mH = 1.18 m2 s�1, and there is no physical scalar diffusivity, since the first-order upwinding
scheme provides sufficient numerical diffusion. Following the estimation technique outlined in Section 5.2,
the numerical diffusion coefficients associated with the first-order upwinding scheme are given by
cH = 14.5 m2 s�1 and cV = 1.4 m2 s�1, where we have assumed that umax = 0.1 m s�1 and wmax = 0.01 m s�1.
The normalized residual of the conjugate gradient solver for the free-surface is 10�10 and that for the nonhy-
drostatic pressure is 10�5, and we use h = 0.55 for the theta-method. Simulations take 4.48 s per time step, or
twice as fast as real time, using 16 processors on the JVN cluster at the ARL Major Shared Resource Center.

5.3.2. Internal wave generation sites

In the continuously stratified ocean, internal wave energy propagates along beams at an angle h with
respect to the horizontal and slope dz/dx given by
dz
dx
¼ tanðhÞ ¼ � x2 � f 2

N 2 � x2

� �1=2

; ð96Þ
where x is the internal wave frequency, f is the Coriolis parameter, and N is the buoyancy frequency. In the
coastal ocean where the barotropic tides generate currents across isobaths, internal waves are generated in re-
gions where the topographic slope is critical, or where h matches the bottom slope (Prinsenberg et al., 1974).

Numerous works have documented the generation of internal waves in Monterey Bay. The field and numer-
ical studies of Petruncio et al. (1998, 2002) and the field observations of Kunze et al. (2001) show that internal
wave energy is generated beyond the shelf break in Monterey Bay and that this energy propagates towards the
shore and is focused within the Monterey Submarine Canyon. The transect we use to compare the results of
our model with their findings is shown as the along-canyon transect in Fig. 13. Lien and Gregg (2001) show
that an internal wave beam that is generated at the shelf break just north of the along-canyon transect results
in elevated dissipation and mixing. We compare the results of our model with their field results by studying the
internal wave field in the along-ridge transect shown in Fig. 13.

Contours of the east–west baroclinic velocity field after 3.75 M2 tides are shown in Fig. 14 for the along-
canyon transect. From linear theory, internal waves are generated at regions where the internal wave ray path
matches that of the local topography. Steep topographical ridges present effective regions of generation
because the bottom slope passes through criticality in a narrow region where the vertical momentum is large.
Linear theory predicts that the internal wave ray paths follow trajectories defined by the dispersion relation
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Fig. 14. East–west baroclinic velocity contours in the along-canyon transect depicted in Fig. 13 during peak ebb (simulation time of 3.75
M2 tides). The numbers indicate possible generation sites for internal waves with the dark solid lines indicating the ray paths predicted by
linear theory. The inset plot depicts the horizontal velocity profile at the vertical transect depicted by the dashed line, with the numbers
indicating the likely origin of the upward- (+) or downward-propagating (�) internal wave beams.
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(96). The internal wave ray paths are depicted by the solid lines that emit from likely generation sites at loca-
tions 1–3 in Fig. 14. As noted by Petruncio et al. (2002), most of the western side of the smooth ridge from
which ray 1 is generated is critical, which is what influences the east–west velocity profile in the upper 400 m of
the water column at the transect located at 20 km (the inset plot in Fig. 14). Both downward and upward
propagating beams generated at location 1 affect the velocity field at the 20 km transect (denoted by the 1�

for the downward-propagating beam and 1+ for the upward-propagating beam), as well as upward-propagat-
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ing beams (denoted by the 2+ and 3+) emanating from ridges 2 and 3. Generation sites 2 and 3 also generate
downward propagating energy but these beams are omitted for clarity.

Fig. 15 depicts the internal wave field in the along-ridge transect depicted in Fig. 13. Internal wave energy is
generated at the shelf break (location 3) and this energy propagates on- and off-shore and generates the off-
shore beam (detailed in the inset plot) measured by Lien and Gregg (2001) which contains a region of
enhanced turbulent mixing and dissipation. They measured eddy viscosities in this region as large as
0.01 m2 s�1, which are likely due to turbulence generated by a shear instability that results from the internal
wave field. The present simulations show that internal wave energy is also generated along the bottom between
generation sites 1 and 2, where the bottom slope is almost exclusively critical. This internal wave energy is also
contributing to the elevated levels of shear which generates the turbulence in the tidal beam measured by Lien
and Gregg.

Using a much larger domain than that employed in the present paper in order to limit internal wave reflec-
tion from the boundaries for longer timescale simulations, a detailed analysis has been performed by Jachec
et al. (2006) to show that the velocity field generated by the internal wave field is highly dependent on the grid
Fig. 15. Baroclinic velocity contours in the plane of the along-ridge transect depicted in Fig. 13 during peak ebb (simulation time of 3.75
M2 tides). The numbers indicate possible generation sites for internal waves with the dark solid lines indicating the ray paths predicted by
linear theory. The inset plot depicts a zoomed in view of the dash-dot region surrounding generation sites 2 and 3.

–15 –5 0 5 15

–350

–300

–250

–200

–150

–100

–50

0

D
ep

th
 (

m
)

u (m s–1) 
–15 –5 0 5 15

u (m s–1) 
–15 –5 0 5 15

u (m s–1)
–15 –5 0 5 15

u (m s–1) 
(a) (b) (c) (d)

Fig. 16. Comparison of the computed horizontal east–west velocity field (– s –) to the measured M2 velocity field (– · –) at station A2
(see Fig. 13) at four different phases in the M2 tidal cycle. (a) t/TM2 = 0, (b) t/TM2 = 0.25, (c) t/TM2 = 0.5, (d) t/TM2 = 0.75.



164 O.B. Fringer et al. / Ocean Modelling 14 (2006) 139–173
resolution. They employ high-resolution simulations of the internal wave field in Monterey Bay using SUN-
TANS and show that the computed internal wave-induced velocity matches that in the field when using a grid
with at least 300 m horizontal resolution (based on the Voronoi edge length), while coarser resolution leads to
substantially lower internal wave-induced velocities. Results from those simulations are depicted in Fig. 16,
and show the horizontal east–west velocity field computed at station A2 (see Fig. 13) compared to the ITEX1
(Internal Waves EXperiment) field data of Petruncio et al. (1998) from April of 1994. These simulations match
the amplitude and phasing of the internal tidal wave field quite well. Details of these simulations, including a
discussion of the internal wave energetics computed with high resolution, can be found in Jachec et al. (2006,
submitted for publication).

The simulations of internal waves in the present work and in the work of Jachec et al. (submitted for
publication) demonstrate the capability of SUNTANS to generate the internal wave field that is consistent
with field measurements. Although the simulations were performed using the code in its nonhydrostatic mode,
we have found that even at this grid resolution the results are quite similar to the hydrostatic results. Nonhy-
drostatic effects are manifested when the grid spacing is on the order of 50 m or less, since waves in Monterey
Bay only start becoming nonhydrostatic when they transition to steep, highly nonlinear on-shelf waves, such
as those measured by Klymak and Moum (2003) or Carter et al. (2005), which have wavelengths of a few
hundred meters.

6. Code performance

6.1. Time accuracy

As shown by Armfield and Street (2000), the time accuracy of a numerical method for incompressible flows
depends a great deal on the specific treatment of the pressure term in the discretization as well as the type of
grid being used. While discretizing the viscous terms with the Crank–Nicolson method and assuming that all
other terms are discretized with at least second-order accuracy, they show that the use of the projection algo-
rithm on a nonstaggered grid results in first-order temporal accuracy, while the use of the correction algorithm
increases the accuracy to second order. In the projection algorithm, the pressure is left out of the momentum
equations and the pressure field required to enforce continuity is the full nonhydrostatic pressure field, such
that the governing discrete equations can be summarized with
u� ¼ un þ DtRnþ1=2;

unþ1 ¼ u� � DtGqnþ1=2;
where u* is the predicted velocity field, Rn+1/2 is the portion of the momentum equations that contains terms
other than the nonhydrostatic pressure, q is the nonhydrostatic pressure, and G is the discrete gradient oper-
ator. The pressure-correction algorithm, which is employed by the method in this paper, is given by
u� ¼ un þ DtRnþ1=2 � DtGqn�1=2;

unþ1 ¼ u� � DtGqc;

qnþ1=2 ¼ qn�1=2 þ qc;
where qc is the pressure correction. An alternative to these methods is to employ the theta-method of Casulli
(1999), which is given by
u� ¼ un þ DtRnþ1=2 � ð1� hÞDtGqn;

unþ1 ¼ u� � hDtGqnþ1;
where, based on the underlying free-surface algorithm, 0.5 < h 6 1 for stability. In the absence of the nonhy-
drostatic pressure, employing the theta-method for the vertical diffusion and barotropic terms and the
second-order Adams–Bashforth method for all other terms (i.e. advection, Coriolis, and gravity) results in
second-order accuracy when h = 0.5. Although using h = 0.5 is only neutrally stable (Casulli, 1990), numerical
tests can be performed over small enough times before instability develops in order to demonstrate second-
order temporal accuracy.
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Here we demonstrate second-order temporal accuracy of SUNTANS by performing numerical experi-
ments. The internal seiche described in Section 5.1 is simulated with 100 · 100 equilateral prisms, using a
depth of D = 100 m, horizontal and vertical eddy viscosities of 10�4 m2 s�1, and a Prandtl number of
Pr = 1. To test the behavior of the method, the flow is integrated over a time interval of 5.0 s using six different
time step sizes, ranging from Dt = 2.5 · 10�1 s to Dt = 7.8125 · 10�3 s, corresponding to Nmax = 20 · 2n time
steps for each integration, with n = 0,1,2, . . . , 5. The error is expressed as the L2 norm of the difference
between these solutions and a reference, or benchmark solution, obtained with a time step size of
Dt = 3.90625 · 10�3 s, corresponding to Nmax = 20 · 26 = 1280 time steps. The error results are shown in
Fig. 17, where the error given by
Fig. 17
with ex
E2ðDtÞ ¼
PNc;Nk

i;k ð/i;k � /ref
i;k Þ

2PNc;N k
i;k ð/ref

i;k Þ
2

; ð97Þ
where / is either h, U, w, q, or q, and /ref is the reference solution. All errors converge with second-order accu-
racy. However, because the nonhydrostatic pressure is staggered in time with respect to the velocity (qn±1/2

about Un), the second-order Adams–Bashforth extrapolation scheme is used to compute the pressure at the
final time step (Armfield and Street, 2000). For each simulation, the final pressure field is computed with
the last two offset time steps using
pNmax
¼ 3

2
pNmax�1=2 �

1

2
pNmax�3=2 þ OðDt2Þ: ð98Þ
As shown in Fig. 17, failure to perform this extrapolation results in convergence at a rate of roughly OðDt1:5Þ,
while its use ensures second-order accuracy. Fig. 17 also shows how all of the other terms also converge to
second-order accuracy, indicating that the present formulation is truly a second-order accurate method.

6.2. Block-Jacobi preconditioner

Eq. (79) can be written in matrix–vector form as
Miqi �
XNs

m¼1

dfm

Dm
ðDZmeT

1 ÞqNem
¼ �S�i ; ð99Þ
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where Mi is the symmetric tridiagonal matrix with diagonal entries �ai,k, ai;k þ ai;kþ1 þ
PNs

m¼1
dfm
Dm

Dzuw
m;k, and

�ai,k+1, with
ai;k ¼
2Ai

Dzi;k þ Dzi;k�1

: ð100Þ
Eq. (99) is a symmetric, positive-definite, unstructured system of equations for the pressure correction. As
noted in Marshall et al. (1997b), who implemented a preconditioner for their curvilinear grid nonhydrostatic
model, this matrix is poorly conditioned for grids with small grid aspect ratios, or when �g ¼ Dzuw

m;k=
ffiffiffiffiffi
Ai
p
� 1,

which is the case for most environmental flows of interest. To combat this conditioning problem, a precondi-
tioner is employed by noting that, when �g� 1, a good approximation to the system (99) is given by a solution
to
Miqi ¼ �S�i ; ð101Þ

where Mi contains �ai,k, ai,k + ai,k+1, and �ai,k+1 on its diagonals. The matrices Mi form the basis for a block-
Jacobi preconditioner for the full system (99). Since Mi is tridiagonal, the preconditioner is simple to imple-
ment because it only requires a tridiagonal inversion at each fluid column during each conjugate gradient
iteration.

Applying the preconditioner (101) to the system (99) yields
M�1
i Miqi �

XNs

m¼1

dfm

Dm
M�1

i ðDZmeT
1 ÞqNem

¼ �M�1
i S�i ; ð102Þ
which shows that, in the limit as �g! 0, M�1
i Mi ¼ I, and the solution is given by
qi ¼ �M�1
i S�i : ð103Þ
Although the system (102) is no longer symmetric in general, the preconditioned conjugate gradient algorithm
can still be used as it does not directly apply the preconditioner to the original governing equation (Demmel,
1997). The only added cost of PCG is additional storage of one temporary array and the calculation of M�1

i ,
which is a straight-forward tridiagonal inversion at each water column. Furthermore, the parallel implemen-
tation of PCG does not require additional synchronization points because the inverse of Mi requires data that
is contiguous among processors since domain decomposition occurs only in the horizontal. Synchronization
takes place twice at each iteration to compute the inner products, and interprocessor communication of
boundary cells is overlapped with the calculation of LðpkÞ on the inner cells.

The efficiency of the preconditioner is demonstrated by calculating the nonhydrostatic pressure field during
the first time step of the internal seiche outlined in Section 5.1. All parameters are identical to those employed
for the temporal accuracy runs in Section 6.1, except the time step is fixed at Dt = 0.001 s, and, while keeping
the number of vertical levels constant, the depth is varied in order to study the effects of the grid aspect ratio �g

on the efficiency of the standard and preconditioned conjugate gradient algorithms. For this particular prob-
lem, because a uniform grid of equilateral triangles is employed with constant depth, then the grid aspect ratio
is related to the domain aspect ratio � = D/L via �g = 2�/31/4 = 1.52�. To compare the two algorithms and their
sensitivity to �g, we compute the number of floating point operations required to achieve a converged solution
of the discrete pressure-Poisson Eq. (79) by varying D such that 0.04 6 �g < 1.

Fig. 18 depicts the number of working units (WU) required to converge to a normalized residual of 10�10 as
a function of �g for the CG and PCG algorithms. The number of working units, or floating point operations
(FLOPs), is proportional to the number of CG or PCG iterations required for convergence (N), but it is a
better measure of the performance than N because of the added workload per iteration associated with the
PCG algorithm. The present implementation of CG requires 20.8 FLOPs per iteration per cell while PCG
requires 33.7 FLOPs per iteration per cell. For startup calculations before the iteration, CG requires 24.9
FLOPs per cell and PCG requires 35.8 FLOPs per cell. Although PCG requires 62% more operations per cell
per iteration, when �g = 0.024 (the leftmost open circle in Fig. 18), PCG requires over 30 times fewer FLOPs to
converge than CG because it converges in just 21 iterations, as opposed to 1105 for CG. As depicted in Fig. 18,
without the preconditioner, the number of FLOPs to converge increases as �g decreases, reflecting the adverse



10
–2

10
–1

10
0

10
3

10
4

10
5

εg

W
U

 (
F

LO
P

s 
pe

r 
ce

ll)

Fig. 18. Effect of the grid aspect ratio �g on the number of floating point operations required to solve the discrete nonhydrostatic pressure-
Poisson equation (79) with a normalized residual of 10�10 using the non-preconditioned conjugate gradient algorithm (·) and the
preconditioned conjugate gradient algorithm (s).
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effect of �g on the conditioning of the problem. However, with the preconditioner, the number of FLOPs
decreases linearly with decreasing �g, demonstrating that, in the limit as �g! 0, the solution to the problem
is given by an inverse of the approximate system (103).

As expected, Fig. 18 implies that the preconditioner does not accelerate convergence for large grid aspect
ratios, and hence should not be used when �g > Oð1Þ. For real, field-scale applications, however, �g is rarely
close to 1, even for extremely high-resolution grids. Assuming a well-designed grid, the distribution of �g

throughout a given domain reflects the distribution of nonhydrostacy, since the horizontal grid size should
be smaller where the flow is nonhydrostatic. The point of the preconditioner is to reduce the workload of com-
puting the pressure-Poisson Eq. (99) associated with regions where �g� 1, so that, naturally, its workload
depends solely on the percentage of the flow that is truly nonhydrostatic. For example, suppose that aNH rep-
resents the ratio of cells on a given grid where the grid aspect ratio is relatively large, so that �g = �g,large where
the flow is mostly nonhydrostatic, while 1 � aNH represents the ratio of cells on a given grid that are relatively
small, where �g = �g,small and the flow is mostly hydrostatic. A rough estimate of the number of working units
required to solve for the nonhydrostatic pressure is then given by
WUtotal ¼ ð1� aNHÞWUð�g;smallÞ þ aNHWUð�g;largeÞ: ð104Þ

Now suppose that 10% of a domain is nonhydrostatic, such that aNH = 0.1, and �g,large = 0.4 and
�g,small = 0.02. Employing Eq. (104) and using values obtained from Fig. 18, the number of working units re-
quired to solve for the nonhydrostatic pressure is reduced by 94% when PCG is used over CG. This is because
use of PCG leads to a reduction in working units by 97% over most of the domain.

6.3. Parallel performance

6.3.1. Grid partitioning and load balancing

Of critical importance to the study of parallel unstructured grid simulations is the method by which the
grids are partitioned among the processors. Since the grids for SUNTANS are unstructured in the planform
and z-leveled in the vertical, we partition in the horizontal to ensure that water columns remain contiguous on
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given processors. In addition to greatly simplifying the underlying parallel implementation, partitioning in this
way allows contiguous allocation of water columns in memory which enhances performance.

When partitioning a grid among processors, it is important to balance the workload so that each processor
does not do more work than any of the others involved in the simulation. While load-balancing ensures an
equal workload distributed among the processors, the parallel performance of a particular unstructured grid
code depends highly on the communication required between neighboring processors, and communication
between processors is directly proportional to the number of cells that abut the interprocessor boundaries.
Therefore, an optimal partitioning would equally distribute the cells among the processors while minimizing
the number of cells that are adjacent to the interprocessor boundaries.

A load-balanced partitioning that minimizes the interprocessor communication can be obtained with the
ParMETIS software package (Karypis et al., 1998) that partitions the unstructured two-dimensional planform
grid. As an example, Fig. 19(a) depicts a typical unstructured grid of Monterey Bay. Using the number of
active cells in each water column as the weight at each Voronoi point for the partitioning, a balanced parti-
tioning among eight processors is depicted in Fig. 19(b). Using ParMETIS, it is guaranteed that this partition-
ing results in a balanced workload and minimizes the communication time by minimizing the surface area
between each processor. It is worth noting that, although the planform area of the northeast subdomain
depicted in Fig. 19(b) is substantially larger than that of the southwest subdomain, both subdomains have
the same workload because there are fewer active cells in the vertical in the northeast subdomain because
of the shallower water depth in the northeast region of Monterey Bay.

Performance can be further improved by ordering the cells such that the physical distance in memory
between adjacent cells is minimized. The physical distance in main memory can be visualized with the boolean
connectivity matrix. Specifically, row i of the connectivity matrix is populated by ones in the columns which
correspond to neighbors of cell i, and zeros elsewhere. The connectivity matrix for a 1089-cell unstructured
grid of Monterey Bay as output by the Triangle package of Shewchuck (1996) with no specific ordering is
shown in Fig. 20(a). The same connectivity matrix after using the grid cell ordering routines of ParMETIS
is shown in Fig. 20(b). Comparing the two shows how the reordered grid significantly reduces the average
distance in main memory between neighboring cells. Typical speedups due to reordering the cells result in
a 20–30% reduction of the per-processor computation time.

6.3.2. Parallel speedup

As a demonstration of the parallel performance of our code, we performed simulations of the Monterey
Bay test case outlined in Section 5.3 in nonhydrostatic mode on the ARL MSRC LinuxNetworx Evelocity
II cluster, which is comprised of 2048 Intel Xeon EM64T (3.6 GHz) processors interconnected with Myrinet
(b)
1000 2000 3000

(a)

Fig. 19. (a) Typical unstructured grid of the Monterey Bay region with 3026 grid cells, showing the depth in meters. The domain is
100 km · 100 km. (b) Load-balanced partitioning using eight processors.
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Fig. 20. Connectivity matrices for the (a) original and (b) ordered cells.
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Fig. 21. Speedup of the Monterey Bay simulation as a function of number of processors with 1 million (s) and 4 million (·) cells,
compared to the ideal speedup (–).
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2000. Fig. 21 depicts the speedup as a function of the number of processors for the present case and a smaller
problem size, which contains four times fewer grid cells. The speedup is defined by SðNpÞ ¼ Tc1=TcNp , and TcNp

is the total execution time when Np processors are used. Consistent with Amdahl’s law, the speedup deviates
from the ideal speedup line as the number of processors increases because there is a portion of code that is not
parallelizeable for which the execution time remains constant, independent of the number of processors. This
overhead results from an increased communication time as the number of processors increases, but the relative
effect of the increased communication overhead can be reduced by increasing the problem size. As a result, the
speedup for the larger problem size, depicted by the · in Fig. 21, is closer to the ideal speedup line. A good
measure of the parallel performance is the parallel efficiency, which is given by E(Np) = S(Np)/Np, which is
unity in the ideal case. As depicted in Table 2, the parallel efficiency is 0.69 for the smaller problem when
32 processors are used, and this efficiency increases to 0.78 when the problem size increases by a factor of four.
Using 32 processors, the present simulation is 15.7 times faster than real time, while increasing the problem
size by a factor of four reduces this to 3.82 (using the same time step size), indicating that the present formu-
lation and code yields execution times which scale very well with the problem size.

7. Discussion

We have presented a parallel implementation of a three-dimensional, nonhydrostatic, unstructured-grid,
finite-volume model which is highly suitable for multiscale coastal applications. The model simulates internal



Table 2
Speedup and parallel efficiency of the Monterey Bay simulation on a small and larger grid, demonstrating how the efficiency improves with
increased problem size

Np 1 · 106 cells 4 · 106 cells

Speedup Efficiency Dt/Dtwall Speedup Efficiency Dt/Dtwall

2 1.81 0.91 1.28 1.98 0.99 0.30
4 3.55 0.89 2.52 3.63 0.91 0.56
8 6.98 0.87 4.95 7.29 0.91 1.11
16 11.60 0.73 8.23 13.63 0.85 2.08
32 22.13 0.69 15.70 25.00 0.78 3.82

The ratio of simulated time to elapsed wall-clock time is given by Dt/Dtwall and when this ratio exceeds unity the computation is faster than
real time.
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waves both from an idealized and field-scale point of view, and the lock-exchange test produces results that
compare well with other published simulations. We have used the model to demonstrate essential physics
resulting from the nonhydrostatic solver. In particular, nonhydrostatic effects can arise in the absence of non-
linearity, as demonstrated by the frequency-dispersive nature of the internal seiche. Nonhydrostatic effects can
also be important for highly nonlinear flows, such as the nonhydrostatic lock exchange. For both linear and
nonlinear flows, the fundamental effect of employing a hydrostatic model when nonhydrostatic effects are
important is the overprediction of vertical deflections and frequencies (or, alternatively, vertical velocities
and phase speeds), which is evident when analyzing computational results in frequency space. This was
demonstrated by the internal seiche test case when the hydrostatic model was used but the dynamics were
strongly nonhydrostatic because the aspect ratio was � = D/L = 1.6. It was also evident in the hydrostatic sim-
ulation of the lock exchange, which resulted in vertical velocities that were 20 times larger than those in the
nonhydrostatic simulation. This behavior is to be expected, since frontal and interfacial dynamics in the lock
exchange problem are clearly nonhydrostatic.

The numerical method employed by the model is based on the ideas of Casulli (1999), in that it employs the
theta-method for the free-surface and vertical diffusion. The present formulation differs most significantly with
the implementation of the pressure-correction technique and the use of the Eulerian advection of momentum
strategy of Perot (2000). This allows for momentum conservation properties near the bed (as opposed to using
a semi-Lagrangian technique), and hence reduces numerically induced drag, but the time step limitation is
more stringent due to its explicit temporal discretization. Another important feature of the present formula-
tion is that we have focused intently on creating a second-order temporally accurate simulation tool. As a test
case to prove temporal accuracy, the internal seiche was chosen because it includes all of the terms in the
momentum equations (except for the rotation terms) and poses a stringent test on the underlying nonhydro-
static solver. Convergence plots show that all of the hydrodynamic variables converge to second-order accu-
racy. This proves that, even though the nonhydrostatic pressure appears in the depth-averaged continuity
equation, an iteration is not required in order to achieve second-order accuracy for the free surface. It also
demonstrates that the pressure correction indeed satisfies qc ¼ OðDtÞ, as described by Armfield and Street
(2000).

The explicit discretization employed by the Eulerian advection scheme introduces a time step stability lim-
itation that is more stringent than allowed by the semi-Lagrangian advection schemes. However, the time step
sizes used in SUNTANS are limited by accuracy considerations, since we are interested in capturing short-
timescale processes associated with short length-scales that can be resolved on high-resolution unstructured
grids. While this comes at the expense of an increased computational cost, this is offset by the parallel imple-
mentation using MPI. Significant computational performance gains are attained with the use of the ParME-
TIS libraries (Karypis et al., 1998), which enable load balancing while minimizing overhead incurred by
interprocessor communication. The use of the ParMETIS reordering schemes also allows for significant
per-processor performance gains by minimizing the cache miss rate while accessing array data from memory.
Algorithmically, per-processor performance is also optimized with the use of the block-Jacobi preconditioning
scheme for the nonhydrostatic pressure solver, which is based on the ideas put forth by Marshall et al. (1997b).
This preconditioner is ideal from a parallel point of view because it circumvents interprocessor communication
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by only requiring the inverse of a tridiagonal system for each water column. Furthermore, it reduces the work-
load associated with computing the pressure-Poisson Eq. (99) in regions where the flow is hydrostatic, which is
usually a large percentage of the domain for most problems of interest. As a result, convergence is greatly
accelerated since computational resources focus only on the small percentage of the flow that is truly
nonhydrostatic.

The present description outlines the hydrodynamic kernel of our model, yet we are working on several note-
worthy additions. Our current projects include the development of a total variation dimishing (TVD) formu-
lation (see, e.g. Gross et al., 1999; Darwish and Moukalled, 2003), which allows for the advection of sharp
scalar fronts in a monotonic way, as well as the implementation of the immersed boundary technique for accu-
rate representation of complex bathymetry (see, e.g. Tseng and Ferziger, 2003). An important next step is the
implementation of adaptive mesh refinement (AMR) that allows the unstructured grid to adapt to regions
requiring more resolution as the simulation progresses (see, e.g. Piggott et al., 2005). We note that in parallel
implementations this could come at the possible expense of some loss in parallel efficiency unless a robust
dynamic load balancing algorithm is employed. Our goal is to employ existing libraries that incorporate
parallel AMR along with mesh quality control and load balancing, such as Pyramid (Lou et al., 1998).
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