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Abstract

Accurate forecasts of population-level behavior critically inform institutional choices and public policy. While neuroforecasting research
suggests that measurements of group brain activity can improve forecasting accuracy relative to behavior, less is known about how and
when brain activity can effectively improve out-of-sample forecasts. We analyzed neural and behavioral data collected in two
experiments to forecast choice in more vs. less demographically representative aggregate internet markets in order to test when
forecasts based on brain activity generalize better than behavior. In both experiments, while the accuracy of market forecasts based
on behavior varied as a function of sample representativeness, market forecasts based on brain activity remained significant
regardless of sample representativeness. These findings are consistent with the notion that brain activity associated with early
affective responses can generalize across individuals to index aggregate choice more broadly than downstream behavior. Thus, brain
activity from limited samples may reveal generalizable components of choice that can improve market forecasts. These findings
inform theory regarding which components of individual choice generalize to improve market forecasts and provide insights into
mechanisms that underlie the effective application of neuroforecasting.
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Significance Statement

The most consequential decisions in business, economics, and public policy often rely on forecasts of population-level behavior ex-
trapolated from data collected from relatively small samples of individuals. A growing body of research in neuroforecasting suggests
thatneural data collected in the laboratory can improve behavioral forecasts of real-world outcomes. Little is known, however, about
how neural forecasts work, how they can be improved, and how they can inform decision theory. In two experiments, individuals’
neural responses to affective components of the decision-making process offered more generalizable forecasts of aggregate market

demand than their behavior.

Introduction

Accumulating neuroimaging findings suggest that neural data
collected in the laboratory can add value to forecasts of real-
world, population-level demand out of sample (for reviews, see
Refs. 1-3). To date, however, this work has remained largely evi-
dential, focusing on demonstrations across different market do-
mains. Here, we focus on how neural data from relatively small
laboratory samples can generalize to forecast broader aggregate
behavior even when sampled self-report ratings and behavior
cannot. We find mechanistic evidence that neural activity associ-
ated with early affective processes not only reliably forecasts
choice out of sample, but also generalizes across diverse groups
of individuals.

Forecasts of population-level behavior are typically constructed
by measuring the choices of a sample of individuals and then ex-
trapolating to the population, based on the assumption that

sampled behavior will directly generalize to population behavior.
Here, we test a novel account of market forecasting inspired by
the emerging neuroforecasting literature, which implies that
some discrete components of the decision process observable
through neuroimaging may be more broadly shared across individ-
uals than other components or even resulting choice behavior.
These components should therefore support more generalizable
forecasts of aggregate choice (3).

An extensive neuroeconomic literature has implicated brain
activity in regions associated with affective and integrative proc-
esses in the assessment of subjective value as well as the predic-
tion of choice in individuals (4-7). Researchers subsequently
explored whether group brain activity in these regions could fore-
cast aggregate market demand out of sample. This growing body
of neuroforecasting research has demonstrated that brain data
can augment, and at times surpass, forecasts based on behavior

Received: September 6, 2024. Accepted: January 15, 2025

OXFORD

UNIVERSITY PRESS

Competing Interest: The authors declare no competing interests.

© The Author(s) 2025. Published by Oxford University Press on behalf of National Academy of Sciences. This is an Open Access article dis-
tributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-
stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Gz0Z YoJe\ 0 uo 1senb Aq 81091 08/6Z01ebd/z/y/ejonie/snxauseud/woo dno-olwapeoe//:sdiy Woll papeojumo(]


https://orcid.org/0000-0003-1048-3256
https://orcid.org/0000-0002-1930-9572
https://orcid.org/0000-0002-7669-426X
mailto:genevsky@rsm.nl
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/pnasnexus/pgaf029

2 | PNAS Nexus, 2025, Vol. 4, No. 2

choice data, and demographics
from laboratory sample

demographics from internet

1 Collect neural data, behavioral 2
marketplace sample

©

Collect choice data and ]

and less representative markets
(based on laboratory sample)

rom laboratory sample to forecast
choice in the two market samples

3 Divide market sample into more ) 4 Use neural and behavioral data ]

e ﬁﬁtﬁ
P *%“ﬁg«ﬁ
AR

Neural ~ Behavioral Demographics
[}
Y
” o

=

/
\

e o=

data choice

=0

=S

( Non-representative market )

Representative market

Laboratory sample
&)
=>§

Forecast choice:
’ Experiment 1: crowdfunding

=0

Experiment 2: video viewing

N\

Non-representative

market

=9-

=S

Representative
market

5
ﬁ ﬁ Compare neural and behavioral]

model features

Fig. 1. (1) Brain, behavioral, and demographics data were collected in laboratory samples. (2). Behavior and demographics data were collected in
constructed internet markets. (3). Internet markets were divided into more and less representative markets based on demographic match to the
laboratory samples. (4) Neural and behavioral data in laboratory samples were used to forecast behavioral data in more and less representative market
samples. (5) Neural and behavioral model features were contrasted in more and less representative market samples.

and self-report across a broad range of market domains, including
butnot limited to music sales (8), crowdfunding campaign success
(9), advertising elasticity (10), online article sharing (11), retail
sales (12, 13), and movie box-office returns (14). Together, these
results provide convergent evidence that neuroforecasting can
work but have yet to explain how.

These neuroforecasting findings imply that not all components
supporting individual choice are equally informative in forecasting
aggregate choice (3). While several decision-making processes (e.g.
affective valuation, deliberative evaluation, and self-relevance)
may predict and promote individual choice (5-7), they may vary in
the extent to which they generalize to forecast aggregate choice
(9, 10, 12, 14-20). Following this logic, identifying and extrapolating
from more generalizable choice components might increase fore-
casting accuracy. Conversely, extrapolating from more idiosyncratic
components might decrease forecasting accuracy by injecting non-
generalizable noise into aggregate forecasts.

But which components of choice should generalize most broad-
ly? Based on neuroeconomic research, a componential decompos-
ition of the process of decision-making can be derived from the
Affect Integration Motivation (AIM) framework (21). According to
this framework, choice stimuli first elicit affective responses (i.e.
positive arousal and negative arousal), which are subsequently in-
tegrated through more deliberative and reflective processing (e.g.
related memories, contextual considerations, and temporal ex-
tensibility), which then fuels appetitive or aversive motivational
states that can potentiate observable choice behavior (e.g. ap-
proach or avoidance). Importantly, these stages of processing
recruit different brain circuits. Specifically, initial affective re-
sponses elicit activity in evolutionarily conserved subcortical
and cortical circuits (e.g. the Nucleus Accumbens, hereafter
NAcc, and Anterior Insula, hereafter Alns). Integrative compo-
nents, which are subsequently recruited and correlate with activ-
ity in the Medial PreFrontal Cortex (MPFC), may incorporate more
idiosyncratic considerations into the choice process. While im-
portant for individual choice, these idiosyncratic considerations
may not generalize as broadly to other individuals. Finally, ob-
servable outcomes related to self-report and choice reflect com-
bined input from these affective and integrative processes,
which are tailored to specific behavioral demands of a choice

scenario, recruiting appropriate motor circuits to add a further
layer of contextual specificity to the resulting action.

To explore underlying mechanisms that support neurofore-
casting, we sought to connect predictions from the AIM frame-
work with an economic random utility model of value-based
choice (22-24). This model assumes that multiple sources of util-
ity influence individual choice. For instance, in the context of neu-
roforecasting, these sources of utility might include initial
affective responses as well as subsequent integrative valuation.
The combined input of these factors then might predict an op-
tion’s overall utility and subsequent individual choice. Formally,
a final utility (U) for any individual (i) and option (o) can be de-
scribed as a function of a shared component of value common
across individuals (Va0) and an idiosyncratic component of value
unique to each individual (Vi; specifically, Uip = Vao + Vio).

Combining the neuroeconomic AIM framework and the eco-
nomic random utility model, individual choice might therefore in-
clude both shared affective components more common across
individuals (V,) as well as idiosyncratic integrative components
more unique to each individual (V;). This combined model can
be contrasted with more conventional behavioral models based
on observed choice. Generalized to forecasts of aggregate choice,
the combined model implies two novel predictions. First, in small-
er samples, individual value components (V;) might introduce
noise into aggregate models, reducing the accuracy of forecasts.
In these cases, including shared value components (V,) might im-
prove forecasts. Second, nonrepresentative samples with idiosyn-
cratic value components that differ from those of a population
might bias forecasts. Thus, forecasts based on shared value com-
ponents may generalize more broadly than those based on idio-
syncratic value components or observed choice.

In two experiments, neuroimaging and choice data collected in
independent neuroforecasting studies (9, 20) were used to forecast
aggregate preference in newly collected internet market samples
that systematically varied with respect to representativeness.
Brain activity and behavioral choice data from the laboratory
samples were then used to forecast demand as a function of
demographic match with the internet samples (for a design over-
view, see Fig. 1). We then tested whether neural predictors of
choice could generalize more broadly than choice behavior across
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Table 1. Models forecasting aggregate behavior across the entire internet market in crowdfunding (1) and video-viewing (2) experiments.

Crowdfunding study
Laboratory n=37
Out-of-sample n = 2956

Video-viewing study
Laboratory n =40
Out-of-sample n =992

Behavior Neural Combined Behavior Neural Combined

Lab sample behavior 0.315 0.252 -0.071 —-0.105

(0.163) (0.153) (0.182) (0.168)
NAcc 0.664™ 0.644* 0.512* 0.520*
Activity (0.218) (0.213) (0.181) (0.183)
MPEC -0.274 -0.330 -0.189 -0.204
Activity (0.218) (0.216) (0.181) (0.185)
R? 0.099 0.252 0.311 0.005 0.216 0.227
AIC 103.40 98.67 97.75 95.63 90.01 91.56

Statistics are standardized coefficients with SEs in parentheses. *p < 0.05; *p <0.01; **p < 0.001.

Table 2. Models forecasting aggregate choice (to fund or not) in the most representative and least representative crowdfunding markets

(experiment 1).

Most representative quartile

Least representative quartile

Behavior Neural Combined Behavior Neural Combined

Lab sample behavior 0.441* 0.400" 0.275 0.214
(0.154) (0.148) (0.165) (0.157)

NAcc activity 0.612* 0.579* 0.638* 0.621*
(0.225) (0.206) (0.221) (0.219)

MPFC activity -0.265 —0.353 -0.270 -0.317
(0.225) (0.208) (0.221) (0.221)

R? 0.194 0.209 0.356 0.076 0.231 0.273
AIC 99.38 100.69 95.28 104.32 99.71 99.68

Statistics are standardized coefficients with SEs in parentheses. MPFC, Medial PreFrontal Cortex; NAcc, Nucleus Accumbens. *p < 0.05; *p < 0.01; **p < 0.001.

samples varying in representativeness to better understand
the mechanisms underlying the generality of neuroforecasts.
Additionally, we tested the robustness of neurally derived fore-
casts across sample sizes and demonstrated that reliable fore-
casts could be obtained from relatively small laboratory
samples to address perceived cost obstacles to the practical appli-
cation of neuroforecasting methods (25).

Results
Total market analyses

We first tested for associations of laboratory sample measures
(both behavior and neural) with the choices of substantially larger
internet markets (including all online subjects, n=2,956; Table 1).
Considering only behavioral predictors, in the crowdfunding experi-
ment, laboratory sample choices were directionally but not signifi-
cantly associated with internet sample funding choices (t=1.933,
P=0.062), and in the video-viewing experiment, laboratory sample
choices were again not significantly associated with internet sample
choices (t=-0.44, P =0.661). These results are consistent with posi-
tive but nonsignificant associations observed between behavioral
preferences in the internet samples and the real-world markets
used in the original crowdfunding and video-viewing studies, pos-
sibly attributable to sample, design, and temporal differences across
paradigms (experiment 1: r=0.12; experiment 2: r=0.24) (9, 20).
Next, in models including activity in predicted neural regions
of interest (centered in the NAcc and MPFC), only laboratory sam-
ple NAcc activity was significantly associated with aggregate
choices in both the crowdfunding and video-viewing internet sam-
ples (crowdfunding: t=3.043, P=0.004; video viewing: t=4.09,

P <0.001). Despite predicting trial-by-trial choice within individu-
als, laboratory sample MPFC activity was not associated with
aggregate sample choice in either internet sample (experiment 1:
t=-1.257, P=0.218; experiment 2: t=-1.48, P=0.145). In a final
combined model, including both behavioral and neural data, only
laboratory sample NAcc activity remained significantly associated
with internet sample aggregate choice (experiment 1. t=3.02,
P=0.005; experiment 2 t=4.12, P < 0.001; Table 1). Together, these
analyses suggest that only brain activity (i.e. in the NAcc) of the
scanned laboratory samples significantly forecasts aggregate
choice in internet samples across both experiments.

Representativeness analyses

To identify the most generalizable components of choice, we next
examined the impact of sample representativeness by repeating
the same analyses on the most vs. least representative internet
sample quartiles (determined by similarity across six common
demographic variables, see Materials and methods for additional
details). For the crowdfunding experiment, in the most represen-
tative internet sample, both laboratory sample choices (t=2.70,
P=0.011) and NAcc activity (t=2.81, P=0.008) were significantly
associated with internet sample choices. In the nonrepresentative
internet sample, however, only NAcc activity was significantly as-
sociated with internet sample choices (t=2.84, P=0.007; Table 2).
Robustness checks revealed similar results when also including
activity from the Alns in the models (Table S3), or when dividing
the internet sample using a median split (Table S1). This same
pattern of results was also observed for the video-viewing experi-
ment (Tables 3 and S2).
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Table 3. Models forecasting aggregate choice (to watch or not) in the most representative and least representative video-viewing markets

(experiment 2).

Most representative quartile

Least representative quartile

Behavior Neural Combined Behavior Neural Combined

Lab sample behavior 0.065 0.027 —-0.189 -0.216
(0.182) (0.172) (0.179) (0.163)

Nucleus accumbens 0.473* 0.471* 0.512* 0.530*
(0.184) (0.188) (0.180) (0.178)

MPFC —0.269 -0.265 -0.115 —0.145
(0.184) (0.189) (0.180) (0.179)

R? 0.004 0.189 0.189 0.036 0.226 0.272
AIC 95.66 91.11 93.08 94.63 89.60 89.64

Statistics are standardized coefficients with SEs in parentheses. MPFC, Medial PreFrontal Cortex; NAcc, Nucleus Accumbens. *p <0.05; *p < 0.01; **p < 0.001.

Across experiments, laboratory sample choice forecasts of
aggregate internet sample choice interacted with quartile
demographic match (t=-2.57, P=0.012), suggesting that the
strength of the association between laboratory sample choices
and internet sample choices depended on representativeness.
Importantly, however, NAcc activity forecasts did not significant-
ly interact with demographic match (t=-0.587, P=0.558),
suggesting that neural forecasts depended less on sample repre-
sentativeness, and so might support broader generalization.
Plots of the behavioral coefficients across representativeness
quartiles confirmed that the association of laboratory choice
with aggregate choice diminished with decreasing demographic
match, while the association of laboratory NAcc activity with ag-
gregate choice remained constant regardless of demographic
match (Fig. 2 and Table S4).

Analyses within the internet samples indicated that decreasing
demographic match across quartiles was associated with reduced
similarity in behavioral choice (Fig. S2). This pattern validated the
proposed association of demographic match with behavioral pref-
erences, consistent with the notion that reduced representative-
ness might constrain behavioral forecasts. Forecasts based on
neural activity, however, did not vary as a function of demograph-
icmatch. Bootstrapped analyses further tested the relative impact
of representativeness on behavioral and neural forecasts of aggre-
gate choice. In 96.7% of analytic iterations in the crowdfunding ex-
periment and 97.2% of analytic iterations in the video-viewing
experiment, behavioral coefficients were more diminished by de-
creases in representativeness than neural coefficients (P =0.033),
consistent with broader generalizability of neural forecasts of ag-
gregate choice across different internet samples.

Analyses within the laboratory sample further explored the
generalizability of neural activity associated with affective and in-
tegrative neural processes by comparing the similarity of re-
sponses in the NAcc vs. MPFC to study stimuli across individuals
(Fig. S3). Interclass correlations indicated that only NAcc activity
was significantly correlated across individuals in the crowdfund-
ing experiment (ICC =0.441, F=1.82, P=0.004), while MPFC activ-
ity was not (MPFC: ICC=0.273, F=1.38, P=0.080). Analysis of
the video-viewing experiment revealed a similar pattern of re-
sults, since NAcc activity was significantly correlated across indi-
viduals, while MPFC activity was not (NAcc: ICC =0.408, F=1.70,
P=0.009; MPFC: ICC=0.198, F=1.25, P=0.163). These analyses
further support the idea that neuroforecasting relies on decision
processes that are shared across individuals.

Sample-size robustness analyses

While neuroforecasting data might add value to conventional be-
havioral studies, they might also cost more since their collection

requires specialized equipment and expertise. These constraints
consequently raise questions about how many subjects are re-
quired for neuroforecasting studies to yield generalizable findings.
To address this question, we conducted bootstrapped analyses
that varied the number of individuals used to forecast aggregate
choice.

In the crowdfunding experiment, as the number of subjects in-
creased, the median estimate for NAcc activity dropped sharply,
falling below the P=0.05 threshold at 14 subjects and remaining
consistently below this threshold through 32 subjects (Fig. 3A).
Estimates for behavior, however, remained nonsignificant as the
sample size increased and did not descend below the P=0.05
threshold. Analyses of coefficient magnitudes for neural vs. be-
havioral measures revealed complementary trends. Specifically,
as sample size increased, the NAcc coefficient rose, approaching
asymptote (Fig. 3B), whereas the behavioral coefficient re-
mained relatively flat. Analyses of data from the video-viewing
experiment revealed similar patterns (Fig. 3). As the sample
size increased, the NAcc significance estimate dropped below
the P=0.05 threshold at 23 subjects, while the behavioral signifi-
cance estimate remained nonsignificant over the range of itera-
tions tested.

Together, these findings suggest that relatively small sample
sizes can support forecasts of aggregate choice based on NAcc ac-
tivity (see Fig. S1 for MPFC activity, which showed an intermediate
pattern). In the crowdfunding and video-viewing markets exam-
ined, a sample size of 20-25 subjects seemed sufficient to support
aggregate forecasts with brain data. The applicability of this pat-
tern of findings to other types of markets remains to be explored.

Discussion

Across two studies, forecasts of aggregate choice based on neural
activity generalized more broadly than forecasts based on behav-
ioral data. These findings suggest that while both generalizable af-
fective components and idiosyncratic integrative components
predict individual choice, generalizable affective components
can forecast aggregate choice even when behavioral measures
cannot. In both experiments, increased demographic match of la-
boratory samples to internet samples improved behavioral fore-
casts. Within internet markets, demographic match was also
associated with more similar behavioral choices, supporting con-
ventional wisdom that the behavior of representative samples
should more accurately forecast population behavior. In contrast,
neural forecasts of aggregate internet sample choice remained
significant despite decreases in demographic match. While
counterintuitive, the superior generalizability of brain activity
vs. behavioral choice suggests that early anticipatory affective
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Fig. 2. Coefficients from behavioral and neural models forecasting aggregate choice as a function of market demographic similarity. Displayed from the
most representative (left; 1) to the least representative (right; 4) quartiles. Behavioral coefficients increased as a function of demographic match (A), but

brain (i.e. NAcc) coefficients did not (B).

responses might generalize more broadly than subsequent inte-
grative or behavioral responses (21).

Conceptually, these findings link theories derived from deci-
sion neuroscience (i.e. the AIM framework) and economics (i.e.
random utility models) to explain previous empirical findings
and elucidate how neural data can improve forecasts of aggregate
behavior. Conventional theoretical approaches in psychology and
economics (e.g. expected value theory) might imply that the same
neural activity that predicts individual choice should also forecast
aggregate choice (perhaps with some loss due to added noise; 3).
Instead, this novel evidence supports and extends a random
utility-based account of neuroforecasting (23) in which some com-
ponents of value are more broadly shared than others (21).
Specifically, initial affective responses (indexed by NAcc activity)
represent a more commonly shared component of the decision-
making process than later integrative neural responses (indexed
by MPFC activity) or even final choice behavior itself. Further, ana-
lyses revealed that within laboratory samples, individuals’ NAcc
responses were more correlated than their MPFC responses.

While both affective and integrative processes critically contrib-
ute to individual choice, integration may incorporate more idio-
syncratic factors, and so reflect less of the aggregate choices of
others.

These findings have implications for which types of markets
might benefit most from neuroforecasting. In this research, the
most generalizable neural signals came from circuits associated
with affective processing. Thus, forecasts in markets for ap-
proaching positive outcomes (e.g. hedonic ventures and experien-
ces) might prominently recruit circuits implicated in positive
anticipatory affect (e.g. the NAcc), and so might benefit most
from the application of neuroforecasting measures. In turn, iden-
tification of generalizable choice components can imply levers for
intervention. For example, microloan appeals that feature a posi-
tive face, which can increase NAcc activity, are more likely to re-
ceive funding from individuals as well as internet markets (18).

Other markets, however, might more prominently recruit
other choice components. For instance, according to a “market
matching” account (3), markets for avoiding negative outcomes
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(e.g. purchasing insurance) might more prominently recruit cir-
cuits implicated in negative anticipatory affect (e.g. the Alns).
Further, other markets focusing on time or social considerations
might more prominently recruit integrative circuits (e.g. the
MPFC) (26). Future research might profitably examine how broadly
affective primacy vs. market matching accounts extends to differ-
ent markets. Additionally, behavioral manipulations that empha-
size different choice components (e.g. encouraging reliance on
affective processes, or minimizing integration) might change
choice predictably in the laboratory and impact forecasting
performance.

This work also addresses a primary obstacle to the practical adop-
tion of neuroimaging methods in business, communications, and
public policy involving perceptions of prohibitive cost. In both experi-
ments, results indicated that a reasonably small sample (e.g. n < 30)
was sufficient to derive stable forecasts from neural data. These find-
ings are consistent with a recent review of sample sizes implemented
in the existing Functional Magnetic Resonance Imaging (FMRI) neu-
roforecasting studies to date, which tended to average around 30
subjects (3). Interesting questions about whether some individuals
reliably show more diagnostic brain activity and whether they can
be identified prior to scanning remain to be explored and might fur-
ther reduce costs associated with neuroforecasting.

These combined findings suggest that when a representative
sampleis available, the addition of neural data might still account

for added variance in forecasts of aggregate choice. Thus, brain
measures may complement behavioral measures to improve
representative forecasts of aggregate behavior. Even when a rep-
resentative sampleis not available (e.g. due to lack of accessibility,
unwillingness to participate, or missing information about the
target audience), brain measures might still effectively forecast
aggregate choice.

In summary, this work suggests that one mechanism under-
lying successful neuroforecasting involves generalizable compo-
nents of choice revealed by neural measures. In contrast,
self-reported responses and observed behavioral choices incorp-
orate idiosyncratic preferences which can contribute to accurate
predictions of individual behavior but diminish the accuracy of
aggregate forecasts. Together, these findings illuminate how brain
measures may reveal seeds of choice that can generalize to fore-
cast market behavior—even when behavioral measures cannot.

Materials and methods

Subjects

In the crowdfunding experiment (experiment 1), 37 healthy right-
handed human adults participated in the neuroimaging phase
(17 females; mean age, 23.57). In the video-viewing experiment
(experiment 2), 40 subjects participated in the neuroimaging
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phase (25 females; mean age, 25.28; see Appendix A for full subject
descriptive statistics). Subjects were screened for psychotropic
drug use, substance use, and a history of neurological disorders,
as well as for typical magnetic resonance exclusions (e.g. metal
in the body). All procedures were approved by the Stanford
University IRB. In both experiments, subjects were excluded for
excessive head movement during scanning (i.e. more than fourin-
stances >6 mm or two voxel sides from one volume acquisition to
the next), and for incomplete demographic data (required for
demographic matching), leaving samples of 32 and 33 subjects, re-
spectively, for analysis. All subjects received detailed information
regarding their rights and the protections of their data before con-
senting to participate.

Crowdfunding experiment (experiment 1)
Crowdfunding design

In the neuroimaging phase of the crowdfunding experiment, sub-
jects were presented with text and images associated with
36 crowdfunding projects selected from kickstarter.com while
being scanned with FMRI. On each trial, subjects were asked to
make binary incentive-compatible decisions about whether or
not to fund a project (for more details, see Ref. 9). For the internet
market sample in the crowdfunding experiment, 3,000 online sub-
jects were recruited to make similar preference judgments re-
garding these same projects. Demographic variables (i.e. age,
sex, education, ethnicity, socioeconomic status, marital status,
and employment status) collected from both laboratory and inter-
net subjects were then used to partition the sample into submar-
kets that varied with respect to representativeness (detailed
below). Finally, laboratory subjects’ behavioral responses and
neural activity were used to forecast the preferences of more
and less representative internet samples.

Crowdfunding scanning task

While being scanned, subjects made incentive-compatible fund-
ing choices regarding 36 crowdfunding film projects selected
from kickstarter.com (9). On each trial, subjects viewed a photo-
graphic image from each online funding page (2 s), followed by
text briefly describing the project (6 s). Subjects were then asked
to make a binary “Yes/No” decision regarding whether they would
like to fund the project (4 s). Laterally counterbalanced Yes and No
options were presented on either side of the screen, and choices
were made using corresponding buttons on a handheld button
box. Finally, subjects viewed a centrally presented fixation cross
for a variable intertrial interval before the next trial began (2-6
s). Total trial duration (including the intertrial interval) thus aver-
aged 16 s (range, 14-18 s). Overall, subjects evaluated 36 unique
funding requests. Subjects were informed that one trial would
be randomly selected to count for real at the conclusion of the ex-
periment. If subjects had agreed to fund the randomly selected
appeal, that amount was subtracted from their payment and con-
tributed online to the appropriate project; otherwise, subjects re-
tained their full endowment (for task design schematic and
stimuli, see Appendix B).

Crowdfunding market choice task

Individuals were sampled on the internet (n=2956, see Appendix
A for descriptive statistics) via an online subject pool (Amazon
Mechanical Turk) to complete an online crowdfunding preference
task (Appendix B). On each trial, subjects were presented with two
documentary film projects used in the neuroimaging study and
asked to choose which they preferred. For each film project,

subjects viewed the same image and descriptive text as subjects
in the neuroimaging study. For each subject, the 36 projects
were randomly paired and presented together such that each pro-
ject was presented only once. Finally, the aggregate preference for
each project was calculated by adding the number of times each
project was selected across all subjects. The randomization pro-
cedure and large sample size ensured that this value represented
the group’s relative preference for each project relative to all other
presented projects. In analyses contrasting samples of different
representativeness (detailed below), aggregate preferences were
calculated in this manner independently for each sample. After
the crowdfunding preference task, subjects completed a demo-
graphic questionnaire (Appendix B).

Video-viewing experiment (experiment 2)
Video-viewing design
In the neuroimaging phase of the video-viewing experiment,
40 subjects were presented with 32 videos selected from
youtube.com while being scanned with FMRI. In the internet
phase of the study, online subjects (n=1,000) were recruited to
make similar preference judgments regarding these same videos.
As in the crowdfunding experiment, demographic variables col-
lected from both laboratory and internet subjects were used to
create samples of varying representativeness. Laboratory sub-
jects’ behavioral responses and neural activity were then used
to forecast the preferences of the larger internet samples.
Videos included clips selected from the popular youtube.com
science channels “Discovery” and “Animal Planet” lasting from
54 to 172 s (for full list, see Appendix C). These videos were culled
from a larger database of 2,950 videos whose thumbnails had pre-
viously been effectively normed with a larger online (MTurk) sam-
ple in a pilot study (20). Video stimulus sampling was designed to
maximize variance in aggregate video-view duration (calculated
as a percentage of the total video length; view percentage), as
well as affective ratings of their thumbnail images (i.e. high vs.
low arousal and high vs. low valence).

Video-viewing scanning task

In a preliminary task, laboratory sample subjects saw video
thumbnail images and indicated whether they wanted to watch
the video by pressing a button box to choose the corresponding op-
tion on the right or the left, respectively (4 s). Placement of accept
(vs. reject) response buttons was laterally randomized across tri-
als. During each trial of the subsequent video-viewing task, a cen-
trally displayed video began playing, which was then followed by a
gray square that randomly appeared after 4-8 s to the right or left
side of the video. Subjects could then choose to skip the rest of the
video at any subsequent point by pressing a button corresponding
to the position of the gray square. Subjects completed 32 trials of
the video-viewing task, in 4 runs of 8 trials each (for study design
schematic, see Appendix C). To control stimulus content, all sub-
jectshad towatch atleast the first 4, 6, or 8 s of all 32 videos (forced
view time was randomly varied to ensure nonpredictability).
Trials were presented in one of two pseudorandom orders (i.e. ei-
ther a forward- or reverse-ordered sequence).

Video-viewing market choice task

Individuals were recruited on the internet (n = 992, see Appendix A
for descriptive statistics) via an online subject pool (Amazon
Mechanical Turk) to complete an online video-viewing preference
task (Appendix B). On each of 32 trials, subjects saw one of the vid-
eos used in the neuroimaging study. After watching the first 15 s of

Gz0Z YoJe\ 0 uo 1senb Aq 81091 08/6Z01ebd/z/y/ejonie/snxauseud/woo dno-olwapeoe//:sdiy Woll papeojumo(]


http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf029#supplementary-data
https://kickstarter.com
https://kickstarter.com
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf029#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf029#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf029#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf029#supplementary-data
https://youtube.com
https://youtube.com
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf029#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf029#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf029#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf029#supplementary-data

8 | PNAS Nexus, 2025, Vol. 4, No. 2

each video, subjects made a binary decision (i.e. Yes or No) about
whether they would be interested in continuing to watch the vid-
eo. Regardless of the registered response, subjects then proceeded
to the next trial. All 32 videos were presented in a random order to
each subject. Aggregate preference for each video was calculated
by summing the number of choices to continue watching each
video across all subjects. In analyses comparing samples of vary-
ing representativeness, choices to watch or not were independ-
ently aggregated for each sample. After the video-viewing task,
subjects completed a short demographic questionnaire. While
the internet market and laboratory tasks in both experiments
were designed to approximate the real-world choice scenarios
as closely as possible, preference elicitation varied in some re-
spects due to logistical, temporal, and financial constraints.
Importantly, however, all analyses contrasted neural and behav-
ioral forecasts that extended to the same elicitation procedures.

Market creation

In both experiments, samples of varying representativeness were
created by dividing the internet samples (n=2,956 and n=992,
respectively; Appendix A) into four equally sized samples that
varied as a function of multivariate demographic match to the
laboratory samples. To quantify demographic match, the
Mahalanobis distance (27, 28) was calculated for each member
of the laboratory and internet samples based on a vector of seven
demographic variables (i.e. age, gender, education, socioeconomic
status, education, marital status, and employment status). For
each individual in the laboratory sample, the Mahalanobis dis-
tance was calculated as the square root of the sum of squared dif-
ferences between the point and the distribution, weighted by the
inverse covariance matrix of the distribution. Subsequently, on-
line subjects were rank ordered based upon their demographic
distance to the neuroimaging sample. Finally, to create subsam-
ples for calculating aggregate preference, a quartile split on the
Mahalanobis distance metric divided the larger internet samples
into subsets that varied with respect to their demographic match
to the neuroimaging sample. The Mahalanobis distance accounts
for covariation between variables, allowing for a more accurate
assessment of distances between observations and a distribution,
particularly where variables can be correlated. The Mahalanobis
distance is often applied in multivariate statistics to compare
the similarity of groups of observations. For this reason, it offers
a particularly useful tool for researchers in domains where
individual-level variables are often both multidimensional and
correlated.

FMRI acquisition and analyses
In the neuroimaging experiments, images were acquired with a
3.0-T General Electric MRI scanner using a 32-channel head coil.
Forty-six 2.9-mm thick slices (in-plane resolution, 2.9 mm cubic;
no gap; interleaved acquisition) extended axially from the mid-
pons to the crown of the skull, providing whole-brain coverage
and good spatial resolution of mesolimbic regions of interest
(e.g. midbrain, NAcc, and MPFC). Whole-brain functional scans
were acquired with a T,*-weighted gradient echo pulse sequence
(TR=2s; TE=24ms; flip angle, 77°). High-resolution structural
scans were acquired with a T;-weighted pulse sequence (TR =
7.2 ms; TE=2.8 ms; flip angle, 12°) after functional scans to facili-
tate their localization and coregistration.

Primary analyses were conducted using a priori defined vol-
umes of interest (VOIs) derived from previous work on the AIM
framework (21) and neuroforecasting (8, 9, 11, 17, 18). Based on

this work, predicted regions included those associated with antici-
patory positive affect (i.e. NAcc) (29) and value integration (i.e.
MPFC) (5, 21, 30). Spherical VOIs (8 mm diameter) were centered
bilaterally on foci in the NAcc (Talairach coordinates: +10, 12,
—2) and MPFC (+4, 45, 0). FMRI activity (percentage signal change)
was first averaged within each VOI over the first two image vol-
ume acquisitions (i.e. 4s) of stimulus presentation (lagged by
4-6 s to account for the hemodynamic response function), next
averaged bilaterally, and then extracted for subsequent analyses.
These predicted VOIs also showed high overlap with meta-
analytic map regions with activity associated with their names de-
rived from the Neurosynth database (31) (Appendix D).

For bootstrapped analyses, a distribution of estimates for the
coefficients of laboratory choice and NAcc activity was derived
over 10,000 iterations using samples drawn randomly from the
original data with replacement. On each iteration, models re-
gressed behavioral and neural predictors on aggregate choice.
We then calculated the difference in coefficient estimates be-
tween identical models applied to the most and least representa-
tive sample quartiles, representing the magnitude of the impact of
representativeness for the predictors on each iteration. Next, we
assessed the proportion of iterations in which the behavioral esti-
mate differences were greater than the median of the NAcc esti-
mate differences. In the sample-size analysis, samples ranging
from 32 subjects to 1 subject (i.e. the video-viewing experiment in-
cluded 33 subjects), 1,000 bootstrapped samples were drawn from
the original data with replacement. After each resampling iter-
ation, we regressed internet sample choices on behavioral and
neural variables drawn from corresponding laboratory samples.
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