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1. Introduction

ABSTRACT

Many large-scale simulations of internal waves are computed with ocean models solving the primitive
(hydrostatic) equations. Under certain circumstances, however, internal waves can represent a dynamical
balance between nonlinearity and nonhydrostasy (dispersion), and thus may require computationally
expensive nonhydrostatic simulations to be well-resolved. Most discretizations of the primitive equa-
tions are second-order accurate, inducing numerical dispersion generated from odd-order terms in the
truncation error (3rd-order derivatives and higher). This numerical dispersion mimics physical dispersion
due to nonhydrostasy. In this paper, we determine the numerical dispersion coefficient associated with
common discretizations of the primitive equations. We compare this coefficient to the physical disper-
sion coefficient from the Boussinesq equations or KdV equation. The results show that, to lowest order,
the ratio of numerical to physical dispersion is I' = K2, where K is an O(1) constant dependent on the dis-
cretization of the governing equations and / is the grid leptic ratio, A = Ax/h;, where Ax is the horizontal
grid spacing and h; is the depth of the internal interface. In addition to deriving this relationship, we ver-
ify that it indeed holds in a nonhydrostatic ocean model (SUNTANS). To ensure relative dominance of
physical over numerical effects, simulations require I" < 1. Based on this condition, the horizontal grid
spacing required for proper resolution of nonhydrostatic effects is 2 < O(1) or Ax < h;. When this condi-
tion is not satisfied, numerical dispersion overwhelms physical dispersion, and modeled internal waves
exist with a dynamical balance between nonlinearity and numerical dispersion. Satisfaction of this con-
dition may be a significant additional resolution requirement beyond the current state-of-the-art in
ocean modeling.

Published by Elsevier Ltd.

and de-Vries, 1895). These equations represent the depth-averaged
conservation of mass and momentum and include dispersive

Dispersion, a characteristic of nonlinear or nonhydrostatic
waves, occurs when the wave speed is a non-constant function of
the wave amplitude or wave frequency (or similarly wavelength)
(Whitham, 1974). Distinction is sometimes made between these
two types of dispersion, namely amplitude dispersion and
frequency dispersion, respectively (LeBlond and Mysak, 1978).
The two are synonymous with nonlinearity and nonhydrostasy in
studies of gravity waves, and hence are typically called nonlinear-
ity and dispersion.

Interesting wave phenomena exist when both nonlinearity and
dispersion occur together and with approximately equal magni-
tude. Under such circumstances, nonlinear steepening balances
dispersive spreading, and propagating waves of constant form
known as “solitary” waves are possible (Korteweg and de-Vries,
1895). The most common equations satisfying the balanced motion
include the Boussinesq equations (Boussinesq, 1871, 1872; Pere-
grine, 1967) and the Korteweg-de Vries (KdV) equation (Korteweg
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effects due to nonhydrostasy by retaining the lowest-order effects
of integrating the nonhydrostatic pressure over the depth. The KdV
equation reduces conservation of mass and momentum to a single
equation which is valid only for unidirectional wave propagation.
In this paper, we rely heavily on the Boussinesq equations and
KdV equation as models that faithfully represent nonlinear and
nonhydrostatic behavior in more complicated natural systems, in
this case, oceanic internal gravity waves.

Many researchers have relied on weakly nonlinear, weakly non-
hydrostatic KdV theory to understand both qualitative and quanti-
tative details of internal waves (Helfrich and Melville, 2006).
Internal wave dynamics have been examined using the KdV
framework which shows good comparison of internal wave pro-
files with the analytical result from the KdV equation (Liu et al.,
1998; Stanton and Ostrovsky, 1998; Duda et al., 2004; Warn-
Varnas et al., 2010). Developments extending KdV theory to fully
nonlinear dynamics have made significant contributions to the
literature, a complete list of which is given in Helfrich and Melville
(2006). However, weakly nonlinear, weakly nonhydrostatic scaling
of many internal wave problems justifies use of traditional KdV
theory.
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Many oceanic internal waves are long relative to the depth and
hence are nearly hydrostatic. Therefore, modeling waves of such
scale with a hydrostatic model may be appropriate (Kantha and
Clayson, 2000). In many other cases, near continental shelves and
ocean ridges, internal waves can be highly nonlinear and nonhy-
drostatic, often appearing as rank-ordered solitary-like wave trains
(Hunkins and Fliegel, 1973; Apel et al., 1985; Liu et al., 1998; Scotti
and Pineda, 2004). Thus, simulations of internal waves may require
fully nonhydrostatic models (such as MITgcm (Marshall et al.,
1997), SUNTANS (Fringer et al., 2006), nonhydrostatic ROMS
(Kanarska et al., 2007)). The drawback of fully nonhydrostatic
models is the computational cost associated with solving a 3-D
elliptic equation for the nonhydrostatic pressure, which may re-
quire an order of magnitude increase in computational time (Frin-
ger et al., 2006). The prohibitive computational cost requirement as
well as the nearly hydrostatic scales make primitive (hydrostatic)
ocean models the preferred method for simulating internal waves
in the ocean. Although not as computationally expensive, the prim-
itive equations do not resolve physical dispersion resulting from
nonhydrostatic effects. However, this may not be a problem when
physical dispersion is negligible. An excellent discussion concern-
ing the application of hydrostatic models to the problem of simu-
lating internal waves is presented in Hodges et al. (2006). They
propose that future use of primitive ocean models is justified due
to the clear hydrostatic scaling of most problems of interest. How-
ever, they also point out issues that modelers must contend with
when simulating processes which include internal waves with
hydrostatic models. As we will show, it is not only the lack of phys-
ical dispersion that adversely influences model results of internal
waves, but the presence of numerical dispersion.

The concept of numerical dispersion is not particularly new.
Long has it been known that even if the governing equations are
nondispersive, their discrete model may be (artificially) dispersive
(Trefethen, 1982). In early work, some authors referred to this as
“spurious dispersion” (Vichnevetsky, 1980; Vichnevetsky and Bow-
les, 1982). Numerical dispersion generally refers to the class of
essentially unavoidable spurious oscillations that result from
numerical discretization. In other fields, particularly electrodynam-
ics and acoustics, dispersion-relation-preserving numerical
schemes (Tam and Webb, 1993) have received significant attention.

The effects of numerical dispersion have received limited atten-
tion in the literature on gravity waves. One instance is from Burwell
et al. (2007), who examine the numerically diffusive and dispersive
properties of tsunami models and find the horizontal grid resolu-
tion is critical to accurately simulate the dispersive behavior. They
suggest a method, based on the concept in Shuto (1991), in which
the grid resolution and thus the numerical dispersion can be tuned
to replicate the physical dispersion not resolved in the (hydrostatic)
model. Gottwald (2007) show that discretization of the inviscid
Burgers equation can result in the KdV equation as its correspond-
ing modified equivalent partial differential equation, where the
(purely numerical) dispersive term is generated from truncation er-
ror. Schroeder and Schliinzen (2009) derive a numerical dispersion
relation for an atmospheric internal gravity wave model. Their
relation naturally tends toward the true dispersion relation as the
horizontal grid spacing approaches zero. In simulations of internal
waves, numerical dispersion is particularly adverse because it
may create an artificial balance with the nonlinear steepening ten-
dency of the wave and produce solitary-like waves that are physi-
cally unrealistic or impossible. Both Hodges et al. (2006) and
Wadzuk and Hodges (2009) speculate that this is the problem with
inconsistencies arising in hydrostatic ocean models. In this paper,
we will demonstrate that this is indeed the case.

Numerical dispersion typically results from odd-ordered
derivatives (3rd-order and higher) in the truncation error of finite-
difference approximations to first-order derivatives in the govern-

ing equations. Often second-order central differences are used,
implying that the dominant numerical dispersion coefficient is pro-
portional to the horizontal grid spacing squared. In this paper, we
determine the numerical dispersion coefficient from the modified
equivalent partial differential equation given from a particular dis-
cretization (Hirt, 1968). Such analyses would be of limited use with-
out, as a point of comparison, the physical dispersion coefficient. For
internal waves, as mentioned previously, this is provided by the
Boussinesq equations or the KdV equation. Realistic nonhydrostatic
simulations require that the physical dispersion is much larger than
the numerical dispersion. Because the physical dispersion for a gi-
ven problem is typically fixed, the problem of minimizing numerical
dispersion in nonhydrostatic ocean models reduces to the problem
of providing adequate horizontal resolution. As we will show, this
adequate horizontal resolution is Ax < h; where Ax is the horizontal
grid spacing and h; is the depth of the internal interface.

The remainder of this paper is divided into four sections. Sec-
tion 2 presents the governing equations for modeling dynamics
of internal waves used in our analysis and derives the ratio of
numerical to physical dispersion and associated resolution require-
ments of a model. Section 3 presents numerical simulations of the
KdV equation and the fully nonhydrostatic ocean model SUNTANS
and illustrates how both models are prone to numerical dispersion.
Finally, Sections 4 and 5 present the discussion and conclusions of
the methods in this paper, respectively.

2. Governing equations

We begin with the nondimensional two-layer Boussinesq equa-
tions representing the weakly nonlinear and weakly nonhydrostat-
ic motion of the two-layer system depicted in Fig. 1. In this paper,
we indicate nondimensional quantities with a *. Following Lynett
and Liu (2002), the governing nondimensional momentum and
continuity equations in one horizontal dimension which retain
the first-order nonlinear and nonhydrostatic effects are given by
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Fig. 1. Basic dimensional setup of the problem after Lynett and Liu (2002).
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The nondimensional horizontal velocity in the upper and lower
layers are given by U; = U, /U, and U; = U, /U, respectively, where
Uy is the characteristic flow velocity. The nondimensional densities of
the upper and lower layers are given respectively by p; = p,/p, and
P35 = P2/ Py Where p, > pq and typically pg = p», and it is assumed
that Ap* =(p2 — p1)/po < 1. The nondimensional height of the free
surface above the still water level is 17* = n7/(apAp*), and &* = &[ag is
the nondimensional height of the internal interface above the still
interface level and agy is a measure of the interface deflection.
hi = hi/ho and h; = hy/ho are the nondimensional depths of the
upper and lower layers, respectively, where the characteristic water
depth is given by

hih,
= R 5
Ry + by’ )

and h; and h; are the dimensional layer depths in quiescent condi-
tions i.e. n=¢=0.

Two nondimensional parameters, 5 and €, play important roles
in the behavior of the equations, since they represent the degree of
nonlinearity and nonhydrostasy of the wave solutions, respec-
tively. These parameters are given by

[(h; +06¢)U3] = 0. (4)

ho
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where L,, is the internal wave horizontal length scale. Egs. (1) and
(3) are derived under the assumptions of weak nonlinearity and
weak nonhydrostasy, viz. 0(5) = 0(€2) < O(1). Thus the higher-order
terms are 0(5%) = O(e*) < 1 and therefore negligible.

In the following, we show that the two-layer Boussinesq equa-
tions, (1)-(4), under the assumption of a deep lower layer, can be
reduced to the KdV equation. Later, in Section 3.2, we will show
that internal wave simulations of the full nonlinear and nonhydro-
static equations using the SUNTANS model can be modeled excep-
tionally well with the much simpler KdV equation. By assuming
that the ratio of the layer depths is small, i.e. hi/h, < 1, we obtain
ho =~ hy and h] = hq/hy ~ 1. Furthermore, as the lower-layer depth
becomes very large the depth-averaged velocity of the lower layer
approaches zero. In the limit that U; — 0, the lower-layer momen-
tum Eq. (3) becomes, after integration, to O(Ap™):
n=-&+G(t). 8)
Here, G(t*) is an arbitrary function of time, which becomes irrele-
vant upon insertion of Eq. (8) into Eq. (1). Ignoring the arbitrary
function of time, Eq. (8) implies that upon redimensionalization,
the amplitude of the free surface is Ap* times smaller than the
amplitude of the internal interface and of opposite sign.

Substitution of Eq. (8) into the 1-D upper-layer momentum Eq.
(1) and recalling that when this relationship is valid, h] — 1, gives:
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where it is understood that U, — 0, and hence we refer to the
upper-layer velocity as U*. Egs. (9) and (10) are sometimes referred
to as the reduced gravity model or inverted shallow water equa-
tions (as € — 0) (Cushman-Roisin and Beckers, 2010), because
replacing ¢* with —»* provides the familiar shallow water equa-
tions. Eq. (9) is written in the common form of the Boussinesq equa-
tions in which the dispersion term appears as two spatial
derivatives and one time derivative on the depth-averaged velocity
(Grimshaw (2007) following Mei (1983)). However, we can alter the

form of these equations while maintaining the same order of accu-
racy in the asymptotic approximation by self-substitution of the
first-order relation of the momentum equation, viz:

our  o¢
ot T o
This was recognized by Peregrine (1967) although the common
form (9) was retained. Substitution of the first-order balance (11)

into the dispersion term in the momentum Eq. (9) gives, to
0(€25,€4, Ap*):

+0(€,8, Ap"). (11)
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where the terms are identified to illustrate the related terms in the
fully nonhydrostatic and nonlinear equations from which they arise.
Recall that the sign of the pressure gradient terms are positive be-
cause of the definition of ¢* from Eq. (8). Eq. (12) is more convenient
than (9) because it does not contain mixed time and space deriva-
tives. This will facilitate direct comparison between the physical
dispersion arising from the nonhydrostatic pressure and the numer-
ical dispersion arising from discretization errors.

Egs. (10) and (12) admit bidirectional wave solutions. We re-
strict our study to unidirectional waves by projecting Eqgs. (10)
and (12) onto one of their linear characteristics. This gives the
KdV equation (derivation of which is given in Zauderer (1989))
governing the evolution of the interface height. The KdV equation,
to 0(e25,€*, Ap*), is given by
o 3_.\oe e i
o " (1 —% ) x w3

0, (13)

the solution of which is a wave (train) of depression. Writing the
KdV equation (13) in a form similar to the momentum equation
(12) gives:
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The well-known analytical solitary-wave solution to the KdV equa-
tion (13) given in Korteweg and de-Vries (1895) is:

. X —ct
& = a* sech? <7*> (15)
L,
where the wave speed is ¢* =1 — 5a*/2 and the solitary wave length
scale is Ly = /—% . Thus the amplitude, a*, must be negative,

hence requiring a wave of depression to ensure real L;.

Although the KdV equation (13) was derived for a two-layer
system with a deep lower layer, it can be extended to represent
the propagation of weakly nonlinear waves in the presence of arbi-
trary stratification. Liu et al. (1998) provide an estimation of the
nonlinearity, 6, and dispersion, €, parameters for the KdV equation
(13) to simulate internal waves in a general two-layer stratified
system. These coefficients are given by

hy—h
5= ;nhzlao’ (16)
and
- (th> (17)

where ay and L,, are the dimensional amplitude and horizontal
length scales. Notice that as hy > h,, the nonlinear parameter, 6, is
negative and thus the internal waves propagate as elevation waves
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rather than depression waves. The coefficients in the presence of
general stratification are given by

do 7f?d @%) jdz )
I (?Tf) dz

5=— (18)

(19)

where ¢ = ¢(z) is the first-mode eigenfunction and d is the dimen-
sional depth (Liu, 1988).

2.1. Physical dispersion

In the limit 6 —» 0, the momentum (12) and continuity (10)
equations are given, to O(e*, Ap*), by

Ut o e

o o 33O 20)
o AU

o w 1)

The dispersion relation is obtained via substitution of plane-wave
solutions into Eqgs. (20) and (21), viz:

U =" U(k)exp (i(kx — ot")), (22)
& =" &kyexp(i(kx — wt")), (23)

where i = v/—1 is the imaginary unit, k is the nondimensional wave-
number,  is the nondimensional wave frequency and U and ¢ are
the Fourier amplitudes of each wave component. The resulting dis-
persion relation is given by

w? = I (1 7%(/«)2), (24)

or

= g 1(ke)2 (25)
K3 7

which gives the phase speed ¢ = +4/1 f@. Without dispersion,

€ — 0, the dispersion relation reduces to that of the nondimen-
sional shallow water equations, w?=k? which gives the phase
speed c=+1. Egs. (24) and (25) can be compared to the true
nondimensional Airy dispersion relation (LeBlond and Mysak,
1978):

k 1 2 17

2 R _ 1,2 _ 2 “ 4 17 6

o _Etanh(ke)_k (1 3(ke) +15(k6) 3]S(ke) + ),
(26)

with

2 @ _ 1 1 Yot s 2 ket~ 1 (ke

c =7 ke tanh(ke) = 1 3(ke) +15(ke) ]S(Ice) +e
(27)

These show that the Boussinesq equations recover the Airy disper-
sion relation to O((ke)*). The third-order derivative term in the
momentum equation (12) appearing from the first-order nonhydro-
static effect, £35, called the dispersion term, is aptly named because
it is responsible for deviation from shallow-water behavior. Fur-
thermore, the coefficient in front of this term is the lowest-order
physical dispersion coefficient.

B

The dispersion relation for the KdV equation is similar to that
for the Boussinesq equations. The linear KdV equation (6 — 0) is gi-
ven by

agv* aCf* 62 63 Cv* B
o e TE oI (28)
Substitution of the plane-wave solution into Eq. (28) gives:
2
= k( - (k€)>, (29)
6
or
2
R L (30)

k 6

The dispersion relation (29) differs from the Boussinesq dispersion
relation (24) by a quadratic factor arising from the assumption of
unidirectional waves in the KdV equation. The dispersion relations
(24) and (29) show that the physically-dispersive properties
are controlled by the parameter ke which represents the degree
of nonhydrostasy or ratio of the depth to the horizontal
wavelength.

2.2. Numerical dispersion

For illustrative purposes we will discretize the KdV equation
(13) using centered finite-differences in both space and time. Cen-
tral differencing in time is known as “leap-frog”, and is used in sev-
eral ocean models (POM, Blumberg and Mellor, 1987; MICOM,
Bleck et al.,, 1992; MOM, Pacanowski and Griffes, 1999). Many
ocean models use second-order accurate central differencing for
the baroclinic pressure gradient term (Shchepetkin and McWil-
liams, 2003). As we will show, the discretization of this term is pri-
marily responsible for numerical dispersion. The discretization of
the nonlinear advection of momentum, although often believed
to dominate the effects of numerical dispersion (Hodges et al.,
2006; Scotti and Mitran, 2008), has a much weaker effect, since
typically 6 < O(1).

The second-order accurate in time and space discretization of
the KdV equation (13) is given by

é:.hr] — é?71 4 (1 7%05“) é:',IJrl - f?—l
27

2At* 2Ax*
+ % %£?+2 - é?HA;f:l] — %5?72 -0, (31)

where the superscript n represents the time index and the subscript
i represents the spatial index or individual grid point of the numer-
ical solution on a discrete grid, i.e. & =& (x;,t;) = & (IAX", nAt").
The second-order accurate spatial discretization of the dispersion
term in Eq. (31) ensures that truncation errors are O(e%(Ax*)?) and
thus numerical error associated with this term is much smaller than
the retained terms.

The modified equivalent partial differential form of the spatial
gradient term in Eq. (31), as obtained by expansion of the numer-
ical solution in a Taylor series, is given by
n

n n

n w2 A3 z*
Ax7 ¢ +0(AX®).

6 0x*3

Ax4 ﬁ
120 ox*

AX*G 67 é*

é?ﬂ — 6?71 _ af*
5040 ox*7

2Ax*  Ox*

! i i i

(32)

Therefore, to O(Ax*2), the second-order accurate, central finite-
difference approximation is consistent with the first derivative at
the grid point i and time-level n. To derive the modified equivalent
partial differential equation (MEPDE) of the KdV equation (13) we
use expansions similar to Eq. (32) for all finite-difference terms in
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Eq. (31). Furthermore, the linear Eq. (28) can be used to convert the
higher-order time derivatives to spatial derivatives. To O(€?,5), Eq.
(28) gives:

am f* am f‘
= (=1)™ .
o™ =1 oxxm’
where m is the order of the partial derivative. Thus the MEPDE of

the discrete KdV equation (31) after removing subscript i and super-
script n (since the equation holds for all discrete space and time), is

(33)

given by
oe" oe (e o’
1.2
at < "5>ax* ( +ﬁ) Fal
= 0(2AX2, 6Ax2, Ax*, AL), (34)
where f=(1-C*)%2 and C=4C is the Courant number (see

Appendix A for derivation). This shows that the modified form of
the KdV equation resulting from second-order accurate, central fi-
nite-difference approximation in time and space differs from the
original KdV equation (13) due to the addition of numerical disper-
sion of magnitude . Here, g is the lowest-order numerical disper-
sion coefficient arising from the discretization of the linear
pressure gradient term. Note that a Courant number satisfying
%> 1+ (e/Ax*)?* may lead to negative dispersion and instability.

2.3. Comparison of numerical and physical dispersion

We can rewrite Eq. (34) after factoring the physical dispersion
coefficient, €%/6, as:

- 2 A3 I
oc <1Jaz>ag ra+nE e

ot* 6 ox+3
= 0(€2Ax2, 5Ax"?, AX™ AL, (35)
where I, the ratio of numerical to physical dispersion, is given by
1-C)&2 2 “\ 2
e S S (36)
§ % ¢ \e

with K=1 — C2. We write Eq. (35) in this form to show that numer-
ical discretization of the governing equation increases the magni-
tude of dispersion by a factor of 1+ I, due to the presence of
numerical dispersion. The modified dispersion relation of the line-
arized version of Eq. (35), to O((ke)* (kAx*)*), is given by

w:k( (1+r)(kg) > (37)

which gives:

ke)
6

Eq. (38) shows that both physical and numerical dispersion (assum-
ing > <1+ (€¢/Ax*)?) reduce the speed of the waves. Comparing
Egs. (35) and (37) to (29) and (30), respectively, shows that the
numerical solution will be consistent with the true solution when
I' is small, meaning that the numerical effects of dispersion are
small in comparison to the physical effects. When I" > O(1), the
phase speed of short waves (ke > 0(0.1)) may be significantly af-
fected by the additional (artificial) dispersion. The ratio I, as seen
in Eq. (36), becomes zero when the Courant number is 1, and all er-
ror in the MEPDE is eliminated. This is an ideal case and in general,
the Courant number will not be 1. However, a Courant number near
1 for this discretization decreases the magnitude of I' since as
C - 1,K — 0. For moderate and low Courant numbers the coefficient
K has little effect on the order of magnitude of I'.

It is important to note that the constant K in Eq. (36) is deter-
mined by both the spatial and temporal discretization of the equa-

c=1-(1+n&kL (38)

tions. The primary source of numerical dispersion for the KdV
equation (13), based on the central discretization (31), is the spatial
discretization of the horizontal pressure gradient. The spatial dis-
cretization of this term in Eq. (31) provides the 1 in the constant
K, while the time-discretization reduces K by C2. If the time discret-
ization were carried out to 3rd-order or greater, while using sec-
ond-order central differences on the linear gradient term, then
the constant would be K = 1. If instead of leap-frog we employ the
semi-implicit 0-method (Casulli and Cattani, 1994) for the temporal
discretization of the KdV equation (13), we obtain the same MEPDE
as Eq.(35),butwithK =1+ CZ—Z Therefore, for most popular second-
order accurate methods (in either space or time) the ratio of numer-
ical to physical dispersion should be of the form I = K(Ax*[€)?,
where for most practical implementations K is an O(1) constant.

In terms of dimensional parameters, the ratio of numerical to
physical dispersion is given by

2 2
r=K <Ax ) (&) K (g) — K2, (39)

RGN

LW

where 1 = Ax/h; is the grid leptic ratio (Scotti and Mitran, 2008), or
lepticity. To ensure relative dominance of physical over numerical
effects, simulations require I" < 1. Since the ratio of numerical to
physical dispersion is given by I'=K/2, the condition I' <1 is
met when 2< 0(1) or Ax < h;.

If instead we redimensionalize the nonhydrostatic parameter
appearing in the KdV equation with the general two-layer expres-
sion given in Eq. (17), then the form of I" for a general two-layer
system is given by

2 2
e

where /; = Ax/h; and /, = Ax/h,. In this case, the requirement that
I' <1 is met when /4, < 1. Equivalently, this condition is met
when both /; <0(1) and 4, < O(1), or when Ax <min (hy,h5). For a
general stratification, Eq. (19) can be used to show that:

_ K<K>2 —K @_;)2 A
€

1= 1<h—2 K22, (41)
( (Lv3V)2 f{ ‘zt)izdz>
g \7z
where . = Ax/h,, and the equivalent depth in a continuously-strat-
ified fluid of depth d is given by

3 /%, ¢%dz

S (2_?)2‘12

For a linearly-stratified fluid, ¢ =sin (mz/d), which gives
he = gd ~ 0.55d. In the presence of linear stratification, the hori-
zontal grid resolution must therefore be less than roughly one-half
the water depth in order for the numerical dispersion to be less than
the physical dispersion.

The MEPDE analysis has identified the dominant numerical dis-
persion term for second-order accurate methods that is propor-
tional to (kAx*)%. The parameter kAx* can be interpreted as the
degree to which the variability of a wave is resolved on a discrete
grid. Slowly-varying waves on fine grids result in small values of
kAx* and little numerical error. On the other hand, short waves on
coarse grids give large values of kAx* and result in significant error.

2.4. Modeled solitary wave widths
The presence of numerical dispersion affects the width of mod-

eled solitary-like waves. The analytical soliton length scale derived
from the analytical solution to the KdV equation (13) is given by
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. 4 ¢
Li=\-357 (42)

Modeled soliton length scales can be derived from the analytical
solution to the modified equivalent KdV equation (34), which is
similar to analytical solution of the KdV equation (15) and is given

by

& — a sech? (’%) 43)
where the modeled soliton length scale is:

. e/6+p 41+0)e 4 ¢?

L *\/_ST* 3 o0 VI 35

=LyvV1+T. (44)

In hydrostatic simulations, the artificial soliton length scale is given
by

b= \/_8 5Z* - \/

which primarily depends on the form of the numerical dispersion
coefficient, g, and thereby depends on the grid resolution (recall
B ~ (Ax*)?). We note that the soliton length scales given above are
approximately half of the half-width, or more precisely half of the
sech?(1) ~ 42%-width. Based on the scaling of L, we can determine
a relationship between the grid spacing and the length scale of the
artificial soliton, which is given by

AX* AX* AX*

v = ~ = Ax =5
L, /-85 \/@ Ax*\/%

Therefore, as the nonlinearity increases, the widths of numerical
solitons approach the grid scale. We can determine a similar rela-
tionship between the grid spacing and the length scale of the ana-
lytical solitons, which is given by

AX*

3da* Ax* 3 Ax*
77A \/ :—\/ff(ia*w =2 47
LO /4 ;aZ 4 62 4 € ( )

This equation provides an alternative interpretation of the parame-
ter /. When / is large, the grid does not resolve the analytical soliton
length scale, and error ensues.

Assuming that the ratio of numerical to physical dispersion
scales like the grid lepticity squared, viz. I' = K42, we can investi-
gate how soliton widths scale with the grid lepticity. Substituting
I’ = KJ? into Eq. (44), we obtain:

L'/Ly=L/Ly = /1 +K?2 (48)

Substituting I = K42 into Eq. (45), we obtain:
Ly /Ly = Ly/Ly = VK. (49)

re /6 VT " _LVT, (45)

3 oar

(46)

Therefore, for hydrostatic models, the numerical soliton widths scale
linearly with the grid lepticity. We note that since the nondimen-
sional variables are all normalized by the same length scale, Egs.
(48) and (49) hold for dimensional models. In the following numer-
ical experiments, we compare modeled (dimensional) soliton widths
to the theoretical soliton length scales derived above, i.e. Lo, L, Ly,.

3. Numerical experiments
3.1. Assessing numerical dispersion in the discrete KdV equation
We present numerical simulations of the KdV equation to illus-

trate some similarities and differences between hydrostatic and
nonhydrostatic behavior. In what follows, we refer to the standard

KdV equation (13) as the “nonhydrostatic equation”, and refer to
the KdV equation without dispersion (€ =0) as the “hydrostatic
equation”. We will show that the results of the two models can
be almost identical when the numerical dispersion, present in both
models, is much larger than the physical dispersion in the nonhy-
drostatic model, and hence dominates the solution of both
equations.

The numerical experiments are performed with the second-or-
der accurate discretization of the KdV equation given in Eq. (31). A
grid-refinement convergence analysis verifying that the method is
indeed second-order accurate is given in Appendix B. The following
simulations use the parameters € = 0.1 and 6 = 0.2, which are cho-
sen to approximately match the internal wave scales given in Apel
et al. (1985). An Asselin filter (Asselin, 1972), popular with several
ocean models using the leap-frog time discretization, with the
nominal coefficient of 0.05 is also employed. The Asselin filter pre-
vents the onset of high wavenumber error. For simulations of short
duration, the model results (not shown) are identical with and
without the filter. The simulations are performed in a periodic do-
main of length L; = 10, and the number of equispaced grid points
that are used to discretize the domain is varied to study the effects
of I'. The initial condition is given by

(¢, =0) = exp {— ("* - 2)2], (50)

g*

where ¢* = 0.85. The Courant number is given by C =4t = 0.01.

Fig. 2 shows the result when N,=1000 grid pomts are used
which gives I' = 0.01. Both the hydrostatic (solid, red line) and non-
hydrostatic (dashed, blue line) results lead to trains of solitary
waves that emerge from the initial Gaussian of depression. How-
ever, since the numerical dispersion is 100 times smaller that the
physical dispersion, the nonhydrostatic simulation is very close
to the exact solution. Having considerably less dispersion (all of
which is numerical), the hydrostatic simulation forms a number
of sharp and narrow numerically-induced solitons. These arise
from the balance between nonlinearity and weak (numerical)
dispersion.

Fig. 2 also shows the leading solitons from the hydrostatic and
nonhydrostatic simulations compared to the analytical solitons.
The analytical solitons are given by & = a* sech’((x* —x3)/L;,),
where a* is the amplitude of the leading soliton centered at
x* = x;. For the nonhydrostatic result, L;, = L, from Eq. (42) (since
I' < 1), while for the hydrostatic result L;, = L; from Eq. (45). In
addition to the specified values of § and €, L; and L;, require compu-
tation of a* and x;;. These are obtained with a quadratic polynomial
fit to the three points nearest the maximum value (in absolute va-
lue) of the interface deflection ¢*. The amplitude a* is given by the
maximum of this polynomial and x; is the location of this maxi-
mum. The figure shows that the theoretical solitons with scales
Lj and L; both agree with the simulation results for the nonhydro-
static and hydrostatic simulations, respectively. Also noteworthy
in Fig. 2 is the weak dependence of L; and L; on the wave ampli-
tude as demonstrated by the similar widths of the individual soli-
tons in the wave packets.

Fig. 3 shows the same calculation as in Fig. 2 but with N, =32
grid points and I" = 10. In this simulation, the dispersive character-
istics are primarily numerically-induced and thus the results of the
hydrostatic and nonhydrostatic simulations are virtually identical.
Furthermore, the length scale of the solitary waves,
L~ 0.25v1 + I' = 0.85, is approximately the same as the length
scale of the initial Gaussian function and thus the initial wave form
propagates as a (single) solitary wave.

Fig. 3 also compares the leading solitons to the analytical soli-
tons. The numerical soliton of width L, compares very well with
the results from both the hydrostatic and nonhydrostatic models.



78 S. Vitousek, O.B. Fringer/Ocean Modelling 40 (2011) 72-86

. r
t =30 I
|
[
[

I'=0.01

— Hydrostatic
= = = Nonhydrostatic

—— Soliton of width L

« Soliton of width L
Initial Waveform

0
h

0 5
X —cot

7 7.5 8
X —cot

Fig. 2. The results of a nonhydrostatic simulation (dashed blue line) vs. a hydrostatic simulation (solid red line) for the case when I" = 0.01. The plot in the lower-right depicts
a zoomed-in view of the simulation along with a comparison between the theoretical sech? profiles and the numerical results. Recall that the nondimensional linear wave
speed is ¢; = 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

These solitons are approximately three times larger than the ana-
lytical soliton of width L. The length scales of the solitons are a
good indicator of the form of dispersion, and thus we can see that
in this simulation the magnitudes of dispersion in each model are
roughly equivalent.

3.2. Assessing numerical dispersion in the nonhydrostatic SUNTANS
model

We simulate the evolution of an internal solitary-like wave
train using the nonhydrostatic SUNTANS model (Fringer et al.,
2006) in a two-dimensional x-z domain. The parameters are chosen
to approximately mimic the evolution of solitary-like waves in the
South China Sea, which evolve from internal tides generated at the
Luzon Strait at its eastern boundary (Zhang et al., 2011). Simula-
tions are performed on a domain of length L; = 300 km and depth
d =2000 m that is initialized with approximate two-layer stratifi-
cation as an idealized representation of the South China Sea so as
to simplify our analysis. Despite the idealized stratification, the
simulated solitary-like waves are similar to those that form in
the South China Sea, particularly from the point of view of relevant
length scales.

The initial stratification is given by

przt=0)_ 14p o 2tanh o

pO 2p0 d/) (Z_é(x7t:0)+h1) ’
(51)

where the upper-layer depth is h; =250 m, the oo =99% interface
thickness (see Fringer and Street (2003)) is d, = 200 m, and the den-
sity difference is given by Ap/po=0.001. The initial Gaussian of
depression that evolves into a train of solitary-like waves is given by

p

2
£(x,t = 0) = —Go exp [ (Wi) } , (52)

with Go=250m and w,=15km. The boundary conditions are
closed at x =0 and x = Ly and the bottom at z = —d is free-slip with
a free surface at the upper boundary. The domain is discretized uni-
formly in the vertical with N, =100 grid cells, and we perform six
simulations each with a different uniform horizontal resolution
containing N, = 150, 300, 600, 1200, 2400, and 4800 cells, such that
the grid lepticity A = Ax/h; varies from 0.25 to 8, and where Ax = Ly/
N,. We did not change the vertical resolution because this has little
influence on the results as long as the stratification is reasonably re-
solved. The time step is determined with the horizontal Courant
number which is held fixed for all simulations, and is given by
Ch=CoAt/Ax=0.11, where co=1.4 m s~ ! is the first-mode eigen-
speed obtained from a linearized modal analysis. The simulations
are run for a total time of 145,600 s (roughly 1.7 days), so that the
finest grid requires At=5s for a total of 29,120 time steps.
Although rotational effects lead to added linear dispersion which
has a tendency to broaden waves that propagate over inertial time
scales (Helfrich and Melville, 2006), rotation is ignored in the pres-
ent simulations. To stabilize the central-differencing scheme for
momentum advection, the horizontal and vertical eddy-diffusivities
are constant and are given by vy=0.1m?s ! and vy=10"*m?s~',
respectively, and no scalar diffusivity is employed.

In what follows we compare the results of the hydrostatic to the
nonhydrostatic versions of SUNTANS. Since the nonhydrostatic
code essentially computes a correction to the hydrostatic dynam-
ics, switching between the two codes is straightforward although
the nonhydrostatic code incurs more overhead particularly for
low values of the grid lepticity. Fig. 4 shows the computational
overhead associated with using the nonhydrostatic model as mea-
sured by the ratio of the total wallclock simulation time for the
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Fig. 3. The results of a nonhydrostatic simulation (dashed blue line) vs. a hydrostatic simulation (solid red line) for the case when I" = 10. The plot in the lower-right depicts a
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nonhydrostatic model to that for the hydrostatic model. For large
grid lepticity there is relatively little overhead because the precon-
ditioner for the nonhydrostatic pressure solver performs well
when the grid aspect ratio Az/Ax is small (Fringer et al., 2006).
However, the preconditioner is not as effective for larger grid as-
pect ratios, or equivalently smaller grid leptic ratios. Therefore,
for the smallest lepticity the nonhydrostatic code requires roughly
8 times as much wallclock time than the hydrostatic simulation
(the most well-resolved nonhydrostatic run took 2 s per time step
using 16 cores on four quad-core Opteron 2356 QC processors). It is
interesting to note that the nonhydrostatic overhead diverges
sharply around / =2, which is effectively the limit above which
physical nonhydrostatic effects are overwhelmed by numerical
nonhydrostatic effects. Marshall et al. (1997) show that, due to
the performance of the preconditioner, nonhydrostatic algorithms
in the hydrostatic limit are no more computationally expensive
than hydrostatic models. They describe the nonhydrostatic pres-
sure solver and preconditioner as “an algorithm that seamlessly
moves from nonhydrostatic to hydrostatic limits”. We note, how-
ever, that a nonhydrostatic model does not behave correctly until
it resolves the magnitude of dispersion, that is, 4 < O(1). Further-
more, as shown in Fig. 4, truly resolving nonhydrostatic effects is
more computationally expensive.

To infer the behavior of the numerical dispersion in the
SUNTANS simulations, we first show that the SUNTANS results
are accurately represented by the KdV equation. We compare the
results of the highest resolution SUNTANS model (N, = 4800) with
the KdV model with N, = 800, so that I" ~ 0.25 in both models. The
nondimensional initial condition for the SUNTANS model is given
by

S

N2
St =0) = —aiexp {— (i-) } (53)
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Fig. 4. Relative workload associated with computing the nonhydrostatic pressure
as a function of the grid lepticity 4 = Ax/h;. The overhead is computed as the ratio of
the total wallclock time for the nonhydrostatic simulation to that of the hydrostatic
simulation.

where a; = Go/ap = 1.136 and ¢ = w, /L, = 10.446. In this exam-
ple, the results from the SUNTANS model are nondimensionalized
with ap=220m and L, =Ly=1436 m, which are the amplitude
and length scale, respectively, of the leading solitary wave at the
end of the highest resolution simulation. If we approximate the
SUNTANS initial condition as a two-layer stratification, Eqs. (16)
and (17) give the KdV parameters ¢ = 0.754 and € = 0.461. The con-
tinuous stratification parameter estimates from Eqgs. (18) and (19)
give similar values of 6=0.756 and €=0.494. Because the KdV
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equation only admits right-propagating waves, the initial condition
for the KdV model needs to be adjusted to produce the same waves
as the SUNTANS model. The SUNTANS model produces right-prop-
agating waves because its initial condition is given by a half-Gauss-
ian of depression at the left no-flux boundary. The initial condition
for the KdV model is therefore given by

X - 2% Ax’*‘ﬂ (54)

G0, £ = 0) = g exp [—(
Oy

where a; = 0.536, 6, = 05 = 10.446, and Ax; = 1.253. Due to the
different initial conditions, the parameters required to produce a
match between the KdV result and the SUNTANS model are given
by 6=0.572 and € =0.585. As shown in Fig. 5, the agreement be-
tween the KdV equation and the SUNTANS model is excellent. The
only significant deviation between the two models arises from the
tail of the wave train which is produced by numerical diffusion in
the SUNTANS model that is not present in the KdV model. The slight
mismatch between the theoretical parameters, § and ¢, given by
Egs. (16)-(19) and the best fit parameters is due to higher-order
nonlinearity and the finite-thickness of the interface, which are
not accounted for in the KdV theory.

The excellent agreement between the models highlights the
power of the relatively simple KdV equation for modeling complex
phenomena. Of course, there are many situations in which the KdV
equation does not adequately capture the dynamics of the fully
nonlinear and nonhydrostatic model for a continuously stratified
system. However, this result shows that the dominant physics of
internal waves at the limits of weakly nonlinear, weakly nonhydro-
static characterization can still be represented by the KdV equa-
tion. We make this comparison to argue that the analysis
performed for the KdV equation with regard to numerical vs. phys-
ical dispersion should hold for fully nonhydrostatic models for cer-
tain problems of interest. That is, for weakly nonlinear, weakly
nonhydrostatic internal wave phenomena even in a continuously
stratified system modeled with a (second-order accurate) nonhy-
drostatic model, the ratio of numerical to physical dispersion
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Fig. 5. Comparison of the KdV equation to the nonhydrostatic SUNTANS ocean
model. The KdV solution is for the interface height in a two-layer system. SUNTANS
models a continuously stratified system in which the p=p, density contour
represents the solution. The cutout in the bottom subplot shows a comparison of
the leading soliton.

should be I" = K;? as is the case for the KdV equation. With this
in mind, we compare the results of hydrostatic and nonhydrostatic
simulations using SUNTANS at various resolutions as we did for the
KdV equation in Figs. 2 and 3.

Fig. 6 shows the nonhydrostatic SUNTANS result compared to
the hydrostatic result for the finest grid (N, = 4800), or the smallest
leptic ratio 4= Ax/h;=0.25. In the figure, time is normalized by
Ts = Ly/co, where L, =Lo=1436m is the leading solitary wave
width at the end of the simulation. As expected, the nonhydrostatic
result leads to a train of rank-ordered solitary-like internal gravity
waves of depression that move faster than the linear phase speed
(as indicated by the vertical dashed lines in Fig. 6). Owing to ampli-
tude dispersion, the hydrostatic wave train also propagates faster
than the linear phase speed cy. However, due to a lack of physical
dispersion, the wave steepens into a train of very short solitary-like
waves (see the inset plot at t = 141.5 T;). These short waves repre-
sent a balance between nonlinear steepening and numerical dis-
persion that results from the second-order error in the
discretization of the baroclinic pressure gradient in SUNTANS.
Due to the high grid resolution, the relatively small lepticity of
/.= Ax[hy = 0.25 is the cause of the weak numerical dispersion. Un-
like the results from the KdV simulations in Section 3.1, the SUN-
TANS results also possess numerical diffusion. Therefore, the
nearly grid-scale length of the numerically-induced solitary-like
waves results in numerical diffusion that leads to amplitude loss
in the leading solitary-like waves as well as a thickening of the
stratification in the lee of the wave train. The amplitude loss leads
to weaker amplitude dispersion for the hydrostatic case and causes
the hydrostatic packet to propagate more slowly than the nonhy-
drostatic packet. The problem of excess numerical diffusion associ-
ated with high-resolution hydrostatic models was recognized by
Hodges et al. (2006), who hypothesized that formation of numeri-
cal “soliton-like” waves leads to numerical diffusion and dissipa-
tion. Our results support this hypothesis. However, we add that
the lack of dispersion (physical or otherwise) in high-resolution
hydrostatic models is the cause of problems with numerical diffu-
sion and dissipation.

When the lepticity is increased to / = 8, numerical dispersion is
so large relative to physical dispersion that the nonhydrostatic and
hydrostatic results are nearly identical, as shown in Fig. 7. This re-
sult agrees with Marshall et al. (1997) who conclude that at coarse
horizontal resolution, hydrostatic and nonhydrostatic models give
essentially the same numerical solutions. Although the results look
qualitatively similar, the nonhydrostatic result is far too dispersive
due to the numerical dispersion, and so the width of the leading
wave is larger than the “exact” result shown in Fig. 6.

As shown in Fig. 8, increasing the grid lepticity causes the width
of the leading solitary-like waves to grow in both the hydrostatic
and nonhydrostatic solutions. The width of the nonhydrostatic
wave, however, converges to the correct value upon decreasing
the lepticity, while that for the hydrostatic waves continues to de-
crease toward zero. This decrease leads to more numerical diffu-
sion which causes the hydrostatic wave to propagate more
slowly. These results indicate that the width of the leading soli-
tary-like wave in the wave packets is a good indicator of the
numerical dispersion. Since the dispersion in the hydrostatic mod-
el is strictly numerical, then progressively weaker dispersion with
grid refinement leads to shorter solitary-like waves, while the
waves in the nonhydrostatic model converge to the correct solu-
tion with grid refinement. Increased grid spacing leads to larger
solitary-wave widths in both models, although the width of the
waves in the nonhydrostatic model will always be larger than
those in the hydrostatic model due to the presence of physical
dispersion. While always present, the relative magnitude of the
resolved physical dispersion decreases with increasing grid
lepticity.
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Fig. 6. Comparison of the evolution of a solitary-like internal gravity wave train as computed by SUNTANS with N, x N, =4800 x 100 grid cells (1= Ax/h; = 0.25) with
(upper blue contours) and without (lower red contours) the nonhydrostatic pressure. The horizontal distance is normalized by L, =Lo= 1436 m, the width of the
leading nonhydrostatic wave at the end of the simulation, and Ts;=L,/co is the wave propagation time scale. Density contours are shown for p/
po=(-0.4,-02,0,0.2,0.4)Ap/po. A zoomed-in view of the dashed box around the leading wave in the hydrostatic wave train is depicted in the inset plot at
t=141.5T. The vertical dashed line moves at the linear wave speed ¢, for reference. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 7. Comparison of the evolution of a solitary-like internal gravity wave train as computed by SUNTANS with N, x N, =150 x 100 grid cells (/1 = Ax/h; = 8) with (upper
blue contours) and without (lower red contours) the nonhydrostatic pressure. The horizontal distance is normalized by L, =Lo=1436 m, the width of the leading
nonhydrostatic wave that is computed with N, =4800 grid cells at the end of the simulation, and Ts=L,/co is the wave propagation time scale. Density contours are
shown for p/po=(-0.4, — 0.2,0,0.2,0.4)Ap/po. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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3.3. Numerical dispersion and the scaling of solitary wave widths

As mentioned previously, the widths of simulated solitons are a
good indicator of the magnitude of dispersion. Returning to the
form of the numerical soliton given in Eqs. (48) and (49), we see
that the simulated soliton scale of a second-order accurate nonhy-
drostatic model relative to the analytical soliton scale is given by

L/Ly=L"/L; =vT+T =+/1+K2?. Likewise, for a second-order

accurate hydrostatic model, the ratio is given by L,/Ly=
L;,/Ly = vT = 2VK. In this paper we have highlighted the form of
I' = Ki?=K(Ax*[€)?. Verification of the correct form of I' as
determined in this paper is possible by comparing the scaling of
modeled solitons to the theoretical relationships for the hydro-
static and nonhydrostatic simulations, respectively, as the grid
lepticity increases. This analysis is shown in Fig. 9 for the KdV
equation and Fig. 10 for the SUNTANS model.

The analysis in Fig. 9 uses the numerical method from Eq. (31),
which has K=1 — (?=0.9999, since C=0.01. The simulations are
performed with identical conditions to the simulations above in
Section 3.1 with t;,,, =30 and a variety of different resolutions,
namely N, = 1000, 800, 600, 500, 400, 300, 250, 220, 210, 180,
150, 125, 100, 80, 60, 50, 40, 35, 30, 25. For each simulation, the
simulated soliton width, Lg;,, is calculated as the length from the
location of the parabolic maximum, Xq, to the horizontal location,
X. (on the right) where the soliton obtains an amplitude of
asech?(1). This length scale Lg,=xX.— X, corresponds approxi-
mately to half of the 42%-width. The horizontal location, x., is
determined by fitting a quadratic polynomial to the three points
nearest to the soliton peak and inverting the location.

As shown in Fig. 9, the computed soliton widths compare very
well with the theoretically-expected soliton widths. The close
agreement is particularly notable for small values of the grid lep-

ticity, that is for 1< 0O(1). The agreement is not as good for
A >0(1) because the theoretical relationships assume 1st-order
numerical dispersion. For 4> O(1), higher-order numerical disper-
sion also affects the soliton length scales. Even with the deviations
due to higher-order effects when /> 0(1), the agreement of the
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Fig. 9. The relationship between the grid lepticity, 4, and the deviation from the
theoretical soliton length scales for the KdV equation. The theoretical prediction for
the model performance is Lgm /Ly = L" /Ly = V1 + K72 for the nonhydrostatic model
(solid blue line) and Lyn/Ly = L;,/L; = 2K for the hydrostatic model (dashed red
line) where K= 0.9999. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Lgim[Lo for the SUNTANS model. The theoretical predictions are Lgm/Lo =L/Lo =
V1 +KJ? for the nonhydrostatic model (solid blue line) and L /Lo = Ly /Lo = AvVK
for the hydrostatic model (dashed red line), where K = 0.075. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

models and the theoretically-predicted soliton length scales is
quite remarkable.

We test the SUNTANS model to determine the scaling of the sol-
iton widths using the analysis presented in Fig. 9. Fig. 10 shows
that the theory for the dependence of the soliton length scale on
the grid lepticity (Eqgs. (48) and (49)) is valid for the continuously
stratified system when simulated with both a hydrostatic and a
nonhydrostatic ocean model. The soliton widths are determined
using the same method as above for the p = py density contour.
The nonhydrostatic SUNTANS model computes solitons with
Lsim/Lo ~ /1 + KJ?, while the hydrostatic SUNTANS model com-
putes solitons with Ly, /Ly =~ 2vK, where K=0.075 as obtained
with a least-squares fit (L, is computed using the same technique
as that for the KdV simulations).

4. Discussion

For weakly nonlinear, weakly nonhydrostatic waves, discretiza-
tion of the linear problem, that is, acceleration balancing a pressure
gradient, gives rise to most of the numerical dispersion. For weakly
nonhydrostatic waves, water wave theory gives the lowest-order
physical dispersion as proportional to (ke)?. The numerical discret-
ization of the linear problem using second-order, central finite-dif-
ferencing produces, to lowest order, numerical dispersion
proportional to (kAx*)?. The ratio of these two effects is the ratio
of numerical to physical dispersion, I', which is proportional to
the grid lepticity squared, viz. I" = KA?, where K is typically an
0(1) constant. Scotti and Mitran (2008) showed that the nonlinear
advection term introduces an artificial term in the dispersion rela-
tion of magnitude 0(542). However, we have shown that the dis-
cretization of the linear problem and not the nonlinear advection
term is responsible for the dominant source of dispersion for
weakly nonlinear, weakly nonhydrostatic waves. The relative mag-
nitudes of the numerically dispersive effects of the linear problem
vs. the nonlinear advection problem depend on the relative magni-
tudes of K and 6. Typically K= 0(1)and § < O(1) due to the weakly
nonlinear scaling of most oceanic problems of interest. Thus the
numerical dispersion induced by the linear term is typically one or-
der of magnitude larger than the numerical dispersion induced by
the nonlinear advection term. Highly nonlinear and nonhydrostatic

(i.e. 8 ~ €2 = 0(1)) dynamical problems in the ocean are important
but confined to small-scale turbulent motions. In modeling such
situations, the dispersive error from nonlinear advection terms
with magnitude 0(8/2) may exceed the dispersive error from the
linear terms with magnitude O(K/2). Thus ensuring small values
of the grid lepticity, 4, may be even more important in such cases.
Typically, in highly nonlinear problems the motion is governed by
a balance between nonlinear advection and the nonhydrostatic
pressure gradient. Large-eddy-simulation (LES) is the preferred ap-
proach under such circumstances. LES models seek to minimize the
numerical dissipation to capture the correct turbulent dissipation.
Ocean models, on the other hand, should seek to minimize numer-
ical dispersion, particularly when modeling wave phenomena. For
internal wave simulations, the dominant source of numerical dis-
persion arises from the discretization of the baroclinic pressure
gradient. For surface wave simulations (i.e. tsunami modeling),
the dominant source of numerical dispersion is the discretization
of the barotropic pressure gradient.

When I' > 1, or when the grid lepticity is large, i.e. 1> 0(1),
simulations produce an overly dispersive result because the
physical dispersion is negligible in comparison to the numerical
dispersion. This implies that a nonhydrostatic simulation is indis-
tinguishable from a hydrostatic simulation when the grid spacing
is large relative to the relevant depth scale. Such a large grid
spacing may therefore give a false impression that nonhydrostatic
physics must be unimportant. Scotti and Mitran (2008) developed
an approximated method to reduce the computational cost of
computing the nonhydrostatic pressure in thin domains which
converges when 2> 0O(1). However, when this condition is satis-
fied, the solution is contaminated by numerical dispersion and
the computational overhead associated with solving the full
nonhydrostatic problem is small, as shown in Fig. 4. Elliptic
approximation methods must therefore be combined with
higher-order discretization techniques which minimize numerical
dispersion if they are to be viable.

5. Conclusions

We have determined the magnitude of physical and numerical
dispersion coefficients from asymptotic approximations for weakly
nonlinear, weakly nonhydrostatic models. The ratio of numerical to
physical dispersion, I', for nonhydrostatic ocean models that are
second-order accurate in time and/or space is given by I" = K2,
where . = Ax/h; is the grid leptic ratio or lepticity, and K is typi-
cally an O(1) constant. Simulations of internal waves using the
SUNTANS nonhydrostatic ocean model are well-reproduced by
the KdV equation, thereby validating its use to quantify the magni-
tudes of physical and numerical dispersion.

For hydrostatic models, the ratio I' is infinite because there is
no resolved physical dispersion. However, when the leptic ratio
is large, numerical simulations based on either hydrostatic or non-
hydrostatic models will be dominated by numerical dispersion. For
simulations of internal waves, the amount of physical dispersion is
critical to resolving the correct behavior, and thus a well-resolved
nonhydrostatic model or approximation thereof is required.
Numerical solutions of internal waves when modeled with sec-
ond-order accuracy in time or space will be realistic only when
7<0(1) or A x<h;. The relationship I" = K/? is primarily due to
the second-order accurate discretization of the baroclinic pressure
gradient. The severity of this condition may be loosened using
higher-order differencing schemes or schemes with better disper-
sive properties such as Padé schemes (Lele, 1992). Adaptive mesh
refinement (AMR) methods, which allow additional resolution
when necessary, also present a possible solution.
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The condition that 1< 0O(1), or Ax < hy, is consistent with the
scaling of nonhydrostatic effects, since they occur when vertical
scales of motion are roughly equal to the horizontal scales. There-
fore, accurate simulation of nonhydrostatic effects requires that
horizontal scales of O(h;) must be resolved. This constraint may
be a significant additional resolution requirement beyond the cur-
rent state-of-the-art in ocean modeling.
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Appendix A. Modified equivalent partial differential equation
analysis

We show how the modified equivalent partial differential equa-
tion (MEPDE) (34) of the discretization (31) is obtained. MEPDE
analysis begins with the expansion of the adjacent grid points in
Taylor series usually about the central point. In this case these
expansions are given by

&=y A gi j+ (Az*)2 2152 :1 (A;g)3 2153 jJr (A1)
& -a-amel + Caiiy ey g o)
= & 2AX gi + 2(Ax')? ijz 4(A3X*)3 21% (A3)
=& - 20x Zi +2(Ax)? foz 14(A3X*)3 2163

' l (A4)

where, &' = &' (x;,t;) = & (iAx*,nAt"). Using these expressions, the
form of the truncation error of the second-order, central finite-dif-
ference approximation to the spatial derivative is given in Eq.
(32). Similarly, the truncation error for the second-order, leap-frog
time derivative is given by

(At*)4 656* n

élnﬂ éf 1 65* n (At*)z 635* n

208 ot 6 or?| 120 ot
At e .
(504)0 ar7| +0((ar)%). (A3)

The second-order accurate, centered 3rd-order spatial derivative is
given by

n en ¥ x| * |
38 a8, —38, _ e (Ax')* ¢ n O((Ax*)s)
(Ax+)? 3|, 4w '
(A6)

Substitution of Egs. (32), (A.5), and (A.6) into the complete discret-
ization (31) gives:

ox N 2 A3 e |T Pl <\ 2 3 |
ag* (At") 6@3 n 1—355? o¢ +(Ax) ai
ot*|; 6 ot . 2 ox*|; 6 oxr .
e (@l ey el A
+5 <6x*3 T )T o((ax)*, (ar)*). (A7)

Since each term is at time level n and spatial index i, and this equa-
tion holds for all space and time, we can remove the subscripts and
write Eq. (A.7) as:

oe 3_\o¢
ot (1_25 )ax*+

E_2 636*
6 ox3

(At ¢ (A & 2(Ax)? ¢
6 o’ ( 5o > 2 ax*S]
= o((ax ), (ar)?), (A8)

where the first set of bracketed terms represents the terms in the
original PDE and the second set of bracketed terms represents the
additional terms in the MEPDE that result from the discretization.
Recalling that 0(6) = 0(€?) < 1, Eq. (A.8) can be written as:

aé* 3 . aé«* 62 636* (At*)z 635*
ot (1 —2% ) x 6

6 0x*3 6 or3 6 ox3
= 0 (ax)’, o(ax )2, (Ax)*, (AL)*). (A.9)

We ignore the truncation error terms in the MEPDE created from
the nonlinear advection and dispersion terms because they are
approximately one order of magnitude smaller than the terms
resulting from the linear problem. Using the first-order, linear
relation:

o of

= Al
o=~ +0(E0), (A10)
we have, to 0(€2,0):
oo o
at*Z - ax*z )
63 é* . 63 é*
at*3 - ax*;’v :

This result generalizes to Eq. (33). Using this relation, we can re-
write Eq. (A.9) as:

65* (1 __55 ) 6;”‘ €2 636*:| (Ax*)z 635* - (At*)2 635*]
ot* ax* 6 ox3 6 ox3 6 ox3
= o(ez(Ax*)z, S(AX")?, (Ax™)*, (At*)“), (A11)
or:
(-3 e T e e
= O(ez(Ax*)z, S(AX)?, (Ax')* (At*)4), (A12)

where C= At*/Ax This gives the numerical dispersion coefficient
f=(1-C)™Y in Eq. (34).

Appendix B. Convergence analysis for the KdV discretization

In this section we perform a grid-refinement convergence anal-
ysis of the discrete KdV equation (31) to verify that the numerical
method is indeed second-order accurate. Fig. B.11 shows that the
centered finite-difference method given in Eq. (31) is second-order
accurate in time. The temporal convergence analysis shown in
Fig. B.11 is performed for the evolution of an initial Gaussian hump
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Fig. B.11. Temporal convergence of the numerical KdV solution given in Eq. (31).
The convergence analysis shows that all methods converge with second-order
accuracy, O((At*)?), with refinement of the time step size, At*.
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Fig. B.12. Spatial convergence of the numerical KdV solution given in Eq. (31).

of the form given in Eq. (50), with identical parameters as in Sec-
tion 3.1, on a grid with N, =200 grid points and with a Courant
number C = 4L, for various time step sizes At*=1/512, 1/256, 1/
128, 1/64, 1/32 with t},, = 10. Recall that the = notation refers to
nondimensional variables. The measure of convergence of the solu-
tion (Figs. B.11, B.12) is obtained by: Error = || solution (Ax* or
At*) — solution (Ax*/2 or At*[2)||>, where “solution” means the
numerical solution of ¢* on a grid of size Ax* or with a time step
of At*. As shown in Fig. B.11, the numerical solution obtains
O((At*)?) convergence, as expected.

Convergence with respect to spatial resolution is shown in
Fig. B.12. This analysis is performed for identical initial conditions
as the temporal convergence analysis, with grid spacing given by
Ax*=1/600, 1/500, 1/400, 1/300, 1/200, 1/100. Each simulation is
performed with a time step of At*=0.00005 and with ¢}, = 5.
The measure of convergence of the solution is obtained using the
method explained above. The coarse-grid solution is interpolated
onto the highest resolution domain using a cubic-spline interpola-

tion method and the norm of the difference between the solutions
at various resolutions provides the measure of convergence.

Unlike the temporal convergence, spatial convergence is not as
well-behaved. The nonhydrostatic method, as shown in Fig. B.12,
converges with spatial-refinement with approximately second-or-
der accuracy. However, the hydrostatic model does not converge
with spatial-refinement. Lack of convergence results from the mag-
nitude of (numerical) dispersion which is a function of A x*. There-
fore, numerical solitons appear with increasingly smaller widths
that are always proportional to the grid spacing via Eq. (46). The
lack of convergence is a common problem arising from invalid
assumptions of hydrostatic models. For example, when calculating
a lock-exchange flow, Fringer et al. (2006) show that the hydro-
static model yields exceedingly large vertical velocities. This occurs
because of the ill-posedness of the hydrostatic model which causes
an inverse dependence of the vertical velocity on Ax. Horizontal
grid refinement leads to unbounded increase in the vertical veloc-
ity when a hydrostatic model is used to simulate an inherently
nonhydrostatic problem.
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