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Brain activity explains message effectiveness:
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Abstract

Persuasive communication in marketing, political, and health domains influences sales, elections, and public health. We present a mega-
analysis (a pooled analysis of raw data) of 16 functional MRI datasets (572 participants, 739 messages, and 21,688 experimental trials)
assessing the neural correlates of the effectiveness of messages in individual message receivers and at scale (in large groups of
message receivers who did not undergo neuroimaging). Existing theories suggest that decision-making is driven by expected rewards
and perceived social relevance associated with the expected outcomes of a given choice. Consistent with these theories, we find that
(i) brain activity implicated in reward and social processing is associated with message effectiveness in individuals and at scale across
diverse domains (e.g. marketing and health campaigns); (i) exploratory analysis further suggests language, emotion, and
sensorimotor processes as pertinent to message effectiveness; and (iii) brain activity provides complementary information on
message effectiveness at scale beyond self-reports provided by the same neuroimaging participants. This study offers novel insights
into the neurocognitive mechanisms underlying effective messaging, highlights a path toward greater unity and efficiency in
persuasion research, and suggests practical intervention targets for message design.
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Significance Statement

Media messages influence people’s preferences and behaviors across various domains, including marketing, politics, and health.
What makes some messages more likely to influence the minds of their audiences? Pooling available data from 16 neuroimaging data-
sets collected from multiple geographical regions and topic domains, we find that messages eliciting greater activation in brain sys-
tems associated with reward and social relevance are more likely to influence both individuals and large groups. Brain activity
provides additional insights into how messages resonate with broad audiences beyond what can be explained by participants’ self-
reports. This study enhances our understanding of persuasion, suggesting that certain basic mechanisms may be active across dif-
ferent messaging contexts and may inspire novel strategies targeting these mechanisms.

Introduction

Diverse actors in marketing, politics, and health communication
rely on messaging via mass and social media to influence sales,
election results, public health outcomes, and more (1-3). Thus,
practitioners and scientists across disciplines and topic domains
are motivated to understand what makes messages persuasive,
thatis, effective in changing attitudes and behaviors. Yet, existing
research on message effectiveness rarely examines the drivers of
message effectiveness using a unified framework that applies the
same concepts and measurements across a wide range of mes-
sages, contexts, and populations. This gap prevents the develop-
ment of a cohesive theoretical understanding of message effects
across different contexts. A mega-analysis (i.e. reanalysis of raw
data from multiple studies (4)) can address this issue by revealing
broader patterns of message effectiveness that individual studies
may not be able to capture on their own.

Reanalyzing neuroimaging studies on message effects, in par-
ticular, can reveal basic neural and psychological mechanisms
underlying persuasion. Decades of neuroscience and behavioral
science research highlight diverse types of expected rewards
and perceived social implications of choices as drivers of human
decision-making (5-8). Here, we hypothesize that heightened acti-
vation of the brain’s reward and social processing systemsis a pre-
cursor of message effectiveness. Our central contribution is that
we test this hypothesis through a mega-analysis of 16 functional
MRI datasets, encompassing 21,688 experimental trials from 572
participants and 739 messages from various topic domains.

Reward and social cognition as psychological
pathways of persuasion

One major class of persuasion theories focuses on how antici-
pated rewards shape people’s choices. For instance, Rational
Choice Theory (9), often used to explain financial choices and
market behaviors in economics, posits that individuals maximize
the utility of their choices based on preferences and available in-
formation. Reasoned action models, such as the integrated behav-
ior model (10) favored in communication science, enumerate
specific factors such as existing attitudes, norms, and perceived
behavioral control that are evaluated and integrated to influence
intentions and behavior. Although there is little interaction be-
tween these approaches, both of them directly describe or imply
an internal process of weighting various psychological inputs, in-
tegrating them into a unitary value (i.e. a weighted sum of antici-
pated benefits and costs, also called the common currency of
choice (11)), which then drives changes in preferences and behav-
iors. Despite high-level similarities, individual models vary in
their conceptualization and operationalization of both antici-
pated reward and potential inputs to reward computations, hin-
dering efficient knowledge exchange between subfields.

Another major group of approaches to understanding message
effectiveness focuses on social processes. For example, social

cognitive theory posits that people’s behavior is influenced by
observing and understanding others’ behaviors and related out-
comes (12, 13). Theories of normative conduct (14) and social be-
havior (15) emphasize the role of norms, while communication
scientists have also identified interpersonal communication
(16) and narratives (17, 18) as means of persuasion via identifica-
tion with others. These theoretical traditions collectively sug-
gest that messages prompting people to think about others’
thoughts, feelings, or behaviors are more likely to be effective,
but vary in their focus on and operationalization of specific so-
cial processes.

Persuasion in the brain

Over the last 2 decades, researchers in communication, social
neuroscience, neuromarketing, and neuroeconomics have in-
creasingly used neuroimaging techniques, primarily functional
magnetic resonance imaging (fMRI), to capture real-time brain re-
sponses to messages (6, 19). Building on findings from economics,
psychology, marketing, and communication science, neuroimag-
ing studies have identified indicators of reward and social process-
ing as potential neural correlates of message effectiveness.

Foundational studies in neuroeconomics on value-based
decision-making and choice behavior have revealed a core set of
brain regions involved in anticipating and receiving rewards, in-
cluding the medial prefrontal cortex (mPFC), ventral tegmental
area (VTA), and nucleus accumbens (NAcc) (20-22). This reward
system weights inputs from multiple brain areas depending on
the individual’s contexts and goals (22) to inform diverse choices
(11, 20). This neural architecture also responds to effective messa-
ging across various domains including health communication,
marketing, and fundraising campaigns (6, 7).

In parallel, research in social neuroscience has identified brain
regions involved in the process by which people understand them-
selves and the minds of others, termed mentalizing (23). This in-
volves a wide range of cortical midline structures including
mPFC and posterior cingulate cortex (PCC), and lateral regions in-
cluding temporoparietal junctions (TPJ) and temporal poles (TP)
(24). Several studies have linked activity in subsets of these
regions to the effectiveness of various types of messages, includ-
ing newspaper articles, TV commercials, and written arguments
(25-28).

Although these existing neuroimaging studies suggest that both
the reward (7) and mentalizing systems (6, 8) likely process aspects
relevant to message effectiveness, each was guided by different
theoretical and empirical approaches and their reported findings
are not readily comparable. This lack of consistency hinders the
identification of overarching and context-sensitive mechanisms
of persuasion. Here, we directly test whether brain activity impli-
cated in reward and mentalizing is associated with message effect-
iveness on average across studies by reanalyzing existing data
under a consistent neural operationalization. Specifically, we
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examine neural responses during exposure to a wide range of mes-
sages in predefined sets of brain regions—one set associated with
personal rewards, and the other set with mentalizing—and exam-
ine their relationships with message effectiveness. This analysis
may provide evidence for common intervention and assessment
targets with the potential for cross-contextual utility.

Because reward and mentalizing share common neural sub-
strates, particularly in the medial wall of the prefrontal cortex,
we also examine constituent brain sub-regions within mentaliz-
ing and reward systems individually. Additionally, in an explora-
tory whole-brain analysis, we identify other neural correlates of
message effectiveness beyond our initial hypotheses and interpret
the underlying psychological mechanisms with the aid of a meta-
analytic database pooling insights of the broader neuroscientific
literature.

Message effectiveness in individuals and at scale

Important persuasive effects take hold in individuals who change
their minds or behaviors after seeing a given message, and atscale
where mediated messages could shift the collective responses
of large target groups. A unique set of neuroimaging studies
examined both whether brain activity recorded in individuals
can predict indicators of message effectiveness in these same in-
dividuals and also message effectiveness at scale (i.e. how larger,
independent groups who did not undergo neuroimaging would re-
spond to the same messages; e.g. 26, 34, 38, 53, an approach some-
times described as “neuroforecasting” (7)). Evidence from
individual studies shows that neural and self-report responses
to messages collected from the same individuals do not always
align in predicting which messages are likely to be most effective
at scale. Some researchers theorized that neuroimaging may bet-
ter detect immediate and potentially nonconscious reactions that
retrospective self-reporting might miss. This implies that certain
neural indicators of message effectiveness may generalize better
than others to large groups (5). We test this idea directly by com-
paring how brain activity relates to message effectiveness both in
individuals and at scale across studies. We also explore whether
neural and self-report responses to messages collected in the
same individuals provide overlapping or complementary insights
into message effectiveness at scale.

Mega-analysis of 16 neuroimaging studies

To achieve these goals, we conducted a mega-analysis, thatis a re-
analysis of raw functional neuroimaging data from 16 studies
that examined the neural correlates of message effectiveness in
individuals and at scale (Table 1). Study participants varied in
age, gender, country of residence, and cultural backgrounds.
Message stimuli covered a range of contexts such as TV ads, health
promotion campaigns, newspaper articles, and donation cam-
paigns. Although each study was motivated by different theories
and reported a diverse range of neural metrics, the underlying da-
tasets share key similarities: (i) participants were exposed to mes-
sages while undergoing neuroimaging, (ii) after message exposure
participants provided an evaluation of the message (measuring
message effectiveness in individuals), and (iii) message effective-
ness was also assessed per message by a larger, independent group
of message recipients (measuring message effectiveness at scale).

We examine, at the brain level, why and how messages influ-
ence individual minds and the collective mind of larger groups.
Specifically, we (i) test whether neural responses related to reward
and mentalizing correlate with message effectiveness in individu-
als and at scale, (ii) leverage the statistical power of our pooled

data to explore other neural correlates of message effectiveness,
and (iii) assess the overlap between neural and self-report re-
sponses collected in individuals undergoing neuroimaging in ex-
plaining message effectiveness at scale.

Results

Brain activity linked to message effectiveness
within individuals undergoing neuroimaging
Neural responses to messages in a priori meta-analytically de-
fined reward and mentalizing regions (drawn from Neurosynth,
a database of the extant neuroscientific literature, see Materials
and methods) were both associated with the extent to which the
same scanned individuals reported these messages to be effective
(reward: estimate=0.032, 95% CI [0.012, 0.052], marginal R?=
0.00088, conditional R?>=0.18565; mentalizing: estimate =0.037,
95% CI [0.005, 0.068], marginal R*>=0.00123, conditional R®=
0.18701) (Figs. 1A and S4).

Within the constituent sub-regions of each Neurosynth mask,
significant effects were found for NAcc and VTA for the reward
system, and for TP, vimPFC, and cerebellar sub-regions of the men-
talizing system (Fig. 1A, Table 2). Supplementary materials tabu-
late variances explained (Table S3), along with additional
regions of interest (ROI) within reward, mentalizing, and other
systems (Table S5). A whole-brain parcellation analysis confirmed
the involvement of similar regions (e.g. reward-related regions
like NAcc, vimPFC which is implicated in both reward and mental-
izing, and regions related to mentalizing like PCC; Fig. 2A) and fur-
ther highlighted the left inferior frontal gyrus, a region associated
with language processing as well as negative associations with ac-
tivity in somatosensory regions (Table S4).

To help interpret the psychological mechanisms implicated by
the observed neural correlates of message effectiveness, we esti-
mated a whole-brain voxel map of message effectiveness (i.e. how
each voxel’s activity corresponded to message effectiveness in indi-
viduals) and compared it to a collection of 100 meta-analytic maps
from Neurosynth, which represent neural activity patterns associ-
ated with diverse topics studied in the extant neuroscientific litera-
ture. Consistent with the above observations, this analysis suggests
the involvement of reward, social processing, and language (topics
33, 71, and 23, respectively, in the Neurosynth 100-topic space).
Somatosensory processes (topic 82) were negatively associated
with message effectiveness in individuals (Table S6).

Brain activity in individuals linked to message
effectiveness at scale

After averaging neural responses to the same message across indi-
viduals undergoing neuroimaging, both reward and mentalizing-
related neural signals were positively associated with message ef-
fectiveness at scale (reward: estimate = 0.080, 95% CI [0.005-0.154],
marginal R?=0.00633, conditional R? =0.00749; mentalizing: esti-
mate =0.132, 95% CI [0.038-0.225], marginal R?=0.01730, condi-
tional R? =0.03016) (Figs. 1B and S4).

Among the sub-regions, significant effects were observed in the
VTA of the reward system, and in the dmPFC, TP, and cerebellar
sub-regions of the mentalizing system (Fig. 1B, Tables 2 and S3
for model estimates and variances explained, and Table S5 for add-
itional ROIs). Whole-brain parcellation analysis further highlighted
the role of mentalizing regions (e.g. bilateral TP and dmPFC), and
also identified activity in the right fusiform face area as positively
associated with message effectiveness at scale (Table S4).
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Fig. 1. Neurosynth ROIs analysis. A) Association between brain activity and self-report message effectiveness (ME) in individuals undergoing
neuroimaging. B) Association between averaged brain activity of individuals undergoing neuroimaging and ME at scale (in large groups that did not
undergo neuroimaging). C) Association between averaged brain activity of individuals undergoing neuroimaging and ME at scale, after taking into
account averaged self-report ME from the same neuroimaging participants. PFC, prefrontal cortex; NAcc, nucleus accumbens; VTA, ventral tegmental
area; dmPFC, dorsolateral prefrontal cortex; vmPFC, ventromedial prefrontal cortex; PCC, posterior cingulate cortex; TPJ, temporoparietal junction;

TP, temporal pole; Cereb, cerebellum.

Table 2. Model estimates of Neurosynth ROIs and their sub-regions.

Message effectiveness in individuals

Message effectiveness at scale

Message effectiveness at scale with

(Fig. 1A) (Fig. 1B) self-report as covariate (Fig. 1C)
Est 95% CI P Est 95% CI P Est 95% GI P
‘Reward’ 0.032 0.012, 0.052 0.009 0.080 0.005, 0.154 0.062 0.056 -0.015, 0.127 0.155
PFC 0.018 —0.002, 0.037 0.098 0.034 —0.051, 0.120 0.445 0.025 -0.061, 0.111 0.579
NAcc 0.030 0.011, 0.049 0.008 0.072 -0.000, 0.144 0.052 0.053 -0.015, 0.121 0.130
VTA 0.042 0.022, 0.063 0.002 0.109 0.021, 0.197 0.039 0.058 —0.019, 0.135 0.152
“Mentalizing” 0.037 0.005, 0.068 0.041 0.132 0.038, 0.225 0.024 0.098 0.019, 0.177 0.025
dmPFC 0.027 —0.002, 0.056 0.094 0.128 0.056, 0.201 0.009 0.088 0.016, 0.160 0.021
vmPFC 0.030 0.009, 0.052 0.016 0.095 0.011, 0.178 0.050 0.068 -0.011, 0.146 0.116
PCC 0.024 —0.000, 0.048 0.076 0.102 —0.009, 0.212 0.101 0.081 0.001, 0.160 0.062
TP 0.034 0.001, 0.067 0.066 0.086 -0.018, 0.190 0.136 0.059 -0.027, 0.145 0.196
TP 0.043 0.008, 0.078 0.029 0.156 0.061, 0.251 0.010 0.112 0.032,0.192 0.012
Cereb 0.035 0.009, 0.061 0.021 0.143 0.055, 0.232 0.009 0.113 0.043,0.183 0.007

CI are estimated based on Wald statistics while P values are estimated using Satterthwaite’s degrees of freedom method.

Neurosynth decoding of the whole-brain voxel map suggested
message effectiveness at scale was positively associated with
neural activity patterns related to social processing, emotion,
and language (topics 71, 91, and 12), and negatively associated
with pain and sensorimotor functions (topics 69 and 82; Table S6).

Leave-one-study-out cross-validation analyses showed that
predictions of message effectiveness in individuals and at scale
were robust to the exclusion of individual datasets (Section S4.3).

Brain activity and self-report in individuals
provide complementary information about
message effectiveness at scale

The average self-report ratings of message effectiveness from in-
dividuals undergoing neuroimaging also tracked message effect-
iveness at scale (estimate = 0.244, 95% CI [0.063, 0.425], marginal
R?=0.05708, conditional R? = 0.16403). We thus examined the ex-
tent to which variance in message effectiveness at scale explained
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Fig. 2. Whole-brain parcellation analysis and Neurosynth decoding. A) Association between brain activity and self-report message effectiveness (ME) in
individuals undergoing neuroimaging. B) Association between averaged brain activity of individuals undergoing neuroimaging and ME at scale (in large

groups that did not undergo neuroimaging).

by individual self-reports and brain activity overlapped (Fig. 1C).
Averaged mentalizing brain activity improved the explanatory
power of a baseline model including only self-reports (mentalizing:
estimate=0.098, 95% CI [0.019, 0.177], marginal R?=0.06486,
conditional R?=0.17791; reward: estimate=0.056, 95% CI
[-0.015, 0.127], marginal R?=0.05941, conditional R?=0.16761
(see Tables 2, S2, and S3 for model estimates and variances ex-
plained; Table S5 for additional ROI).

Discussion

Using data from 16 neuroimaging studies across a wide range of
topic domains, we found that neural responses to messages in brain
regions associated with reward and social processing track the ef-
fectiveness of these messages, both in the same individuals who
underwent neuroimaging and at scale (in larger, independent
groups of message receivers). Further, self-reported perceptions of
each message and corresponding neural responses measured in
the same individuals (especially in regions related to social process-
ing) provided complementary information about message
effectiveness at scale, suggesting that neural responses can offer
unique insights into how messages resonate with broad audiences.
Although individual previous studies have made similar claims,

each focused on a specific context or population. By pooling these
studies in our mega-analysis approach, we identified neural mech-
anisms that generalize across different messaging contexts.

Neural correlates of message effectiveness

First, we found that neural responses to messages in brain regions
meta-analytically associated with reward were positively related
to message effectiveness in both individuals undergoing neuroi-
maging and at scale. Specifically, message effectiveness in indi-
viduals was associated particularly strongly with activity in
reward sub-regions such as NAcc and VTA. Messages that elicited
stronger activity in the VTA, a key part of the dopaminergic re-
ward system (40), were more successful at scale. These brain re-
gions are consistently implicated in the anticipation and receipt
of personal rewards (19) as well as social conformity (41). These
findings highlight potential common substrates that are key com-
ponents of disconnected, yet related, theories in economics (9)
and communication science (10), which explain changes in prefer-
ences and behaviors via a process of weighing the values of differ-
ent choice options.

Second, we found that activity in brain regions associated with
mentalizing tracked message effectiveness in individuals and at
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scale, with particularly strong effects within the TP, the dorsome-
dial prefrontal cortex, and cerebellar regions. Although neuroi-
maging studies on message effectiveness have not historically
emphasized the role of mentalizing (c.f. (42)), research on the
neural bases of social influence consistently shows that mentaliz-
ing is involved when people update their preferences upon learn-
ing that they are misaligned with others (43-45). These findings
are also consistent with prior theorizing that describes a variety
of social mechanisms in persuasive processes observed within dif-
ferent fields such as psychology (46) and communication science
(47), and highlight potential commonalities across this frag-
mented theoretical landscape.

Marginal R? values (Fig. 1A and B, Table S3) for models pooling
all studies indicate that fixed effects of brain activity explained
0.03-0.17% (M =0.10%) of the variance in message effectiveness
in individuals, and 0.12-2.41% (M = 1.17%) of the variance in mes-
sage effectiveness at scale. This highlights the difficulty in predict-
ingindividual message effectiveness at the trial level, while at the
message level, effects on message effectiveness at scale roughly
translate to an average Cohen'’s d of 0.22, suggesting a small effect
size. For comparison, a coordinate-based meta-analysis of 49
studies using a monetary incentive delay task yielded task effect
sizes of d=0.28-0.44 in various reward-related brain regions
(48). In addition to this average effect size, our mega-analysis ap-
proach also allowed us to compare effect sizes across studies for
the first time. While small on average, effect sizes ranged from
small to medium between individual studies (e.g. Figs. 1 and S5).
Leave-one-study-out validation analysis shows that message ef-
fectiveness predictions are not dependent on any one study’s in-
clusion. These findings highlight the robustness of the predicted
brain-behavior relationships, despite the diversity of tasks, meas-
ures, and stimuli in our database, while underscoring a need for
further work that examines sources of heterogeneity.

Beyond hypothesized reward and mentalizing mechanisms, we
explored the possibility that additional processes might be associ-
ated with message effectiveness. Whole-brain parcellation ana-
lysis and voxel-based Neurosynth decoding uncovered a positive
association between activity in regions associated with language
processing during message exposure and message effectiveness
both in individuals and at scale. This interpretation is consistent
with persuasion theories such as the Elaboration Likelihood
Model (49) and Heuristic Systematic Model (50) suggesting that a
deeper engagement with the message content is a sign of effective
messaging. The negative association between activity in regions
linked to sensorimotor processes and message effectiveness re-
quires more in-depth investigation, as it could be related
to task-related artifacts, such as the need for participants to re-
spond with a button press after each message in most included
studies. Additionally, both Neurosynth decoding and further sup-
plementary analyses suggest that activity in regions associated
with emotion was positively associated with message effective-
ness, echoing research highlighting the importance of emotion
in information processing (51) and message propagation (52).

We further found evidence of divergence between message ef-
fectiveness in individuals and at scale. Examining a priori ROIs
for hypothesis testing, message effectiveness both in individuals
and at scale was associated with brain activity in the VTA of the re-
ward system and vmPFC, TP, and cerebellar sub-regions of the
mentalizing system. Message effectiveness in individuals showed
additional significant associations with activity in the reward sub-
region NAcc and message effectiveness at scale was additionally
associated with activity in the dmPFC mentalizing sub-region.
The exploratory whole-brain parcellation analysis, which required

more stringent correction for multiple comparisons, showed no
overlap in regions associated with message effectiveness in individ-
uals and at scale. Lastly, Neurosynth decoding and further supple-
mentary analyses showed that brain regions implicated in emotion
only showed associations with message effectiveness at scale.
Extending prior theorizing that primarily focused on the reward
system (36), these findings are in line with the idea that lower-level
responses to messages, especially on an emotional or interpersonal
level, may be more universal and thus more generalizable from
individual brains to larger groups across message domains. We pre-
sent this speculation cautiously given the exploratory nature
of these analyses, and because different sub-regions have differing
degrees of voxel coverage in our datasets (Table S1). Nevertheless,
these preliminary findings enrich the ongoing discussion of the
mechanisms that support neuroforecasting.

Leveraging brain activity to understand
and improve message effectiveness

Averaging across studies, brain activity in regions associated with
mentalizing provided complementary information about message
effectiveness at scale beyond what could be gathered from self-
report responses to the messages of the same individuals who
underwent neuroimaging. Large-scale message effectiveness de-
pends on numerous factors that may not be fully captured through
self-report measures sampled from smaller groups. Incorporating
self-report measures relevant to social processing might improve
the prediction of message effectiveness at scale. For example, in a
recent study (53), self-reports of mentalizing after viewing TV ads
(“to what extent did the ad make you think about the characters’
feelings and intentions”) improved the prediction of these ads’ mar-
ket success beyond simple evaluations of ad liking. Several prior
studies also found that reward-related neural responses added
complementary information about message effectiveness at scale
beyond self-reports (e.g. 26, 31, 34-36). In this mega-analysis, the
complementary effect of neural reward activity appeared to be
somewhat sensitive to analytic choices. However, the interval esti-
mates obtained with what we deemed to be the most rigorous ana-
lysis pipeline were not precise enough to confidently confirm the
effect across experiments. Limitations of the existing data and the
exploratory analysis approach do not allow us to systematically
identify potential moderators of this effect such as choice domain,
analytic and methodological choices (also see Limitations section),
highlighting the need for more confirmatory work.

Further, designing interventions that engage key psychological
processes during message exposure may lead to more effective mes-
sage generation and dissemination. For example, tailoring health-
promoting messages to increase personal relevance (54) and indu-
cing a self-affirming mindset before message exposure (55) have
been shown to engage reward-processing regions, increasing mes-
sage acceptance and health-promoting behavior. Prompting individ-
uals to consider how a message is relevant to people they know has
also been linked to mentalizing activity in the brain and subsequent
sharing of the message (56). Such intervention studies offer exam-
ples of effective communication design informed by neuroscience
research but have generally been conducted within specific con-
texts. Greater interdisciplinary cross-talk may allow communicators
of various domains to exchange knowledge and experiences and to
efficiently focus on key psychological processes identified here.

Limitations and future directions

Although these findings significantly advance the current under-
standing of message effectiveness, they also highlight fruitful
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directions for future work. First, despite key similarities, the data-
sets in our mega-analysis differed in several ways, including the
types of messages shown (e.g. message modality and topic do-
main), operationalizations of message effectiveness in individuals
and at scale (e.g. self-reported message liking vs. objective click-
through rates), neuroimaging acquisition parameters which may
impact signal coverage and quality (e.g. (57); see Table S1 for de-
tails), and task protocols. Because several of these factors are con-
founded in our database, we cannot confidently draw conclusions
about the causes of heterogeneity of effects across datasets, such
as the relatively large variance in the association of mentalizing
with message effectiveness. Future interdisciplinary collabora-
tions that standardize operational procedures such as task proto-
cols and MRI acquisition parameters would enable researchers to
more systematically test for moderators of key effects. In add-
ition, the average effect sizes observed were somewhat sensitive
to analytical choices such as specific ROIs (see, e.g. Table S5)
and preprocessing pipelines, highlighting the need for continued
efforts put into replication and pre-registered confirmatory work
(e.g. (26, 39)) that can clarify when and why each of the hypothe-
sized processes is most relevant.

Second, our current correlational findings and inferences about
the psychological processes underlying observed brain activity
(albeit supported by meta-analytic tools) should be seen as a first
step in a chain of evidence that ultimately leads to confirmatory
experiments to test our conclusions, for example by directly ma-
nipulating the psychological processes identified as likely precur-
sors of message effectiveness.

Third, although this mega-analysis covers a wide range of
domains and multiple geographic locations, it is still largely limited
to participants in Western, Educated, Industrial, Rich Democracies
(or “WEIRD” samples). Yet, culture influences norms and values

that shape message effectiveness (58) and implementation of neur-
al processing (59). Although early evidence suggests that neural in-
dicators of message effectiveness are more cross-culturally stable
than self-report measures (39), a domain-general theory of mes-
sage effectiveness for diverse target audiences ultimately requires
empirical evidence across equally diverse samples.

Conclusion

By combining 16 neuroimaging datasets, we found that neural in-
dicators of reward, mentalizing, emotion, and language process-
ing were associated with message effectiveness in individuals
and at scale. These insights highlight the potential of specific
neural markers to serve as: (i) useful proximal indicators of mes-
sage effectiveness that can be assessed across message types, do-
mains, and disciplines, (ii) key components of cross-disciplinary
theorizing and knowledge exchange on message effectiveness,
and (iii) potential targets for intervention approaches geared to-
wards evoking, for instance, reward or social processing in target
audiences. Taken together, these findings advance our under-
standing of why some messages are effective while others are
not, opening up new avenues for research on message effective-
ness and effective communication strategies in fields such as
health promotion, marketing, and public policy.

Materials and methods

This mega-analysis utilized 16 fMRI datasets involving 572 par-
ticipants and 739 diverse messages (totaling 21,688 trials) col-
lected by the co-authors. All but one of these datasets have
been reported elsewhere (Table 1). Section S1.1 reports details
on the unpublished Dataset F. Like all other included studies,
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Dataset Fis based on an ethically approved protocol (IRB protocol
#818800) and full informed consent from all participants. In each
study, participants were exposed to several messages while
undergoing fMRI using 3T magnets. Self-report indicators of mes-
sage effectiveness were collected from the study participants (ei-
ther during neuroimaging or shortly thereafter). Indicators of
message effectiveness at scale were obtained from larger, inde-
pendent samples or populations, in the form of either self-
reports or behavioral observations (e.g. click-through rate of
web banners, donations).

Theincluded studies represent diverse topic domains including
health and crowdfunding campaigns, newspaper articles, web
banners, television commercials, public service announcements,
movie-trailers, and online videos (Table 1; Sections S1.2 and S1.3,
and Figs. S1 and S2).

The analysis overview is illustrated in Fig 3A. In brief, for each
dataset, we extracted trial-wise brain activity (from each partici-
pant during exposure to each message). Then, we modeled rela-
tionships between brain activity and message effectiveness (in
individuals and at scale).

Brain activity extraction

We preprocessed the raw neuroimaging data using the default
fmriprep pipeline (60) (apart from seven datasets for which neuro-
imaging data were available in preprocessed form based on SPM
pipelines), and estimated single-trial beta images (i.e. whole-brain
responses to individual messages) per participant and message
exposure using general linear models (GLMs). We used the
least-squares-all approach, estimating all trials simultaneously
in a single model using separate boxcar regressors (61). The dur-
ation of the boxcar regressors corresponds to the message expos-
ure time, which varies across datasets and stimuli (from ~4 s for
static images to 60 s for TV advertisements). The results of these
GLMs are brain images containing beta values that represent the
average brain activity during the entire duration of exposure to
each message for each participant. Details on preprocessing and
GLM estimation can be found in Sections S2.1 and S2.2. From
the beta images, we extracted brain activity using three methods:
(i) predefined ROIs based on Neurosynth, (ii) whole-brain parcella-
tion maps, and (ii) whole-brain voxels.

Neurosynth ROIs

To examine our primary hypotheses related to reward and social
processing, we relied on Neurosynth (version 7; (62)), an auto-
matic meta-analysis of 14,371 neuroscientific articles, to identify
the pertinent neural substrates. Specifically, we used the whole-
brain statistical maps of voxels in which activity is associated
with the terms “reward” and “mentalizing,” respectively, thresh-
olded at P<0.01 corrected for false discovery rate (FDR). These
maps are based on reports in extant neuroscientific studies con-
taining these terms. To further explore the role of individual sub-
regions within the two larger masks, we isolated major contigu-
ous clusters per mask and organized them in distinct groups
(Sections S2 and S3). From the “reward” mask, we identified
VTA, NAcc, and PFC clusters; from the “mentalizing” mask, we
identified vinPFC, dmPFC, PCC, bilateral TPJ, bilateral TP, and bi-
lateral cerebellar clusters. Within the reward and mentalizing
masks and each sub-region ROI, we averaged the voxel-wise
beta values of the single-trial images to operationalize neural re-
sponses to messages. To facilitate the integration of our findings
with the existing literature, we also tested ROIs that have been

reported to be involved in reward and social processing in previ-
ous literature (Table S5).

Whole-brain parcellation

In addition to Neurosynth ROIs, we conducted exploratory whole-
brain analyses to identify potential additional neural correlates of
message effectiveness. To this end, we parcellated the brain into
450 regions using published brain atlases: 400 cortical regions
(63), 16 subcortical regions (64), and 34 cerebellar regions (65).
Within each parcellated region, we averaged the voxel-wise beta
values of the single-trial images as the brain activity measure.

Whole-brain voxel

To enable a Neurosynth decoding analysis (details below), we
further examined brain activity in individual voxels across the
whole brain. After resampling the beta images from different da-
tasets into a common 3 x 3 x 3 mm affine, a 5 mm full width at
half maximum smoothing kernel was applied. Since each study
and participant has slightly different brain coverage which af-
fects this voxel-wise analysis more severely than the ROI ana-
lyses above, we retained only voxels where in every dataset,
BOLD signal was recorded in at least half of that study’s partici-
pants (52,059 voxels) for whole-brain voxel-wise Neurosynth de-
coding (see Section S2.4, Fig. S3).

Explaining message effectiveness with brain
activity

After each extraction method (Neurosynth ROIs, whole-brain par-
cellations and whole-brain voxels), linear mixed-effects models
(LMM) were estimated with message effectiveness in individuals
(Fig. 3B, left panels) and at scale (Fig. 3B, right panels) as the de-
pendent variable (DV) and brain activity as independent variable
(Iv), with a nested random slopes-and-intercepts structure for
each dataset and each participant (message effectiveness in indi-
viduals), or for each dataset (at scale). There were 21,688 observa-
tions for which both measures of message effectiveness in
individuals and at scale were available (i.e. each participant’s ex-
posure to each message in each dataset). For message effective-
ness at scale, we calculated the averaged brain activity for each
message in each dataset, resulting in 739 observations (one per
message). Both IV and DV were normalized within datasets before
LMM estimation. Further cross-validation analyses are described
in Section S4.3.

For Neurosynth ROIs and their sub-regions, we analyzed LMM
coefficients to determine whether brain activity was associated
with message effectiveness in individuals and at scale.
Whole-brain parcellation LMMs allowed further identification of
other neural substrates of message effectiveness, with statistical
significance adjusted for FDR.

To help interpret the underlying psychological processes, the
whole-brain statistical maps from the voxel-based LMMs were
compared against the Neurosynth database. We used a published
set of 100 whole-brain statistical maps associated with various
topics extracted by latent Dirichlet allocation topic modeling
from the abstracts of neuroscientific articles in the Neurosynth
database (100-topic space) (66). These topics ranged from neuro-
pathology (e.g. topic 10: schizophrenia, symptoms, risk, abnor-
malities, disorder...) to various psychological processes (topic 50:
perceptual, perception, interaction, sensory, visual...; 71: reason-
ing, mind, mental, social, tom, states...). We used LASSO regres-
sions to identify which of these 100 Neurosynth topic maps best
explained the message effectiveness maps in individuals and at
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scale (Fig. 3C). The regularization parameter was determined by a
10-step searchin [0.1, 1] using 5-fold cross-validation. For each re-
gression, the message effectiveness maps and the Neurosynth
topic maps were resampled to be a common affine, vectorized,
and normalized. We also tested 50- and 400-topic spaces and
found similar results (Table S6).

Finally, to examine whether brain activity provided additional
explanatory power in predicting message effectiveness at scale
beyond self-reports from neuroimaging participants, we esti-
mated LMMs that included both averaged brain activity and
averaged self-report message effectiveness of the same partici-
pants as IVs.
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