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ABSTRACT

Applying the semi-Lagrangian method to discretize the advection of momentum eliminates the Courant
number constraint associated with explicit Eulerian momentum advection in coastal ocean models. Key
steps of the semi-Lagrangian method include calculating trajectories and interpolating the velocity vec-
tors at the end of trajectories. In this work, we follow the linear and quadratic interpolation methods pro-
posed by Walters et al. (2007) for field-scale simulations on unstructured, staggered grids and compare
their performance using a backward-facing step test case and field-scale estuarine simulations. A series of
methods to approximate the nodal and tangential velocities needed for the interpolation are evaluated
and it is found that the methods based on the low-order Raviart-Thomas vector basis functions are more
robust with respect to grid quality than the methods from Perot (2000) while overall they obtain similar
accuracy. Over the range of different nodal and tangential velocities, the quadratic interpolation methods
consistently exhibit higher accuracy than the linear interpolation methods. For the quadratic interpola-
tion, the overall accuracy depends on the approximation of the tangential velocity. The backward-facing
step test case indicates that the quadratic interpolation behaves like Eulerian central differencing or first-
order upwinding, depending on the tangential approximations. The field-scale estuarine flow test case
also shows general improvement for the velocity predictions and sharper gradients in the velocity field
with the quadratic interpolation. The quadratic interpolations add less than 15% to the total computa-

tional time, and parallel implementation is relatively straightforward in complex geometries.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Stability and explicitness are the most attractive properties of
the semi-Lagrangian schemes (also referred to as “trajectory”
schemes) for coastal ocean models. Most applications of the
semi-Lagrangian method use large time steps for horizontal advec-
tion with horizontal Courant numbers well beyond unity (Casulli
and Walters, 2000; Hanert et al., 2005; Walters et al., 2007). Prob-
ably the most stringent constraint in estuarine modeling is the
Courant number associated with vertical advection when vertical
layer thicknesses go to zero during wetting and drying processes.
Explicit Eulerian advection schemes may easily become unstable
during wetting and drying, while the semi-Lagrangian scheme al-
lows reasonable time step sizes and considerably improves model
efficiency.

Using the semi-Lagrangian method to solve the total derivative
of momentum consists of two main steps: (1) calculate backward-
in-time trajectories of fluid particles that originate at each grid
point where velocity is defined; and (2) interpolate the velocity
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vector at the trajectory end points. The total Lagrangian change
in momentum is then the difference between the velocities at
the trajectory end points. The original semi-Lagrangian method
(Robert, 1981, 1982) evaluates the remaining terms in the momen-
tum equations at the trajectory end points. For simplicity, we
follow the localized Eulerian-Lagrangian approximation and eval-
uate the remaining terms at grid points. The differences are usually
small (Walters et al., 2009) except when large gradients are pres-
ent. Numerical details are explained in Section 2.

The overall accuracy and efficiency of the method strongly de-
pend on the interpolation scheme and it has long been known that
low-order interpolation can lead to substantial dissipation (Ritchie,
1986; McCalpin, 1988; Staniforth and Co6té, 1991; Le Roux et al.,
2000). Application of the semi-Lagrangian method on unstructured
grids has been of recent interest due to the increasing popularity of
unstructured-grid ocean models, e.g., Walters and Casulli (1998),
Casulli and Walters (2000), Le Roux et al. (2000), Hanert et al.
(2005), Ham et al. (2005), Fringer et al. (2006), and Walters et al.
(2007). Unstructured triangular grids have attractive features
because they are flexible for irregular coastlines and local mesh
refinement. However, interpolating the velocity vectors on
unstructured grids is not straightforward and high-order methods
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are much more complex than equivalent methods on structured
grids.

For unstructured, staggered grids, Walters et al. (2007) de-
scribed several linear and quadratic interpolation schemes and
showed that the quadratic schemes give better performance in
general than the linear schemes. Vidovic et al. (2004, 2009) pro-
posed a method using a least-square fit of polynomial functions
to approximate vector fields, and this method is also applicable
for semi-Lagrangian advection. It incurs a higher computational
cost for matrix inversion and special treatment of boundary and
corner cells in complex geometry, both of which are not desirable
for field-scale simulations. Hanert et al. (2005) described higher-
order Kriging interpolation methods which can achieve higher
accuracy but also incur an increased computational cost. Therefore,
in this work, we follow the general guidelines for the interpolation
methods by Walters et al. (2007) and focus on discussing the
implementation procedures and evaluating the performance of
the methods in greater detail.

In this paper we first examine the approximation of the velocity
vectors at the grid nodes (Section 4.1) and the tangential velocity at
the midpoints of edges (Section 4.2) that are needed for the inter-
polation. We focus on comparison of the interpolation methods
from Perot (2000) to those based on low-order Raviart-Thomas
(RTO) vector basis functions and two new least-square methods
(Section 4.3), and analyze the convergence and the distribution
of the errors. We include a brief discussion on the relative contri-
bution from interpolation error and trajectory integration error in
the overall semi-Lagrangian advection calculation in Section 4.4.
Finally, we evaluate the performance of different interpolation
methods for semi-Lagrangian advection using a backward-facing
step test case (Section 5.1) and a field-scale estuarine simulation
(Section 5.2).

2. Discretization with semi-Lagrangian advection

The interpolation methods are implemented in the SUNTANS
model (Fringer et al., 2006). The model employs staggered pris-
matic cells that are triangular in the horizontal and structured in
the vertical, as illustrated in Fig. 1. Fluxes are defined at face cen-
ters while all other variables are defined at cell centers, which
are at the Voronoi points of the triangles and result in an orthogo-
nal grid when the grid cells are acute triangles. This type of grid
structure is found less dispersive than several other common grids
and is free of spurious free-surface and pressure modes (Rostand
and Le Roux, 2007), and is the same as what was used by
Casulli and Walters (2000).

The governing equations are the three-dimensional, Reynolds-
averaged Navier-Stokes equations with rotation under the

prismatic cell plan view

w

Fig. 1. The staggered prismatic grid cell with normal velocity components on the
faces and cell centers defined at Voronoi points to ensure orthogonality for all acute
triangle cells. Orthogonality requires that the Voronoi edges (dashed lines in the
plan view) are perpendicular to the Delaunay edges (the triangle edges).

Boussinesq approximation and hydrostatic assumption (in this
paper, we do not employ the nonhydrostatic capability in
SUNTANS), viz.
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where V, =2 e, + %ey is the horizontal gradient operator, u(x,y,z,
t), Ux,y,z,t) and w(x,y,zt) are the Cartesian components of the
velocity vector in the x, y and z directions, and u and uy are the
three-dimensional and horizontal velocity vectors, respectively.
The vertical momentum equation is not present because w is solved
using incompressibility. When the free surface is solved, it evolves

according to the depth-averaged continuity equation
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The definitions of the other terms are listed in Table 1.

We apply the semi-Lagrangian method to discretize the total
derivative (unsteady and advection terms) explicitly. Rotation
and horizontal diffusion are also solved explicitly while the other
terms are discretized with a semi-implicit method to maintain sta-
bility of surface gravity waves as in the original SUNTANS model
(described in Fringer et al. (2006), also Casulli (1990) and Casulli
and Walters (2000)). We write the horizontal momentum Egs.
(1) and (2) as

DuH

oo =Ry, (5)
where D/Dt = 9/t +u - V is the total derivative and Ry contains the
Coriolis terms and the right-hand sides of the horizontal momen-
tum equations. The semi-Lagrangian discretization of (5) to com-
pute the evolution of the normal velocity, U; on edge j with
SUNTANS is given by

Ut =U; + AR, (6)

where R; = n; - Ry is computed using the methods described in Frin-
ger et al. (2006), and n; is the normal vector corresponding to edge j
(see Fig. 2). The second term on the right-hand side is discretized at
the edge midpoints which is an Eulerian-Lagrangian simplification
of the traditional semi-Lagrangian method. The methods we discuss
here are for the calculations of U; and are based on the traditional
semi-Lagrangian approach. Among the right-hand side terms, the
free-surface gradient and vertical diffusion terms are treated
semi-implicitly to remove their time step constraints while the
other terms are discretized explicitly. The time step of our model
is most limited by the wetting and drying condition which is
explained in Wang et al. (2009). For each time step, the normal

Table 1
Nomenclature of the terms in the momentum equations.
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Fig. 2. (a) Definition of the velocity vectors and (b) illustration of the trajectory that
departs from x; and arrives at X: . u, is the velocity vector at node p, u; is the velocity
vector at cell center i, and w; is the velocity vector at the midpoint of edge j. Ujand V;
are the normal and tangential components of u; at edge j, and n and t are the unit
normal and tangential vectors, respectively.

component of the velocity at the end of the traceback, U;, is ob-
tained via interpolation at location x;". As depicted in Fig. 2, x; is
the arrival location of the Lagrangian traceback obtained with the
backward-in-time integration

th+At
X =X - /[ ' (x(£)dt, (7)

where the time step superscript is ignored on X; since this location
is fixed in time. We employ the first-order Euler integration

X = X; — Atuy, (8)

where u} = u"(x;) is the velocity vector at edge j and time n. There-
fore, the velocity field at time step n is used both for calculating
X;- and interpolating u; at x;, and the discretization is first-order
accurate in time. If higher-order time accuracy is desired, multiple
time levels can be used instead (Staniforth and Coté, 1991; Hortal,
2002; Lauritzen et al., 2006). The trajectory calculation relies on
the interpolation to provide u"(x) regardless of the numerical meth-
ods, and taking substeps requires interpolation at every substep. u;
is calculated with the interpolation after x; is obtained. Since

Fig. 3. Unidirectional parabolic velocity profile, u = —6y? + 6y.

interpolation is required for both the trajectory calculation and
computation of w;, accurate interpolation is a crucial component
of the semi-Lagrangian method. The descriptions on the interpola-
tion methods for the horizontal staggered grid in Walters et al.
(2007) are general and hence can be implemented in many different
ways. In this paper, we describe and compare several of the most
efficient options. Vertical interpolation employs second-order linear
interpolation (we always refer to the local order of accuracy) on the
Cartesian z-level grid, which does not limit the accuracy of our
calculations and so it is not discussed in this paper. In summary,
the steps required for the semi-Lagrangian method are given by

1. Approximate the velocity vector at edge j to obtain u?. Since the
discrete governing equations advance U, the tangential compo-
nent of the velocity at edge j, V, must be approximated to
obtain u! = Uj'n; + V}'t; (see Fig. 2). Methods to approximate
the tangential velocity are discussed in Section 4.2.

2. Compute the location of the traceback, x;. If one step is
employed, then the location can be computed directly with
Eq. (8). However, if multiple steps are employed, then the veloc-
ity vector must be interpolated at each substep.

3. Interpolate to obtain the components of the velocity vector at
location x;, i.e., u;, using the methods outlined in Section 4.3.
The normal component for use in Eq. (6) is then obtained with

Ui =n;-u;.

3. Test flow field and meshes

We use a parabolic flow field (Fig. 3) and two triangular meshes
(Fig. 4) to evaluate the interpolation. For ease of discussion, the test
flow field is unidirectional, constant in the streamwise direction
and varying laterally with u=—6y?+ 6y in a rectangular domain
defined by 0 < x < 2.5 and 0 <y < 1 (the velocity field and domain
are both dimensionless). This simple velocity field is found to be
representative for general cases including non-unidirectional fields
that vary quadratically in both the x and y directions. Therefore, the
properties discussed here can be considered general for quadratic
flow fields unless otherwise noted. Among the two test meshes,
one is equilateral and the other is slightly skewed and is generated
using GAMBIT (Fluent, Inc., Lebanon, NH). The average grid spacing
in terms of average edge length is 0.052 for the equilateral grid and
0.051 for the skewed grid. The equilateral mesh consists of equilat-
eral triangles of the same size, and the left and right boundaries of
the domain are jagged to coincide with the triangle edges and en-
sure no angle skewness, which we define as the maximum devia-
tion from 60° among the three angles of a cell. The skewed mesh
has an average angle skewness of 4.5° which is a typical value
for the grids we generate with GAMBIT for our simulations. In or-
der to analyze spatial convergence, similar sets of equilateral and
skewed meshes are generated for a series of grid spacings with
average edge lengths 0.1, 0.025, and 0.0125 and average angle
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Fig. 4. The equilateral (a) and lightly skewed (b) meshes with grid spacing 0.05. Grayscale depicts the distribution of angle skewness, in degrees.
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skewness 5.1°, 4.8° and 4.6°, respectively. To evaluate the interpo-
lation methods, normal velocities at the edge centers (Uj) are first
computed from the prescribed parabolic field. These are used to
interpolate the velocities at various locations following different
methods, and finally errors are calculated as the difference be-
tween the interpolated and true values.

4. Interpolation methods

On unstructured, staggered grids, there are numerous ways to
approximate the nodal (u,) and tangential (V;) velocities from the
normal velocities (U;). The methods we discuss are variations of
two fundamental approaches: (1) the flux-based methods from
Perot (2000) described in Appendix A, and (2) low-order Raviart-
Thomas (RTO) vector basis functions described in Appendix B. Perot
(2000) suggested methods to obtain both cell-centered and nodal
velocities, while the RTO basis functions are mainly used for
obtaining nodal velocities.

4.1. Nodal velocities

Nodal velocities must be calculated for both linear and qua-
dratic interpolations. We consider the following five methods for
obtaining the vector u, at node p (Fig. 5):

1. (nP1) area-weighted average of the cell-centered velocities cal-
culated with Perot’s method (Appendix A) in the cells surround-
ing node p, i.e, cell iy,iy,...,ig in Fig. 5(a).

2. (nP2) Perot’s method for nodal velocities (Appendix A) that uses
the normal velocities on all edges surrounding node p, i.e., edges
J1d2s- - -.Jje in Fig. 5(b).

3. (nRT1) nodal velocities calculated using RTO basis functions
(Appendix B) for node p using the adjacent edges j, and j, in cell
i (Fig. 5(c)). These nodal velocities differ when calculated in dif-
ferent cells for the same node and thus are considered “local”
nodal velocities (Walters et al., 2007).

4. (nRT2) area-weighted average of the local nodal velocities cal-
culated with method nRT1 in the cells surrounding node p,

i.e.,, cells iy,is,. ..,ig in Fig. 5(d). This represents a least-square
fit of the approximated velocity nRT1 obtained in the adjacent
cells to standard linear basis functions at the node.

5. (nLS) least-square solution based on RTO basis functions that
assumes piecewise-constant normal velocity distribution along
each edge. This method is a variation of method nRT2, and it
minimizes the difference between the projection of the nodal
velocity u, to the edge normal and the normal velocities on
all edges surrounding node p, as depicted in Fig. 5(e). The equa-
tion for each edge, e.g., edge j,, connected to node p is given by

nj-u, = Uj]7

where u, is the velocity vector at node p, the unknown being
solved, and n; is the unit normal vector corresponding to edge
j as illustrated in Fig. 2. The system is usually over-determined
because the number of edges exceeds two. At a sharp corner
node that only has one cell (i.e., two edges), the method auto-
matically reduces to method nRT1. This is the simplest form of
the least-square method for nodal velocities. Higher-order
methods can be formulated by fitting a linear velocity field
which incurs an enlarged stencil (see Vidovic et al., 2004) and re-
quires special treatment at boundary nodes.

Method nRT1 requires the least information, while the other
methods use considerably larger stencils. However, the stencils are
limited to the cells in the vicinity of the node, so no parallel overhead
associated with interprocessor communication is incurred beyond
that required in most standard parallel implementations.

Of the above methods, nP1, nP2, nRT2 and nLS are exact at inte-
rior nodes on equilateral grids for velocity fields that vary linearly
in space. Boundary nodes are less accurate because the interpola-
tion stencil is no longer symmetric. The local nodal velocities
solved with method nRT1, which is only accurate for constant
velocity fields, have relatively large errors of different signs
depending on the location of the nodes with respect to the velocity
gradient. Fig. 6 shows the errors in the streamwise velocity for the
parabolic flow field (Fig. 3) on the test meshes (Fig. 4). Errors are
defined as the difference between the interpolated and prescribed

) nP2 ¢) nRT1

l

) nRT2

(e)nLS

Fig. 5. Stencils for calculating the nodal velocity at node p. Short blue lines indicate the normal velocities used by each method. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Errors in the approximated nodal velocities for the parabolic velocity field on the equilateral mesh (left) and skewed mesh (right) using method nP1 (a and a’), nP2 (b

and b'), nRT1 (c and ¢’), nRT2 (d and d’) and nLS (e and e').

values at the nodes. Methods nP1, nP2, nRT2 and nLS result in a
constant error of approximately —3.1 x 10~ throughout the inte-
rior nodes of the domain on the equilateral mesh.

On the skewed mesh, errors increase considerably in the vicin-
ity of the skewed cells and are of similar magnitude for methods
nP1, nRT2 and nLS, while method nP2 is more sensitive to the
grid quality. The local nodal velocities from method nRT1 are con-
sistently the least accurate, with errors on the order of 107",
These errors are reduced when averaged over the cells around
the node in the calculation of method nRT2. Similarly, method
nP1 achieves higher accuracy through averaging because the
cell-centered velocities from Perot’s method are also much less
accurate. The methods do not perform as well for boundary nodes
because the stencil becomes smaller and asymmetric. Although
the accuracy of boundary nodes can be improved with modifica-
tions, we do not specifically discuss these modifications in this
manuscript.

Fig. 7 depicts the spatial convergence of the methods for obtain-
ing the nodal velocities of the parabolic field on the test meshes.
The y-axis is the absolute value of the error in the streamwise
velocity averaged over the nodes within the rectangular area that
excludes the boundaries and is defined by X;ux/8 < X < 7Xmax/8

and Ymax/8 <Y < 7Ymax/8, where X;qx = 2.5 and yne = 1. Four levels
of grid spacing, i.e., 0.1, 0.05, 0.025 and 0.0125, are used. Methods
nP1, nP2, nRT2 and nLS on the equilateral mesh are the most accu-
rate. The results for these methods coincide and the error decays
with a slope of two with the grid spacing implying second-order
accuracy. On the skewed grid, methods nP1, nRT2 and nLS retain
their accuracy, while method nP2 has deteriorated significantly
with errors one order of magnitude greater than those on the equi-
lateral mesh. Method nRT1 is first-order and the least accurate, as
expected. It has an error that is one to two orders of magnitude
greater than those of the other methods, and the error is not af-
fected by the mesh skewness.

The error for the second-order methods in the streamwise
velocity u on an equilateral mesh is given by

U = Uy AX? + By AX? — YUy Ax* + H.O.T.,

where coefficients o = J; 3, sin (2k)? cos (2k)°, f = 23, sin (Zk)*,
and y =43, sin (gk)2 cos (gk)z, for ke€0,1,2,3,4,5. We obtain
o =0.03125, $=0.09375, and 7y =0.0625, and these are validated
with numerical tests. Similarly, the error in the cross-stream veloc-
ity, o, is given by
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Fig. 7. Spatial convergence of methods nP1, nP2, nRT1, nRT2 and nLS in interpo-
lating the quadratic velocity field. The y-axis is the average absolute value of the
errors averaged over the edges within the region Xp./8 <X < 7Xmax/8 and Ymax/
8 < ¥ < 7¥max/8. Lines (1), (2), (4) and (5) are indistinguishable, and (6) and (9) are
indistinguishable.

V° = B AX® + 0y, AX? — YUy AX> + H.O.T.

This is consistent with the results in Fig. 7 which show u®~
0.1uy, AX>.

4.2. Tangential velocities

Velocity vectors at the midpoints of edges are needed explicitly
for the quadratic interpolation. The key is to obtain the tangential
velocity and then combine it with the normal component that is
already known for each edge. We consider the following five

v @Y

(b) tP2

(a) tP1

(d) tRT2

methods for obtaining the midpoint velocity vector for edge j from
which the tangential component is extracted (the interpolated
normal component is discarded), and the methods are illustrated
in Fig. 8.

1. (tP1) area-weighted average from cell-centered velocities cal-
culated with Perot’s method (similar to method nP1) in the
two cells i; and i, neighboring edge j (Fig. 8(a)). We note that
the weighting factor can be different. For instance, Ham et al.
(2007) did not apply a weighting factor to obtain tangential
velocities, which leads to an antisymmetric interpolation oper-
ator in the calculation of the Coriolis term.

2. (tP2) averaged from nodal velocities calculated with method
nP2 at the two end nodes p; and p, corresponding to edge j
(Fig. 8(b)).

3. (tRT1) area-weighted average from local nodal velocities calcu-
lated with method nRT1 at the two end nodes p, and p, in the
neighboring cells i; and i, (Fig. 8(c)). Compared to nodal veloc-
ity nRT2, this can be considered a similar type of weighted
approximation based on nodal velocity nRT1.

4. (tRT2) area-weighted average from the global nodal velocities
calculated with method nRT2 at the two end nodes p; and p,
corresponding to edge j (Fig. 8(d)). Because it uses averaged
nodal velocities, this method is expected to obtain smoother
results than method tRT1.

5. (tLS) least-square solution for a linear velocity field in the
neighboring two cells i; and i, using four known normal veloc-
ity components (4 equations) on edges j1, j», j3 and js, and two
approximated nodal velocity vectors (4 equations) at nodes p;
and p,. The normal velocity at edge j is not used because it
has no contribution to the tangential component. The result is
a system of 8 equations for 6 coefficients that describe a linear
velocity field, i.e., u=ax+b,y+c, and v=a,x+b,y +c, This
implies that, e.g., for a node at (x,1,yp1) with velocity (up1, vp1),

AuXp1 + buypy + Cu = Up1,
ayXp1 + bv_Vpl +C = Upt.

9

For an edge with midpoint at (x;;,y;1) and normal velocity Uj; in
direction (ny j1,n2j1),

(c¢) tRT1

Fig. 8. Stencils for calculating the tangential velocity V;. The dotted lines indicate the edges used for the least-squares solution. The short blue lines indicate the normal
velocities used by each method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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M1 (@uXjn + buyj + Cu) + i (@uxin + boyjy + €0) = Up.
(10)

Ataboundary edge, there is one adjacent cell which provides 6 equa-
tions from 2 edges and 2 nodes. The problem is well-constrained for
6 unknowns and does not require special treatment. This least-
square method requires solving a 6 by 6 linear system for every edge
and thus its computational cost is not trivial. There are a variety of
similar least-square methods, and we only include one here as an
example for the discussion of accuracy and efficiency. Compared
to the least-square methods in Vidovi¢ et al. (2004), by including
the approximated nodal velocities, the calculation here uses a much
smaller stencil and performs more robustly for complex geometries,
while the limitation is that overall accuracy is constrained by the
accuracy of the nodal velocities. However, we find that, in general,
fitting high-order polynomials can easily lead to ill-conditioning
of the least-square methods.

As depicted in Fig. 8, methods tP1 and tRT1 use only the two
cells neighboring the edge while the other methods need informa-
tion from all the cells surrounding the two end nodes of the edge.

All five methods described above accurately reproduce the tan-
gential velocities at interior edges on an equilateral mesh for veloc-
ity fields that vary linearly in space. Fig. 9 shows the errors in the
approximated tangential velocities (difference between the
approximated and true tangential velocities) for the parabolic
velocity field (Fig. 3) on the test meshes (Fig. 4). Methods tP1
and tRT1 perform similarly, both of which result in alternating
large and small errors with changing edge orientation. On the equi-
lateral mesh, the edges parallel to the velocity have errors of
roughly —3 x 1073 while the results for nonparallel edges are accu-
rate. These methods also have similar sensitivity to mesh quality
and the maximum errors (on interior edges) reach 10~! on the
skewed mesh, which significantly exceeds the errors on the equi-
lateral mesh. Methods tP2 and tRT2 are similar on the equilateral
mesh, and they have errors of roughly —3 x 1073 for interior edges.
However, these methods respond quite differently to mesh quality.
On the skewed mesh, the results of method tP2 produce the largest
errors among the five methods, while method tRT2 is only slightly
affected with errors (on interior edges) under 10~2. Although the
average error for method tRT2 is greater than that for methods
tP1 and tRT1, it is distributed uniformly. Similar to method tP1
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Fig. 9. Errors in the approximated tangential velocities for the quadratic velocity field on the equilateral mesh (left) and skewed mesh (right) for methods tP1 (a and a’), tP2 (b

and b’), tRT1 (c and c’), tRT2 (d and d’), and tLS (e and e’).
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Fig. 10. Spatial convergence of methods tP1, tP2, tRT1, tRT2 and tLS in interpolating
the tangential velocities for the parabolic velocity field. The y-axis is the average
absolute value of the errors averaged over the edges within the region Xa./
8 < X < 7Xmax/8 and Yinax/8 < ¥ < 7Ymax/8. Lines (1) and (3) are indistinguishable, (6)
and (8) are indistinguishable, and (2) and (4) are indistinguishable.

and tRT1, the least-square method tLS has alternating errors of
—3 x 1073 for edges aligned in the x direction, and —1 x 10~3 for
non-aligned edges on the equilateral mesh. Method tLS works ro-
bustly on the skewed mesh, as indicated by the errors that are
not significantly affected near the skewed cells.

Fig. 10 depicts the spatial convergence of the methods for the
approximation of tangential velocities for the parabolic velocity
field on the test meshes. The y-axis is the absolute value of the er-
ror averaged over the edges within the rectangle defined by X;;4x/
8 <X < 7Xmax/8 and Ymax/8 < ¥ < 7Ymax/8. The pairs of equilateral
and skewed meshes with grid spacing, 0.1, 0.05, 0.025 and
0.0125, are used. All the methods converge at a slope of two
although method tP2 does not converge as quickly on the finer
skewed meshes. On the equilateral meshes, the error for methods
tRT2 and tP2 is greater than that for method tLS, which is greater
than that for methods tP1 and tRT1. However, methods tRT1 and
tP1 are more sensitive to mesh quality. These tangential velocities
are second-order accurate on equilateral meshes, and they have er-
rors of similar magnitudes to those for the second-order accurate
methods for nodal velocities, i.e., nP1, nRT2 and nLS. However,

(a) Linear 1 cell

(b) Linear 4 cell

the differences between these methods of tangential velocities
are more considerable than those between the methods for the no-
dal velocities. This implies that the method for calculating tangen-
tial velocities is more critical to the overall accuracy of the
interpolation. It is also worth mentioning that for method tRT1
the averaged error is relatively small although it suffers from larger
local noise due to skewed cells (Fig. 9). This indicates that a differ-
ent measure may be needed to represent the local errors.

4.3. Interpolation for arbitrary locations

In Sections 4.1 and 4.2, we outlined methods for obtaining the
nodal and tangential velocities, which are defined at specific loca-
tions on the mesh. In this section, we describe methods to interpo-
late the velocity vectors at any location in the domain, which is
essential to obtain the trajectories and u~ for semi-Lagrangian
advection. The interpolation techniques follow the linear and qua-
dratic interpolation methods by Walters et al. (2007). The velocity
vector at an arbitrary point X located in cell i can be obtained by
linearly combining the nodal velocities of cell i or quadratically
combining the velocities at the nodes and edge midpoints in cell
i. We also include a four-cell based linear interpolation that is
not discussed by Walters et al. (2007).

We require that the interpolation methods smoothly recover
the normal velocity component U at edge midpoints. This is neces-
sary for temporal convergence at small Courant numbers, which
may occur in simulations with grid spacing varying by orders of
magnitude and the time step is chosen for the stability and/or
accuracy on the finest grid. The condition is also important in order
to avoid erroneous acceleration and predict correct structures such
as recirculation, stagnation point, etc. As a result, only the low-or-
der local nodal velocities obtained with method nRT1 can be used
for the linear interpolation. The quadratic interpolation, on the
other hand, naturally converges because it uses the midpoint
velocity vector that has the exact normal component. Because
the nodal velocities from methods nP1, nRT2 and nLS are very sim-
ilar (Fig. 7), in the following discussion we use method nRT2 for the
nodal velocities and employ methods tRT1, tRT2 and tLS for the
tangential velocities. Methods based on tP1 and tP2 are not em-
ployed because they perform similarly and tend to be more sensi-
tive to mesh quality. Therefore, the following five methods are
considered for interpolating the velocity vector at location x, and
their respective stencils are illustrated in Fig. 11.

1. (L1nRT1) Trilinear interpolation in one cell using the local nodal
velocities obtained with method nRT1. Using the notation
shown in Fig. 11(a), the velocity vector at point x in cell i can
be written as (Huebner, 1975)

u(X) = Aty 1 + Al + Ay, (11)

44 Av2 ;‘.A13 6

0

(c) Quadratic

Fig. 11. Stencils for the linear and quadratic interpolation for point x in cell i, denoted by the filled circle in each triangle. A, is the area of the triangle formed by point x and
two nodes normalized by the total area of cell i. Points P;, P, and P are the perpendicular feet from the point x to the edges of cell i.
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where up,;, Up>, and u,3 are the velocity vectors at the three
nodes of the triangle, and A;,, is the area of the triangle formed
by point x and the mth and nth node of the cell i, and normalized
by the area of cell i (Fig. 11(a)). Variables A, are area coordi-
nates, and the interpolating function of order n contains a com-
plete polynomial of order n that is a Lagrange polynomial from a
Pascal triangle.

2. (L4nRT1) Linear interpolation using the local nodal velocities in
a four-cell stencil. As illustrated in Fig. 11(b), the method first
requires the calculation of the perpendicular feet from point x
to each edge of cell i, i.e., P;, P, and Ps. The velocity vectors at
perpendicular feet are computed with method L1nRT1, which
are then interpolated to point X using trilinear interpolation in
the triangle formed by P;, P, and P; (Fig. 11(b)). This method
guarantees convergence to the normal velocity when x coin-
cides with the midpoint of an edge.

3. (QnRT2tRT1) Quadratic interpolation using global nodal veloci-
ties from method nRT2 and tangential velocities from method
tRT1. The interpolation coefficients can be found explicitly with
the area coordinates and thus do not necessarily require matrix
inversion. Using the notation in Fig. 11(c), the quadratic inter-
polation for point x in cell i can be written as (Huebner, 1975)

u(x,y) = (2A3 — 1)Anuy; + (2A13 — 1Ay,
+ (2A12 — 1)Anu, 3 + 4A13A23U. 4 + 4A12A 13U 5
+4A12A23 U6, (12)

where up;, Up, and up, 3 are the nodal velocity vectors and u, 4,
u.5, and u, are the midpoint velocity vectors on the edges cal-
culated with u, = Un + Vt, where U is known and V is interpo-
lated. Walters et al. (2007) implemented this particular method.

4. (QnRT2tRT2) Quadratic interpolation using Eq. (12) and method
nRT2 for nodal velocities and method tRT2 for tangential veloc-
ities (stencil in Fig. 11(c)).

5. (QnRT2tLS) Quadratic interpolation using Eq. (12) and method
nRT2 for nodal velocities and method tLS for tangential veloci-
ties (stencil in Fig. 11(c)).

We apply these methods to interpolate the velocity vectors onto
an 80 x 40 Cartesian array of points uniformly distributed over the
unstructured meshes. Among the five methods above, the qua-
dratic methods are accurate for linear velocity fields on the equilat-
eral mesh at points away from the boundaries. The linear methods
L1nRT1 and L4nRT1 are only accurate for constant velocity fields,
and for linear velocity fields the error for method L4nRT1 can be
one order of magnitude smaller than that for method L1nRT1.
Fig. 12 illustrates the errors in the streamwise velocity component
for the parabolic flow field (Fig. 3) on the test meshes (Fig. 4). For a
more quantitative comparison, the error is averaged in the x-direc-
tion to obtain an average error as a function of y on the equilateral
mesh as shown in Fig. 13. The errors for method L1nRT1 reach 107!
and alternate in the y direction with relatively small variation in
the x direction. Method L4nRT1 has errors of similar magnitude
which are, however, more randomly distributed, and thus the x-
averaged error is reduced (below 1072) as shown in Fig. 13. The
quadratic methods have errors on the order 1073 that are mostly
negative except for the points in the boundary cells. The negative
sign corresponds to positive numerical diffusion when the interpo-
lation is used to obtain u™ in semi-Lagrangian advection (Eq. (6)),
and the errors alternate in the y direction with relatively small var-
iation in x. Method QnRT2tRT2 has larger but more uniform errors
than method QnRT2tRT1, and method QnRT2tLS gives intermedi-
ate accuracy and smoothness.

On the skewed mesh, none of the results are severely impacted
because we have chosen robust methods to calculate the nodal and
tangential velocities. However, it is evident that the error varies

spatially depending on cell alignment. Among the quadratic meth-
ods, method QnRT2tRT1 is relatively more sensitive to the mesh
quality and the skewed cells induce positive errors with magni-
tudes of up to 1072,

Spatial convergence for the interpolation methods using the
parabolic velocity field is shown in Fig. 14. The y-axis is the average
absolute value of the error in the streamwise velocity evaluated on
the Cartesian array of points within the rectangle defined by X;qx/
8 <X < 7Xmax/8 and Yimax/8 <V < 7¥max/8. As expected, the linear
interpolation methods converge with a slope of one and the qua-
dratic methods converge with a slope of two with mesh refine-
ment, and thus are first- and second-order accurate, respectively,
in space. Although method L4RT1 is slightly more accurate than
method L1RT1, the errors for the linear methods are one to two or-
ders of magnitude larger than those for the quadratic methods. The
accuracy of the quadratic methods is consistent with the accuracy
of their tangential velocities. Method QnRT2tRT1 shows higher
sensitivity to mesh quality at finer resolutions, while the error
for method QnRT2tRT2 roughly follows 0.1u,, Ax%.

4.4. Combined trajectory and interpolation errors

For semi-Lagrangian advection, to obtain the location of the
traceback, x;, trajectories are calculated by integrating velocity
vectors backward in time from the midpoint of edge j, where the
normal velocity, U;, is defined. Errors arise from two sources,
namely (1) the temporal integration of the trajectory (Eq. (7))
and (2) the interpolation of the velocity vectors. The relative con-
tribution of the two sources of error depends on the particular inte-
gration and interpolation methods, velocity field, resolution and
the time step size. To compare different methods, we prescribe
the velocity field u =6y — 6y> and v=1.5x — 0.5x> on the equilat-
eral mesh shown in Fig. 4, which produces curved trajectories.
For different time step sizes, we use the equilateral mesh and com-
pute trajectories that originate at the edges, and then interpolate
the velocity field at the end of each trajectory, u;.

The exact trajectories can be calculated using Eq. (7) with the
prescribed velocity field, and we integrate these numerically using
RK4 with a tolerance of 107!°. Two types of trajectory integration
methods are employed, namely, the explicit Euler (EE) method
(Eq. (8)), and what we refer to as the analytical method. These
are then combined with different interpolation methods and with
and without substepping. In our tests, we only consider using the
same interpolation to calculate the trajectory and the final U; at
the end point, although it is possible to vary the interpolation
methods in these two steps. For the EE trajectory integration, we
compare the results of using Eq. (8) with one step versus with five
substeps. The velocity vector is interpolated (the exact velocity is
used in one case for comparison) at the end of each substep, and
used for the integration of the next substep. Analytical trajectories
eliminate time-integration errors by integrating the interpolated
velocity field exactly, and they differ from the “exact trajectories”
only because the latter is integrated using the true velocity field.
To compute the analytical trajectories, the area coordinates for
the linear and quadratic interpolation (Egs. (11) and (12)) are con-
verted into regular polynomial form and time-integration of Eq. (7)
is performed using RK4 with a tolerance of 10~'° with the velocity
field described by these polynomials. When substepping is used
with the EE method, the velocity vector at the end of the substep
is always interpolated using the cell in which the trajectory is lo-
cated at that substep. Therefore, if the trajectories cross over trian-
gle edges into a different cell, the velocity vector is obtained in this
new cell to use for the next substep. For the analytical integration,
we evaluate two similar scenarios: (1) the velocity vector is inter-
polated using the coefficients from the triangle abutting the origi-
nal departure edge j and remains the same for the integration over
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Fig. 12. Errors in the interpolated velocities for the quadratic velocity field on the equilateral mesh (left) and skewed mesh (right) for methods L1nRT1, L4nRT1, QnRT2tRT1,

QnRT2tRT2 and QnRT2tLS.

the entire time step, and (2) to test the effect of using the local
velocity field (different coefficients), we compute analytical trajec-
tories over five intervals, and the coefficients are updated at the
end of each interval to ensure that they correspond to the local
coefficients. Here we use the term “interval” to emphasize that
the analytical trajectory method computes curved trajectories dur-
ing each substep. A trajectory for the analytical method will be
smooth from one interval to the next unless it crosses over an edge,
and if it crosses over an edge, it is still continuous but there will be
a discontinuity in direction due to a change in the interpolated
velocity field. We combine the integration methods with two inter-
polation methods L4nRT1 and QnRT2tRT2, and a total of nine dif-
ferent combinations of trajectory integration/interpolation
methods are employed, as outlined in Table 2.

Fig. 15 illustrates the errors as a function of the Courant number
in X;- and w; using the combinations of methods listed in Table 2.
Errors are evaluated as the average of the errors associated with
trajectories that originate at edges within the rectangle defined
by Xmax/8 <X < 7Xmax/8 and Ymax/8 < ¥ < 7y¥max/8 and remain in
the domain after the time interval At. The results of X;” are depicted
in Fig. 15(a), which shows that the error associated with

integration using EE in one step with the exact velocity (Combina-
tions 2 and 5 in Table 2) converges as a straight line with a slope of
two. This is consistent with its theoretical leading error of O(At?) in
one time step. However, when interpolated velocities are used
with EE integration in one step (Combinations 3 and 6 in Table
2), results converge at a slower rate at small Courant numbers
and the error with interpolation method L4nRT1 (Combination 3)
is considerably larger than that with method QnRT2tRT2 (Combi-
nation 4). The error due to interpolation of the velocity field,
u’(x), contributes errors in calculating x;” of the form u’A¢+ H.O.T,,
which converges with a slope of unity at small At. This error in the
trajectory associated with using EE in one step is considerably
reduced by using the analytical trajectory integration with the
quadratic coefficients (Combination 7). However, when the
Courant number, defined by u,,,xAt/Ax, exceeds 0.7, the error in-
creases rapidly because some of the tracebacks enter neighboring
cells where the original quadratic coefficients for the analytical
integration are no longer valid. The coefficients obtained from
the quadratic interpolation are not necessarily close to the pre-
scribed velocity field and can differ significantly from one cell to
another. When the traceback is within or very close to the cell
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Fig. 14. Spatial convergence of the interpolation methods for the quadratic velocity
field. The y-axis is the absolute value of the errors averaged over the edges within
the region Xmna/8 < X < 7Xmax/8 and Yimax/8 < ¥ < 7Yimax/8-

containing the edge from which the traceback departed, the inter-
polation error is bounded. Otherwise, interpolation error grows
quickly with distance from the cell. Therefore, it is important to
interpolate the velocity field using coefficients from the cell that
encompasses the traceback. This can be done either every time
the traceback crosses an edge or with intervals at a sufficient fre-
quency. We choose the latter and use 5 intervals for comparison
to the errors associated with the EE method that uses 5 substeps.
As shown in Fig. 15(a), substepping produces higher accuracy
when the quadratic interpolation is used for both the EE

Table 2
Combinations of interpolation and trajectory calculation methods.

Combination Interpolation Trajectory method

Integration Velocity field
1 L4nRT1 Exact Exact
2 L4nRT1 EE one step Exact
3 L4nRT1 EE one step Interpolated
4 QnRT2tRT2 Exact Exact
5 QnRT2tRT2 EE one step Exact
6 QnRT2tRT2 EE one step Interpolated
7 QnRT2tRT2 Analytical one Departure cell
interval coefficients
8 QnRT2tRT2 EE five substeps Interpolated
9 QnRT2tRT2 Analytical five Local coefficients

intervals

integration (Combination 8) and the analytical integration with
substeps (Combination 9).

Fig. 15(b) shows the errors in the final values of U; (the normal
component of u;) interpolated at location x:. In general, since
decreasing the time step size leads to a traceback location that is
closer to the departure point X;, the normal component U; =
n; - u; converges to the exact value with decreased time step be-
cause both the linear and quadratic interpolation methods give
the exact value of the normal velocity when X;- = x;. Although
the tangential component V; =t;-u; converges to the interpo-
lated value rather than the exact value which is not unknown in
general, this does not affect the results since V; is not used in
the remaining calculations.

Different trajectory integration methods do not affect the accu-
racy of Combinations 1-3 because the error due to the linear inter-
polation method L4nRT1 dominates over the error in the trajectory
integration. This is in contrast to the errors in Combinations 4-9
which employ quadratic interpolation. For Combinations 4-9,
when the trajectories are integrated with substeps or intervals
(Combinations 8-9), errors are similar to the error that arises when
using the exact x:- (Combination 4). When intervals or substepping
is not employed, the errors grow rapidly for Courant numbers
greater than unity (Combinations 5-7). At small Courant numbers,
the results converge at a slightly sub-linear rate (i.e., <O(At)) for
the linear interpolation Combinations (1-3) and a slightly super-
linear rate for the quadratic interpolation Combinations (4-9).
For large Courant numbers, interpolation errors are generally
bounded unless the mesh is highly skewed. This is key to the sta-
bility of the semi-Lagrangian method. However, unlike structured
grids, interpolation errors rarely vanish at integer Courant num-
bers because it is unlikely that the traceback coincides with an
edge midpoint that has the same orientation as edge j. On the other
hand, trajectory integration errors may continue to grow with in-
creased time step size at large Courant numbers beyond the range
that is discussed here, and thus are likely to play a more important
role. This is consistent with the findings by Xiu and Karniadakis
(2001) which indicate the dominance of interpolation error for
small time step sizes.

5. Test cases

We compare the different interpolation methods with two test
cases. The first test case consists of flow over a backward-facing
step with idealized geometry, which is a well-documented bench-
mark test case for momentum advection schemes. The second test
case consists of a field-scale simulation of estuarine flow in a shal-
low, macro-tidal estuary. For both cases the trajectory is integrated
using the EE method with three substeps for simplicity and effi-
ciency. More sophisticated trajectory integration methods can be
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(Fig. 4(a)). Combinations 1-9 are described in Table 2.

found in Walters et al. (2007) and Ham et al. (2006). To ensure
temporal accuracy in resolving advection of momentum, the
maximum horizontal Courant number we use is typically around
0.1-0.3.

5.1. Backward-facing step

The rectangular domain for the backward-facing step test case
is shown in Fig. 16. The domain is L = 40 m long and 2H = 2 m high
with no-slip upper and lower walls, and is chosen to be long en-
ough to minimize possible influence of the outflow boundary con-
ditions. The inlet and the step height, H, are both 1m, and,
following the configuration of Gartling (1990), the inlet does not
include an extended inflow channel which helps avoid skewed

10
a full domain

cells at the step corner. Two-dimensional rigid-lid simulations
were performed using SUNTANS, and the unstructured mesh
shown in Fig. 16 is generated with GAMBIT (Fluent, Inc., Lebanon,
NH) and has an average angle skewness of roughly 4°. The resolu-
tion is 0.05 m near the inlet and is gradually stretched to roughly
0.06 m at x =20 m and 0.1 m at the outlet boundary, which is sim-
ilar to the resolutions used by other authors (Gartling, 1990; Vid-
ovi¢ et al., 2004). Multiple resolutions were tested to ensure
convergence, although these results are omitted here. At the inlet
boundary, a parabolic velocity profile is specified, such that
u(x=0,z,t =0) = —6uqy(1 — z/H)(2 — z/H) for H <z <2H, which
gives an average inflow velocity of ug,.=1m s~!. With a constant
viscosity v=2.5 x 103 m?s~!, the Reynolds number based on
the channel width is given by Re = 2u,,.H/v = 800. The Reynolds

20
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b near the inlet

vertical z (m)

20 30 40

streamwise x (m)

Fig. 16. Computational mesh for the backward-facing step test case. The gray scale shows the angle skewness in degrees.
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number definition and problem specifications follow Armaly et al.
(1983) and Gartling (1990).

We examine the backward-face step flow with four interpola-
tion methods for semi-Lagrangian advection, namely L1nRT1,
L4nRT1, QnRT2tRT1, and QnRT2tRT2, which are discussed in Sec-
tion 4.3. Method QnRT2tLS is no longer included due to its low
cost-effectiveness. Two Eulerian schemes, namely, first-order up-
wind and central differencing, are also included in the comparison.
These Eulerian schemes are based on the momentum-conservative
methods from Perot (2000), and are the original advection meth-
ods in the SUNTANS model. The stationary velocity fields obtained
from the simulations are illustrated in Fig. 17 in order of decreasing
primary reattachment length at the lower wall, which we refer to
as x;. In these results, the final velocity field on the staggered grid
was interpolated to vertical transects using interpolation method
QnRT2tRT1. The semi-Lagrangian method with QnRT2tRT1 inter-
polation predicts a reattachment length of roughly 12 step-heights
downstream of the step at the lower wall, and an upper wall eddy
extending between 10 and 21.5 step-heights from the step, which
are close to the results of Gartling (1990), who found x, ~ 12H. The
results of the Eulerian central-differencing scheme are similar but
the recirculation cells are slightly weaker. Although Eulerian cen-
tral-differencing on Cartesian grids is non-diffusive in theory, mesh
skewness may introduce diffusive errors on unstructured grids.

Overall, method QnRT2tRT1 and Eulerian central-differencing
predict reasonable flow fields. Fig. 18 depicts the velocity and
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pressure variations from these two methods at transects located
at x/x,=14/12 and x/x,=30/12, which correspond to transects at
x/H=14 and x/H =30, locations of data published by Gartling
(1990). We normalize the distance with the reattachment length
here to facilitate interpretation of results. The comparison shows
that the general structure of the flow is captured reasonably well,
although errors in the vertical velocity are relatively large. We
found that the profile of vertical velocity is quite sensitive to the
horizontal location in the streamwise direction and is difficult to
reproduce (also see Vidovic et al., 2004).

The other methods have substantial errors and do not predict
correct flow structures. They predict much weaker (or no) primary
lower-wall circulation and upper-wall eddy. The semi-Lagrangian
scheme with the QnRT2tRT2 interpolation gives a similar velocity
field as the first-order upwind Eulerian scheme and appears to
be slightly more diffusive. The marked difference between the
semi-Lagrangian schemes with QnRT2tRT2 and QnRT2tRT1 implies
that the choice of the tangential velocity in the interpolation is
important. The former is more diffusive as expected because its
tangential estimate is more dissipative. The semi-Lagrangian
method with linear interpolation L4nRT1 predicts very weak recir-
culation at the lower wall while interpolation L1nRT1 gives no
recirculation and the flow field is similar to that for the no-advec-
tion case (no momentum advection).

Predicted streamwise distributions of the pressure at the lower
wall within 20 step-heights from the step are depicted in Fig. 19
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and compared to the results of Gartling (1990). Physically, pressure
should increase slowly as the flow decelerates over the step and it
should experience a local maximum at the lower-wall reattach-
ment point. The results of the semi-Lagrangian scheme with
QnRT2tRT1 and the Eulerian central-differencing are roughly cor-
rect. However, for the other cases, numerical errors cause signifi-
cant momentum loss which leads to a steady pressure drop with
distance down the channel. This is most significant for the semi-
Lagrangian method with L4nRT1 interpolation in which the veloc-
ity profile in the downstream section is considerably flatter than
the expected parabolic profile. The semi-Lagrangian method with
L1nRT1 interpolation produces a pressure distribution that is sim-
ilar to that for the no-advection case. Although incorrect, the no-
advection case is non-dissipative, a result that was also shown
by Walters et al. (2007).

5.2. Field-scale estuarine test case

We compare the advection schemes with field-scale simula-
tions of the flows in the Snohomish River estuary, WA, to assess
their ability to predict both large-scale tidal flows and local-scale
flow-bathymetry interaction at an abrupt sill. The Snohomish River

estuary is the lower mainstem of the river defined by Jetty Island to
the west and the city of Everett to the east (see Fig. 20). The estuary
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is a shallow tidal river with less than 5 m mean depth and exten-
sive intertidal mudflats, and it is influenced by strong tides with

over 4 m tidal range. The river discharges to Possession Sound off-
shore, which is one of the basins in Puget Sound. A bypass connec-
tion between the main channel and Possession Sound exists at the
north end of Jetty Island, which consists of intertidal mudflats that
are exposed at low tide. The tidal flows interact with the complex
geometry and result in strong spatio-temporal variability in the ti-
dal flows during each tidal cycle. Furthermore, a highly dynamic
local flow field is present in the vicinity of a small (50 m x 10 m),
abrupt man-made sill and the scourholes at the tip of Jetty Island
(see the inset plot in Fig. 20(b)).

The computational domain includes the main river channel and
a simplified tributary channel, and the offshore region encom-
passes Possession Sound to the west and Port Susan Bay to the
north. Two meshes with different horizontal resolutions (which
we refer to as coarse and fine) are applied to evaluate the predic-
tions of large-scale tidal flows and local-scale bathymetry-induced
flows. The coarse mesh has a horizontal resolution of 8-35 m (edge
length) to resolve flow in the main river channels, while stretching
is employing to expand the resolution to 300 m in Possession
Sound. Vertical layers are 0.2-0.3 m for the top 20 m that cover
the estuary and are stretched at a rate of 1.19 (ratio of neighboring
layer thickness) in the deeper Possession Sound regions. The verti-
cal grid consists of structured z-levels, and linear interpolation is
used in the vertical for the semi-Lagrangian advection, while the
different horizontal interpolation methods discussed in this paper
are tested. Tidal fluxes are forced at the west inlets of Possession
Sound and are calibrated to give the correct offshore water level.
Bottom drag is parameterized with a quadratic drag law using a
roughness height of 2.5 x 10~*m as inferred from observations.
All simulations use a zero horizontal eddy-viscosity and are run
with a time step of 1 s and a maximum horizontal Courant number
of roughly 0.1 (based on edge length) for resolving advection and
wetting and drying. A two-week long simulation is performed with
the coarse grid to validate the model predicted tidal dynamics for a
spring-neap tidal cycle (although in this paper we only discuss the
results over one day). Specific details of bathymetry, boundary
conditions, initial conditions and validation can be found in Wang
et al. (2009) (in which method L4nRt1 was employed). It is worth
mentioning that the bathymetry is improved by incorporating re-
cent survey data for a 6-km stretch of the main channel upstream
at the junction of the tributary. This improved bathymetry effec-
tively damps out the peak flows and oscillation in the no-advection
case shown in Wang et al. (2009). In what follows, we compare the
predictions from three different interpolation schemes for semi-
Lagrangian advection, namely method L4nRT1, QnRT2tRT1, and
QnRt2tRT2, along with the no-advection case. The Eulerian
schemes are not suitable for this test case because of wetting
and drying, and the test case with interpolation method L1nRT1
is also excluded because it can be unstable and cannot be stabilized

m above MLLW

— — — offshore forcing

observations, mooring M6

semi-Lagrangian QnRT2tRT1
semi-Lagrangian QnRT2tRT2
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Fig. 21. Predicted and measured free surface, relative to MLLW (mean low-low water), at mooring location M6. Observations are from Giddings et al. (2011).
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with horizontal viscosity (the instability may arise from local grid
skewness which we have not specifically analyzed).

The tidal forcing consists of strong diurnal and semi-diurnal
constituents, and thus there is a strong ebb/flood period followed
by a weak ebb/flood period. Fig. 21 depicts the free-surface predic-
tions at mooring site M6, the location of which is shown in
Fig. 20(b). The predictions from the simulations are similar with
noticeable differences near low-low water, when the water level
measured at mooring site M6 is higher than that offshore in the
Sound due to inertial and frictional effects. Because numerical dif-
fusion associated with momentum advection can lead to increased
dissipation, methods with more numerical diffusion will lead to a
higher water level. Fig. 21 shows that the predictions from meth-
ods L4nRT1 and QnRT2tRT2 overpredict the water level during
low-low water, and thus the tidal waves are slightly over-damped.
The result of method QnRT2tRT1, on the other hand, has roughly
the correct amplitude and so it likely has the least numerical diffu-
sion. The non-advective case is the only case that the water level is
underpredicted during low-low water due to a lack of inertial and
frictional effects associated with momentum advection.

Fig. 22 shows time series of depth-averaged along-channel
velocity at the mooring sites in the main channel (Fig. 20(b)) from
the simulations in comparison with field observations. Positive
velocity is defined in the upstream direction (flood tide direction).

observations

semi—-Lagrangian L4nRT1

No momentum advection

semi-Lagrangian QnRT2tRT1
semi-Lagrangian QnRT2tRT2

There are notable differences between the simulations, most prom-
inently during peak ebb events with discrepancies up to 0.2 ms~',
although the general pattern is similar. These peak ebb flows occur
around the time of low-low water, when the predictions also devi-
ate from the observations most significantly. This is the most chal-
lenging period to simulate accurately because the flow is very
shallow (2 m) and fast (over 1.5 ms™' near the free surface) and
possesses shallow drying channel shoals, all of which lead to strong
spatial gradients. Among the three semi-Lagrangian methods,
interpolation L4nRT1 is always the most dissipative, QnRT2tRT1
is the least, and QnRT2tRT2 is intermediate, which is consistent
with our earlier analysis. Overall, quadratic interpolation produces
the best match between predictions and observations. Although
details in the behavior of the results vary from location to location,
it is evident that the non-advective case consistently over-predicts
peak flows, implying the importance and spatial variability of
momentum advection.

The near-surface velocity field during peak ebb (around low-
low water) is illustrated in Fig. 23. The relative strength of the flow
is generally consistent with what was found for the depth-aver-
aged velocity. However, the horizontal variability in the velocity
fields among the different methods is quite different. In the no-
advection test, slow flow is limited to the shallow shoals and there
are sharp lateral gradients between the shoals and the central
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Fig. 22. Predicted and measured depth-averaged along-channel velocity at mooring sites (a) M2A, (b) M3A, (c) M3B and (d) M6. The mooring sites are shown in Fig. 20(b).
Positive velocity is defined in the upstream direction (flood tide direction). Observations are from Giddings et al. (2011).
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channel. This flow field is well correlated with the bathymetry
(Fig. 20(b)). The advective cases predict much smoother gradients
between the shoals and the channel. This can be caused (1) phys-
ically by advection of momentum that brings slow fluid from the
shoals to the channel, and (2) by the numerical diffusion of the
advection scheme. It is evident that interpolation method L4nRT1
induces considerable numerical diffusion that can lead to signifi-
cant energy loss in the shoals and over-damping of the tidal flow
across the channel. The results from the two quadratic interpola-
tions are similar, while method QnRT2tRT1 predicts slightly shar-
per lateral gradients. However, method QnRT2tRT1 tends to
produce non-propagating spatially-oscillatory errors. For example,
there are oscillations at the tip of Jetty Island in Fig. 23(a) that
might be caused by unresolved sharp gradients.

The fine mesh is employed with 1-5 m (edge length) horizontal
resolution near the sill to evaluate the advection schemes on pre-
dicting local-scale flow structures around the sill. With stretching
the grid resolution expands to 300 m in the Sound, and the inset
plot in Fig. 20(b) shows the resolved bathymetry on this grid.
The same vertical resolution as the coarse mesh is used and in total
the grid contains 12 million computational cells. With a time step
size of 0.1 s, 864,000 time steps are required for a 24-h simulation
period, which consumes 48,000 cpu-hours using 200 3.0 GHz Intel
Woodcrest processors. Simulations were performed using interpo-
lation method QRT2tRT2 until the second peak ebb tide, and then

simulations were started from this same condition using different
schemes and ran for another 10-min period. This short duration al-
lows local flow features to develop while the adjustment in the
large-scale condition is small.

The predicted near-surface velocity fields near the sill on the
fine mesh are illustrated in Fig. 24. The crest of the sill is exposed
due to the low water level and the flow separates as it moves
around the sill. Recirculation eddies are predicted in the flow at
the downstream side of the sill, and they are most pronounced
with the quadratic interpolation cases QnRT2tRT1 and QnRT2tRT2.
These methods predict similar velocity fields which are similar to
what is observed in the field (method QRt2tRT1 was used for the
model-observation comparison in Plant et al. (2009)). The linear
interpolation method L4nRT1 predicts much weaker recirculation
as well as slightly weaker ambient ebbing flow in the channel. In
the no-advection case, the flow no longer recirculates, which is
consistent with the results of the idealized backward-facing step
test case. Although method QnRT2tRT1 predicts stronger recircula-
tion, oscillations in the velocity field at the north side of the sill are
also generated with this resolution. These are stable over the
course of this ten-minute simulation although they become unsta-
ble over a longer period unless additional horizontal viscosity is
applied. For the simulations on both coarse and fine meshes, the
quadratic interpolation methods incur roughly 15% more computa-
tional time than the linear interpolation method L4nRT1.
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6. Conclusions

Reconstruction of vector fields on unstructured, staggered, tri-
angular grids is difficult because the governing equations are writ-
ten for the normal velocity components and the tangential velocity
components are not stored. As a result, methods must be devel-
oped to obtain the tangential velocity components from the known
normal velocity components. In this paper we presented and ana-
lyzed five methods to approximate the nodal velocity vectors at
cell vertices and five methods to approximate the tangential veloc-
ity components at the edge midpoints for use in semi-Lagrangian
advection of momentum. The methods are based on RTO basis
functions and the methods of Perot (2000). The errors for each
method are evaluated with a unidirectional parabolic velocity field
on equilateral and skewed meshes in a rectangular domain. In
summary, we found the following:

1. Methods nP1, nP2, nRT2 and nLS for nodal velocities produce
similar results and they are second-order accurate in space on
equilateral meshes, while method nRT1 is first-order accurate.
Method nP2 is shown to be the most sensitive to mesh quality,
while other methods are much less affected.

2. All five methods for the tangential velocity are second-order
accurate in space on equilateral meshes. Method tP2 is the most
sensitive to mesh quality and method tRT1 is moderately
affected by the mesh.

3. For the interpolation at arbitrary locations, the quadratic meth-
ods QnRT2tRT1, QnRT2tRT2 and QnRT2tLS are second-order
accurate in space and their averaged errors are one to two
orders of magnitude smaller than the linear interpolation meth-
ods L1nRT1 and L4nRT1. For the quadratic methods, the errors
are most sensitive to the particular method employed to recon-
struct the tangential velocities.

4, Comparison of nine combinations of different interpolation and
trajectory integration schemes shows that interpolation errors
dominate over the trajectory integration errors. The quadratic
interpolation methods produce the most accurate values of
the normal velocity U;, and convergence in time is slightly
higher than first-order. Convergence in time for the linear inter-
polation methods is slightly lower than first-order.

The different interpolation methods are implemented for semi-
Lagrangian advection (with the Eulerian-Lagrangian simplifica-
tion) and evaluated with a backward-facing step test case and
field-scale estuarine simulations. The quadratic interpolation
schemes consistently produce better results for both large- and
small-scale flow structures. Increased accuracy is achieved with
an increase in computational overhead of only 15% in the field-
scale simulations. The properties of the quadratic interpolation
schemes depend to great extent on the method used to approxi-
mate the tangential velocities. Use of a method with a compact
stencil to calculate the tangential velocities for method QnRT2tRT1
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produces less numerical diffusion at the expense of the appearance
of oscillations in the velocity field. For method QnRT2tRT2, the tan-
gential velocities are averaged over a larger stencil, and this results
in a moderate level of numerical diffusion which suppresses the
oscillations which may not be desirable in general.
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Appendix A. Cell-centered and nodal velocities by Perot (2000)

Perot (2000) proposed a method to calculate cell-centered
velocities that conserves momentum. It has been widely used in
numerical models for solving the momentum advection and Corio-
lis terms (Fringer et al., 2006; Ham et al.,, 2007; Walters et al.,
2009). u; at the center of cell i is calculated with

Ac,»ui = Z UijDjl'lj7

Jjevi

(A1)

where set ¥; includes the three edges of cell i and Ac; is the area of
cell i. The schematic of the cell is shown in Fig. A.25. U; is the normal
velocity on edge j, L; is the length of the edge, D; is the distance be-
tween the cell center and the edge center, and n; is the unit vector
in the normal direction of edge j, n; = (n4j,ny;) where ny; = cos(6;) and
ny; = sin(6;). 0; is the angle between the normal vector and the posi-
tive x axis (Fig. A.25). This method is exact for a constant velocity
field on equilateral grids.

Perot (2000) also provides a method to calculate nodal veloci-
ties using the normal velocities at all the edges surrounding the
node. The vector u, at node p can be calculated with

Adpup = Z Ujoljl‘lj, (AZ)

je¥p

where set ¥, includes edges surrounding node p and Ad, is the area
of the Voronoi diagram formed by the cell centers (shown by the
dashed lines in Fig. A.26). W is the distance between two cell cen-
ters across edge j, and [; is the distance from node p to the center of
edge j (half of the edge length) as illustrated in Fig. A.26.

Uj

Fig. A.25. Cell-centered velocities by Perot (2000).

Fig. A.26. Nodal velocities by Perot (2000).

Appendix B. Nodal velocities based on RT0 approximation

Low-order Raviart-Thomas (RTO) vector basis functions assume
a constant normal velocity distribution along the edges and linear
variation of the velocity field over a cell. Walters et al. (2009) dis-
cussed the properties of this method, e.g., regarding the solution of
the Coriolis terms, in comparison to the methods of Perot (2000).
Following Hanert et al. (2003) and Walters et al. (2009), the veloc-
ity at location x in cell i is

ux) = U, (B.1)
where N, is the number of element sides. ®; are the basis functions

given by

X — Xjs

P =241,

(B.2)

where Ag; is the area of the cell, X;; is the location of the node oppos-
ing edge j and L; is the length of edge j. This is equivalent to a geo-
metric construction as follows. In cell i, vector u, at node p can be
solved using the normal velocities at edges j1 and j2 adjacent to
node p in cell i (as shown in Fig. B.27), which gives the 2 x 2 system

ng-u, = Uj], (BB)
np -u, = sz. (B4)

This method is exact for constant velocity fields regardless of the
mesh skewness while the method by Perot (2000) degrades rela-
tively quickly with decreasing mesh quality. This method also cor-
rectly reproduces the linear velocity field u = a, + bx and v=a,+ by,
although this velocity field rarely arises in practice.

! up
U;

Fig. B.27. Nodal velocities using the RTO method.
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