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Abstract
Accurate forecasts of population-level behavior critically inform institutional choices and public policy. While neuroforecasting research 
suggests that measurements of group brain activity can improve forecasting accuracy relative to behavior, less is known about how and 
when brain activity can effectively improve out-of-sample forecasts. We analyzed neural and behavioral data collected in two 
experiments to forecast choice in more vs. less demographically representative aggregate internet markets in order to test when 
forecasts based on brain activity generalize better than behavior. In both experiments, while the accuracy of market forecasts based 
on behavior varied as a function of sample representativeness, market forecasts based on brain activity remained significant 
regardless of sample representativeness. These findings are consistent with the notion that brain activity associated with early 
affective responses can generalize across individuals to index aggregate choice more broadly than downstream behavior. Thus, brain 
activity from limited samples may reveal generalizable components of choice that can improve market forecasts. These findings 
inform theory regarding which components of individual choice generalize to improve market forecasts and provide insights into 
mechanisms that underlie the effective application of neuroforecasting.
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Significance Statement

The most consequential decisions in business, economics, and public policy often rely on forecasts of population-level behavior ex
trapolated from data collected from relatively small samples of individuals. A growing body of research in neuroforecasting suggests 
that neural data collected in the laboratory can improve behavioral forecasts of real-world outcomes. Little is known, however, about 
how neural forecasts work, how they can be improved, and how they can inform decision theory. In two experiments, individuals’ 
neural responses to affective components of the decision-making process offered more generalizable forecasts of aggregate market 
demand than their behavior.
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Introduction
Accumulating neuroimaging findings suggest that neural data 
collected in the laboratory can add value to forecasts of real- 
world, population-level demand out of sample (for reviews, see 
Refs. 1–3). To date, however, this work has remained largely evi
dential, focusing on demonstrations across different market do
mains. Here, we focus on how neural data from relatively small 
laboratory samples can generalize to forecast broader aggregate 
behavior even when sampled self-report ratings and behavior 
cannot. We find mechanistic evidence that neural activity associ
ated with early affective processes not only reliably forecasts 
choice out of sample, but also generalizes across diverse groups 
of individuals.

Forecasts of population-level behavior are typically constructed 
by measuring the choices of a sample of individuals and then ex
trapolating to the population, based on the assumption that 

sampled behavior will directly generalize to population behavior. 
Here, we test a novel account of market forecasting inspired by 
the emerging neuroforecasting literature, which implies that 
some discrete components of the decision process observable 
through neuroimaging may be more broadly shared across individ
uals than other components or even resulting choice behavior. 
These components should therefore support more generalizable 
forecasts of aggregate choice (3).

An extensive neuroeconomic literature has implicated brain 
activity in regions associated with affective and integrative proc
esses in the assessment of subjective value as well as the predic
tion of choice in individuals (4–7). Researchers subsequently 
explored whether group brain activity in these regions could fore
cast aggregate market demand out of sample. This growing body 
of neuroforecasting research has demonstrated that brain data 
can augment, and at times surpass, forecasts based on behavior 
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and self-report across a broad range of market domains, including 
but not limited to music sales (8), crowdfunding campaign success 
(9), advertising elasticity (10), online article sharing (11), retail 
sales (12, 13), and movie box-office returns (14). Together, these 
results provide convergent evidence that neuroforecasting can 
work but have yet to explain how.

These neuroforecasting findings imply that not all components 
supporting individual choice are equally informative in forecasting 
aggregate choice (3). While several decision-making processes (e.g. 
affective valuation, deliberative evaluation, and self-relevance) 
may predict and promote individual choice (5–7), they may vary in 
the extent to which they generalize to forecast aggregate choice 
(9, 10, 12, 14–20). Following this logic, identifying and extrapolating 
from more generalizable choice components might increase fore
casting accuracy. Conversely, extrapolating from more idiosyncratic 
components might decrease forecasting accuracy by injecting non
generalizable noise into aggregate forecasts.

But which components of choice should generalize most broad
ly? Based on neuroeconomic research, a componential decompos
ition of the process of decision-making can be derived from the 
Affect Integration Motivation (AIM) framework (21). According to 
this framework, choice stimuli first elicit affective responses (i.e. 
positive arousal and negative arousal), which are subsequently in
tegrated through more deliberative and reflective processing (e.g. 
related memories, contextual considerations, and temporal ex
tensibility), which then fuels appetitive or aversive motivational 
states that can potentiate observable choice behavior (e.g. ap
proach or avoidance). Importantly, these stages of processing 
recruit different brain circuits. Specifically, initial affective re
sponses elicit activity in evolutionarily conserved subcortical 
and cortical circuits (e.g. the Nucleus Accumbens, hereafter 
NAcc, and Anterior Insula, hereafter AIns). Integrative compo
nents, which are subsequently recruited and correlate with activ
ity in the Medial PreFrontal Cortex (MPFC), may incorporate more 
idiosyncratic considerations into the choice process. While im
portant for individual choice, these idiosyncratic considerations 
may not generalize as broadly to other individuals. Finally, ob
servable outcomes related to self-report and choice reflect com
bined input from these affective and integrative processes, 
which are tailored to specific behavioral demands of a choice 

scenario, recruiting appropriate motor circuits to add a further 
layer of contextual specificity to the resulting action.

To explore underlying mechanisms that support neurofore
casting, we sought to connect predictions from the AIM frame
work with an economic random utility model of value-based 
choice (22–24). This model assumes that multiple sources of util
ity influence individual choice. For instance, in the context of neu
roforecasting, these sources of utility might include initial 
affective responses as well as subsequent integrative valuation. 
The combined input of these factors then might predict an op
tion’s overall utility and subsequent individual choice. Formally, 
a final utility (U ) for any individual (i) and option (o) can be de
scribed as a function of a shared component of value common 
across individuals (Vao) and an idiosyncratic component of value 
unique to each individual (Vio; specifically, Uio = Vao + Vio).

Combining the neuroeconomic AIM framework and the eco
nomic random utility model, individual choice might therefore in
clude both shared affective components more common across 
individuals (Va) as well as idiosyncratic integrative components 
more unique to each individual (Vi). This combined model can 
be contrasted with more conventional behavioral models based 
on observed choice. Generalized to forecasts of aggregate choice, 
the combined model implies two novel predictions. First, in small
er samples, individual value components (Vi) might introduce 
noise into aggregate models, reducing the accuracy of forecasts. 
In these cases, including shared value components (Va) might im
prove forecasts. Second, nonrepresentative samples with idiosyn
cratic value components that differ from those of a population 
might bias forecasts. Thus, forecasts based on shared value com
ponents may generalize more broadly than those based on idio
syncratic value components or observed choice.

In two experiments, neuroimaging and choice data collected in 
independent neuroforecasting studies (9, 20) were used to forecast 
aggregate preference in newly collected internet market samples 
that systematically varied with respect to representativeness. 
Brain activity and behavioral choice data from the laboratory 
samples were then used to forecast demand as a function of 
demographic match with the internet samples (for a design over
view, see Fig. 1). We then tested whether neural predictors of 
choice could generalize more broadly than choice behavior across 

Fig. 1. (1) Brain, behavioral, and demographics data were collected in laboratory samples. (2). Behavior and demographics data were collected in 
constructed internet markets. (3). Internet markets were divided into more and less representative markets based on demographic match to the 
laboratory samples. (4) Neural and behavioral data in laboratory samples were used to forecast behavioral data in more and less representative market 
samples. (5) Neural and behavioral model features were contrasted in more and less representative market samples.
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samples varying in representativeness to better understand 
the mechanisms underlying the generality of neuroforecasts. 
Additionally, we tested the robustness of neurally derived fore
casts across sample sizes and demonstrated that reliable fore
casts could be obtained from relatively small laboratory 
samples to address perceived cost obstacles to the practical appli
cation of neuroforecasting methods (25).

Results
Total market analyses
We first tested for associations of laboratory sample measures 
(both behavior and neural) with the choices of substantially larger 
internet markets (including all online subjects, n = 2,956; Table 1). 
Considering only behavioral predictors, in the crowdfunding experi
ment, laboratory sample choices were directionally but not signifi
cantly associated with internet sample funding choices (t = 1.933, 
P = 0.062), and in the video-viewing experiment, laboratory sample 
choices were again not significantly associated with internet sample 
choices (t = −0.44, P = 0.661). These results are consistent with posi
tive but nonsignificant associations observed between behavioral 
preferences in the internet samples and the real-world markets 
used in the original crowdfunding and video-viewing studies, pos
sibly attributable to sample, design, and temporal differences across 
paradigms (experiment 1: r = 0.12; experiment 2: r = 0.24) (9, 20).

Next, in models including activity in predicted neural regions 
of interest (centered in the NAcc and MPFC), only laboratory sam
ple NAcc activity was significantly associated with aggregate 
choices in both the crowdfunding and video-viewing internet sam
ples (crowdfunding: t = 3.043, P = 0.004; video viewing: t = 4.09, 

P < 0.001). Despite predicting trial-by-trial choice within individu
als, laboratory sample MPFC activity was not associated with 
aggregate sample choice in either internet sample (experiment 1: 
t = −1.257, P = 0.218; experiment 2: t = −1.48, P = 0.145). In a final 
combined model, including both behavioral and neural data, only 
laboratory sample NAcc activity remained significantly associated 
with internet sample aggregate choice (experiment 1: t = 3.02, 
P = 0.005; experiment 2 t = 4.12, P < 0.001; Table 1). Together, these 
analyses suggest that only brain activity (i.e. in the NAcc) of the 
scanned laboratory samples significantly forecasts aggregate 
choice in internet samples across both experiments.

Representativeness analyses
To identify the most generalizable components of choice, we next 
examined the impact of sample representativeness by repeating 
the same analyses on the most vs. least representative internet 
sample quartiles (determined by similarity across six common 
demographic variables, see Materials and methods for additional 
details). For the crowdfunding experiment, in the most represen
tative internet sample, both laboratory sample choices (t = 2.70, 
P = 0.011) and NAcc activity (t = 2.81, P = 0.008) were significantly 
associated with internet sample choices. In the nonrepresentative 
internet sample, however, only NAcc activity was significantly as
sociated with internet sample choices (t = 2.84, P = 0.007; Table 2). 
Robustness checks revealed similar results when also including 
activity from the AIns in the models (Table S3), or when dividing 
the internet sample using a median split (Table S1). This same 
pattern of results was also observed for the video-viewing experi
ment (Tables 3 and S2).

Table 1. Models forecasting aggregate behavior across the entire internet market in crowdfunding (1) and video-viewing (2) experiments.

Crowdfunding study 
Laboratory n = 37 

Out-of-sample n = 2956

Video-viewing study 
Laboratory n = 40 

Out-of-sample n = 992

Behavior Neural Combined Behavior Neural Combined

Lab sample behavior 0.315 
(0.163)

0.252 
(0.153)

−0.071 
(0.182)

−0.105 
(0.168)

NAcc 
Activity

0.664** 
(0.218)

0.644** 
(0.213)

0.512** 
(0.181)

0.520** 
(0.183)

MPFC 
Activity

−0.274 
(0.218)

−0.330 
(0.216)

−0.189 
(0.181)

−0.204 
(0.185)

R2 0.099 0.252 0.311 0.005 0.216 0.227
AIC 103.40 98.67 97.75 95.63 90.01 91.56

Statistics are standardized coefficients with SEs in parentheses. *p < 0.05; **p < 0.01; ***p < 0.001.

Table 2. Models forecasting aggregate choice (to fund or not) in the most representative and least representative crowdfunding markets 
(experiment 1).

Most representative quartile Least representative quartile

Behavior Neural Combined Behavior Neural Combined

Lab sample behavior 0.441** 
(0.154)

0.400* 
(0.148)

0.275 
(0.165)

0.214 
(0.157)

NAcc activity 0.612* 
(0.225)

0.579** 
(0.206)

0.638** 
(0.221)

0.621** 
(0.219)

MPFC activity −0.265 
(0.225)

−0.353 
(0.208)

−0.270 
(0.221)

−0.317 
(0.221)

R2 0.194 0.209 0.356 0.076 0.231 0.273
AIC 99.38 100.69 95.28 104.32 99.71 99.68

Statistics are standardized coefficients with SEs in parentheses. MPFC, Medial PreFrontal Cortex; NAcc, Nucleus Accumbens. *p < 0.05; **p < 0.01; ***p < 0.001.
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Across experiments, laboratory sample choice forecasts of 
aggregate internet sample choice interacted with quartile 
demographic match (t = −2.57, P = 0.012), suggesting that the 
strength of the association between laboratory sample choices 
and internet sample choices depended on representativeness. 
Importantly, however, NAcc activity forecasts did not significant
ly interact with demographic match (t = −0.587, P = 0.558), 
suggesting that neural forecasts depended less on sample repre
sentativeness, and so might support broader generalization. 
Plots of the behavioral coefficients across representativeness 
quartiles confirmed that the association of laboratory choice 
with aggregate choice diminished with decreasing demographic 
match, while the association of laboratory NAcc activity with ag
gregate choice remained constant regardless of demographic 
match (Fig. 2 and Table S4).

Analyses within the internet samples indicated that decreasing 
demographic match across quartiles was associated with reduced 
similarity in behavioral choice (Fig. S2). This pattern validated the 
proposed association of demographic match with behavioral pref
erences, consistent with the notion that reduced representative
ness might constrain behavioral forecasts. Forecasts based on 
neural activity, however, did not vary as a function of demograph
ic match. Bootstrapped analyses further tested the relative impact 
of representativeness on behavioral and neural forecasts of aggre
gate choice. In 96.7% of analytic iterations in the crowdfunding ex
periment and 97.2% of analytic iterations in the video-viewing 
experiment, behavioral coefficients were more diminished by de
creases in representativeness than neural coefficients (P = 0.033), 
consistent with broader generalizability of neural forecasts of ag
gregate choice across different internet samples.

Analyses within the laboratory sample further explored the 
generalizability of neural activity associated with affective and in
tegrative neural processes by comparing the similarity of re
sponses in the NAcc vs. MPFC to study stimuli across individuals 
(Fig. S3). Interclass correlations indicated that only NAcc activity 
was significantly correlated across individuals in the crowdfund
ing experiment (ICC = 0.441, F = 1.82, P = 0.004), while MPFC activ
ity was not (MPFC: ICC = 0.273, F = 1.38, P = 0.080). Analysis of 
the video-viewing experiment revealed a similar pattern of re
sults, since NAcc activity was significantly correlated across indi
viduals, while MPFC activity was not (NAcc: ICC = 0.408, F = 1.70, 
P = 0.009; MPFC: ICC = 0.198, F = 1.25, P = 0.163). These analyses 
further support the idea that neuroforecasting relies on decision 
processes that are shared across individuals.

Sample-size robustness analyses
While neuroforecasting data might add value to conventional be
havioral studies, they might also cost more since their collection 

requires specialized equipment and expertise. These constraints 
consequently raise questions about how many subjects are re
quired for neuroforecasting studies to yield generalizable findings. 
To address this question, we conducted bootstrapped analyses 
that varied the number of individuals used to forecast aggregate 
choice.

In the crowdfunding experiment, as the number of subjects in
creased, the median estimate for NAcc activity dropped sharply, 
falling below the P = 0.05 threshold at 14 subjects and remaining 
consistently below this threshold through 32 subjects (Fig. 3A). 
Estimates for behavior, however, remained nonsignificant as the 
sample size increased and did not descend below the P = 0.05 
threshold. Analyses of coefficient magnitudes for neural vs. be
havioral measures revealed complementary trends. Specifically, 
as sample size increased, the NAcc coefficient rose, approaching 
asymptote (Fig. 3B), whereas the behavioral coefficient re
mained relatively flat. Analyses of data from the video-viewing 
experiment revealed similar patterns (Fig. 3). As the sample 
size increased, the NAcc significance estimate dropped below 
the P = 0.05 threshold at 23 subjects, while the behavioral signifi
cance estimate remained nonsignificant over the range of itera
tions tested.

Together, these findings suggest that relatively small sample 
sizes can support forecasts of aggregate choice based on NAcc ac
tivity (see Fig. S1 for MPFC activity, which showed an intermediate 
pattern). In the crowdfunding and video-viewing markets exam
ined, a sample size of 20–25 subjects seemed sufficient to support 
aggregate forecasts with brain data. The applicability of this pat
tern of findings to other types of markets remains to be explored.

Discussion
Across two studies, forecasts of aggregate choice based on neural 
activity generalized more broadly than forecasts based on behav
ioral data. These findings suggest that while both generalizable af
fective components and idiosyncratic integrative components 
predict individual choice, generalizable affective components 
can forecast aggregate choice even when behavioral measures 
cannot. In both experiments, increased demographic match of la
boratory samples to internet samples improved behavioral fore
casts. Within internet markets, demographic match was also 
associated with more similar behavioral choices, supporting con
ventional wisdom that the behavior of representative samples 
should more accurately forecast population behavior. In contrast, 
neural forecasts of aggregate internet sample choice remained 
significant despite decreases in demographic match. While 
counterintuitive, the superior generalizability of brain activity 
vs. behavioral choice suggests that early anticipatory affective 

Table 3. Models forecasting aggregate choice (to watch or not) in the most representative and least representative video-viewing markets 
(experiment 2).

Most representative quartile Least representative quartile

Behavior Neural Combined Behavior Neural Combined

Lab sample behavior 0.065 
(0.182)

0.027 
(0.172)

−0.189 
(0.179)

−0.216 
(0.163)

Nucleus accumbens 0.473* 
(0.184)

0.471* 
(0.188)

0.512** 
(0.180)

0.530** 
(0.178)

MPFC −0.269 
(0.184)

−0.265 
(0.189)

−0.115 
(0.180)

−0.145 
(0.179)

R2 0.004 0.189 0.189 0.036 0.226 0.272
AIC 95.66 91.11 93.08 94.63 89.60 89.64

Statistics are standardized coefficients with SEs in parentheses. MPFC, Medial PreFrontal Cortex; NAcc, Nucleus Accumbens. *p < 0.05; **p < 0.01; ***p < 0.001.
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responses might generalize more broadly than subsequent inte
grative or behavioral responses (21).

Conceptually, these findings link theories derived from deci
sion neuroscience (i.e. the AIM framework) and economics (i.e. 
random utility models) to explain previous empirical findings 
and elucidate how neural data can improve forecasts of aggregate 
behavior. Conventional theoretical approaches in psychology and 
economics (e.g. expected value theory) might imply that the same 
neural activity that predicts individual choice should also forecast 
aggregate choice (perhaps with some loss due to added noise; 3). 
Instead, this novel evidence supports and extends a random 
utility-based account of neuroforecasting (23) in which some com
ponents of value are more broadly shared than others (21). 
Specifically, initial affective responses (indexed by NAcc activity) 
represent a more commonly shared component of the decision- 
making process than later integrative neural responses (indexed 
by MPFC activity) or even final choice behavior itself. Further, ana
lyses revealed that within laboratory samples, individuals’ NAcc 
responses were more correlated than their MPFC responses. 

While both affective and integrative processes critically contrib
ute to individual choice, integration may incorporate more idio
syncratic factors, and so reflect less of the aggregate choices of 
others.

These findings have implications for which types of markets 
might benefit most from neuroforecasting. In this research, the 
most generalizable neural signals came from circuits associated 
with affective processing. Thus, forecasts in markets for ap
proaching positive outcomes (e.g. hedonic ventures and experien
ces) might prominently recruit circuits implicated in positive 
anticipatory affect (e.g. the NAcc), and so might benefit most 
from the application of neuroforecasting measures. In turn, iden
tification of generalizable choice components can imply levers for 
intervention. For example, microloan appeals that feature a posi
tive face, which can increase NAcc activity, are more likely to re
ceive funding from individuals as well as internet markets (18).

Other markets, however, might more prominently recruit 
other choice components. For instance, according to a “market 
matching” account (3), markets for avoiding negative outcomes 

A

B

Fig. 2. Coefficients from behavioral and neural models forecasting aggregate choice as a function of market demographic similarity. Displayed from the 
most representative (left; 1) to the least representative (right; 4) quartiles. Behavioral coefficients increased as a function of demographic match (A), but 
brain (i.e. NAcc) coefficients did not (B).
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(e.g. purchasing insurance) might more prominently recruit cir
cuits implicated in negative anticipatory affect (e.g. the AIns). 
Further, other markets focusing on time or social considerations 
might more prominently recruit integrative circuits (e.g. the 
MPFC) (26). Future research might profitably examine how broadly 
affective primacy vs. market matching accounts extends to differ
ent markets. Additionally, behavioral manipulations that empha
size different choice components (e.g. encouraging reliance on 
affective processes, or minimizing integration) might change 
choice predictably in the laboratory and impact forecasting 
performance.

This work also addresses a primary obstacle to the practical adop
tion of neuroimaging methods in business, communications, and 
public policy involving perceptions of prohibitive cost. In both experi
ments, results indicated that a reasonably small sample (e.g. n < 30) 
was sufficient to derive stable forecasts from neural data. These find
ings are consistent with a recent review of sample sizes implemented 
in the existing Functional Magnetic Resonance Imaging (FMRI) neu
roforecasting studies to date, which tended to average around 30 
subjects (3). Interesting questions about whether some individuals 
reliably show more diagnostic brain activity and whether they can 
be identified prior to scanning remain to be explored and might fur
ther reduce costs associated with neuroforecasting.

These combined findings suggest that when a representative 
sample is available, the addition of neural data might still account 

for added variance in forecasts of aggregate choice. Thus, brain 
measures may complement behavioral measures to improve 
representative forecasts of aggregate behavior. Even when a rep
resentative sample is not available (e.g. due to lack of accessibility, 
unwillingness to participate, or missing information about the 
target audience), brain measures might still effectively forecast 
aggregate choice.

In summary, this work suggests that one mechanism under
lying successful neuroforecasting involves generalizable compo
nents of choice revealed by neural measures. In contrast, 
self-reported responses and observed behavioral choices incorp
orate idiosyncratic preferences which can contribute to accurate 
predictions of individual behavior but diminish the accuracy of 
aggregate forecasts. Together, these findings illuminate how brain 
measures may reveal seeds of choice that can generalize to fore
cast market behavior—even when behavioral measures cannot.

Materials and methods
Subjects
In the crowdfunding experiment (experiment 1), 37 healthy right- 
handed human adults participated in the neuroimaging phase 
(17 females; mean age, 23.57). In the video-viewing experiment 
(experiment 2), 40 subjects participated in the neuroimaging 

A

B

Fig. 3. Bootstrapped analyses of the impact of sample size on forecasting. Estimates of A) P-values and B) coefficients for brain (NAcc activity) vs. 
behavioral (choice) forecasts of market-level preferences as a function of the number of sampled subjects.

6 | PNAS Nexus, 2025, Vol. 4, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/4/2/pgaf029/8016018 by guest on 04 M

arch 2025



phase (25 females; mean age, 25.28; see Appendix A for full subject 
descriptive statistics). Subjects were screened for psychotropic 
drug use, substance use, and a history of neurological disorders, 
as well as for typical magnetic resonance exclusions (e.g. metal 
in the body). All procedures were approved by the Stanford 
University IRB. In both experiments, subjects were excluded for 
excessive head movement during scanning (i.e. more than four in
stances >6 mm or two voxel sides from one volume acquisition to 
the next), and for incomplete demographic data (required for 
demographic matching), leaving samples of 32 and 33 subjects, re
spectively, for analysis. All subjects received detailed information 
regarding their rights and the protections of their data before con
senting to participate.

Crowdfunding experiment (experiment 1)
Crowdfunding design
In the neuroimaging phase of the crowdfunding experiment, sub
jects were presented with text and images associated with 
36 crowdfunding projects selected from kickstarter.com while 
being scanned with FMRI. On each trial, subjects were asked to 
make binary incentive-compatible decisions about whether or 
not to fund a project (for more details, see Ref. 9). For the internet 
market sample in the crowdfunding experiment, 3,000 online sub
jects were recruited to make similar preference judgments re
garding these same projects. Demographic variables (i.e. age, 
sex, education, ethnicity, socioeconomic status, marital status, 
and employment status) collected from both laboratory and inter
net subjects were then used to partition the sample into submar
kets that varied with respect to representativeness (detailed 
below). Finally, laboratory subjects’ behavioral responses and 
neural activity were used to forecast the preferences of more 
and less representative internet samples.

Crowdfunding scanning task
While being scanned, subjects made incentive-compatible fund
ing choices regarding 36 crowdfunding film projects selected 
from kickstarter.com (9). On each trial, subjects viewed a photo
graphic image from each online funding page (2 s), followed by 
text briefly describing the project (6 s). Subjects were then asked 
to make a binary “Yes/No” decision regarding whether they would 
like to fund the project (4 s). Laterally counterbalanced Yes and No 
options were presented on either side of the screen, and choices 
were made using corresponding buttons on a handheld button 
box. Finally, subjects viewed a centrally presented fixation cross 
for a variable intertrial interval before the next trial began (2–6 
s). Total trial duration (including the intertrial interval) thus aver
aged 16 s (range, 14–18 s). Overall, subjects evaluated 36 unique 
funding requests. Subjects were informed that one trial would 
be randomly selected to count for real at the conclusion of the ex
periment. If subjects had agreed to fund the randomly selected 
appeal, that amount was subtracted from their payment and con
tributed online to the appropriate project; otherwise, subjects re
tained their full endowment (for task design schematic and 
stimuli, see Appendix B).

Crowdfunding market choice task
Individuals were sampled on the internet (n = 2956, see Appendix 
A for descriptive statistics) via an online subject pool (Amazon 
Mechanical Turk) to complete an online crowdfunding preference 
task (Appendix B). On each trial, subjects were presented with two 
documentary film projects used in the neuroimaging study and 
asked to choose which they preferred. For each film project, 

subjects viewed the same image and descriptive text as subjects 
in the neuroimaging study. For each subject, the 36 projects 
were randomly paired and presented together such that each pro
ject was presented only once. Finally, the aggregate preference for 
each project was calculated by adding the number of times each 
project was selected across all subjects. The randomization pro
cedure and large sample size ensured that this value represented 
the group’s relative preference for each project relative to all other 
presented projects. In analyses contrasting samples of different 
representativeness (detailed below), aggregate preferences were 
calculated in this manner independently for each sample. After 
the crowdfunding preference task, subjects completed a demo
graphic questionnaire (Appendix B).

Video-viewing experiment (experiment 2)
Video-viewing design
In the neuroimaging phase of the video-viewing experiment, 
40 subjects were presented with 32 videos selected from 
youtube.com while being scanned with FMRI. In the internet 
phase of the study, online subjects (n = 1,000) were recruited to 
make similar preference judgments regarding these same videos. 
As in the crowdfunding experiment, demographic variables col
lected from both laboratory and internet subjects were used to 
create samples of varying representativeness. Laboratory sub
jects’ behavioral responses and neural activity were then used 
to forecast the preferences of the larger internet samples.

Videos included clips selected from the popular youtube.com
science channels “Discovery” and “Animal Planet” lasting from 
54 to 172 s (for full list, see Appendix C). These videos were culled 
from a larger database of 2,950 videos whose thumbnails had pre
viously been effectively normed with a larger online (MTurk) sam
ple in a pilot study (20). Video stimulus sampling was designed to 
maximize variance in aggregate video-view duration (calculated 
as a percentage of the total video length; view percentage), as 
well as affective ratings of their thumbnail images (i.e. high vs. 
low arousal and high vs. low valence).

Video-viewing scanning task
In a preliminary task, laboratory sample subjects saw video 
thumbnail images and indicated whether they wanted to watch 
the video by pressing a button box to choose the corresponding op
tion on the right or the left, respectively (4 s). Placement of accept 
(vs. reject) response buttons was laterally randomized across tri
als. During each trial of the subsequent video-viewing task, a cen
trally displayed video began playing, which was then followed by a 
gray square that randomly appeared after 4–8 s to the right or left 
side of the video. Subjects could then choose to skip the rest of the 
video at any subsequent point by pressing a button corresponding 
to the position of the gray square. Subjects completed 32 trials of 
the video-viewing task, in 4 runs of 8 trials each (for study design 
schematic, see Appendix C). To control stimulus content, all sub
jects had to watch at least the first 4, 6, or 8 s of all 32 videos (forced 
view time was randomly varied to ensure nonpredictability). 
Trials were presented in one of two pseudorandom orders (i.e. ei
ther a forward- or reverse-ordered sequence).

Video-viewing market choice task
Individuals were recruited on the internet (n = 992, see Appendix A
for descriptive statistics) via an online subject pool (Amazon 
Mechanical Turk) to complete an online video-viewing preference 
task (Appendix B). On each of 32 trials, subjects saw one of the vid
eos used in the neuroimaging study. After watching the first 15 s of 
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each video, subjects made a binary decision (i.e. Yes or No) about 
whether they would be interested in continuing to watch the vid
eo. Regardless of the registered response, subjects then proceeded 
to the next trial. All 32 videos were presented in a random order to 
each subject. Aggregate preference for each video was calculated 
by summing the number of choices to continue watching each 
video across all subjects. In analyses comparing samples of vary
ing representativeness, choices to watch or not were independ
ently aggregated for each sample. After the video-viewing task, 
subjects completed a short demographic questionnaire. While 
the internet market and laboratory tasks in both experiments 
were designed to approximate the real-world choice scenarios 
as closely as possible, preference elicitation varied in some re
spects due to logistical, temporal, and financial constraints. 
Importantly, however, all analyses contrasted neural and behav
ioral forecasts that extended to the same elicitation procedures.

Market creation
In both experiments, samples of varying representativeness were 
created by dividing the internet samples (n = 2,956 and n = 992, 
respectively; Appendix A) into four equally sized samples that 
varied as a function of multivariate demographic match to the 
laboratory samples. To quantify demographic match, the 
Mahalanobis distance (27, 28) was calculated for each member 
of the laboratory and internet samples based on a vector of seven 
demographic variables (i.e. age, gender, education, socioeconomic 
status, education, marital status, and employment status). For 
each individual in the laboratory sample, the Mahalanobis dis
tance was calculated as the square root of the sum of squared dif
ferences between the point and the distribution, weighted by the 
inverse covariance matrix of the distribution. Subsequently, on
line subjects were rank ordered based upon their demographic 
distance to the neuroimaging sample. Finally, to create subsam
ples for calculating aggregate preference, a quartile split on the 
Mahalanobis distance metric divided the larger internet samples 
into subsets that varied with respect to their demographic match 
to the neuroimaging sample. The Mahalanobis distance accounts 
for covariation between variables, allowing for a more accurate 
assessment of distances between observations and a distribution, 
particularly where variables can be correlated. The Mahalanobis 
distance is often applied in multivariate statistics to compare 
the similarity of groups of observations. For this reason, it offers 
a particularly useful tool for researchers in domains where 
individual-level variables are often both multidimensional and 
correlated.

FMRI acquisition and analyses
In the neuroimaging experiments, images were acquired with a 
3.0-T General Electric MRI scanner using a 32-channel head coil. 
Forty-six 2.9-mm thick slices (in-plane resolution, 2.9 mm cubic; 
no gap; interleaved acquisition) extended axially from the mid- 
pons to the crown of the skull, providing whole-brain coverage 
and good spatial resolution of mesolimbic regions of interest 
(e.g. midbrain, NAcc, and MPFC). Whole-brain functional scans 
were acquired with a T2*-weighted gradient echo pulse sequence 
(TR = 2 s; TE = 24 ms; flip angle, 77°). High-resolution structural 
scans were acquired with a T1-weighted pulse sequence (TR =  
7.2 ms; TE = 2.8 ms; flip angle, 12°) after functional scans to facili
tate their localization and coregistration.

Primary analyses were conducted using a priori defined vol
umes of interest (VOIs) derived from previous work on the AIM 
framework (21) and neuroforecasting (8, 9, 11, 17, 18). Based on 

this work, predicted regions included those associated with antici
patory positive affect (i.e. NAcc) (29) and value integration (i.e. 
MPFC) (5, 21, 30). Spherical VOIs (8 mm diameter) were centered 
bilaterally on foci in the NAcc (Talairach coordinates: ±10, 12, 
−2) and MPFC (±4, 45, 0). FMRI activity (percentage signal change) 
was first averaged within each VOI over the first two image vol
ume acquisitions (i.e. 4 s) of stimulus presentation (lagged by 
4–6 s to account for the hemodynamic response function), next 
averaged bilaterally, and then extracted for subsequent analyses. 
These predicted VOIs also showed high overlap with meta- 
analytic map regions with activity associated with their names de
rived from the Neurosynth database (31) (Appendix D).

For bootstrapped analyses, a distribution of estimates for the 
coefficients of laboratory choice and NAcc activity was derived 
over 10,000 iterations using samples drawn randomly from the 
original data with replacement. On each iteration, models re
gressed behavioral and neural predictors on aggregate choice. 
We then calculated the difference in coefficient estimates be
tween identical models applied to the most and least representa
tive sample quartiles, representing the magnitude of the impact of 
representativeness for the predictors on each iteration. Next, we 
assessed the proportion of iterations in which the behavioral esti
mate differences were greater than the median of the NAcc esti
mate differences. In the sample-size analysis, samples ranging 
from 32 subjects to 1 subject (i.e. the video-viewing experiment in
cluded 33 subjects), 1,000 bootstrapped samples were drawn from 
the original data with replacement. After each resampling iter
ation, we regressed internet sample choices on behavioral and 
neural variables drawn from corresponding laboratory samples.

Acknowledgments
The authors thank spanlab, Ale Smidts, Carolyn Yoon, and 
anonymous reviewers for feedback on previous drafts.

Supplementary Material
Supplementary material is available at PNAS Nexus online.

Funding
This research was supported by the Stanford Wu Tsai 
Neurosciences Institute (NeuroChoice Initiative).

Author Contributions
Study design: A.G. and B.K.; data collection: A.G. and L.T.; analysis: 
A.G., L.T., and B.K.; writing: A.G. and B.K.

Data Availability
Anonymized data are publicly available on an online repository 
(32). Study materials are available in the Supplementary Material.

References
1 Genevsky A, Yoon C. Neural basis of consumer decision making 

and neuroforecasting. In: Kahle LR, Lowrey TM, Huber J, editors. 
APA Handbook of consumer psychology. American Psychological 
Association, 2022. p. 563–578.

2 Hakim A, Levy DJ. 2019. A gateway to consumers ‘minds’: achieve
ments, caveats, and prospects of electroencephalography-based 

8 | PNAS Nexus, 2025, Vol. 4, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/4/2/pgaf029/8016018 by guest on 04 M

arch 2025

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf029#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf029#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf029#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf029#supplementary-data


prediction in neuromarketing. Wiley Interdiscip Rev Cogn Sci. 10(2): 
e1485.

3 Knutson B, Genevsky A. 2018. Neuroforecasting aggregate 
choice. Curr Dir Psychol Sci. 27(2):110–115.

4 Karmarkar UR, Shiv B, Knutson B. 2015. Cost conscious? The 
neural and behavioral impact of price primacy on decision mak
ing. J Mark Res. 52(August):467–481.

5 Knutson B, Rick S, Wimmer GE, Prelec D, Loewenstein G. 2007. 
Neural predictors of purchases. Neuron. 53(1):147–156.

6 Lebreton MM, Jorge S, Michel V, Thirion B, Pessiglione M. 2009. An 
automatic valuation system in the human brain: evidence from 
functional neuroimaging. Neuron. 64(3):431–439.

7 Levy DJ, Glimcher PW. 2012. The root of all value: a neural com
mon currency for choice. Curr Opin Neurobiol. 22(6):1027–1038.

8 Berns GS, Moore SE. 2012. A neural predictor of cultural popular
ity. J Consum Psychol. 22(1):154–160.

9 Genevsky A, Yoon C, Knutson B. 2017. When brain beats behav
ior: neuroforecasting crowdfunding outcomes. J Neurosci. 37(36): 
1633–1616.

10 Venkatraman V, et al. 2015. Predicting advertising success be
yond traditional measures: new insights from neurophysiologic
al methods and market response modeling. J Mark Res. 52(4): 
436–452.

11 Scholz C, et al. 2017. A neural model of valuation and information 
virality. Proc Natl Acad Sci U S A. 114(11):2881–2886.

12 Kühn S, Strelow E, Gallinat J. 2016. Multiple “buy buttons” in the 
brain: forecasting chocolate sales at point-of-sale based on func
tional brain activation using fMRI. NeuroImage. 136:122–128.

13 Varga M, et al. 2021. Predicting sales of new consumer packaged 
products with fMRI, behavioral, survey and market data. 

Marketing Science Institute Working Paper Series, 21. https://www.msi. 
org/working-papers/predicting-sales-of-new-consumer-packaged- 
products-with-fmri-behavioral-survey-and-market-data/.

14 Boksem MAS, Smidts A. 2015. Brain responses to movie trailers 
predict individual preferences for movies and their population- 
wide commercial success. J Mark Res. 52(4):482–492.

15 Dmochowski JP, et al. 2014. Audience preferences are predicted 
by temporal reliability of neural processing. Nat Commun. 5: 
1–9.

16 Doré BP, et al. 2019. Brain activity tracks population information 
sharing by capturing consensus judgments of value. Cereb Cortex. 
29(July):3102–3110.

17 Falk EB, et al. 2015. Functional brain imaging predicts public 
health campaign success. Soc Cogn Affect Neurosci. 11(2):204–214.

18 Genevsky A, Knutson B. 2015. Neural affective mechanisms pre
dict market-level microlending. Psychol Sci. 26(9):1411–1422.

19 Hakim A, et al. 16 August 2018. Pathways to consumers’ minds: 
using machine learning and multiple EEG metrics to increase 
preference prediction above and beyond traditional measure
ments. bioRxiv 317073. https://doi.org/10.1101/317073, preprint: 
not peer reviewed.

20 Tong LC, Yavuz Acikalin MY, Genevsky A, Shiv B, Knutson B. 
2020. Brain activity forecasts video engagement in an internet at
tention market. Proc Natl Acad Sci U S A. 117(12):6936–6941.

21 Samanez-Larkin GR, Knutson B. 2015. Decision making in the 
ageing brain: changes in affective and motivational circuits. 
Nat Rev Neurosci. 16:278–289.

22 Baltas G, Doyle P. 2001. Random utility models in marketing re
search: a survey. J Bus Res. 51(2):115–125.

23 Webb R, Levy I, Lazzaro SC, Rutledge RB, Glimcher PW. 2019. 
Neural random utility: relating cardinal neural observables to 
stochastic choice behavior. J Neurosci Psychol Econ. 12(1):45–72.

24 Webb R, Mehta N, Levy I. 2021. Assessing consumer demand with 
noisy neural measurements. J Econom. 222(1):89–106.

25 Ariely D, Berns GS. 2010. Neuromarketing: the hope and hype of 
neuroimaging in business. Nat Rev Neurosci. 11(4):284–292.

26 Falk EB, Berkman ET, Lieberman MD. 2012. From neural re
sponses to population behavior: neural focus group predicts 
population-level media effects. Psychol Sci. 23(5):439–445.

27 Mahalanobis PC. On the generalized distance in statistics. National 
Institute of Science of India, 1936.

28 Manly BFJ. Multivariate statistical methods. Chapman and Hall, 1990.

29 Knutson B, Greer SM. 2008. Anticipatory affect: neural correlates 
and consequences for choice. Philos Trans R Soc Lond B Biol Sci. 
363(1511):3771–3786.

30 Plassmann H, O’Doherty J, Rangel A. 2007. Orbitofrontal cortex 
encodes willingness to pay in everyday economic transactions. 
J Neurosci. 27(37):9984–9988.

31 Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. 
2011. Large-scale automated synthesis of human functional 
neuroimaging data. Nat Methods. 8(8):665–670.

32 Genevsky A, Tong LC, Knutson B. 2024. [dataset] Generalizability of 
brain activity in forecasting. Researchbox.Org. https://researchbox. 
org/226&PEER_REVIEW_passcode=JQKET.

Genevsky et al. | 9
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/4/2/pgaf029/8016018 by guest on 04 M
arch 2025

https://www.msi.org/working-papers/predicting-sales-of-new-consumer-packaged-products-with-fmri-behavioral-survey-and-market-data/
https://www.msi.org/working-papers/predicting-sales-of-new-consumer-packaged-products-with-fmri-behavioral-survey-and-market-data/
https://www.msi.org/working-papers/predicting-sales-of-new-consumer-packaged-products-with-fmri-behavioral-survey-and-market-data/
https://doi.org/10.1101/317073
https://researchbox.org/226&PEER_REVIEW_passcode=JQKET
https://researchbox.org/226&PEER_REVIEW_passcode=JQKET

	Neuroforecasting reveals generalizable components of choice
	Introduction
	Results
	Total market analyses
	Representativeness analyses
	Sample-size robustness analyses

	Discussion
	Materials and methods
	Subjects
	Crowdfunding experiment (experiment 1)
	Crowdfunding design
	Crowdfunding scanning task
	Crowdfunding market choice task

	Video-viewing experiment (experiment 2)
	Video-viewing design
	Video-viewing scanning task
	Video-viewing market choice task
	Market creation
	FMRI acquisition and analyses


	Acknowledgments
	Supplementary Material
	Funding
	Author Contributions
	Data Availability
	References




