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Humans receive a constant stream of input that potentially influence their affective experience. Despite
intensive research on affect, it is still largely unknown how various sources of information are integrated into
the single, unified affective features that accompany consciousness. Here, we aimed to investigate how a
stream of evocative input we receive is dynamically represented in self-reported affect. In 4 experiments,
participants viewed a number of sequentially presented images and reported their momentary affective
experience on valence and arousal scales. The number and duration of images in a trial varied across studies.
In Study 4, we also measured participants’ physiological responses while they viewed images. We formulated
and compared several models with respect to their capacity to predict self-reported affect based on normative
image ratings, physiological measurements, and prior affective experience (measured in the previous trial).
Our data best supported a model incorporating a temporally sensitive averaging mechanism for affective
integration that assigns higher weights to affectively more potent and recently represented stimuli. Crucially,
affective averaging of sensory information and prior affect accounted for distinct contributions to currently
experienced affect. Taken together, the current study provides evidence that prior affect and integrated
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affective impact of stimuli partly shape currently experienced affect.
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Affect constitutes a fundamental aspect of mental life (Barrett &
Bliss-Moreau, 2009) and is a primary property of other psycho-
logical phenomena, such as emotion (Barrett, 2006; Russell,
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2003), motivation (Lang & Bradley, 2010), personality (Mesquita,
De Leersnyder, & Boiger, 2016), preferences (Zajonc, 1980), and
judgment and decision making (Slovic, Finucane, Peters, &
MacGregor, 2002). It is widely hypothesized that affect is linked to
ongoing sensory changes within the body (Craig, 2015) that result
from changes in the body’s physiological systems (e.g., autonomic
nervous system, immune system, and neuroendocrine system).
This occurs because of both natural bodily fluctuations and the
changes that are prompted by sensory information from the sur-
rounding world (for a discussion, see Barrett, 2017; Lindquist,
Satpute, Wager, Weber, & Barrett, 2016). Previous research has
shown reliably that low-dimensional affective sensations have
features of feeling pleasure to displeasure, referred to as valence,
accompanied by a certain degree of arousal (Barrett & Russell,
1999; Russell & Barrett, 1999). In addition, these affective sensa-
tions fluctuate in a moment-to-moment fashion as the brain rep-
resents sensory input (e.g., Bradley, Codispoti, Cuthbert, & Lang,
2001; Bradley & Lang, 2000; Satpute et al., 2015). However, the
question of how a stream of evocative stimuli is dynamically
represented in affect remains unanswered. The fundamental ques-
tion of how affect dynamically evolves over time in the face of
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ongoing sensory stimulation and bodily fluctuations is arguably
critical in understanding the role of affect in adaptive and mal-
adaptive behaviors. Here, we investigate changes in momentary
affective experience as a function of sensory input in the form of
visual images using a novel experimental paradigm. Approaching
affect as a dynamical system, we posit that experienced affect at
any given time should reflect the affective impact of the given
sensory input and previously experienced affect.

The main task of the brain is to manage resources in physio-
logical systems to ensure the organism’s survival. Hence, the
brain, depending on biological functions and environmental cir-
cumstances, produces physiological adaptations to meet future
demands (i.e., allostasis; Ganzel, Morris, & Wethington, 2010;
Sterling, 2012). Affect is a basic property of this process because
the brain continually represents physiological adaptations in con-
nection with changing environmental circumstances (Barrett,
2017). Hence, affect is a constant stream of fluctuations in an
organism’s neurophysiological state that represents its ongoing
relation to the environment (Barrett, 2006; Barrett & Bliss-
Moreau, 2009; Russell, 2003). In other words, the dynamic, mo-
mentary affective state of an organism depends on how events
influence its capacity to maintain allostasis. To study affect, re-
searchers typically expose participants to stimuli or thought sce-
narios that will be experienced as threatening (or rewarding), such
as coming across a bear or a snake in the forest. Ample research
shows that the brain builds internal models of the causes of
sensations based on prior knowledge (Clark, 2013; Friston, 2009).
Coming across a bear in the forest—assuming the organism’s
priors represent that bears in wild may be dangerous (e.g., the
outcome will be very different in a zoo)—will evoke an intense
change in affect, which is experienced as unpleasant. Using the
same analogy, consider the case of coming across a snake and a
bear. Does one experience even stronger negative affect? Will the
resulting affect intensity be twice that of the intensity when ex-
posed to a single stimulus? While artificial, this scenario illustrates
the first central question of the present research: How are multiple,
independent stimuli integrated to influence an individual’s affec-
tive experience? Even though bear—snake combinations may be
rare, we receive an ever-flowing stream of evocative stimuli in our
daily lives. The sensory information flow from our surroundings
prompts fluctuations in our momentary affective experience, and,
importantly, this information flow is continuous. Hence, changes
in sensory information flow over time should partly be responsible
for fluctuations in momentary affect. Nevertheless, we do not
know how this dynamic information flow influences similarly
dynamic patterns of affect. We argue here that the stream of
sensory input is integrated over time in some way to influence the
construction of momentary affective experience. Thus, we set out
to investigate the mental calculus behind the integration of recent
sensory information to influence currently experienced affect. In
our studies, we tested various models such as averaging and
weighted averaging describing how affective impact of the incom-
ing stimuli is integrated over time (see The Present Research
section for details).

Affect is a dynamical system that fluctuates as a function of
changes in input variables and prior information represented in the
system. This point illustrates the second central question of the
present research. In typical studies of affect, researchers present
stimuli in consecutive trials and treat these as independent stimuli

presented in isolation from one another. In the current study,
however, we approached affect as a temporally dependent process
that carries information about sensory input in addition to the
individual’s prior affective experience. Thus, we argue that incom-
ing sensory information may prompt a change in experienced
affect, but the resulting affective experience will also be a function
of previously experienced affect. Researchers have attempted to
model affective dynamics based on moment-to-moment sensory
and internal state changes (e.g., Carver, 2015; Cunningham, Dun-
field, & Stillman, 2013). For instance, Cunningham and colleagues
(2013) proposed that an individual’s affective state at a given time
is partially determined by what is occurring in the environment in
addition to the individual’s affective trajectory. These models,
however, currently lack strong empirical support. The current
studies explicitly test the hypothesis that affective integration of
sensory input in the form of visual images together with prior
affective experience shapes currently experienced affect. To
achieve this, we designed a novel paradigm in which participants
viewed sequentially presented images and subsequently reported
their affective experience (Figure 1A) using two descriptive fea-
tures: hedonic valence and arousal. Then, we formulated predictive
models of self-reported affect based on the given images’ norma-
tively estimated propensity to evoke affective changes (normative
valence and arousal ratings acquired from Kurdi, Lozano, & Ba-
naji, 2017). We also included a term corresponding to prior affec-
tive experience (as measured in the previous trial) as a potential
predictor of self-reported affect in all models. In Study 4, we
introduced physiological reactions to these models. In all studies,
images that are normatively associated with pleasant affect (re-
ferred to here as pleasant images) and those known to be associ-
ated with unpleasant affect (i.e., unpleasant images) were pre-
sented in separate blocks. Moreover, because we approach affect
as a temporally dependent process that reflects the affective impact
of sensory stimuli and previous affective experience, it is worth-
while to investigate the role of the temporal variables of the current
paradigm such as viewing time and trial length on fluctuations of
momentary affect. Therefore, we varied the number of stimuli per
trial and duration of images in separate studies (see Figure 1B).

The Present Research

In the current research, we used three different types of factors
in the predictive models of experienced valence and arousal: (a)
normative valence and arousal ratings of the viewed images, (b)
previously reported valence and arousal, and (c) physiological
reactions. First, the normative ratings of an image were taken as a
proxy for how an individual might feel in response to looking at a
given image. This, therefore, represents the normative affective
impact prompted by an image. Because we are interested in the
question of how the affective impact of a stream of evocative
stimuli is integrated over time, we tested different integration
mechanisms. Psychophysical and behavioral experiments from a
variety of domains have shown that humans are sensitive to
statistical properties of stimuli. For instance, when individuals
made likability judgments based on personality traits of a hypo-
thetical person, simple averaging, in which each instance of a
given trait has similar weight, accounted for their judgments (An-
derson, 1981). Averaging could also account for individuals’ af-
fective assessments of their past experiences (Miron-Shatz, 2009).
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Sequence and trial information for the studies

Sequence Duration Number

length of trials
Study1 4images 2 sec/image 64
Study2 4images 2 sec/image 42
4images 4 sec/image 42
Study3 6images 2 sec/image 60
Study4 4images 4 sec/image 60
How do you feel right now?
—
| S |

Figure 1.
their affective states on valence and arousal scales. (B) Sequence information for each of the four studies. For
each study, the number of trials, the number of images, and the view-time durations are listed together. Images
are from the Open Affective Standardized Image Set (Kurdi et al., 2017).

Anderson (1981) also reported a primacy effect where the influ-
ence of a bad (or good) personality trait intermixed with good (or
bad) ones on likability judgments decreased linearly with its
ordinal position in the trait set. Further, Kahneman and coll-
eagues (Fredrickson, 2000; Kahneman, Fredrickson, Schreiber, &
Redelmeier, 1993) found that people’s evaluations of affective
episodes could be predicted by the affect experienced at moments
of peak affect intensity and at the conclusion of the episode; that
is, the peak-end rule. In the context of the current studies, in which
participants viewed sequentially presented images, the effects de-
scribed above provide explicit and unique predictions. An averag-
ing effect posits that average normative valence and arousal of all
images in a trial would provide the best prediction for the resulting
affective experience. A peak effect, on the other hand, suggests
that the best predictor would be the image with the most intense
affective ratings. An end and a primacy effects predict that higher
weights would be given to the last and first seen images.
Second, we included prior affective experience (valence and
arousal reported in the previous trial) as a predictor of currently
experienced valence and arousal in all models to test our hypoth-
esis that affect is a dynamical system and the current state of such
a system (i.e., currently experienced affect) carries information
about its own prior state (i.e., previously experienced affect).
Finally, because physiological activity fluctuates with affective
changes, assessing physiological reactions together with self-
reported affect increases the information represented in our mod-
els. Therefore, in Study 4, we recorded participants’ facial elec-
tromyography (EMG), electrodermal activity (EDA), pulse, and
respiration rate during image viewing; and used this data to predict
momentary affect. We recorded facial EMG over corrugator su-
percillii (CS) and zygomatic major (ZM) muscles. These muscle
sites are widely used in studies of affect and, on average, increased
activity in CS and ZM are correlated with increased unpleasant and
pleasant affect (e.g., Bradley & Lang, 2000; Cacioppo, Petty,
Losch, & Kim, 1986; Lang, Greenwald, Bradley, & Hamm, 1993;
Larsen, Norris, & Cacioppo, 2003). EDA reflects ongoing sympa-
thetic activity and correlates with sympathetic arousal (e.g., Critch-

Affective Respones

(A) Trial structure for the present studies. Participants viewed images in a sequence and then reported

ley, 2002). Pulse rate (e.g., Bradley & Lang, 2000; Lang et al.,
1993) and respiration rate (e.g., Boiten, Frijda, & Wientjes, 1994)
were also used in several studies of affect and sudden changes in
them can be prompted by intense affective fluctuations.

Study 1

The first study set out to test our hypothesis that currently
experienced affect is partly shaped by affective integration of
visually presented images and prior affective experience.

Method

Participants. Forty-four (22 women; M age = 25.2, SD =
6.27) individuals participated in the study. Informed consent was
received prior to inclusion in the experiment and participants were
compensated after the study. The study was conducted in accor-
dance with the ethical standards in the Declaration of Helsinki and
it was carried out in a university computer laboratory. Participants
were admitted to the room in groups (maximum 12 participants per
session). The data collection was open for 3 weeks, after which we
stopped the experiment and analyzed the results.

Experimental design and procedure. In each trial, partici-
pants viewed a sequence of four images presented at a 2-s per
image rate. After presentation of the last image, participants were
asked to report their momentary affective experience (“How do
you feel right now?”) using visual analog scales of valence
(pleasant—unpleasant) and arousal (low arousal-high arousal).
Participants were explicitly instructed that they should assess how
they currently feel in each trial. They were instructed to “look
inward” and assess how they felt at that moment. Next trial started
3 s after participants responded. Images within any given sequence
were either all pleasant or all unpleasant, as determined by nor-
mative ratings (acquired from Kurdi et al., 2017). Participants were
instructed that images presented in a trial were selected randomly,
and there were no meaningful connections between them. After
reading the instructions, participants completed three practice trials
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in which they viewed only neutral images. Each experimental
session consisted of two pleasant and two unpleasant image
blocks. The two blocks with the same valence always followed
each other but the order of the pleasant and unpleasant blocks was
counterbalanced among participants.

Visual stimuli. Visual stimuli were selected from Open Af-
fective Standardized Image Set (OASIS) database (Kurdi et al.,
2017) that provided normative valence and arousal ratings (mea-
sured on seven-point scales, ranging from 1 = very negative or
very low arousal to 7 = very positive or very high arousal). We
first removed all neutral images (normative valence ratings be-
tween 3.5 and 4.5). The remaining pleasant and unpleasant images
were assigned to three different arousal categories based on their
normative arousal ratings: low- (below 3.5), middle- (between 3.5
and 4.5), and high-arousal (above 4.5). With six groups of images
so defined, we selected for use in the present Study 30 images from
each group. In this way, we ensured that the selected images
covered a wide range of arousal in both valence groups.

In the first study, image sequences were formed depending on
the arousal grouping. An example of a temporal order of arousal
groups for a four-image sequence could be as follows: middle—
low—high—middle (MLHM). For the first experiment, we included
17 unique sequences (see the online supplemental material for
details) that were repeated twice for positive and negative blocks.
Our primary goal while forming the sequences was to place a
highly arousing image at distinct temporal positions to ensure that
highly evocative images would not occur at the same temporal
position or only within the same trial. Then, images were assigned
randomly to sequences for each individual. Hence, all participants
viewed the same stimuli in different combinations.

Data analyses and modeling. Participants’ affective re-
sponses were investigated, and their mean responses and variances
were computed for each scale (i.e., valence and arousal) and block
(i.e., positive and negative). Seven individuals with log variances
lower than two standard deviations below the group mean were
removed prior to running the predictive models. Responses from
these individuals did not appear to depend on the presented stimuli,
instead they responded at the lower end or midpoint of each scale
at each measurement point.

Our primary analysis strategy was to predict self-reported va-
lence and arousal at a given trial using the normative valence and
arousal of the given images using generalized linear mixed models
(GLMMs). First, we centered the normative image ratings around
zero (—3 to +3 range) and scaled experienced valence and arousal
between —3 and +3. We then tested two models to predict valence
and arousal. A number of parameters (peak, end, primacy, and
average, see the following text for details) derived from the nor-
mative ratings were tested in the first set of models (Single
parameter models). In the second set of models, we predicted
self-reported valence and arousal using the normative ratings in the
presentation order in each trial (Temporal order models). In addi-
tion, we introduced valence and arousal as measured in the previ-
ous trial (i.e., prior affective experience) as a predictor of currently
experienced valence and arousal in all models. A dummy coded
block variable (pleasant = 1; unpleasant = —1) was also included
to control for the mean differences between blocks. In addition, all
models contained random intercepts and slopes at the participant
level.

The predictors in the single parameter models (i.e., peak, end,
primacy, average, and prior affective experience) were entered in
a hierarchical regression. The predictors were individually entered
in the models in all possible orders. If the significance of the
coefficient estimate of a predictor was above p = .1, then it was
removed from the model. For arousal predictions, peak represented
the highest normative arousal in a sequence. Primacy and end were
represented by the normative arousal of the first and last image of
a sequence, respectively. Average was the mean normative arousal
of all the images in a sequence. Arousal measured in the previous
trial was the final predictor. Predictive models of valence were
similar except that peak-valence was the most negative normative
valence in unpleasant blocks and the most positive normative
valence in pleasant blocks. The predictors of the temporal order
models were the normative image ratings in the presentation order,
in addition to prior affective experience. These models allowed us
to inspect temporal order effects on affective integration.

Results

Single parameter models. Hierarchical regressions predict-
ing valence and arousal included fixed effects of extracted param-
eters (peak, end, primacy, and average) and prior affect. Valence
prediction revealed that both prior valence (B = 0.18, 95% con-
fidence interval [CI; 0.12, 0.23], p < .001) and average normative
valence (B = 0.69, 95% CI [0.55, 0.83], p < .001) were positively
associated with currently experienced valence (see Study 1 in
Table 1). The other parameters did not reliably contribute to the
model (p > .1). Similarly, the arousal model indicated that only
prior arousal (B = 0.19, 95% CI [0.13, 0.25], p < .001) and
average normative arousal of images (B = 0.56, 95% CI [0.42,
0.69], p < .001) were significant predictors of currently experi-
enced arousal (see Study 1 at Table 1).

Temporal order models. The second set of regressions in-
cluded terms accounting for normative ratings in temporal
presentation order as well as prior affect to predict self-reported
valence and arousal. Prior affect made significant contributions
to predictive models of both valence and arousal with the same
coefficient estimates as in the single parameter models (see
Study 1, Tables 1 and 2). Each image contributed to both
valence and arousal predictions with positive and significant
coefficient estimates (see Study 1, Table 2). As a general trend,
the relative contribution of a given image increased as it ap-
peared later in a sequence in both valence and arousal models
(see Table 2). This point supports a weighted-averaging account
of affective integration, in which later stimuli are given higher
weights compared with earlier stimuli.

Discussion

We investigated how a stream of evocative images are repre-
sented affectively and tested different models for predicting self-
reported affect as a function of the viewed images’ normative
tendency to evoke affective changes. The results showed that an
affective averaging mechanism provides the best account of inte-
gration over time. Further, previously experienced affect was a
reliable predictor of the current affective experience. In addition,
changes in current affective experience was slightly more sensitive
for later stimuli. In Study 2, we investigated whether a change in
presentation rate would yield the same pattern of findings.
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Table 1
Results of the Single Parameter Models Predicting Self-Reported Valence and Arousal
Study 1 Study 2 Study 3 Study 4
Four images, Four images, Four images, Six images, Four images,
Model parameters 2 s per image 2 s per image 4 s per image 2 s per image 4 s per image
Valence models
Predictors and coefficient estimates Vo: .18 (.03)™" Vo: .25 (.03)™ Vo: .19 (.03)™ Vo: .16 (.03)™" Vo: .17 (.03)™
Av: .69 (.07)" Av: .56 (.08)" Av: 31 (11)™ Av: .32 ()™ Av: 3 (11)"
Pk: .35 (.08)"" Pk: .40 (.07)"" Pk: .31 (.09)*"
R? 71 .76 5 77 72
AIC 6,120 3,653 3,763 5,806 3,232
Arousal models
Predictors and coefficient estimates Ay 19 (.03)™ Ay .19 (.04)™ Ay 23 (.03)™ Ay .19 (.03)™ Ay 27 (04)™
Av: .56 (.07)"" Av: .52 ()™ Av: .54 (.09)"" Av: .6 (11)™ Av: .53 (1)
R? 43 5 47 A48 .39
AIC 7,219 4,944 5,050 7,692 3,963

Note. Numbers in parentheses represent standard errors. V, = prior valence; A, = prior arousal; Av = average normative rating; Pk = peak normative
rating; AIC = Akaike information criterion.
“p <.05. "p<.005.

Study 2 dures and the stopping rule for data collection were the same as
in Study 1.

Experimental design, procedure, and materials. In each
trial, participants viewed four images presented at either a 2-s per
image or 4-s per image rate. Subsequently, participants were asked
to report their momentary affective experience. The instructions,
measurement scales, and visual stimuli were the same as in Study
1. We formed image sequences depending on the arousal grouping.

In Study 2, we aimed to replicate the findings from Study 1 and
to investigate whether an increase in stimulus duration would
affect affective integration of evocative stimuli over time. Hence,
participants viewed four images in each sequence presented at a
2-s per image or a 4-s per image rate.

Method The same 17 sequences from Study 1 and an additional four
Participants. Forty-five (13 women; M age = 234, SD = sequences were used to balance the appearance of images from
3.73) individuals participated in the study. Recruitment proce- different arousal levels at different temporal positions (see the
Table 2
Results of Temporal Order Models Predicting Self-Reported Valence and Arousal
Study 1 Study 2 Study 3 Study 4
Four images, Four images, Four images, Six images, Four images,
Model parameters 2 s per image 2 s per image 4 s per image 2 s per image 4 s per image
Valence models
Predictors and coefficient estimates Vo .18 (.03)™ Vi 25 (.03)™ Vi .19 (.03)™" Vi .16 (.03)™ Vo: .17 (.03)™
PI: .15 (.04)™" P1: .03 (.04) Pl: .11 (.04)" PI: .15 (.03)™" PI: .12 (.04)"
P2: .15 (.04)™ P2: .14 (.04)™ P2: .1 (.04)" P2: .06 (.03)" P2: .14 (.04)™
P3: .17 (.04)™" P3: .13 (.04)"" P3: .21 (.04)*" P3: .07 (.03)" P3: .13 (.04)™"
P4: .22 (.04)™ P4: .25 (.04)™ P4: .21 (.04)™ P4: .06 (.03)" P4: 21 (.04)™
P5: .13 (.03)™
P6: .2 (.03)™
R? 71 .76 75 .76 72
AIC 6,129 3,644 3,779 5,837 3,249
Arousal models
Predictors and coefficient estimates Ay .19 (.03)™ Ay: .19 (04" Ay 23 (.03)™ Ay 2 (.03)" Ay 27 (04
P1: .12 (.03)™ Pl1: .12 (.04)™ P1: .08 (.04)" P1: .05 (.04) P1: .11 (.03)™
P2: .13 (.04)™" P2: .07 (.04) P2: .16 (.04)"" P2: .07 (.03)" P2: .09 (.03)"
P3: .16 (.03)™ P3: .17 (.05)™ P3: .16 (.04)™ P3: .08 (.03)" P3: .14 (.05)™
P4: .19 (.04)™" P4: .16 (.04)"" P4: .14 (.04)"" P4: .08 (.04)" P4: .18 (.04)™"
P5: .11 (.04)™
P6: .2 (.04)™
R? 44 51 47 48 .39
AIC 7,226 4,952 5,065 7,721 3,978

Note. Numbers in parentheses represent standard errors. VO = prior valence; AO = prior arousal; P1 = normative rating of the first image in a trial; AIC =
Akaike information criterion.
'p<.10. “p<.05. "p <.005.



n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri

°r and is not to be disseminated broadly.

This article is intended solely for the personal use of the individua

164 ASUTAY ET AL.

online supplemental material for details). Here, each of the 21
sequences were used twice for each valence block: once at 2-s per
image and once at 4-s per image presentation rate in a random
order. Images were randomly assigned to sequences for each
individual.

Data analyses and modeling. The analysis and modeling
strategy were the same as in Study 1. First, we inspected partici-
pants’ mean responses and variances in each measurement scale
and block. Six individuals with log variances lower than two
standard deviations below the group mean were removed prior to
running the predictive models. Similar to those in Study 1, these
individuals responded at the lower end or midpoint of each scale at
each measurement point.

We constructed single parameter models and temporal order
models to predict valence and arousal based on the normative
image ratings within each sequence and prior affect in the same
manner as in Study 1. We tested separate models depending on the
presentation rate.

Results

Single parameter models. Hierarchical regressions predict-
ing valence and arousal included fixed effects of extracted param-
eters (peak, end, primacy, and average) and prior affect. Valence
prediction revealed that only prior valence (B = 0.25, 95% CI
[0.19, 0.31], p < .001) and average normative valence (B = 0.56,
95% CI1[0.4, 0.71], p < .001) reliably entered in the model for the
2-s/image presentation rate. On the other hand, peak valence
parameter emerged as a reliable predictor (B = 0.35, 95% CI
[0.19, 0.51], p < .005) of current valence in longer sequences
together with prior valence (B = 0.19, 95% CI [0.13, 0.24], p <
.001) and average normative valence (B = 0.31, 95% CI [0.09,
0.52], p = .004; see Study 2 in Table 1).

In both presentation rates, only prior arousal and average nor-
mative arousal of images were significant predictors of currently
experienced arousal (see Study 2 in Table 1). The coefficient
estimates of the prior arousal parameter was 0.19 (95% CI [0.12,
0.26], p < .001) and 0.23 (95% CI [0.16, 0.3], p < .001) for 2-s
and 4-s per image rates, respectively. The coefficient estimates of
the average-arousal parameter was virtually the same during both
presentation rates (B = 0.52, 95% CI[0.33, 0.71], p < .001 for 2-s
per image; and B = 0.54, 95% CI [0.36, 0.72], p < .001 for 4-s per
image). The other parameters did not reliably contribute to pre-
dicting arousal (p > .1).

Temporal order models. Temporal order models yielded
similar results as in Study 1. First, prior affect made significant
contributions with the same coefficient estimates as in the single
parameter models (see Study 2 in Tables 1 and 2). In addition, the
general trend of increasing coefficient estimates for later images
were found (see Table 2). However, this trend seemed somewhat
weaker in arousal predictions.

Discussion

First, we replicated the general findings of Study 1. The aver-
aging mechanism was the best to account for affective integration
when each image was presented for 2 s. The same pattern also
emerged for arousal predictions in longer sequences (4-s per
image). However, valence predictions for longer sequences

showed that peak-valence parameter contributed to fluctuations in
experienced valence beyond averaging. One possible explanation
for this finding is that the effect of less potent stimuli on experi-
enced valence may be limited in a longer time span, so that the
reliable effect of the most potent stimuli could be observed. How-
ever, a replication of this effect is needed to confirm this expla-
nation (see Study 4). In addition, in all the models prior affect
made robust contributions to currently experienced affect as in
Study 1. This shows that previous affective experience is partly
responsible in shaping current affective experience. In summary,
we replicated the main findings of Study 1 and found potential
differences due to stimulus presentation rate. In Study 3, we
investigated whether increased number of stimuli would lead to
changes in how affective integration over time occurs.

Study 3

In the first two studies, we found that previous affective expe-
rience and affective averaging of recent stimuli partly shaped
currently experienced affect. Further, the findings from Study 2
indicated that when the presentation rate increased from 2 s to 4 s
the relative contribution of the peak-valence parameter to the
currently experienced valence increased. In Study 3, we therefore
investigated another parameter: number of images in a sequence.
Our main aim was to study whether the use of an increased number
of stimuli would yield a similar pattern of results.

Method

Participants. Forty-nine (21 women, M age = 23.5, SD =
3.18) individuals participated in the study. Recruitment procedures
and the stopping rule for data collection were the same as in the
first two studies.

Experimental design, procedure, and materials. In each
trial, participants viewed six images presented at a 2-s per image
rate and subsequently reported their momentary affective experi-
ence. The instructions, measurement scales, and visual stimuli
were the same as in the first two studies. Participants went through
60 trials in total. Image sequences were formed pseudo-randomly
for each individual and block (i.e., pleasant and unpleasant) with
the following requirements. (a) Stimuli from different arousal
groups were shown at each temporal position at equal times, and
(b) each sequence was a unique combination of arousal groups. In
addition, we calculated the mean arousal group for each sequence
(low-arousal: —1; middle-arousal: 0; high-arousal: 1). Then, to
increase variance, we allowed a maximum of five sequences to
have the same mean arousal group for any given participant. Thus,
we ensured that there were no statistical differences in normative
valence or arousal of images at different temporal positions.

Data analyses and modeling. The analysis and modeling
strategy were the same as in previous studies. First, we inspected
participants’ mean responses and variances and removed six indi-
viduals with log variances lower than two standard deviations
below the group mean prior to running the predictive models.
These individuals’ responses did not seem to depend on the pre-
sented stimuli, instead they responded at the lower end or midpoint
in each trial. We constructed single parameter models and tempo-
ral order models to predict valence and arousal based on the
normative image ratings within each sequence and prior affect in
the same manner as in the first two studies.
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Results

Single parameter models. Valence prediction revealed that
prior valence (B = 0.16, 95% CI [0.1, 0.22], p < .001), average
normative valence (B = 0.32, 95% CI [0.13, 0.51], p < .001) and
peak-valence (B = 0.4, 95% CI [0.26, 0.54], p < .001) reliably
entered in the model (see Study 3 in Table 1). On the other hand,
only prior arousal (B = 0.19, 95% CI [0.13, 0.26], p < .001) and
average normative arousal of images (B = 0.6, 95% CI [0.39,
0.81], p < .001) were significant predictors of currently experi-
enced arousal (see Study 3 in Table 1).

Temporal order models. Prior valence and arousal made
significant contributions to predictive models of both valence and
arousal with the same coefficient estimates as in the single param-
eter models (see Study 3 in Tables 1 and 2). The coefficient
estimates were higher for the later images. However, the valence
predictions showed that the first (B = 0.14, 95% CI [0.08, 0.2],
p < .001) and the last image (B = 0.19, 95% CI [0.12, 0.26], p <
.001) had somewhat higher estimates in comparison to the other
images (see Study 3 in Table 2).

Discussion

In Study 3, we studied the effect of increased number of images
in each trial on affective integration models. Participants viewed
six images in each trial. First, the averaging mechanism was the
best account for integration over time for the arousal feature of
affect. Thus, the averaging account of arousal does not seem to
depend on either the duration or the number of stimuli. In addition,
temporal order models indicated that the contribution of an image
to currently experienced arousal increased as it appeared later in a
trial. Like the findings of the first two studies, this finding supports
a temporal averaging account of affective integration. Second,
both average and peak normative valence contributed to currently
experienced valence. Taken together with findings from previous
studies, this suggests that peak-valence parameter emerged as a
reliable predictor when the sequences were longer due to longer
duration or higher number of stimuli. Third, we found a primacy
effect for valence predictions in six-image sequences, which could
potentially represent a memory related effect. Finally, as in previ-
ous studies, prior valence and arousal robustly contributed to
current valence and arousal, which supports the hypothesis that,
previous affective experience partly shapes currently experienced
affect.

Study 4

Research shows that physiological activity fluctuates with af-
fective changes (e.g., Lang et al., 1993; Larsen et al., 2003; Mauss
& Robinson, 2009). Our main aim in Study 4 was to investigate
changes in participants’ peripheral physiology during the experi-
ment and used this information in the predictive models of affect.
Arguably, assessing physiological activity together with self-
reported affect would increase the information represented in the
models. We recorded participants’ facial EMG over corrugator
supercilii (CS) and zygomatic major (ZM) muscles, electrodermal
activity (EDA), respiration, and pulse during the experiment. We
then constructed predictive models of affect based on the changes
in participants’ physiological responses and compared them to the
models based on normative image ratings.

Method

Participants. Twenty-nine (16 women; M age = 25.6, SD =
5.18) individuals participated in the study. Informed consent was
received prior to inclusion in the experiment and participants were
compensated after the study. The study was conducted in accor-
dance with the ethical standards in the Declaration of Helsinki.
Participants completed the study protocol individually in a psy-
chophysiology laboratory. The data collection was open for three
weeks.

Experimental design and procedure. In each trial, partici-
pants viewed four images presented at a 4-s per image rate and
subsequently reported their momentary affective experience. The
instructions, measurement scales, and visual stimuli were the same
as in the first three studies. Participants engaged in 60 trials. Image
sequences were formed pseudorandomly with the same require-
ments as in Study 3. Images were assigned to trials randomly for
each individual.

Physiological data recording and preprocessing. We used a
BIOPAC MP150 system (Biopac Systems Inc., Goleta, CA) to
record participants’ facial EMG (using EMG100C amplifiers),
EDA (using a GSR100C amplifier), respiration rate (using a
RSP100C amplifier), and pulse (using a PPG100C amplifier).
Facial EMG data were recorded from the left corrugator supercilii
(CS) and zygomatic major (ZM) muscles, using surface Ag/AgCl
electrodes (4 mm in diameter). For recording EDA, surface Ag/
AgCl electrodes (8 mm in diameter) were attached to the medial
phalanges of the second and third digits of participants’ nondomi-
nant hand. We recorded pulse using a photoplethysmogram trans-
ducer attached to the distal phalange of the fourth digit of partic-
ipants’ nondominant hand. Participants also wore a respiratory
effort transducer attached to a Velcro strap around their chests. All
physiological signals were sampled at 1,000 Hz, amplified, and
recorded for offline data analysis.

EMG signals were band-pass filtered from 20 Hz to 480 Hz. The
filtered signal was full-wave rectified and low-pass filtered at 40
Hz for smoothing. For each EMG signal, we calculated change
scores by calculating the difference between the average activity
within four consecutive 4-s intervals during image presentation
and the average activity during a 2-s interval preceding the first
image onset (baseline).

Raw EDA signals were resampled at 10 Hz and low-pass
filtered at 1 Hz to remove the high frequency noise. From the
resulting signal, we computed the following measures: phasic-
EDA, tonic-EDA, and skin conductance response rate (SCR-rate).
For computation of the phasic-EDA, the signal was high-pass
filtered at 0.02 Hz (to remove the slow adapting tonic component),
full-wave rectified, and averaged within four, consecutive, 4-s
windows starting 1 s after the onset of the first image. These
average scores then were log transformed (Figner & Murphy,
2011). For calculating tonic EDA, we applied a 10-s moving
average filter to the resampled EDA signal and averaged the
resulting signal within the 16 s of image viewing. From the
resampled EDA signal, we also calculated SCR-rate. To do this,
we first located the trough of the EDA signal (i.e., where it
transitioned from a negative to positive slope). Then, we looked
for the first point where the signal increased to 0.02 nS above the
trough before arriving at a zero or negative slope. If this point
occurred within 500 ms from the trough, we counted that as an
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SCR onset. The SCR-rate was the total number of SCR onsets that
occurred within a 16-s window that started 1 s after the onset of the
first image.

The raw respiration signal was resampled at 10 Hz and band-
pass filtered between 0.1 and 1 Hz. The filtering was applied in
order to center the signal around zero and remove high frequency
noise. From the resulting signal, we extracted the respiratory peaks
to calculate respiration rate. We calculated change scores by com-
puting the difference between the average respiration rate within
four, consecutive, 4-s time windows after the first image onset and
the average respiration rate during a 4-s baseline period measured
prior to the first image.

The pulse signal was resampled at 40 Hz and low pass filtered
at 10 Hz to remove high frequency noise. Then, we applied a
high-pass filter at 0.5 Hz to remove low-frequency drift. Finally,
the pulse rate in beats-per-minute was computed from the first
order time derivative of the signal. Similar to respiration rates,
change scores were calculated by calculating the difference be-
tween the average pulse rates within four 4-s time windows from
the average pulse rate during the baseline period prior to the onset
of the first image. The changes in pulse rate were not reliably
associated with either valence or arousal and did not make a
significant contribution to valence or arousal predictions (p > .25).
This might be due to the unreliable and noisy measurement meth-
odology (i.e., pulse photo-plethysmography) in comparison with
the other physiological measures. More reliable heart rate mea-
sures based on ECG may provide results that are more suitable.
The time-course analysis only indicated a general pulse rate de-
celeration while participants viewed both pleasant and unpleasant
images (see Figure S4.1 in the online supplemental material).
Therefore, pulse rate data are not presented in the Results section.
All physiological measures were individually standardized to ac-
count for individual differences in responsiveness.

Data analyses and modeling. As in previous studies, we
inspected participants’ mean responses and variances in self-
reports and removed five participants with log variances lower
than two standard deviations below the group mean prior to
running the predictive models. Similar to the individuals in the first
three studies, these individuals responded at the lower end or
midpoint of the scales in most of the trials.

We constructed single parameter models and temporal order
models to predict valence and arousal based on the normative
valence and arousal of the given images and prior affect. In
addition, we tested a model informed by participants’ physiolog-
ical activity to predict self-reported valence and arousal. The
predictors of this model, physiological measures (explained above)
and prior affective experience, were entered in the models in all
possible orders. The removal criterion was, again, set at p > .1.
Like the other models, the physiologically informed model con-
tained a dummy-coded block variable (unpleasant = —1 and
pleasant = 1) and subject random effects.

Results

Single parameter models. Prior valence (B = 0.17, 95% CI
[0.1, 0.23], p < .001), average normative valence (B = 0.3, 95%
CI [0.08, 0.53], p = .008) and peak-valence (B = 0.31, 95% CI
[0.13, 0.48], p < .001) reliably contributed to the predictive model
of current valence (see Study 4 in Table 1). Similar to previous

studies, the reliable predictors of current arousal were prior arousal
(B =0.27,95% CI1[0.18, 0.35], p < .001) and average normative
arousal (B = 0.53, 95% CI [0.33, 0.73], p < .001; see Study 4 in
Table 1).

Temporal order models. Temporal order models yielded
similar results as in Studies 1 and 2. Prior affect made significant
contributions with the same coefficient estimates as in the single
parameter models (see Study 4 in Tables 1 and 2). In addition,
there was a general trend of increasing coefficient estimates for
later images (see Study 4in Table 2). However, the trend seemed
somewhat weaker in arousal predictions as in Study 2.

Physiological responses. We first compared physiological ac-
tivity during trials, in which participants reported experiencing
negative versus positive affect (see Figure 2A). We found signif-
icant differences in facial muscle activity, respiration rate, and
tonic-EDA (p < .05). Higher ZM and lower CS activity, lower
respiration rate, and lower tonic-EDA were all associated with
trials in which participants reported experiencing positive affect. A
similar analysis along the arousal dimension comparing low
arousal and high arousal trials yielded significant differences in
ZM activity, phasic-EDA and SCR-rate (all p < .05; see Figure
2B). In particular, higher ZM activity, phasic-EDA, and SCR-rate
were all associated with trials in which participants reported ex-
periencing high-arousal.

Using participants’ physiological responses in each trial, we
carried out hierarchical regressions predicting valence and arousal.
ZM activity in the last 4-s window (Zm4; B = 0.1, 95% CI [0.03,
0.17], p = .004) and initial phasic-EDA (pEDAI1; B = 0.07, 95%
CI[0.001, 0.13], p = .048), together with prior arousal (B = 0.26,
95% CI [0.18, 0.35], p < .001) were positively associated with
currently experienced arousal (see Table 3). For predicting va-
lence, CS and ZM activity during the last 4-s window (Cs4;
B = —0.11, 95% CI [—0.16, —0.06], p < .001; and Zm4; B =
0.09, 95% CI [0.02, 0.15], p = .007) provided significant negative
and positive contributions, respectively. Moreover, initial respira-
tion rate (RR1; B = —0.06, 95% CI [—0.11, —0.01], p = .014)
was negatively associated with overall valence (see Table 3).
Interestingly, among the three valence models tested in Study 4,
the physiologically informed model resulted in the best fit based
on Akaike’s information criterion (AIC). Likelihood ratio tests
confirmed that for valence prediction, the physiology model per-
formed significantly better than the single parameter model,
x*(2) = 27.2, p < .001. Finally, we tested a set of models informed
by both normative image ratings and physiological measures.
Results showed that combined models performed better than either
model alone for valence and arousal predictions (based on AIC;
see Table 3).

Discussion

The main objective of Study 4 was to investigate whether
the inclusion of physiological responses would improve the
predictive models of affect. The results showed that changes in
facial muscle activity (both CS and ZM), tonic-EDA, and
respiration rate were associated with valence, whereas ZM
activity and phasic-EDA were associated with arousal. This
pattern of results are consistent with previous studies (e.g.,
Bradley & Lang, 2000; Cacioppo et al., 1986; Lang et al., 1993;
Larsen et al., 2003; Mauss & Robinson, 2009). For valence
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predictions, the models incorporating physiological reactivity
performed better than the models based on normative image
ratings. It is perhaps not surprising that participants’ own pe-
ripheral physiology proved a better proxy for their subjective
affective states than normative image ratings. In addition, even

in these models, prior affective experience made a robust con-
tribution to currently experienced affect. Furthermore, the mod-
els that utilized both physiological responses and normative
image ratings together with prior affect performed better than
either model alone, which suggests that incorporating the fluc-

Table 3

Results of Different Models Predicting Self-Reported Valence and Arousal in Study 4

Model parameters

Physiology

Single parameter model

Temporal weighting model

Physiology + Single Parameter

Valence models

Predictors and coefficient estimates V.18 (.03)™ Vo: .17 (.03)™ Vo: .17 (.03)™" Vo: .17 (.03)™"
CS4: —.11 (.03)™ Av: 3(11)" P1:.12 (.04)" Av: 28 (L11)"
ZM4: .09 (.03)" Pk: .31 (.09)™ P2:.14 (.04)™ Pk: .28 (.09)™
RRI1: —.06 (.03)" P3:.13 (.04)™ CS4: —.11 (.02)""
P4: .21 (.04)™ ZM4: .08 (.03)"
RRI1: —.06 (.03)"
R? 74 72 72 75
AIC 3,208 3,232 3,249 3,158
Arousal models
Predictors and coefficient estimates ~ A,: .26 (.04)™ Ay 27 (04 Ay 27 (04)™ Ay 27 (04)™
ZM4: .1 (.04)™ Av: 53 (1) PIL:.11 (.03)™ Av: .51 ()™
pEDAL: .07 (.03)" P2:.09 (.03)" ZM4: .08 (.03)"
P3:.14 (.05)™ pEDAL: .05 (.03)
P4: .18 (.04)™
R? .35 .39 .39 4
AIC 4,039 3,963 3,978 3,956
Note. Numbers in parentheses represent standard errors. VO = prior valence; AQO = prior arousal; Av = average normative rating; Pk = peak normative

rating; P1 = normative rating of the first image in a trial; CS4 = corrugator activity in the fourth 4-s window; ZM4 = zygomatic activity in the fourth
4-s window; RR1 = respiration rate in the first 4-s window; pEDA1 = phasic electrodermal activity in the first 4-s window; AIC = Akaike information

criterion.

*p < .05 **p<.005.
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tuations in physiological activity increased the information
represented in the predictive models of affect.

Furthermore, behavioral findings from previous studies were
replicated in Study 4. Affective averaging was the best parameter
to account for the variation in self-reported arousal. On the other
hand, for valence predictions, best accounting mechanism was
averaging that also takes the peak-valence into account, which
replicates findings from Study 2. Finally, in Study 4, prior affect
made robust contributions to both valence and arousal models as in
all the three previous studies, which strengthens the position that
prior affect is partly responsible for current affect.

In four studies, we showed that prior affective experience and
affective averaging of recent sensory stimuli partly determine
current affect. Moreover, changes in physiological activity during
image viewing period accounted for additional variations in self-
reported valence and arousal. In the next section, we present
further analyses where we combine the behavioral findings and
underline the parallels and divergences between the studies.

Summary of the Findings and Internal Meta-Analysis

Exploratory Analyses

In all four studies, we found that the prior affect made robust
contributions to current affect. First, direct comparisons of single
parameter models based on the AIC showed that inclusion of prior
affect improved both valence and arousal predictions in all models
(without altering the coefficients of other predictors), despite the
penalty for an additional predictor (see Tables S2.1 and S2.2 in the
online supplemental material). This indicates that prior affect and
recent sensory input account for distinct contributions to currently
experienced affect.

Moreover, to further investigate the contribution of prior affect
to currently experienced affect, we pooled behavioral data from all
four studies and carried out exploratory analyses, in which we
tested different models where the prior affect parameter was taken
from 1 to 4 trials earlier than the current trial. We then compared
the coefficient estimates of different time lags. In all models, prior
affect had positive and significant coefficient estimates (see Table
4). However, the coefficient estimates decreased with increasing
trial lag between the current and the previous trials, with the largest
drop between one and two trials earlier. This finding suggests that
current affective experience is partly determined by prior affect
and that the contribution of prior affect decreases with increasing
temporal distance between the current and the previous self-

Table 4
Coefficient Estimates of Prior Affect Predictor

Prior affect rating Valence Arousal
Trial (t-1) 17 (.14, .2] .19 [.16, .23]
Trial (t-2) .06 [.03, .09] .09 [.06, .12]
Trial (t-3) .06 [.04, .09] .09 [.06, .12]
Trial (t-4) .05 .03, .08] .07 [.04, .1]

Note. Trial (t-n) denotes that self-reported prior affect was taken as a

predictor from n-trials before the current trial. Numbers in brackets repre-
sent 95% confidence intervals.

reports. In addition, this point supports our hypothesis that affect is
a temporally dependent and continuous process.

Finally, we investigated whether the contribution of peak-
valence differed between pleasant and unpleasant blocks. In these
exploratory analyses, we only tested the main effects of and the
interaction between the peak-valence and the block parameters (for
details, see the online supplemental material). We found that
peak-valence had larger contributions during unpleasant blocks to
experienced valence in Studies 2, 3, and 4. When we run the same
model with the pooled data from all four studies, we found a
significant interaction effect showing that peak normative valence
had a larger contribution to self-reported valence in unpleasant
compared to pleasant blocks (B = —0.17,95% CI [—0.23, —0.12],
p < .001). Taken together, these analyses indicate that the peak
negative valence had a stronger contribution in comparison to the
peak positive valence.

Power Simulations and Internal Meta-Analysis

We estimated the statistical power using simulations, which
were carried out after the data collection, to assess the minimum
detectable effect size (coefficient estimate/error standard devia-
tion) for the normative image ratings with 0.8 power for a sample
size of 24 (i.e., the final sample size of Study 4) with 60 data points
each (30 positive and 30 negative trials). For each simulation, we
randomly assigned images to each individual and trial. We simu-
lated data sets with different effect sizes (10,000 simulations for
each effect size) and used GLMMs to analyze them (i.e., the same
analysis strategy used in all four studies). The simulations showed
that effects of 0.148 for valence and 0.104 for arousal could be
detected with 0.8 power. To place this in context, the smallest
effects we found in Study 4 were 0.137 for valence (error SD =
0.8) and 0.087 for arousal (error SD = 1.03). Thus, the smallest
behavioral effects detected in Study 4 might be lacking the ade-
quate statistical power.! Then, we repeated the same procedure
with N = 37 (i.e., the final sample size of Study 1), because Study
1 was the second smallest sample among our studies. The simu-
lations showed that the minimum effects that could be detected
with 0.8 power were 0.122 and 0.085 for valence and arousal,
respectively. The smallest effects we found in Study 1 were 0.156
for valence (error SD = 0.88) and 0.107 for arousal (error SD =
1.11). These simulations, while conducted following data collec-
tion, indicate that the study was adequately powered for detecting
a small behavioral effect. However, because we had a smaller
sample in Study 4 and the power simulations were not conducted
a priori, we carried out an internal meta-analysis to combine the
effects in four studies to help us interpret the findings. We used a
multivariate generalized least squares (GLS) approach to combine
the coefficient estimates (Becker & Wu, 2007). GLS is a meta-
analytic approach to synthesize regression slopes that weighs the
effects by precision, provides entire pooled model, and accounts

! These simulations do not concern physiological data. We also carried out
power simulations to assess the minimum detectable effect size (coefficient esti-
mate/error standard deviation) for physiological responses with a 0.8 power for a
sample size of 24. Physiological responses were selected to have a standard
distribution for each participant. The simulations showed that an effect of 0.07
could be detected with 0.8 power. The smallest significant effects found in Study
4 were 0.09 for valence and 0.07 for arousal predictions.
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for covariation. Since we had the raw data, we also used covari-
ance matrices from each study.

We have found that average normative valence and prior valence
made reliable contributions to currently experienced valence in all
studies. However, when the presentation rate was increased from 2-s
to 4-s per image (Study 2 and 4) the peak-valence parameter emerged
as a reliable predictor. To quantify this difference, we first carried out
GLMMs including prior valence, average normative valence, and
peak normative valence to predict self-reported valence in separate
studies. All the models included a dummy-coded block variable and
subject random effects. Then, we combined the effects depending on
the presentation rate using a multivariate GLS approach (see Figure
3). The peak effect was not significant for four-image sequences with
a 2-s per image presentation rate (B = 0.07, 95% CI [—0.04, 0.18]),
whereas it was different from zero for the 4-s per image presentation
rate (B = 0.33, 95% CI [0.21, 0.45]). Importantly 95% ClIs of the
effects did not overlap (see Figure 3). This finding indicates that the
peak normative valence emerged as a reliable predictor of currently
experienced valence when the presentation rate or the number of
stimuli was increased.

Second, in different studies we found a general trend of increasing
coefficient estimates for images that were presented later in a trial. We
combined the effect of image position from temporal order models in
all four studies. Because we tested six-image sequences in Study 3,
this model was different from the rest. However, the GLS approach
does not require that all the models must be the same. As long as the
focal variables are available in all models, GLS can be used to
combine those effects (Becker & Wu, 2007). Therefore, we synthe-
sized the effects of last four images in all studies. The coefficient
estimates for both valence and arousal models showed that the con-
tribution of an image increased as it was presented later in a sequence
(see Figure 4). This trend was slightly less pronounced for arousal
predictions. We compared the coefficient estimates for each image
using Wald tests (Holm-Bonferroni corrections were applied to cor-
rect for multiple comparisons; see Figure 4). The contribution of the
last image (see Image, , in Figure 4) to experienced valence was
significantly larger in comparison to all earlier images (all at p < .05
level). In addition, Image, , had a significantly larger coefficient
estimate compared with Image,_, (p = .037). On the other hand, the
comparisons of coefficient estimates in the arousal model showed that
the contribution of Image, , was significantly larger in comparison to
both Image, 5 and Image,_, (all at p < .05 level). Taken together, these
results support a weighted-averaging mechanism for affective inte-
gration, in which the contribution of a given image increases as it
appears later in a sequence.

Study 5: Control Study

The current research aimed to investigate momentary affect as a
function of recent sensory input in the form of evocative images. In
four studies, we have shown that affective averaging of recent stimuli
and prior affect partly shape currently experienced affect. However, a
concern with the current studies may be related to the measurement of
affect. We assumed that participants, when asked, reported how they
felt at that moment. Therefore, we collected self-reports as an assess-
ment of participants’ momentary affective experience. An alternative
explanation, however, could be that participants, instead of reporting
how they felt in each trial, actively considered and rated the images
they viewed and provided an average account for all the images they

could remember.” We carried out an additional experiment in order to
investigate this alternative explanation, in which we manipulated
instructions given to the participants in a between-subjects design.
One group received the same instructions as in all four previous
studies and assessed how they felt at each trial: current affect (CA)
group. Whereas a second group was told to actively think about the
images they viewed in each trial and try to provide a rating that
summarizes them on pleasantness and arousal dimensions: summary
rating (SR) group. Then, we investigated similarities and differences
between these groups.

Method

Participants. 80 (31 women; M age = 23.7, SD = 3.1)
individuals participated in the study. The study was run online
using Inquisit 5 (Inquisit 5, 2016) and on Millisecond.com server
and participants were compensated after the study. The study was
conducted in accordance with the ethical standards in the Decla-
ration of Helsinki. Participants were recruited through a university
participant pool. Based on power simulations presented in the
previous section, we have decided that each group should consist
of at least 37 participants. Participants were randomly assigned to
one of the two groups (CA group or SR group) at the beginning of
the experiment. The data collection was open for 3 weeks, at the
end of which we decided to stop the data collection because the
CA group had 38 individuals (18 women; M age = 23.2, SD =
3.02) and the SR group had 42 individuals (13 women; M age =
242, SD = 3.2).

Experimental design and procedure. In each trial, all par-
ticipants viewed four images presented at a 4-s/image rate. Sub-
sequently, participants in the CA group were asked to report their
momentary affective experience (“How do you feel right now?”)
using visual analog scales of valence and arousal. For this group,
the instructions and measurement scales were the same as in the
first four studies. On the other hand, SR group were asked to
provide average ratings for all the four images in a trial using
visual analog scales of valence and arousal. They were instructed
to think about the images they have viewed and provide an average
rating that summarizes the images. All participants completed 60
trials. Image sequences were formed pseudorandomly with the
same requirements as in Studies 3 and 4. Images were assigned to
trials randomly for each individual.

Data analyses and modeling. The analysis and modeling
strategy were the same as in previous studies. Initially, we in-
spected participants’ mean responses and variances and removed
five individuals (two from the CA group and three from the SR
group) with log variances lower than two standard deviations
below their group mean prior to running the predictive models. As
in our previous studies, these individuals mostly responded at the
lower end or midpoint of the scales in each trial. Further, because
the control study was run online, we also collected response times
(RT) to be able to monitor the timing of the experiment and used
RTs to identify invalid trials. We removed individual trials in
which participants responded in less than 1,500 ms, because it
seems unlikely that participants had the time to consider and assess
within such a short time. We then removed the trials where the

2 We thank an anonymous reviewer for bringing this alternative expla-
nation of the current findings into our attention.


http://Millisecond.com

170 ASUTAY ET AL.

Average Peak
Prior Normative Normative
Valence Valence Valence
4 images N=76
2 sec/image g N.obs = 4043
4 images N =63
4 sec/image N.obs = 2989
6 images N =43
2 sec/image , , ‘ , , ‘ _ | N.obs =2494
0 0.1 0.2 0.3 0 025 05 0.75 0 0.25 0.5

Figure 3. The results of internal meta-analysis showing the effects of average and peak normative valence
together with prior valence depending on the duration and the number of images in each trial. The error bars
represent 95% confidence interval (CI) for each effect.
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response times occurred outside two standard deviations of indi-
vidual average response times. As a result, 128 (6%) and 99 (4%)
trials were removed from the CA and SR groups, respectively.
Next, we constructed single parameter models and temporal
order models based on normative image ratings separately for each
group and compared the effect sizes, because instructions and the
main dependent variables were not the same. We constructed the
models based on results from earlier studies. Single parameter
models in valence predictions contained fixed effects of average
and peak normative valence. Whereas, the arousal model con-
tained the average normative arousal as a fixed effect. Temporal
order models contained fixed effects of normative image ratings in

the presentation order. All the models contained a dummy-coded
block variable (unpleasant = —1; pleasant = 1) and random
intercepts and slopes at the participant level.

Results

Single parameter models. Valence prediction for the CA
group showed that both average (B = 0.24, 95% CI [0.05, 0.42],
p = .01) and peak normative valence (B = 0.36, 95% CI [0.21,
0.5], p < .001) were positively associated with currently experi-
enced valence (see Table 5). The same effects were found in the
SR group, however, the coefficient estimate for the average nor-
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Figure 4. The results of internal meta-analysis of the temporal order models showing that the relative
contribution of an image increased as it appeared later in a sequence (9,526 observations from 143 participants).
The error bars represent 95% confidence intervals (Cls) for each effect. The coefficient estimates for images
were compared using Wald tests. Holm-Bonferroni corrected significant differences are plotted. Image,_, = the
last seen image. * p < .05. ™ p < .001.
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Table 5

Results From the Control Study Predicting Valence and Arousal Ratings in Current Affect (CA) and Summary Rating (SR) Groups

Single parameter model

Temporal order model

Model parameters CA group SR group CA group SR group

Valence models
Predictors and coefficient estimates Av: .24 (.09)" Av: .51 (.09)"" P1: .12 (.03)™ PI: .18 (.03)™
Pk: .36 (.07)"" Pk: .21 (.07)*" P2: .14 (.03)*" P2: .09 (.03)"
P3: .13 (.03)™" P3: .17 (.03)™"
P4: .18 (.03)™" P4: .25 (.03)™

Arousal models
Predictors and coefficient estimates Av: .63 (.1)™" Av: .63 (1) P1: .16 (.04)™ P1: .19 (.03)™
P2: .16 (.04)"" P2: .12 (.04)""
P3: .07 (.04)' P3: .16 (.04)™"
P4: 22 (.04)"" P4: .17 (.04)""

Note. Numbers in parentheses represent standard errors. Av = average normative rating; Pk = peak normative rating; P1 = normative rating of the first

image in a trial.
‘p<.10. "p<.05. "p<.005.

mative valence increased to 0.51 (95% CI [0.33, 0.69], p < .001).
On the other hand, the contribution of the peak valence was
somewhat lower for the SR group (B = 0.21, 95% CI [0.07, 0.34],
p = .003). Average normative arousal was positively associated
with currently experienced arousal (B = 0.63, 95% CI[0.43, 0.83],
p < .001) and average stimulus arousal (B = 0.63, 95% CI [0.42,
0.84], p < .001) with the same effect size.

Furthermore, we formulated models where we combined data
from CA and SR groups and included interaction terms in order to
quantify the differences between groups in valence predictions.
The group (0 = CA; 1 = SR) by average normative valence
interaction was significant (B = 0.25, 95% CI [0.01, 0.49], p =
.042), showing that the SR group relied on average normative
valence more than the CA group did. On the other hand, even
though the group and peak normative valence interaction showed
that the SR group relied on peak valence somewhat less than the
CA group did, this effect did not reach significance (B = —0.18,
95% CI [—0.37, 0.01], p = .058).

Temporal order models. Similar to the findings of previous
studies, in the CA group, each image contributed to current va-
lence with positive and significant coefficient estimates; and the
relative contribution of a given image increased as it appeared later
in a sequence (see Table 5). However, the models predicting
pleasantness ratings in the SR group yielded stronger primacy and
recency effects. On the other hand, systematic differences could
not be found between models of current arousal (CA group) and
general arousal ratings (SR group).

Discussion

Study 5 aimed to explore the concern about the assessment of
momentary affect in the previous four studies. In order to address
this issue, we carried out a study in which two groups received
different instructions on how to use the scales. Both groups went
through the same number of trials and images. The CA group
received the same instructions from the previous four studies while
the SR group was instructed to focus on the images and provide a
summary rating. We constructed models predicting the summary
ratings and self-reported affect based on the normative image
ratings and compared the models. As a result, we found that the

relative contribution of normative average valence was higher to
summary ratings than its contribution to self-reported affect. On
the other hand, the peak normative valence had a slightly higher
contribution to self-reported affect compared with its contribution
to summary ratings. Further, predictions of self-reported valence
showed the relative contribution of an image increased as it ap-
peared later in a trial. However, predictions of the pleasantness
ratings yielded stronger primacy and recency effects compared
with predictions of self-reported valence. Taken together, these
results indicate that different instructions yielded a varying pattern
of results for valence ratings. When participants were asked to
provide an average rating for the images, their assessment were
mostly informed by the average normative valence. Further, we
also found a primacy effect in valence predictions for the SR
group, which, in line with the previous studies, was not found for
the CA group.

On the other hand, the assessment of arousal did not differ
depending on the instructions. In the previous studies, we found
that the main integration mechanism for arousal was averaging.
Therefore, it may not be surprising to find that the average nor-
mative arousal was also the main predictor when participants
provided an average rating on the arousal dimension. Further,
another reason could be that when reporting arousal ratings par-
ticipants used similar mental processes. Compared with pleasant-
ness, arousal is a heterogeneous construct and may not be as
readily accessible as pleasantness. Therefore, participants’ lower
sensitivity and understanding of arousal dimension may be a
contributing factor for the current findings (see also, discussion of
arousal ratings in the General Discussion section). However, future
studies that specifically aimed to disentangle these possible effects
on arousal are needed, which is beyond the scope of the current
research.

General Discussion

The current research set out to investigate momentary affective
experience as a function of integrated affective impact of evocative
images and prior affective experience. We used a simple and novel
paradigm, in which we manipulated the temporal sequence of
visual stimuli. First, to investigate how a stream of evocative
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images is represented affectively, we tested different models for
predicting self-reported affect as a function of the viewed images’
normative tendency to evoke affective changes. Our results sug-
gest that for the arousal feature of affect an averaging mechanism
provides the best account for integration over time. With respect to
valence, however, the best fitting integration mechanism was
averaging that also takes peak-valence into account. Critically, the
relative importance of peak-valence depended on both the duration
and the number of images (see Figure 3). A simple averaging
mechanism was not always used—especially when there were a
greater number of discrete stimuli to be represented in a longer
time frame, the influence of the most affectively potent stimulus
increased. In other words, peak normative valence contributed to
fluctuations in experienced valence beyond averaging only when
the time frame was sufficiently long. In a shorter time span, simple
averaging described the affective experience adequately well. This
might suggest that less potent stimuli have a short-lived effect on
experienced valence, so that in a longer time interval the increased
relative contribution of the most potent stimuli could be observed.
Moreover, sensitivity of affective integration generally increased
for later stimuli for both valence and arousal features (see Figure
4). Taken together, these results suggest that integration of the
affective impact of evocative images occurs according to a
weighted-averaging mechanism, in which higher weights are as-
signed to more recent and potentially more potent stimuli.

Second, we hypothesized that affect is a dynamical system and
the current state of such a system should carry information about
its own prior state. To test this hypothesis, we included self-
reported affect from the previous trial (i.e., prior affect) as a
predictor of currently experienced affect. Prior affect made robust
contributions to both valence and arousal in all studies. Affect is
continuous and prone to changes in the face of ongoing sensory
stimulation. The prior state of such a process is one of the deter-
mining factors of its current state. In fact, the models of affect
dynamics point to the importance of the prior affective state as a
determining factor of the current affective state (e.g., Cunningham
et al., 2013; Kuppens & Verduyn, 2017). Moreover, in our studies,
prior affect improved all the models without influencing the coef-
ficient estimates of the other parameters and the relative contribu-
tion of prior affect decreased with increasing temporal distance.
The current findings provide clear empirical support for the for-
mulation that prior affect and affective averaging of sensory in-
formation are significant and independent contributors of currently
experienced affect.

The present findings also show that changes in facial muscle
activity (both CS and ZM), and respiration rate were associated
with valence, while ZM activity and phasic-EDA were associated
with arousal. This pattern of results is consistent with previous
studies (Bradley & Lang, 2000; Cacioppo et al., 1986; Lang et al.,
1993; Larsen et al., 2003). Furthermore, we found that the model
performance improved when participants’ physiological responses
were included in the models together with normative stimulus
ratings and previously experienced affect. The fluctuations of
affect are linked to the changes in the body’s physiological sys-
tems (Barrett, 2017; Craig, 2015). Therefore, the inclusion of
individual physiological responses increases the information rep-
resented in predictive models of affect and leads to an increase in
the explained variance in momentary affective experience beyond
normative stimulus information and previous affective experience.

One general pattern in our results was that arousal models
performed worse compared with valence models. We believe that
this is due to valence being a fundamental property of human
experience. Humans can easily distinguish pleasant and unpleasant
affect (Barrett & Bliss-Moreau, 2009). Infants can differentiate
pleasant and unpleasant facial expressions in other people and
experience discomfort and pleasure (Farroni, Menon, Rigato, &
Johnson, 2007; Lewis, 2016). On the other hand, differentiating
high and low arousal is not ubiquitous (Barrett, 2004; Feldman,
1995). Therefore, the larger unexplained variance in self-reported
arousal may stem from individuals’ lower sensitivity to discrimi-
nate high and low arousal experiences.

We acknowledge that several factors not manipulated or mea-
sured here may influence affective integration and fluctuations of
affective experience. These factors may include but are not limited
to situational context, prior knowledge, expectations, goal-
relevance, and attention. Future research should build on the
current findings and include factors unaddressed by the present
studies. Additionally, the blocked design utilized in the current
experiments may have influenced the relative contribution of prior
affect. Because pleasant and unpleasant images were presented in
separate blocks, the general pleasantness of not-yet-seen images
become largely predictable, allowing prior affect to potentially
play a larger role in influencing current affect. Thus, random
presentation of both positive and negative stimuli may cause an
increased weighting of current sensory information relative to
prior affect. We believe that further exploration of the interaction
of prior affect and integrated affective impact of stimuli will prove
to be a fruitful area of continued research. Using variations of the
basic paradigm used here, investigators can study the role of more
complex real-world factors on affective fluctuations.

In sum, using a novel experimental paradigm we investigated
the fundamental question of how individuals’ affective experience
fluctuates in the face of ongoing sensory stimulation. We ap-
proached affect as a continuous process and showed that momen-
tary affective experience at a given time is partially determined by
the changes in sensory input and previously experienced affect.
Our studies provide clear empirical support for the following
formulations: (a) The affective impact of a stream of evocative
sensory stimuli is integrated over time that seems to occur accord-
ing to a weighted-averaging model, in which higher weights are
assigned to more recent and more potent stimuli. (b) An individ-
ual’s affective state at a given time carries information about the
recent changes in the environment as well as their own prior
affective state. Affect is a fundamental aspect of human experi-
ence, and it is a continuous representation of an organism’s rela-
tionship with its environment (e.g., Barrett & Bliss-Moreau, 2009;
Russell, 2003; Russell & Barrett, 1999). Therefore, affect repre-
sents an organism’s capacity to maintain allostasis in the face of
ongoing environmental changes and suggests that every waking
moment is colored with affective feelings (Wundt, 1897). This is
in line with research showing that sensory input prompts affective
changes in humans. We have affective reactions to images (e.g.,
Bradley et al., 2001; Kurdi et al., 2017), sounds (e.g., Asutay &
Vistfjill, 2012; Bradley & Lang, 2000), films (e.g., Rottenberg,
Ray, & Gross, 2007), odors (e.g., Zald & Pardo, 1997), social
stimuli (e.g., Roberts, Tsai, & Coan, 2007), and the environment
(e.g., Russell & Snodgrass, 1987). When we navigate our daily
lives, our affective experience fluctuates in response to a contin-
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uous flow of events. Yet, we do not know how this stream of
information is dynamically represented in affective experience.
Arguably, one reason for this lack of evidence is that researchers,
when studying affect, often use randomized stimulus orders pre-
sented in separate trials and assume that stimuli are presented in
isolation from one another. The current research, approaching
affect as a dynamical system, shows that affect is a temporally
dependent and continuous process and that momentary affect
carries information about recent sensory inputs that are integrated
over time. We know that processing of incoming stimuli occurs in
a temporally dependent fashion and is based on current internal
state of the individual (see Hutchinson & Barrett, 2019). However,
the traditional trial structure in investigations of affect is at odds
with this fact (see Huk, Bonnen, & He, 2018). Most studies that
have used a traditional trial structure have assumed that a mea-
sured response in a trial depends on the given stimuli and random
noise. Here, we show that participants’ response in a given trial
depends on some combination of the given stimuli and the partic-
ipants’ prior internal state. We believe that the current research
underlines the need to adopt experimental paradigms that attempt
to understand affect as a temporally dependent and continuous
process.

Finally, given the important role of affect in human psychology,
understanding the underlying principles of how affect dynamically
evolves with changing environmental and mental circumstances is
fundamental to understanding the influence of affect on behavior.
For instance, a greater understanding of affective integration has
substantial implications for the study of decision making. Affect
has a crucial influence on decision making (e.g., Slovic et al.,
2002). Investigating how integration of various affective signals
occurs during a decision context and how the integrated affect
influences decisions can offer important advances to our under-
standing of the role of affect in decision-making (Vistfjdll et al.,
2016). As in other fields of psychology, most investigations of
decision making make use of a traditional trial structure, which is
constructed as random sequences of choices. Understanding inter-
nal states such as affect in terms of dynamic and temporally
dependent processes may help us better understand their role on
behavior and choices.
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