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a b s t r a c t

A complication of finite-volume triangular C-grid methods is the numerical emergence of horizontal
divergence errors that lead to grid-scale oscillations in vertical velocity. Nonlinear feedback via advection
of momentum can lead to numerical instability in velocity modes via positive feedback with spurious
vertical velocities induced by horizontal divergence truncation error. Existing strategies to mitigate diver-
gence errors such as direct divergence averaging and increased diffusion do not completely mitigate hor-
izontal vertical velocity oscillations. We present a novel elliptic filtering approach to mitigate this
spurious error and more accurately represent vertical velocities via improved calculation of horizontal
divergences. These results are applied to laminar curved channel flows, demonstrating the applicability
of the method to reproduce secondary flow features.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Current design of regional coastal ocean models often focuses
on resolving unsteadiness under barotropic forcing and frictional
losses. These primary balances are well served by an efficient
and classic finite volume C-grid approach, which is effectively
the lumped RT0 finite element method (Walters et al., 2009). Stor-
age of scalar variables at cell centers with staggered vector quanti-
ties normal to cell faces ensures that scalar quantities, such as the
barotropic pressure, are tightly coupled to vector quantities such as
the horizontal velocity field. The utility of the Cartesian C-grid ap-
proach is well known with additional ocean modeling uses such as
resolving geostrophic and nonhydrostatic balances [e.g., MITgcm
(Adcroft et al., 2004) and ROMS (Shchepetkin and McWilliams,
2005)].

The unstructured triangular C-grid performs well in standard
regional coastal ocean modeling contexts [e.g., SUNTANS (Fringer
et al., 2006) or UnTRIM (Jankowski, 2009)]. However, applications
requiring resolution of Coriolis acceleration or nonlinear momen-
tum advection are often polluted by high-frequency checkerboard
error in the cell-centered horizontal divergence. Vertical velocities
constructed using horizontal divergences inherit this error, partic-
ularly in hydrostatic models. This liability has, to date, precluded
use of the triangular C-grids for large-scale ocean modeling

(Danilov, 2010; Gassmann, 2011). Hexagonal C-grids, which do
not have horizontal divergence noise modes, are an upcoming
and promising alternative with recent applications considered by
Ringler et al. (2013). However, for triangular C-grid usage, a plau-
sible solution is a filtering operation to prevent this error from
amassing in the horizontal divergence. This filtering step is com-
puted explicitly in time and prior to use of the horizontal diver-
gence field in either the nonhydrostatic pressure computation
step or continuity equation to obtain the vertical velocity field.

To the authors’ knowledge, application of filters to ocean models
has been largely restricted to velocity or pressure modes in struc-
tured, Cartesian grids. A notable exception is the ICOsahedral Non-
hydrostatic (ICON) model family which applies filtering to the
divergence by explicitly adding a carefully selected hyper-viscosity
term to the equations of motion that compensates for the leading
order truncation error term incurred by the discrete horizontal
divergence (Rípodas et al., 2009; Wan et al., 2013). Our filtering
method to correct horizontal divergence errors for unstructured tri-
angular C-grids with elliptic operators is novel and directly removes
grid-scale variability, even for poor quality grids, by construction.
We utilize Shapiro digital filters constructed with information local
to the point of application of the filter for computational efficiency
(Shuman, 1957; Shapiro, 1975). These filter types have been previ-
ously applied in structured Cartesian/Curvilinear C-grid ocean
models (e.g., in MITgcm (Berntsen et al., 2006) and HYCOM (Klinger
et al., 2006)). However, to the authors’ knowledge, this is the first
application to an unstructured triangular C-grid ocean model.
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In this paper we present new filtering methods to remove
spurious horizontal divergence modes and subsequently improve
vertical momentum advection. A review of the manifestation of
horizontal divergence noise in unstructured triangular C-grid
ocean models is given in Section 2. Explicit and implicit filtering
techniques to mitigate noisy horizontal divergence fields are
discussed and developed in Section 3. Numerical diffusion and
physical effects of the proposed filters are analyzed in Section 4.
The applicability of the horizontal divergence noise removal
method is demonstrated by numerical experiments using the
open-source unstructured C-grid ocean model SUNTANS to
simulate secondary circulation in a curved channel flow
(Section 5).

2. Causes and effects of horizontal divergence noise

2.1. Previous studies of horizontal divergence noise

Horizontal divergence noise is often characterized by checker-
board patterns in the horizontal divergence. These noise patterns
can arise in transient as well as quasi-steady regimes, indepen-
dently resulting from poor resolution or widely-used, inconsistent
computations of barotropic gradients, viscosity, and Coriolis forc-
ing (Le Roux et al., 2007; Danilov, 2010; Gassmann, 2011). The
noise may manifest itself irrespective of boundary conditions.
Noise levels increase for nonuniform, fully unstructured grids,
but are present even for idealized, periodic equilateral grids with
varying bathymetry or even uniform bathymetry on the f-plane
(Danilov, 2010; Gassmann, 2011). The noise is an intrinsic property
of the grid because Fourier and truncation error analysis for the
horizontal divergence operator reveal that the first-order term
for the horizontal divergence error has an alternating sign between
upward and downward pointing triangles (Danilov, 2010; Wan
et al., 2013). As detailed in depth by Gassmann (2011), this prob-
lem with horizontal divergence noise corresponds to an inability
of neighboring triangles sharing an edge to have the same analyt-
ical divergence. The problem is unfortunately independent of the
divergence discretization, but is limited to the triangular C-grid
as it does not occur for the hexagonal C-grid (Gassmann, 2011).
The severity of the error incurred will depend on both the discret-
ization used and dynamics. Unfortunately, many implementations
and flows of interest manifest this horizontal divergence checker-
boarding error which is most readily observable in a checker-
boarded vertical velocity (Danilov, 2010; Gassmann, 2011; Wan
et al., 2013).

The simplest approaches to mitigate the triangular divergence
checker-boarding error are direct averaging, increased diffusion,
or hyper-viscosity. However, averaging only veils the noise and
cannot prevent its further manifestation via nonlinear feedback
(Gassmann, 2011). Damping of the spurious divergence via in-
creased diffusion does not in general mitigate the problem, partic-
ularly if boundary layers are unresolved, because common
implementations of the diffusion operator are anisotropic in gen-
eral (Danilov, 2010). Furthermore, as shown by Holleman et al.
(2013), diffusive truncation errors related to advection are aniso-
tropic. The combined physical and numerical diffusion, conse-
quently, is in general anisotropic and cannot mitigate the error.
Explicit hyper-viscosity approaches, although successful, require
tuning of a hyper-viscosity coefficient to ensure the checker-
boarding error is mitigated (Wan et al., 2013). A new approach,
in development by Peter Korn of MPI Hamburg, utilizes mimetic
methods to constrain the horizontal divergence error by applica-
tion of projectors to and from the primal and dual grids to ensure
discrete operators behave analogously to their continuous counter-
parts (Korn, 2011).

We acknowledge these challenges and propose a new strategy
to prevent spurious feedback of this noise within an ocean model-
ing framework. The divergence noise mode contaminates all fields
simultaneously because the discretization and dynamics are cou-
pled. However, the impacts of the noise depend on the discretiza-
tion and solution methodology. For example, the noise modes may
be most identifiable within the horizontal velocity field or horizon-
tal divergence field depending on whether equations are formu-
lated with respect to face velocities or horizontal divergences
because these are intrinsically related via the Helmholtz decompo-
sition (Nicolaides, 1992). We therefore examine the current design
of ocean models to design a methodology to mitigate horizontal
divergence error.

2.2. Horizontal divergence errors in an idealized triangular C-grid
ocean model

A generalized ocean model consists of a continuity equation and
momentum equation, viz

@w
@z
þrH � uH ¼ 0 ð1Þ

@u
@t
¼ F � grHg; ð2Þ

where the subscript H indicates the horizontal components of a vec-
tor, g is the free surface, u is the velocity vector, g is the gravita-
tional constant, t is time, z is the vertical coordinate, and F is a
forcing term aggregating advection of momentum, the baroclinic
pressure gradient, nonhydrostatic pressure, viscous dissipation,
Coriolis, wind stresses, etc. The free surface elevation is obtained
via the depth-averaged continuity equation

@g
@t
þrH �

Z g

�d
uHdz ¼ 0; ð3Þ

where d is the depth.
For a C-grid discretization, a face-normal horizontal momentum

equation is obtained by dotting a face-normal vector, n, with Eq.
(2). It is applied at cell edges j for the face-normal velocity Uj, viz

@Uj

@t
¼ Fj � g

@g
@n

����
j

; ð4Þ

where Fj ¼ F � n and g @g
@n

��
j ¼ n � rHg. The continuity equation (3) is

used to update the free surface in a cell. In the case of the h-method
of Casulli and Zanolli (2002), the momentum and continuity equa-
tions are solved simultaneously to yield predicted values for the
edge momentum U� and free surface g�. For the hydrostatic case
these values are simply Unþ1 ¼ U� and gnþ1 ¼ g�. However, if nonhy-
drostatic pressure is utilized, w� is computed via a vertical momen-
tum equation and the nonhydrostatic pressure-correction field qc is
calculated with an elliptic equation for the corrector step to obtain
Unþ1 and gnþ1(Fringer et al., 2006). For both the hydrostatic and
nonhydrostatic methods, continuity is strictly enforced by prognos-
tically computing vertical velocities wnþ1 via a nonhydrostatic
pressure correction imposing a discrete version of Eq. (1),

wnþh
i;kþ1 ¼ wnþh

i;k � DHðUnþhDzÞi;k: ð5Þ

The horizontal divergence of Unþ1 over each z-level of thickness
Dz for horizontal divergence is given by

DHðUnþhDzÞi;k ¼
1
Ai

XNs

m¼1

Unþh
m;k Dzm;kNmdfm; ð6Þ

where it is assumed that Um;k and Dzm;k are evaluated at face m and
level k; dfm is the length of a face, and Ai is the cell area (Fringer
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et al., 2006). Errors in U are consequently projected onto the vertical
velocity.

Spurious modes can be suppressed for a single layer if the exter-
nal Rossby radius is resolved for a barotropic flow, which is typi-
cally the case, because the vertical velocity is coupled to the free-
surface pressure gradient directly (Danilov, 2010). However, for
the general multi-layer case, truncation errors deriving from the
calculation of the horizontal velocities are passed into each layer
of the vertical velocity field because no explicit additional con-
straint is placed on the horizontal divergences to constrain the
spurious modes. The errors can thus vary in each layer, particularly
for a complex flow. The depth-integrated sum of these errors ulti-
mately influences the free surface, but since the error for a cell in a
column is generally distinct from the other layers in the column,
the free surface does not eliminate the error in each layer. More
importantly, the resultant oscillations in vertical velocity subse-
quently contaminate advection of momentum and scalar transport.
These errors will vary based on choice of grid, the flow, and the
number of layers. Grid topology, in particular, has a strong influ-
ence on resultant spurious modes in the horizontal divergence
and vertical velocity field.

2.3. Triangular grid topology

In order to fully illustrate spurious horizontal divergence modes
we introduce three general classes of triangular C-grids, as shown
in Fig. 1. The distinctions between these grid types is important be-
cause they will be used to demonstrate additional complexities
encountered in fully unstructured simulations not considered in
previous studies of horizontal divergence noise (Danilov, 2010;
Gassmann, 2011).

Triangular grids may be structured or unstructured. In a struc-
tured equilateral grid there are two types of triangles, each point-
ing in opposite directions as shown in Fig. 1(a) with upward and
downward pointing triangles. Naturally, six cells share a node
and all cells are equilateral and the same size. For a fully

unstructured grid, this is no longer the case as illustrated in
Fig. 1(b), where triangles point in multiple directions and clusters
of five, six, or seven cells share a node. Cells are not necessarily
equilateral and may change size to better represent boundaries
or multiscale physics. For curvilinear and simplified geometries, a
hybrid approach may be utilized as shown in Fig. 1(c) in which
six cells strictly share a node. Cells are no longer strictly equilateral
and may be stretched and rotated to accommodate the system
geometry. All grids in Fig. 1 are orthogonal, such that a line be-
tween the circumcenters of cells sharing an edge is normal to the
edge (Casulli and Zanolli, 2002).

2.4. Fundamentals of spurious horizontal divergence modes

Consistent with common practice in ocean modeling we pre-
sume that the horizontal velocity field on a particular grid has been
previously calculated, with the diagnostic horizontal divergence
operator given by Eq. (6). The null space of DH is always nonempty
according to the rank theorem and is spanned by horizontal
velocities U which describe all grid-resolvable horizontally diver-
gence-free modes. An analytically divergence-free flow u may have
horizontal divergence truncation errors corresponding to discret-
ized velocity components U that are not in the null space of DH ,
such that DHU ¼ T:E: yields the truncation error T.E. Wan et al.
(2013) present the analytical truncation error for the horizontal
divergence and show its strong dependence upon triangle
orientation. A straightforward, physical example of the conse-
quences of the horizontal divergence null space has already been
presented by Danilov (2010) for the case of horizontal divergence
beneath the surface Ekman layer in a periodic, zonally reentrant
flow driven by wind.

The structure of the truncation errors is readily discernible with
a simple example. We note that this analysis may exaggerate the
impacts of the divergence noise because in general the noise will
be problem specific and accentuated for nonlinear flows. However,
the analysis qualitatively illustrates the relationship between the
noise and solution wavenumber. If we denote the horizontal diver-
gence, which is exact in the limit Ai ! 0, as

Dexact ¼ ðr �~uÞi ¼
1
Ai

Z
Ai

rH � uHdAi

and the discrete divergence operator as Di ¼ DH½uðxjÞ � nj� where xj

is the location of the jth edge mid-point, then a normalized measure
of the numerical truncation error is given by E ¼ ðDexact�
DiÞ=max jDexactj. This error is computed on structured triangular
grids with edge-aligned and edge-normal flows at grid-scale high
wavenumber kG and domain-scale low wavenumber kD as shown
in Fig. 2. For the edge-aligned flows, the velocity field u ¼ cosðkxÞ̂i
produces a diamond pattern for both low and high wavenumbers
in Fig. 2(a) and (c), respectively. For this case, kD ¼ 2p and
kG ¼ 2p=Dx, where Dx is the triangle edge length. The diamond pat-
tern is essentially striping in a direction normal to the flow. This is
in direct analogy to Cartesian grids exhibiting repeating stripe pairs
along columns or rows. Structured hexagonal grids also exhibit
repeating stripe pairs for edge-aligned flows as well as the possibil-
ity of repeating stripe triplets for edge-normal flows. In contrast, for
a triangular grid, edge-normal flows respond differently and for
u ¼ cosðkyÞ̂j checker-boarding occurs. For this case, the shortest
resolvable scale is smaller than the triangle edge length and isffiffiffi

3
p

Dx=2, and thus the highest wavenumber kG ¼ 4p=
ffiffiffi
3
p

Dx
� �

. At
this wavenumber, E is a checkerboard pattern over the whole grid
as shown in Fig. 2(d). The smallest wavenumber for the edge-nor-
mal flow is kD ¼ 2p= 2

ffiffiffi
3
p

Dx
� �

, and in this case the checkerboard
is only manifest in localized regions, in this case in the center of
the grid as in Fig. 2(b). Owing to directional dependence, the

(a) Structured equilateral grid (b) Fully unstructured grid

(c) Hybrid grid

Fig. 1. Types of triangular grids where the fully unstructured grid (b) has vertices
shared by five, six, and seven cells. The structured equilateral (a) and hybrid grids
(c) have vertices shared by six cells.
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truncation error for a solid-body rotational vortex will vary corre-
sponding to the orientation of the flow, thereby inducing spurious
vertical flows. Errors are greatest for high wavenumbers, although
ultimately nonlinear processes and geometrical inhomogeneities
produce solution degradation.

The magnitude of horizontal divergence errors is less variable
with respect to flow directions for the unstructured grid as
compared with the structured grid, as shown in Fig. 3. In partic-
ular, the checker-board pattern is less distinct but more preva-
lent with respect to the flow direction. A constraint is
required to address these errors, particularly since they vary
with rotation of the velocity vector as shown in Fig. 3(a) corre-
sponding to a zonal flow and Fig. 3(b) corresponding to a
meridional flow. Free surface gradients are insufficient because
horizontal divergence errors will not be constant over depth
for a complex flow.

A fully 3D flow will vary over depth, resulting in vertically var-
iable error. Consequently, horizontal divergence error cannot in
general be damped by a depth-averaged constraint. Without
application of a unique constraint in each layer, small spurious
checker-board structured horizontal divergence noises can grow
via nonlinearity to dominate the momentum balance and mask
the correct velocity signal. Thus, the horizontal divergence error
must be mitigated separately in each layer via a direct application
of a spatial filter at each time step.

3. Horizontal divergence noise removal

3.1. Explicit filters

Explicit filtering, as described by Gassmann (2011), effectively
redefines the horizontal divergence as an averaged horizontal
divergence operator, DH;F of the form DH;FU ¼ FcDHU, where Fc

represents a filtering, or averaging operation, on cell values.
Alternatively, it is possible to explicitly filter U such that
DHFeU � Fc;eqDHU for an edge filter Fe in hopes that the resultant
Fc;eq adequately smooths the divergence field. For the Fc filter, cell
horizontal divergence values are averaged to cell edges or nodes
and then interpolated back onto the cell via a diffusional smooth-
ing process with diffusion coefficient mF � CDx2=Dt (Shuman, 1957;
Shapiro, 1975), where Dx is a measure of the triangular spacing, Dt
is the time step size, and C is a constant. The Fe filter averages
velocity values to cells and then back onto edges.

The explicit method for directly filtering the horizontal diver-
gence has several inherent problems. Horizontal divergence errors
inherently remain in DHU and can potentially be amplified over the
course of several time steps. Thus, the error can still pollute the
solution via nonlinear feedback as noted by Gassmann (2011). Sec-
ondly, continuity is not strictly enforced in each cell since the dis-
crete diagnostic equation for the vertical face-velocity in each cell
wi;k becomes

Fig. 2. Normalized horizontal divergence truncation error E for structured grid comparing edge-aligned, u ¼ cosðkxÞ̂i (left column), and edge-normal, u ¼ cosðkyÞ̂j (right
column), flows for low wavenumbers corresponding to the domain length scale, kD (top row), and high wavenumbers corresponding to the grid-scale, kG (bottom row).
Distinct error patterns such as striping (left column) or checker-boarding (right column) emerge for these orthogonal cases.
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wnþh
i;kþ1 ¼ wnþh

i;k þ FcDHðUnþhDzÞi;k;

not the precise Eq. (5) as derived from continuity equation (1). Di-
rect application of the filter to the horizontal divergence field vio-
lates continuity by effectively adding a diffusion term to the
continuity equation.

A seemingly better alternative is explicit filtering of U via FeU in
hopes that DHFeU is smooth. This ensures that continuity is satis-
fied, although it may not necessarily ensure that the horizontal
divergence field is smooth. Furthermore, the effective redefinition
of the horizontal divergence operator by DHFe removes the skew
symmetry relationship between the gradient and divergence oper-
ators, i.e., DHFe–� GT . The applicability of this method will be con-
sidered further when filtering operators are defined.

3.2. Implicit filters

Implicit filtering removes horizontal divergence noise by ellip-
tically correcting U such that the resultant horizontal divergence
field is smooth, i.e., using

DHUF ¼ FcDHU ð7Þ

to compute a filtered horizontal velocity field UF . This removes the
oscillatory horizontal divergence noise from the velocity field there-
by preventing its propagation and preserving discrete continuity.

Implicit filtering thus requires solution of Eq. (7) to compute a
filtered horizontal velocity field UF . The solution steps are analo-
gous to computation of the nonhydrostatic pressure and take
advantage of the discrete Helmholtz decomposition such that the
correction step modifies the flow divergence without changing
flow vorticity (Nicolaides, 1992):

1. Define a correction using the gradient of a scalar field /,

UF ¼ U � G/: ð8Þ

2. Form a Poisson equation by taking the horizontal divergence of
Eq. (8) and using Eq. (7) as a constraint,

DHU � DHG/ ¼ FcDHU;

L/ ¼ ðI � FcÞDHU; ð9Þ

where L ¼ DHG is the discrete Laplacian and I is the identity matrix.
3. Solve the Poisson equation (9) and compute UF from Eq. (8).

Unlike computation of the nonhydrostatic pressure field, the
source term ðI � FcÞDHU is composed of high wavenumber modes
since the filter Fc removes high frequency noise from the horizon-
tal divergence field. As a result, only a few simple and fast Gauss–
Seidel iterations, specifically four in practice, are used to solve Eq.
(9) quickly. Quick convergence occurs because the iterative
method damps the high frequency error from the solution effi-
ciently via application of compact local stencils for L. This is in con-
trast to the nonhydrostatic pressure computation, which requires a
more involved solution method such as the conjugate gradient
method to efficiently compute both the low and high wavenumber
components of the solution.

3.3. Higher-order filters

A primary physical consequence of implicit filtering is that the
horizontal velocity field is also filtered in addition to the horizontal
divergence field. This may lead to damping, particularly with first-
order filters, which is detrimental to a simulation because it effec-
tively reduces the flow Reynolds number due to the addition of
numerical diffusion. Alternatively, a high-order filter may yield
spurious oscillations. Design of higher-order hyper-viscous filters
is warranted to both prevent and evaluate the damping incurred
by low-order filtering.

Several orders of filters can be defined starting with first-order
filtering. First-order filtering consists of one filter pass and effec-
tively area-weights velocity or horizontal divergence values at
edges or cells to intermediate points during a downsampling step.
These values are then interpolated back onto the computational
cells and edges during an upsampling step. The primary difference
between filter types is the choice of the downsampling step. Edge
filters average the values of cells sharing an edge and nodal filters
average the values of cells sharing a node to complete the down-
sampling step.

Development of a second-order filter from the first-order filter
occurs recursively once a first-order filter has been defined (Shu-
man, 1957; Shapiro, 1975). We use prime notation, (e.g.,
/00 ¼ r2/), and define

F0/ ¼ /þ mG/00; ð10Þ

as a primitive model for the filtering operation where mG ¼ CDx2=Dt
for some constant C. A single first-order filter pass performs an
averaging downsampling step followed by an interpolatory upsam-
pling step. Note that by definition, the first-order filter F1 is equiv-

Fig. 3. Normalized horizontal divergence truncation error E for (a) u ¼ cosðkxÞ̂i and (b) u ¼ cosðkyÞ̂j for high wavenumber k ¼ 2p
Dxmax

with Dxmax ¼ 0:31 showing variability of E
with respect to rotation of a constant velocity field. Low domain-scale wavenumber maximum error (not shown) corresponding to k ¼ 2p is max jEj ¼ 0:1.
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alent to a single filter pass, viz F1 ¼ F1
0. We can construct a higher-

order filter F2 by considering two operations of the first-order filter
giving

F2
0/ ¼ F0/þ mGF0ð/00Þ ¼ /þ mG/00 þ mGð/00 þ mG/ivÞ

¼ /þ 2mG/00 þ m2
G/iv :

This can be combined with Eq. (10) to show the desired result of
applying hyper-viscosity via the second-order filtering operator,

ð2F0 � F2
0Þ/ ¼ /� m2

G/iv :

It is then a simple matter to perform higher-order filtering via the
operator F2 ¼ 2F0 � F2

0. An n-order filter Fn is generalized as

Fn ¼
Xn

k¼1

n

k

� �
ð�1Þkþ1Fk

0: ð11Þ

The key result is that for simple first-order filters F1 the primary
numerical effect is addition of numerical diffusion whereas for the
second-order filter F2 it is hyper-viscosity. This allows greater con-
trol to prevent artificial Reynolds number reduction and is a key
advantage of the second-order filter. We now define the first-order
filters (F1 ¼ F1

0) necessary to implement these higher-order filters.

3.4. Filter operators

A generalized filter relies upon simple digital Shapiro filter
primitive operations which are applied via downsampling (averag-
ing) and upsampling (interpolation) to and from edges or nodes.
For purposes of notation, we follow Casulli and Zanolli (2005)
and consider an edge j, for cell i, such that 1 6 i 6 Nc , where Nc is
the number of cells. The edge is identified by an index connecting
cells to edges, viz. jði; lÞ such that 1 6 j 6 Ne, where Ne is the num-
ber of edges, and 1 6 l 6 Si for Si ¼ 3 sides of a triangle. Cells neigh-
boring an edge are specified by an index denoting the cell
neighbors to an edge, viz iðj;aÞ such that 1 6 a 6 2 denotes both
cell neighbors to the edge. Cells sharing an edge are iðj;1Þ and
iðj;2Þ. Necessarily, 1 6 iðj;aÞ 6 Nc. Nodes are identified by an index
connecting cells to nodes, viz pði; lÞ such that 1 6 pði; lÞ 6 Np. Cell
neighbors sharing nodes are identified by iðp; bÞ, such that
b ¼ 1; . . . ;Npc , where Npc is the number of cells neighboring a node,
typically ranging between 5 and 7, where 6 is optimal providing
the best tessellation of space with triangles. Necessarily,
1 6 iðp; bÞ 6 Nc and iðp; biÞ and iðp; bjÞ are cells sharing a node for
bi–bj.

An area-weighted representation of averaging a cell-centered
scalar to an edge, /j, and node, /p, is then

/j ¼
P2

a¼1ð/iAiÞjiðj;aÞP2
a¼1Aijiðj;aÞ

ð12Þ

and

/p ¼
PNpc

b¼1ð/iAiÞjiðp;bÞPNpc
b¼1Aijiðp;bÞ

: ð13Þ

Smoothed values are interpolated back onto cell centers via well-
known Barycentric interpolation (Wang et al., 2011; Huebner,
1975). This is illustrated in Fig. 4 and given by

/ðxÞ ¼ k1/1 þ k2/2 þ k3/3; ð14Þ

where each weighting coefficient is the proportional area of the
sub-triangle opposite to the node, e.g., k1 ¼ A1=ðA1 þ A2 þ A3Þ.

The stencils for some filter methods used in this paper are illus-
trated in Fig. 5. For brevity, we describe the first-order filters
depicted in Fig. 5(a), (c), and (e) below. Extension to the higher-or-
der filters depicted in Fig. 5(b), (d), and (f) is obtained through

application of Eq. (11) where EP2 denotes a Shapiro second-order
explicit Perot filter, IE2 a Shapiro second-order implicit edge filter,
IN2 a Shapiro second-order implicit nodal filter, etc. Each filter can
be described in terms of a downsampling and an upsampling step,
as follows:

1. (EP1) First-order explicit Perot filter
(a) Downsample face-normal velocities U onto cell centers ui

with the Perot cell-center velocity reconstruction (Perot,
2000),

ui ¼
1
Ai

XNs

m¼1

Umnmdi;mdfm: ð15Þ

(b) Upsample ui to edges using Eq. (12) and project via the face
normal to obtain F1U.

2. (IE1) Shapiro first-order implicit edge filter using edge down-
sampling and upsampling
(a) Downsample horizontal divergence DHU to edges with Eq.

(12) to obtain DHU.
(b) Upsample DHU from edges to cells with Eq. (14), using trian-

gles formed from edge mid-points, to obtain F1ðDHUÞ.
3. (IN1) Shapiro first-order implicit nodal filter using node down-

sampling and upsampling
(a) Downsample horizontal divergence DHU to nodes with Eq.

(13) to obtain DHU.
(b) Upsample DHU from nodes to cells with Eq. (14), using tri-

angles formed from cell nodes, to obtain F1ðDHUÞ.

Shapiro (1975) showed that after successive higher-order filter-
ing, damping of low-wavenumber Fourier components was de-
creased. A filter of sufficient order could, in principle, remove
spurious two-delta-x oscillations with very minimal low wave-
number damping.

3.5. Filter implementation

Filter implementation is important because it will modify mass
and energy balances. In particular, implicit filtering is required in
a hydrostatic code precisely to ensure that the divergence-free
constraint in each cell is met. Direct filtering of the vertical veloc-
ity without modification of the horizontal velocity would violate
continuity in general. Consequently U must be filtered either
explicitly or implicitly if w is filtered. Below we outline the non-
hydrostatic free surface algorithm with an implicit filtering meth-
od that ensures constraint (5) is satisfied for solution of Eqs. (3)
and (4):

Fig. 4. Barycentric interpolation of scalar / at x from nodal values /1;/2, and /3.
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1. Compute the free surface g� via the h-method of Casulli and
Zanolli (2002), such that Eqs. (3) and (4) and are solved
implicitly.

2. Compute a provisional velocity U� from Eq. (4). Let Uk ¼ U� and
gk ¼ g� be the start of an iterative method.

3. Implicitly filter the horizontal divergence field at each k level to
obtain Uk

F from Uk as in Equations (8) and (9).
4. Correct the filtered field with the nonhydrostatic pressure, qc, if

desired. First, compute wk ¼ w�, the predicted vertical velocity
obtained from the vertical momentum balance. Then correct
the velocity with

Ukþ1 ¼ Uk
F � Dt

@qc
@x

;

wkþ1 ¼ wk � Dt
@qc
@z

;

and solve the Poisson equation for qc obtained by imposing con-
straint (5). Full details are provided in Fringer et al. (2006). For
hydrostatic flows, set Ukþ1 ¼ Uk

F and update wkþ1 via Eq. (5).
5. Update the free surface gkþ1 using Ukþ1 via the h-method dis-

cretized equation (3).
6. Iterate from step 2 until convergence is obtained. Once con-

verged, set gnþ1 ¼ gkendþ1, Unþ1 ¼ Ukendþ1, and wnþ1 ¼ wkendþ1.

Convergence of the nonhydrostatic iterative procedure was
recently shown by Vitousek and Fringer (2012).

Continuity equation (3) is ultimately sacrificed if the free sur-
face is not updated following computation of the filtered velocity
U�F in step 5. However, because the updated gkþ1 is not consistent
with momentum in Eq. (3), iteration is required. In practice, how-
ever, these iterations may be unnecessary to attain reasonable
accuracy, as is the case with the example presented in this paper.

(a) EP1 [F1U ] (b) EP2 [F2U ]

(c) IE1 [F1 (DHU)] (d) IE2 [F2 (DHU)]

(e) IN1 [F1 (DHU)] (f) IN2 [F2 (DHU)]

Legend

Edge values, φ = U Cell values, φ = DHU

Filtered value, F1φ Filtered value, F2φ

Area-average φ Area-average F1φ

Fig. 5. Filter stencils for scalar value /, where / ¼ U for the explicit filters (EP1, EP2) and / ¼ DHU for the implicit filters (IE1, IE2, IN1, IN2).
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Filtering, although necessary to remove the spurious horizontal
divergence noise, ultimately affects the problem dynamics. Volume
conservation is maintained by construction but energy is not nec-
essarily conserved because implicit filtering removes energy by
smoothing the velocity field. In what follows, a modified partial
differential equation analysis is used to demonstrate grid-scale
dependent spurious physics that results from the filter application.

4. Filter analysis

4.1. Physical effects of explicit and implicit filters

We return to our first-order filter model F/ ¼ /þ mG/00 and con-
sider the effect of filtering on the horizontal divergence field and
the horizontal velocity field. Although in reality grid inhomogene-
ity will produce ansiotropic diffusion, here we analyze the simple
case of isotropic diffusion on structured equilateral grids. We first
consider the case DHFeU for the Perot edge filter EP1. Utilizing our
model, we obtain

FeU � ½uH þ mGr2
HuH� � n;

where the filter adds grid-scale diffusion mG to the velocity field. The
effect is to also add grid-scale diffusion to the horizontal divergence
field, since

DHFeU � rH � uH þ mGr2
HðrH � uHÞ; ð16Þ

where we have assumed rHmG ¼ 0.
The implicit filter DHUF ¼ FcDHU, as utilized for the edge and

node cases IE1 and IN1, results in

FcDHU � rH � uH þ mGr2
HðrH � uHÞ; ð17Þ

with grid-scale diffusion added to the horizontal divergence field.
The implicit elliptic correction step yields

UF � ½uH þ mGrHðrH � uHÞ� � n;

where application of the vector identity rðr � AÞ ¼ r2Aþr�
ðr� AÞ produces

(a) Initial structured equilateral Gaussian (b) Initial fully unstructured Gaussian

(c) Filtered structured equilateral Gaussian (d) Filtered fully unstructured Gaussian

Fig. 6. Demonstration of explicit Perot filtering for normalized, initially Gaussian horizontal divergence fields on (a) structured equilateral and (b) fully unstructured grids.
The filtered structured equilateral grid (c) is smooth but the filtered fully unstructured gird (d) is not smooth. The EP1 filter was applied 10 times.

Table 1
Effective nondimensional diffusion coefficient values Kmax

Dt
Dx2 resulting from horizon-

tal divergence filtering and horizontal velocity filtering on structured equilateral and
fully unstructured grids.

Filter Horizontal divergence Horizontal velocity

Structured Unstructured Structured Unstructured

IE1 0.04 0.07 0.01 0.2
IN1 0.2 0.5 0.04 0.8
IE2 3� 10�8 7� 10�4 2� 10�5 7� 10�4

IN2 4� 10�7 5� 10�3 3� 10�4 0.003

Fig. 7. Axisymmetric curved channel flow where / is the streamwise coordinate, n
is the transverse direction, and f is the vertical direction. The primary flow is
composed of a streamwise velocity u and the secondary flow is composed of the
transverse and vertical velocity v and w, respectively. The channel is completely
defined by its radius of curvature to the channel centerline, Rc , the channel width,
W, and the depth, d.
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UF � ½uH þ mGr2
HuH þ mGrH � ðxkkÞ� � n; ð18Þ

where xk ¼ ðrH � uHÞ � k, and k is the vertical unit vector. The com-
mon grid-scale diffusion term is obtained, consistent with the hor-
izontal divergence. Ultimately, this term results in energy
dissipation. The additional horizontal curl of vertical vorticity term
has no standard analog in the governing equations and is conse-
quently completely spurious. The physical viscosity m must be much
larger than grid-scale dependent viscosity mG to ensure a physical
solution because the effects of the vorticity term may be pro-
nounced and result in spurious oscillation as shown by the third-or-
der filter cases for the highly nonlinear curved channel flow.

4.2. Numerical diffusion induced by filtering

A practical estimate of filter performance can be determined by
computing effective numerical diffusion coefficients K via the
method of moments (Aris, 1956), a technique recently used by
Holleman et al. (2013). We utilize a non-dimensional domain con-
taining a normalized Gaussian horizontal divergence distribution
with rx ¼ ry ¼ 10Dx. The Gaussian divergence field is repeatedly
filtered to estimate the average spread in divergence correspond-
ing to each application of the filter.

The equivalent horizontal diffusion applied by the filters is cal-
culated for the structured equilateral and fully unstructured cases,
which provide bounds on the estimated diffusion coefficient. Diffu-
sion coefficients are also estimated for the second-order filters to
quantify their change to the divergence and velocity distributions,
although their primary physical effect is hyper-viscosity.

As shown in Fig. 6, the Perot filter EP1 fails to ensure a smooth
horizontal divergence field for a fully unstructured grid because it
artificially increases the magnitude of the horizontal divergence
field. This effect is exemplified by the differences between panels
6(b) and (d). Consequently, the EP1 method, in general, fails to
ensure that the noise in the horizontal divergence field is reduced.
In fact, the case presented in Fig. 6 actually increases the noise. This

issue prevents its further consideration as a viable horizontal
divergence error mitigation technique. The implicit edge and nodal
filters, in contrast, ensure a smooth horizontal divergence field by
construction.

Effective nondimensional diffusion coefficients for the implicit
horizontal divergence filters are given in Table 1 for the structured
equilateral and fully unstructured grids used in Fig. 6. Kmax is the
maximum of the principal values of the diffusion tensor and pro-
vides an upper bound estimate on the diffusion of the method as
applied to an unstructured grid. The effective nondimensional dif-
fusion is also presented for the horizontal velocity field based on
use of a Gaussian horizontal velocity field oriented in the îþ ĵ
direction. Unstructured grid inhomogeneity leads to larger error
because cross terms become important, as noted by Holleman
et al. (2013). The cross terms give rise to a larger effective diffusion
coefficient as estimated from the maximum principal eigenvalue of
the diffusion tensor. The added diffusion for the unstructured grids
are often an order of magnitude or more greater than that for
structured grids.

The overall best method based on this analysis is the second-or-
der edge filter IE2 because the edge filter is less diffusive than the
nodal filter. However, the topology of the grid will influence filter
choice in practice. For example, the Perot methods EP1 and EP2
have similar diffusivity as the edge methods IE1 and IE2, respec-
tively. However, explicit filter methods EP1 and EP2 fail to ensure
a smooth divergence field for an unstructured grid and explicit fil-
tering with these methods is not suitable.

A promising explicit filter alternative currently in development
is Peter Korn’s mimetic discretization (Korn, 2011) of the ICON
model (Rípodas et al., 2009), which applies projectors to each term
of the constitutive equations in accordance with consideration of
the spaces they occupy. In particular, the lumped mass-matrix
implementation of this mimetic method is easily invertible and
may provide the theoretical basis for development of an explicit fil-
ter family devoid of the drawbacks of the present EP1 and EP2
filters.

Use of hyper-viscosity based second-order filters IE2 and IN2
is currently the most viable filtering option. These filters have
less impact on reducing the effective Reynolds number because
their continuous equivalent does not have a diffusion term. How-
ever, the nodal filter IN2 is more robust than the edge filter IE2
because it downsamples over a wider stencil to a smaller num-
ber of values, consequently minimizing the effects of grid
topology.

5. Secondary circulation in curved channels

5.1. Test case introduction

Flow in curved channels is similar to Ekman flows with an effec-
tive Coriolis acceleration of f � U=R, where U is the streamwise
flow along a bend with radius of curvature R. Thus, because the
effective Coriolis term is nonlinear, instabilities related to momen-
tum advection will be amplified in contrast to the classic linear Ek-
man flow. The effect for the curved channel case is to accentuate
horizontal divergence noise because of its sensitivity to the vertical
velocity. Furthermore, the analytical solution of the classic laminar
axisymetric curved channel with secondary circulation is well
known (deVriend, 1981a,b). Because of low aspect ratios (i.e.,
depth/horizontal scale) ocean flows are typically hydrostatic and
nonhydrostatic pressure correction is inadequate to eliminate hor-
izontal divergence noise. Taking this into consideration, we use a
curved channel geometry with a low aspect ratio that is very
weakly nonlinear such that the filtered hydrostatic flow compares
well with the analytical nonhydrostatic solution. The hope is that

Fig. 8. Simulation geometry for curved channel flow in a 180� bend. Flow is in the
counter-clockwise direction. Profiles for comparison with the deVriend, 1981a
analytical solution are taken at section A–A0 .
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the results for filtering hydrostatic flows will be useful for other
hydrostatic oceanic flows because computation of the nonhydro-
static pressure correction is impractical in large-scale ocean
modeling.

The curved channel geometry, primary flows, and secondary
flows are shown in Fig. 7. The nondimensional streamwise coordi-
nate and velocity are / and u, respectively. Secondary circulations
are composed of the transverse and vertical velocities v and w cor-
responding to the n and f directions, respectively. We do not repeat
the governing equations of deVriend (1981a,b) for brevity, but note
that the primary flow u is driven by a pressure-viscous balance.
The secondary flows v and w are forced by an Ekman-type balance
in which an effective Coriolis force balances friction on the channel
bottom. The effective nonlinear Coriolis acceleration ður�1Þ applies
for cylindrical advection of momentum via terms ður�1Þv and
ður�1Þu for the equations of streamwise velocity u and transverse
velocity v, respectively. Here, r is the radial distance from the cen-
ter of curvature.

The problem physics can be described in terms of four nondi-
mensional numbers composed of the variables W , d, Rc , U, m, and
g (See Fig. 7). The rigid lid assumption is utilized owing to the con-
dition in which the Froude number Fr ¼ U=

ffiffiffiffiffiffi
gd

p
	 1. As such, the

problem is uniquely prescribed in terms of the aspect ratio
d ¼ d=W , Reynolds number Re ¼ Ud=m, and Deans number
Dn ¼ Re

ffiffiffi
e
p

with curvature aspect ratio e ¼ d=Rc .
We use a modified version of the open-source SUNTANS coastal

ocean model 1 (Fringer et al., 2006) and consider weakly nonhydro-
static flows with Fr 	 1, d ¼ 0:1, e ¼ 0:04, and Dn ¼ 25 correspond-
ing to Re ¼ 125 for comparison with the analytical solutions
provided by deVriend (1981a,b). In order to compute a flow that is
as axisymmetric as possible to match the solution of deVriend
(1981a,b), we utilize a 180� bend. Boundary conditions are a
prescribed inflow velocity and zero-pressure at the outflow with

Analytical Solution (Dn=25) HS NH
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Fig. 9. Comparison of non-filtered nonhydrostatic (NH – green �) and hydrostatic (HS – blue 
) cases on grid FHY. Velocity profiles are plotted transverse to the flow along
transect A–A0 and are compared to the analytical results of deVriend (1981a). Reasonable agreement is obtained between NH and the analytical solution for Dn ¼ 25. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

1 Available at http://www.sourceforge.net/projects/suntans/.
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sufficiently long inlets and outlets to allow for developed flows at
the inlet and outlet to the curved channel as shown in Fig. 8. All
quantities hereafter are in nondimensional units (star notation is
omitted for clarity) following the nondimensionalization presented
by deVriend (1981a). Central-differencing momentum advection is
utilized with cell-centered velocities obtained with Eq. (15) and ad-
vanced with third-order accurate explicit Adams–Bashforth time
stepping over 23 flow-through periods from rest with Courant num-
bers Oð0:1Þ. The model is only strictly first-order accurate in space
and very fine resolution is needed to resolve viscous wall layers.

Several test cases are used to examine the performance of filters
with respect to hydrostatic and nonhydrostatic flows on different
grids with parameters listed in Appendix A, Table A.1. Orthogonal

unstructured grids were generated with the TOM grid generator
(Holleman et al., 2013). The accuracy of filtered model results are
assessed with a fine hybrid grid, denoted by FHY. Next, coarser hy-
brid and uniform resolution fully unstructured grids (denoted by
CHY and CUN) are utilized to qualitatively demonstrate hydrostatic
filter impacts on vertical velocity smoothness. Filter performance is
then compared for grids CHY and CUN with a variable resolution
fully unstructured grid denoted by CUW.

5.2. Model validation and nonhydrostatic effects

The laminar curved channel flow is a good test case to demon-
strate filter performance because noise in the horizontal diver-
gence must be mitigated to resolve secondary flow features that
arise from the nonlinear effective Coriolis term. A filter is not re-
quired provided nonhydrostatic pressure is computed and a hybrid
grid is employed because high-frequency noise is relatively weak
on this grid. To demonstrate model performance prior to filtering
we compare the results of both hydrostatic and nonhydrostatic
computations on hybrid grid CHY to the analytical results of deV-
riend (1981a) in Fig. 9. The transverse profile of primary stream-
wise flow ðuðn; f ¼ 0ÞÞ computed with the hydrostatic model in
Fig. 9(a) is very noisy and, consequently, the vertical profile of pri-
mary streamwise flow ðuðn ¼ 0:5; fÞÞ in Fig. 9(b) is skewed. The
transverse profile of secondary vertical flow ðwðn; f ¼ �0:45ÞÞ in
Fig. 9(c) is composed of vertical velocities that are completely spu-
rious for the hydrostatic case. The vertical profile of secondary
transverse flow ðvðn ¼ 0:77; fÞÞ in Fig. 9(d) is strongly damped for
the hydrostatic flow as compared to the nonhydrostatic flow and
the analytical solution. Filtering is generally necessary to resolve
the correct vertical velocities because the secondary flow requires
accurate computation of the dynamically important vertical veloc-
ities, particularly for hydrostatic flows. The primary flow ðuðn; fÞÞ is
also modified because noise from the horizontal divergence modes
in Fig. 9(c) affects the horizontal velocity ðuðn; f ¼ 0ÞÞ, as shown in
Fig. 9(a). Consequently, unfiltered hydrostatic runs give rise to
high-frequency oscillations in time which are not damped. As a

Fig. 10. RMS error for filtered and unfiltered hydrostatic (cross-hatched bars) and
nonhydrostatic flow (solid black bars) transverse profile of secondary vertical flow,
wðn; f ¼ �0:45Þ (see Fig. 9). The red line denotes minimum RMS error. Entry
abbreviations used: NF is no filter, IE1 is first-order implicit edge, IE2 is second-
order implicit edge, IE3 is third-order implicit edge, IN1 is first-order implicit node,
IN2 is second-order implicit node, IN3 is third-order implicit node. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 11. Filter effects on secondary transverse horizontal flow structure for (a) hydrostatic and (b) nonhydrostatic flows. Comparison of non-filtered (NF – black 
), third-order
implicit nodal filter (IN3 – red }), second-order implicit edge filter (IE2 – blue h), and second-order implicit nodal filter (IN2 – green �) on grid FHY. The analytical solution
for Dn ¼ 25 (solid black line) is from deVriend (1981a). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

74 P.J. Wolfram, O.B. Fringer / Ocean Modelling 69 (2013) 64–78



Author's personal copy

result, the unfiltered hydrostatic runs do not reach steady state for
this laminar flow.

5.3. Filter accuracy on hybrid grids

In this section we assess the impacts of filtering on hybrid grid
FHY for hydrostatic and nonhydrostatic flows. First-order through
third-order implicit edge and nodal filters are utilized, where IE2
denotes a second-order edge filter and IN3 denotes a third-order
nodal filter, etc. The root-mean-squared (RMS) errors associated
with primary and secondary flow profiles for each filter applied
to the hydrostatic and nonhydrostatic cases on hybrid grid FHY
are given in Table A.2, Appendix A, as a reference. Fig. 10 highlights
the RMS error for the transverse profile of secondary vertical flow,
wðn; f ¼ �0:45Þ, which is most sensitive to filtering. The lowest er-
rors for the primary flow are obtained with the second-order
filters.

The most difficult flow to resolve is the secondary transverse
flow ðwðn; f ¼ �0:45ÞÞ because it is very sensitive to noise. Conse-
quently, the degree to which filters can help simulate this flow
determines their utility. For example, the IN2 filter performs better
with respect to the hydrostatic flow for the secondary transverse
flow ðwðn; f ¼ �0:45ÞÞ as compared with the IE2 filter, with RMS
error of 0.995 and 1.777, respectively. This is particularly evident
in the secondary transverse flow profile because IN2 provides a
drastically better fit for the hydrostatic flow as shown in
Fig. 11(a). IE2 and IN3 performance is poor due to oscillations for
both the hydrostatic and nonhydrostatic cases [Fig. 11(a)]. The
IN2 filter provides the overall best fit and is a reasonable filter

for practical use. However, for computations on hybrid grids with
nonhydrostatic pressure, the IE2 filter is also a fine choice as shown
in Fig. 11(b). Model results, particularly for the hydrostatic case,
are improved with filtering because horizontal divergence errors
are constrained. However, the quality and convergence of the final
solution will vary depending upon the type of filter method used,
grid quality and topology, and whether nonhydrostatic pressure
is computed for weakly nonhydrostatic flows.

5.4. Spatial filter performance on fully unstructured grids

In this section we determine the spatial effects of filtering with
respect to the type of unstructured grid employed for the hydro-
static and nonhydrostatic cases. Filter applicability for hydrostatic
flows is evaluated by comparing the spatial performance of first-
order, second-order, and third-order filters on fully unstructured
grid CUN and hybrid grid CHY. Filter performance for nonhydro-
static flows is then assessed by comparing results for hybrid grid
CHY and fully unstructured grids CUN (uniform resolution) and
CUW (variable resolution) for second-order filters.

5.4.1. Spatial performance for hydrostatic flows
Filter performance varies depending on the grid type used. To

illustrate this, we compare results obtained on coarse hybrid and
uniform fully unstructured grids CHY and CUN, respectively, in
hydrostatic runs. Fig. 12 compares the vertical velocity
ðwð/; n; f ¼ �0:5ÞÞ for grid CHY, showing that the filter methods
IN2 perform best, as expected. The filter methods IN3, IE2, and
IE3 result in an oscillatory vertical velocity, demonstrating the

w

−6 3

CHY−NF−HS CHY−NF−NH

CHY−IE1−HS CHY−IN1−HS

CHY−IE2−HS CHY−IN2−HS

CHY−IE3−HS CHY−IN3−HS

Fig. 12. Hydrostatic (HS) filtered vertical velocity fields wð/; n; f ¼ �0:5Þ on grid CHY. The nonhydrostatic (NH) and the unfiltered (NF) solutions are given for comparison.
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cause of their reduced accuracy as indicated by the RMS errors. The
third-order filters IE3 and IN3 are oscillatory because of spurious
dispersion induced by the filters.

Results are worse for the edge filters on a fully unstructured
grid as shown in Fig. 13 because the edge filters cannot account
for variations in grid topology. The IN2 filter is necessary to ensure
that a variable grid topology containing five or seven cell neighbors
at a node does not cause local solution irregularity. Nodal filters
ensure smoothness of the horizontal divergence field by averaging
these topological differences. The unfortunate cost, however, is re-
duced amplitude of the velocity signal. This is likely a necessary
cost because the velocity is smooth on grid CHY and not on grid
CUN for unfiltered nonhydrostatic simulations.

5.4.2. Spatial performance for nonhydrostatic flows
Nonhydrostatic pressure can help regulate the horizontal diver-

gence in the absence of filtering in the case of a hybrid grid. How-
ever, in general, it cannot explicitly ensure that the horizontal
divergence noise is removed. Implicit filtering is required to con-
strain the noise for a fully unstructured grid. An example is shown
in Fig. 14 for wð/; n; f ¼ �0:5Þ, where grid variability for the
unstructured grids is a source of the horizontal divergence noise.
The hybrid grid does not require filtering to constrain the horizon-
tal divergence noise because the nonhydrostatic pressure
correction is sufficient to constrain the noise. The unstructured
cases require filtering because nodes with other than six cell neigh-
bors can be sources of noise accumulation and create local extrema
in vertical velocity. Consequently, filtering is necessary to ensure
locally smooth results. The nodal filters, in the absence of

nonhydrostatic pressure, are alone sufficient to ensure a smooth
solution on these grids. IN2 can sufficiently remove the horizontal
divergence noise and assure a reasonable solution for the variable
resolution fully unstructured grid CUW as shown in Fig. 14. The
edge filter is insufficient to constrain the noise.

5.5. Temporal performance for fully unstructured grids

Spatial noise also manifests itself in time. Simulations utilizing
the implicit edge filters IE1, IE2, and IE3 fail to converge to a
smooth steady state on grid CUW. This is demonstrated with time
series of the maximum horizontal Courant number ðmaxðCUÞÞ and
maximum vertical Courant number ðmaxðCW ÞÞ throughout the
domain as shown in Fig. 15. Horizontal divergence noise results
in temporal oscillation of the velocity field and consequently the
maximum vertical Courant number corresponding to the
secondary flow does not reach steady state. The IE2 filter produces
a converged primary flow with an asymptotic maximum
horizontal Courant number but the noise is insufficiently damped
for the secondary flow, as noted by the oscillations of the
maximum vertical Courant number. Only the IN2 case reaches
steady state because errors in vertical velocities are constrained.
The edge filter produces unsteadiness because, although much of
the noise is eliminated, manifestation of noisy modes persists in
time due to the spatially inconsistent topology of the fully unstruc-
tured grid. This is also evident by the noisy regions of vertical
velocity shown in Fig. 14 for case CUW-IE2-NH. Consequently, only
the nodal filter is sufficient to mitigate horizontal divergence noise
in general.

w
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CUN−NF−HS CUN−NF−NH

CUN−IE1−HS CUN−IN1−HS

CUN−IE2−HS CUN−IN2−HS

CUN−IE3−HS CUN−IN3−HS

Fig. 13. Hydrostatic (HS) filtered vertical velocity fields wð/; n; f ¼ �0:5Þ on grid CUN. The nonhydrostatic (NH) and the unfiltered (NF) solutions are given for comparison.
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6. Conclusions

We have shown that implicit filtering methods can mitigate
horizontal divergence noise to allow calculation of secondary flows
but at the cost of solving an elliptic corrector equation for each

layer via a few relatively fast Gauss–Seidel iterations. Careful con-
sideration of filter properties within the context of problem phys-
ics is warranted because these conclusions may change depending
upon particular model configurations and flow regimes. However,
general conclusions regarding practical use of filters to mitigate
horizontal divergence error derived from this study are:

1. Implicit filtering provides the advantage of ensuring that the
horizontal divergence is smooth, but its application requires
solution of an elliptic equation with a high-frequency source
term. The cost-differential between filter orders is minimal
compared to the elliptic solution for the 3D corrector step.
Use of the first-order explicit Perot filter (EP1), although appeal-
ing for its simplicity, is not recommended because it can
increase the noise in the horizontal divergence field. The sec-
ond-order explicit Perot filter (EP2) subsequently is not recom-
mended. Development of suitable explicit filters is an open
question and perhaps mimetic methods may provide the neces-
sary framework.

2. The higher-order second- and third-order filters have less diffu-
sion and thus do not directly modify the effective Reynolds
number as the first-order filters do. The higher-order method
performance is consequently less sensitive to the time step size.
However, the third-order filter may be oscillatory suggesting
that for most circumstances, a second-order filter is sufficient.

3. Filtering is in general necessary on a fully unstructured grid
because nonhydrostatic pressure is insufficient to constraint
the horizontal divergence noise. The second-order implicit edge
filter (IE2) provides the sharpest results for a nonhydrostatic,
hybrid grid case. However, these are restrictive conditions in
practice. Nodal filters, in contrast, mitigate grid inhomogeneity,
particularly in under-resolved regions. Consequently, the

w
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CHY−NF−NH CUN−NF−NH CUW−NF−NH

CHY−IE2−NH CUN−IE2−NH CUW−IE2−NH
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Fig. 14. Nonhydrostatic (NH) vertical velocity fields wð/; n; f ¼ �0:5Þ for grids CHY, CUN, CUW. The unfiltered solutions (CHY-NF, CUN-NF, CUW-NF) are given for comparison
with filter cases IE2 and IN2 for the hybrid (CHY-IE2, CHY-IN2), uniform resolution fully unstructured (CUN-IE2, CUN-IN2) and variable resolution fully unstructured grids
(CUW-IE2, CUW-IN2).
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Fig. 15. Convergence in normalized time s ¼ t=tmax of solutions for variable
resolution fully unstructured grid CUW. The maximum horizontal and maximum
vertical Courant numbers [maxðCUÞ (dashed lines) and maxðCW Þ (solid lines),
respectively] are plotted for the case of no filter (NF) in red, second-order edge filter
(IE2) in blue, and second-order nodal filter (IN2) in green. Only the nodal filter
results in a convergent solution. (For interpretation of the references to colour in
this figure caption, the reader is referred to the web version of this article.)
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second-order implicit nodal filter (IN2) provides the best per-
formance for hydrostatic and arbitrary, multi-scale unstruc-
tured triangular C-grid cases and it is likely the best choice in
practice.

The novel filters presented in this paper improve the viability of
unstructured triangular C-grids for nonlinear and nonhydrostatic
flows. The primary cost of the implicit filtering methods is the
elliptic inversion of the filtering Poisson equation (9). Perhaps cle-
ver design of an explicit filter without the pitfalls of the Perot fil-
ters may provide filtering without requiring smoothing via an
iterative solution to Eq. (9). This remains an open question. How-
ever, for problems with strong nonlinearity and important second-
ary flows, the implicit elliptic filtering methods developed in this
paper are sufficient to mitigate the horizontal divergence noise
and eliminate contamination of the solution via nonlinear feed-
back. Further work is also needed to address the problem of filter-
ing in the presence of variable topography.
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Table A.1
Test case grid parameters. HY denotes a hybrid grid, UN denotes a uniform resolution
fully unstructured grid, and UW denotes a variable resolution fully unstructured grid.

Grid
name

Grid
type

Total cells in
3D

W=Dx d=Dz UmaxDt
Dxmin

mean min max

FHY HY 1,187,520 70.8 56.7 94.4 20 0.24
CHY HY 187,650 40.5 32.1 53.1 10 0.34
CUN UN 193,050 40.5 23.0 100 10 0.64
CUW UW 528,260 73.9 25.0 340 10 0.54

Table A.2
Comparison of RMS error for primary and secondary flow profiles for filtered and
unfiltered hydrostatic (HS) and nonhydrostatic (NH) flows. Filter abbreviations used:
NF is no filter, IE1 is first-order implicit edge, IE2 is second-order implicit edge, IE3 is
third-order implicit edge, IN1 is first-order implicit node, IN2 is second-order implicit
node, IN3 is third-order implicit node.

p Filter RMS error

Primary flow Secondary flow

Transverse Vertical Transverse Vertical
uðn; f ¼ 0Þ uðn ¼ 0:5; fÞ wðn; f ¼ �0:45Þ vðn ¼ 0:77; fÞ

HS NF 0.265 0.192 41.91 6.762
IE1 0.082 0.074 0.343 1.002
IE2 0.042 0.062 1.777 1.721
IE3 0.062 0.074 2.463 2.017
IN1 0.112 0.069 0.385 2.577
IN2 0.042 0.057 0.995 1.485
IN3 0.040 0.061 1.720 1.719

NH NF 0.058 0.056 0.803 1.146
IE1 0.082 0.062 0.269 1.036
IE2 0.059 0.054 0.721 1.009
IE3 0.059 0.055 0.764 1.047
IN1 0.114 0.065 0.380 2.591
IN2 0.056 0.055 0.654 1.263
IN3 0.389 0.206 12.84 18.07
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