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Abstract
Persuasive communication in marketing, political, and health domains influences sales, elections, and public health. We present a mega- 
analysis (a pooled analysis of raw data) of 16 functional MRI datasets (572 participants, 739 messages, and 21,688 experimental trials) 
assessing the neural correlates of the effectiveness of messages in individual message receivers and at scale (in large groups of 
message receivers who did not undergo neuroimaging). Existing theories suggest that decision-making is driven by expected rewards 
and perceived social relevance associated with the expected outcomes of a given choice. Consistent with these theories, we find that 
(i) brain activity implicated in reward and social processing is associated with message effectiveness in individuals and at scale across 
diverse domains (e.g. marketing and health campaigns); (ii) exploratory analysis further suggests language, emotion, and 
sensorimotor processes as pertinent to message effectiveness; and (iii) brain activity provides complementary information on 
message effectiveness at scale beyond self-reports provided by the same neuroimaging participants. This study offers novel insights 
into the neurocognitive mechanisms underlying effective messaging, highlights a path toward greater unity and efficiency in 
persuasion research, and suggests practical intervention targets for message design.
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Significance Statement

Media messages influence people’s preferences and behaviors across various domains, including marketing, politics, and health. 
What makes some messages more likely to influence the minds of their audiences? Pooling available data from 16 neuroimaging data
sets collected from multiple geographical regions and topic domains, we find that messages eliciting greater activation in brain sys
tems associated with reward and social relevance are more likely to influence both individuals and large groups. Brain activity 
provides additional insights into how messages resonate with broad audiences beyond what can be explained by participants’ self- 
reports. This study enhances our understanding of persuasion, suggesting that certain basic mechanisms may be active across dif
ferent messaging contexts and may inspire novel strategies targeting these mechanisms.

Introduction
Diverse actors in marketing, politics, and health communication 
rely on messaging via mass and social media to influence sales, 
election results, public health outcomes, and more (1–3). Thus, 
practitioners and scientists across disciplines and topic domains 
are motivated to understand what makes messages persuasive, 
that is, effective in changing attitudes and behaviors. Yet, existing 
research on message effectiveness rarely examines the drivers of 
message effectiveness using a unified framework that applies the 
same concepts and measurements across a wide range of mes
sages, contexts, and populations. This gap prevents the develop
ment of a cohesive theoretical understanding of message effects 
across different contexts. A mega-analysis (i.e. reanalysis of raw 
data from multiple studies (4)) can address this issue by revealing 
broader patterns of message effectiveness that individual studies 
may not be able to capture on their own.

Reanalyzing neuroimaging studies on message effects, in par
ticular, can reveal basic neural and psychological mechanisms 
underlying persuasion. Decades of neuroscience and behavioral 
science research highlight diverse types of expected rewards 
and perceived social implications of choices as drivers of human 
decision-making (5–8). Here, we hypothesize that heightened acti
vation of the brain’s reward and social processing systems is a pre
cursor of message effectiveness. Our central contribution is that 
we test this hypothesis through a mega-analysis of 16 functional 
MRI datasets, encompassing 21,688 experimental trials from 572 
participants and 739 messages from various topic domains.

Reward and social cognition as psychological 
pathways of persuasion
One major class of persuasion theories focuses on how antici
pated rewards shape people’s choices. For instance, Rational 
Choice Theory (9), often used to explain financial choices and 
market behaviors in economics, posits that individuals maximize 
the utility of their choices based on preferences and available in
formation. Reasoned action models, such as the integrated behav
ior model (10) favored in communication science, enumerate 
specific factors such as existing attitudes, norms, and perceived 
behavioral control that are evaluated and integrated to influence 
intentions and behavior. Although there is little interaction be
tween these approaches, both of them directly describe or imply 
an internal process of weighting various psychological inputs, in
tegrating them into a unitary value (i.e. a weighted sum of antici
pated benefits and costs, also called the common currency of 
choice (11)), which then drives changes in preferences and behav
iors. Despite high-level similarities, individual models vary in 
their conceptualization and operationalization of both antici
pated reward and potential inputs to reward computations, hin
dering efficient knowledge exchange between subfields.

Another major group of approaches to understanding message 
effectiveness focuses on social processes. For example, social 

cognitive theory posits that people’s behavior is influenced by 
observing and understanding others’ behaviors and related out
comes (12, 13). Theories of normative conduct (14) and social be
havior (15) emphasize the role of norms, while communication 
scientists have also identified interpersonal communication 
(16) and narratives (17, 18) as means of persuasion via identifica
tion with others. These theoretical traditions collectively sug
gest that messages prompting people to think about others’ 
thoughts, feelings, or behaviors are more likely to be effective, 
but vary in their focus on and operationalization of specific so
cial processes.

Persuasion in the brain
Over the last 2 decades, researchers in communication, social 
neuroscience, neuromarketing, and neuroeconomics have in
creasingly used neuroimaging techniques, primarily functional 
magnetic resonance imaging (fMRI), to capture real-time brain re
sponses to messages (6, 19). Building on findings from economics, 
psychology, marketing, and communication science, neuroimag
ing studies have identified indicators of reward and social process
ing as potential neural correlates of message effectiveness.

Foundational studies in neuroeconomics on value-based 
decision-making and choice behavior have revealed a core set of 
brain regions involved in anticipating and receiving rewards, in
cluding the medial prefrontal cortex (mPFC), ventral tegmental 
area (VTA), and nucleus accumbens (NAcc) (20–22). This reward 
system weights inputs from multiple brain areas depending on 
the individual’s contexts and goals (22) to inform diverse choices 
(11, 20). This neural architecture also responds to effective messa
ging across various domains including health communication, 
marketing, and fundraising campaigns (6, 7).

In parallel, research in social neuroscience has identified brain 
regions involved in the process by which people understand them
selves and the minds of others, termed mentalizing (23). This in
volves a wide range of cortical midline structures including 
mPFC and posterior cingulate cortex (PCC), and lateral regions in
cluding temporoparietal junctions (TPJ) and temporal poles (TP) 
(24). Several studies have linked activity in subsets of these 
regions to the effectiveness of various types of messages, includ
ing newspaper articles, TV commercials, and written arguments 
(25–28).

Although these existing neuroimaging studies suggest that both 
the reward (7) and mentalizing systems (6, 8) likely process aspects 
relevant to message effectiveness, each was guided by different 
theoretical and empirical approaches and their reported findings 
are not readily comparable. This lack of consistency hinders the 
identification of overarching and context-sensitive mechanisms 
of persuasion. Here, we directly test whether brain activity impli
cated in reward and mentalizing is associated with message effect
iveness on average across studies by reanalyzing existing data 
under a consistent neural operationalization. Specifically, we 
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examine neural responses during exposure to a wide range of mes
sages in predefined sets of brain regions—one set associated with 
personal rewards, and the other set with mentalizing—and exam
ine their relationships with message effectiveness. This analysis 
may provide evidence for common intervention and assessment 
targets with the potential for cross-contextual utility.

Because reward and mentalizing share common neural sub
strates, particularly in the medial wall of the prefrontal cortex, 
we also examine constituent brain sub-regions within mentaliz
ing and reward systems individually. Additionally, in an explora
tory whole-brain analysis, we identify other neural correlates of 
message effectiveness beyond our initial hypotheses and interpret 
the underlying psychological mechanisms with the aid of a meta- 
analytic database pooling insights of the broader neuroscientific 
literature.

Message effectiveness in individuals and at scale
Important persuasive effects take hold in individuals who change 
their minds or behaviors after seeing a given message, and at scale 
where mediated messages could shift the collective responses 
of large target groups. A unique set of neuroimaging studies 
examined both whether brain activity recorded in individuals 
can predict indicators of message effectiveness in these same in
dividuals and also message effectiveness at scale (i.e. how larger, 
independent groups who did not undergo neuroimaging would re
spond to the same messages; e.g. 26, 34, 38, 53, an approach some
times described as “neuroforecasting” (7)). Evidence from 
individual studies shows that neural and self-report responses 
to messages collected from the same individuals do not always 
align in predicting which messages are likely to be most effective 
at scale. Some researchers theorized that neuroimaging may bet
ter detect immediate and potentially nonconscious reactions that 
retrospective self-reporting might miss. This implies that certain 
neural indicators of message effectiveness may generalize better 
than others to large groups (5). We test this idea directly by com
paring how brain activity relates to message effectiveness both in 
individuals and at scale across studies. We also explore whether 
neural and self-report responses to messages collected in the 
same individuals provide overlapping or complementary insights 
into message effectiveness at scale.

Mega-analysis of 16 neuroimaging studies
To achieve these goals, we conducted a mega-analysis, that is a re
analysis of raw functional neuroimaging data from 16 studies 
that examined the neural correlates of message effectiveness in 
individuals and at scale (Table 1). Study participants varied in 
age, gender, country of residence, and cultural backgrounds. 
Message stimuli covered a range of contexts such as TV ads, health 
promotion campaigns, newspaper articles, and donation cam
paigns. Although each study was motivated by different theories 
and reported a diverse range of neural metrics, the underlying da
tasets share key similarities: (i) participants were exposed to mes
sages while undergoing neuroimaging, (ii) after message exposure 
participants provided an evaluation of the message (measuring 
message effectiveness in individuals), and (iii) message effective
ness was also assessed per message by a larger, independent group 
of message recipients (measuring message effectiveness at scale).

We examine, at the brain level, why and how messages influ
ence individual minds and the collective mind of larger groups. 
Specifically, we (i) test whether neural responses related to reward 
and mentalizing correlate with message effectiveness in individu
als and at scale, (ii) leverage the statistical power of our pooled 

data to explore other neural correlates of message effectiveness, 
and (iii) assess the overlap between neural and self-report re
sponses collected in individuals undergoing neuroimaging in ex
plaining message effectiveness at scale.

Results
Brain activity linked to message effectiveness 
within individuals undergoing neuroimaging
Neural responses to messages in a priori meta-analytically de
fined reward and mentalizing regions (drawn from Neurosynth, 
a database of the extant neuroscientific literature, see Materials 
and methods) were both associated with the extent to which the 
same scanned individuals reported these messages to be effective 
(reward: estimate = 0.032, 95% CI [0.012, 0.052], marginal R2 =  
0.00088, conditional R2 = 0.18565; mentalizing: estimate = 0.037, 
95% CI [0.005, 0.068], marginal R2 = 0.00123, conditional R2 =  
0.18701) (Figs. 1A and S4).

Within the constituent sub-regions of each Neurosynth mask, 
significant effects were found for NAcc and VTA for the reward 
system, and for TP, vmPFC, and cerebellar sub-regions of the men
talizing system (Fig. 1A, Table 2). Supplementary materials tabu
late variances explained (Table S3), along with additional 
regions of interest (ROI) within reward, mentalizing, and other 
systems (Table S5). A whole-brain parcellation analysis confirmed 
the involvement of similar regions (e.g. reward-related regions 
like NAcc, vmPFC which is implicated in both reward and mental
izing, and regions related to mentalizing like PCC; Fig. 2A) and fur
ther highlighted the left inferior frontal gyrus, a region associated 
with language processing as well as negative associations with ac
tivity in somatosensory regions (Table S4).

To help interpret the psychological mechanisms implicated by 
the observed neural correlates of message effectiveness, we esti
mated a whole-brain voxel map of message effectiveness (i.e. how 
each voxel’s activity corresponded to message effectiveness in indi
viduals) and compared it to a collection of 100 meta-analytic maps 
from Neurosynth, which represent neural activity patterns associ
ated with diverse topics studied in the extant neuroscientific litera
ture. Consistent with the above observations, this analysis suggests 
the involvement of reward, social processing, and language (topics 
33, 71, and 23, respectively, in the Neurosynth 100-topic space). 
Somatosensory processes (topic 82) were negatively associated 
with message effectiveness in individuals (Table S6).

Brain activity in individuals linked to message 
effectiveness at scale
After averaging neural responses to the same message across indi
viduals undergoing neuroimaging, both reward and mentalizing- 
related neural signals were positively associated with message ef
fectiveness at scale (reward: estimate = 0.080, 95% CI [0.005–0.154], 
marginal R2 = 0.00633, conditional R2 = 0.00749; mentalizing: esti
mate = 0.132, 95% CI [0.038–0.225], marginal R2 = 0.01730, condi
tional R2 = 0.03016) (Figs. 1B and S4).

Among the sub-regions, significant effects were observed in the 
VTA of the reward system, and in the dmPFC, TP, and cerebellar 
sub-regions of the mentalizing system (Fig. 1B, Tables 2 and S3
for model estimates and variances explained, and Table S5 for add
itional ROIs). Whole-brain parcellation analysis further highlighted 
the role of mentalizing regions (e.g. bilateral TP and dmPFC), and 
also identified activity in the right fusiform face area as positively 
associated with message effectiveness at scale (Table S4).
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Neurosynth decoding of the whole-brain voxel map suggested 
message effectiveness at scale was positively associated with 

neural activity patterns related to social processing, emotion, 

and language (topics 71, 91, and 12), and negatively associated 

with pain and sensorimotor functions (topics 69 and 82; Table S6).
Leave-one-study-out cross-validation analyses showed that 

predictions of message effectiveness in individuals and at scale 

were robust to the exclusion of individual datasets (Section S4.3).

Brain activity and self-report in individuals 
provide complementary information about 
message effectiveness at scale
The average self-report ratings of message effectiveness from in
dividuals undergoing neuroimaging also tracked message effect
iveness at scale (estimate = 0.244, 95% CI [0.063, 0.425], marginal 
R2 = 0.05708, conditional R2 = 0.16403). We thus examined the ex
tent to which variance in message effectiveness at scale explained 

Fig. 1. Neurosynth ROIs analysis. A) Association between brain activity and self-report message effectiveness (ME) in individuals undergoing 
neuroimaging. B) Association between averaged brain activity of individuals undergoing neuroimaging and ME at scale (in large groups that did not 
undergo neuroimaging). C) Association between averaged brain activity of individuals undergoing neuroimaging and ME at scale, after taking into 
account averaged self-report ME from the same neuroimaging participants. PFC, prefrontal cortex; NAcc, nucleus accumbens; VTA, ventral tegmental 
area; dmPFC, dorsolateral prefrontal cortex; vmPFC, ventromedial prefrontal cortex; PCC, posterior cingulate cortex; TPJ, temporoparietal junction; 
TP, temporal pole; Cereb, cerebellum.

Table 2. Model estimates of Neurosynth ROIs and their sub-regions.

Message effectiveness in individuals 
(Fig. 1A)

Message effectiveness at scale 
(Fig. 1B)

Message effectiveness at scale with 
self-report as covariate (Fig. 1C)

Est 95% CI P Est 95% CI P Est 95% CI P

‘Reward’ 0.032 0.012, 0.052 0.009 0.080 0.005, 0.154 0.062 0.056 −0.015, 0.127 0.155
PFC 0.018 −0.002, 0.037 0.098 0.034 −0.051, 0.120 0.445 0.025 −0.061, 0.111 0.579
NAcc 0.030 0.011, 0.049 0.008 0.072 −0.000, 0.144 0.052 0.053 −0.015, 0.121 0.130
VTA 0.042 0.022, 0.063 0.002 0.109 0.021, 0.197 0.039 0.058 −0.019, 0.135 0.152
“Mentalizing” 0.037 0.005, 0.068 0.041 0.132 0.038, 0.225 0.024 0.098 0.019, 0.177 0.025
dmPFC 0.027 −0.002, 0.056 0.094 0.128 0.056, 0.201 0.009 0.088 0.016, 0.160 0.021
vmPFC 0.030 0.009, 0.052 0.016 0.095 0.011, 0.178 0.050 0.068 −0.011, 0.146 0.116
PCC 0.024 −0.000, 0.048 0.076 0.102 −0.009, 0.212 0.101 0.081 0.001, 0.160 0.062
TPJ 0.034 0.001, 0.067 0.066 0.086 −0.018, 0.190 0.136 0.059 −0.027, 0.145 0.196
TP 0.043 0.008, 0.078 0.029 0.156 0.061, 0.251 0.010 0.112 0.032, 0.192 0.012
Cereb 0.035 0.009, 0.061 0.021 0.143 0.055, 0.232 0.009 0.113 0.043, 0.183 0.007

CI are estimated based on Wald statistics while P values are estimated using Satterthwaite’s degrees of freedom method.
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by individual self-reports and brain activity overlapped (Fig. 1C). 
Averaged mentalizing brain activity improved the explanatory 
power of a baseline model including only self-reports (mentalizing: 
estimate = 0.098, 95% CI [0.019, 0.177], marginal R2 = 0.06486, 
conditional R2 = 0.17791; reward: estimate = 0.056, 95% CI 
[−0.015, 0.127], marginal R2 = 0.05941, conditional R2 = 0.16761 
(see Tables 2, S2, and S3 for model estimates and variances ex
plained; Table S5 for additional ROI).

Discussion
Using data from 16 neuroimaging studies across a wide range of 
topic domains, we found that neural responses to messages in brain 
regions associated with reward and social processing track the ef
fectiveness of these messages, both in the same individuals who 
underwent neuroimaging and at scale (in larger, independent 
groups of message receivers). Further, self-reported perceptions of 
each message and corresponding neural responses measured in 
the same individuals (especially in regions related to social process
ing) provided complementary information about message 
effectiveness at scale, suggesting that neural responses can offer 
unique insights into how messages resonate with broad audiences. 
Although individual previous studies have made similar claims, 

each focused on a specific context or population. By pooling these 
studies in our mega-analysis approach, we identified neural mech
anisms that generalize across different messaging contexts.

Neural correlates of message effectiveness
First, we found that neural responses to messages in brain regions 
meta-analytically associated with reward were positively related 
to message effectiveness in both individuals undergoing neuroi
maging and at scale. Specifically, message effectiveness in indi
viduals was associated particularly strongly with activity in 
reward sub-regions such as NAcc and VTA. Messages that elicited 
stronger activity in the VTA, a key part of the dopaminergic re
ward system (40), were more successful at scale. These brain re
gions are consistently implicated in the anticipation and receipt 
of personal rewards (19) as well as social conformity (41). These 
findings highlight potential common substrates that are key com
ponents of disconnected, yet related, theories in economics (9) 
and communication science (10), which explain changes in prefer
ences and behaviors via a process of weighing the values of differ
ent choice options.

Second, we found that activity in brain regions associated with 
mentalizing tracked message effectiveness in individuals and at 

Fig. 2. Whole-brain parcellation analysis and Neurosynth decoding. A) Association between brain activity and self-report message effectiveness (ME) in 
individuals undergoing neuroimaging. B) Association between averaged brain activity of individuals undergoing neuroimaging and ME at scale (in large 
groups that did not undergo neuroimaging).
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scale, with particularly strong effects within the TP, the dorsome
dial prefrontal cortex, and cerebellar regions. Although neuroi
maging studies on message effectiveness have not historically 
emphasized the role of mentalizing (c.f. (42)), research on the 
neural bases of social influence consistently shows that mentaliz
ing is involved when people update their preferences upon learn
ing that they are misaligned with others (43–45). These findings 
are also consistent with prior theorizing that describes a variety 
of social mechanisms in persuasive processes observed within dif
ferent fields such as psychology (46) and communication science 
(47), and highlight potential commonalities across this frag
mented theoretical landscape.

Marginal R2 values (Fig. 1A and B, Table S3) for models pooling 
all studies indicate that fixed effects of brain activity explained 
0.03–0.17% (M = 0.10%) of the variance in message effectiveness 
in individuals, and 0.12–2.41% (M = 1.17%) of the variance in mes
sage effectiveness at scale. This highlights the difficulty in predict
ing individual message effectiveness at the trial level, while at the 
message level, effects on message effectiveness at scale roughly 
translate to an average Cohen’s d of 0.22, suggesting a small effect 
size. For comparison, a coordinate-based meta-analysis of 49 
studies using a monetary incentive delay task yielded task effect 
sizes of d = 0.28–0.44 in various reward-related brain regions 
(48). In addition to this average effect size, our mega-analysis ap
proach also allowed us to compare effect sizes across studies for 
the first time. While small on average, effect sizes ranged from 
small to medium between individual studies (e.g. Figs. 1 and S5). 
Leave-one-study-out validation analysis shows that message ef
fectiveness predictions are not dependent on any one study’s in
clusion. These findings highlight the robustness of the predicted 
brain–behavior relationships, despite the diversity of tasks, meas
ures, and stimuli in our database, while underscoring a need for 
further work that examines sources of heterogeneity.

Beyond hypothesized reward and mentalizing mechanisms, we 
explored the possibility that additional processes might be associ
ated with message effectiveness. Whole-brain parcellation ana
lysis and voxel-based Neurosynth decoding uncovered a positive 
association between activity in regions associated with language 
processing during message exposure and message effectiveness 
both in individuals and at scale. This interpretation is consistent 
with persuasion theories such as the Elaboration Likelihood 
Model (49) and Heuristic Systematic Model (50) suggesting that a 
deeper engagement with the message content is a sign of effective 
messaging. The negative association between activity in regions 
linked to sensorimotor processes and message effectiveness re
quires more in-depth investigation, as it could be related 
to task-related artifacts, such as the need for participants to re
spond with a button press after each message in most included 
studies. Additionally, both Neurosynth decoding and further sup
plementary analyses suggest that activity in regions associated 
with emotion was positively associated with message effective
ness, echoing research highlighting the importance of emotion 
in information processing (51) and message propagation (52).

We further found evidence of divergence between message ef
fectiveness in individuals and at scale. Examining a priori ROIs 
for hypothesis testing, message effectiveness both in individuals 
and at scale was associated with brain activity in the VTA of the re
ward system and vmPFC, TP, and cerebellar sub-regions of the 
mentalizing system. Message effectiveness in individuals showed 
additional significant associations with activity in the reward sub- 
region NAcc and message effectiveness at scale was additionally 
associated with activity in the dmPFC mentalizing sub-region. 
The exploratory whole-brain parcellation analysis, which required 

more stringent correction for multiple comparisons, showed no 
overlap in regions associated with message effectiveness in individ
uals and at scale. Lastly, Neurosynth decoding and further supple
mentary analyses showed that brain regions implicated in emotion 
only showed associations with message effectiveness at scale. 
Extending prior theorizing that primarily focused on the reward 
system (36), these findings are in line with the idea that lower-level 
responses to messages, especially on an emotional or interpersonal 
level, may be more universal and thus more generalizable from 
individual brains to larger groups across message domains. We pre
sent this speculation cautiously given the exploratory nature 
of these analyses, and because different sub-regions have differing 
degrees of voxel coverage in our datasets (Table S1). Nevertheless, 
these preliminary findings enrich the ongoing discussion of the 
mechanisms that support neuroforecasting.

Leveraging brain activity to understand 
and improve message effectiveness
Averaging across studies, brain activity in regions associated with 
mentalizing provided complementary information about message 
effectiveness at scale beyond what could be gathered from self- 
report responses to the messages of the same individuals who 
underwent neuroimaging. Large-scale message effectiveness de
pends on numerous factors that may not be fully captured through 
self-report measures sampled from smaller groups. Incorporating 
self-report measures relevant to social processing might improve 
the prediction of message effectiveness at scale. For example, in a 
recent study (53), self-reports of mentalizing after viewing TV ads 
(“to what extent did the ad make you think about the characters’ 
feelings and intentions”) improved the prediction of these ads’ mar
ket success beyond simple evaluations of ad liking. Several prior 
studies also found that reward-related neural responses added 
complementary information about message effectiveness at scale 
beyond self-reports (e.g. 26, 31, 34–36). In this mega-analysis, the 
complementary effect of neural reward activity appeared to be 
somewhat sensitive to analytic choices. However, the interval esti
mates obtained with what we deemed to be the most rigorous ana
lysis pipeline were not precise enough to confidently confirm the 
effect across experiments. Limitations of the existing data and the 
exploratory analysis approach do not allow us to systematically 
identify potential moderators of this effect such as choice domain, 
analytic and methodological choices (also see Limitations section), 
highlighting the need for more confirmatory work.

Further, designing interventions that engage key psychological 
processes during message exposure may lead to more effective mes
sage generation and dissemination. For example, tailoring health- 
promoting messages to increase personal relevance (54) and indu
cing a self-affirming mindset before message exposure (55) have 
been shown to engage reward-processing regions, increasing mes
sage acceptance and health-promoting behavior. Prompting individ
uals to consider how a message is relevant to people they know has 
also been linked to mentalizing activity in the brain and subsequent 
sharing of the message (56). Such intervention studies offer exam
ples of effective communication design informed by neuroscience 
research but have generally been conducted within specific con
texts. Greater interdisciplinary cross-talk may allow communicators 
of various domains to exchange knowledge and experiences and to 
efficiently focus on key psychological processes identified here.

Limitations and future directions
Although these findings significantly advance the current under
standing of message effectiveness, they also highlight fruitful 
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directions for future work. First, despite key similarities, the data
sets in our mega-analysis differed in several ways, including the 
types of messages shown (e.g. message modality and topic do
main), operationalizations of message effectiveness in individuals 
and at scale (e.g. self-reported message liking vs. objective click- 
through rates), neuroimaging acquisition parameters which may 
impact signal coverage and quality (e.g. (57); see Table S1 for de
tails), and task protocols. Because several of these factors are con
founded in our database, we cannot confidently draw conclusions 
about the causes of heterogeneity of effects across datasets, such 
as the relatively large variance in the association of mentalizing 
with message effectiveness. Future interdisciplinary collabora
tions that standardize operational procedures such as task proto
cols and MRI acquisition parameters would enable researchers to 
more systematically test for moderators of key effects. In add
ition, the average effect sizes observed were somewhat sensitive 
to analytical choices such as specific ROIs (see, e.g. Table S5) 
and preprocessing pipelines, highlighting the need for continued 
efforts put into replication and pre-registered confirmatory work 
(e.g. (26, 39)) that can clarify when and why each of the hypothe
sized processes is most relevant.

Second, our current correlational findings and inferences about 
the psychological processes underlying observed brain activity 
(albeit supported by meta-analytic tools) should be seen as a first 
step in a chain of evidence that ultimately leads to confirmatory 
experiments to test our conclusions, for example by directly ma
nipulating the psychological processes identified as likely precur
sors of message effectiveness.

Third, although this mega-analysis covers a wide range of 
domains and multiple geographic locations, it is still largely limited 
to participants in Western, Educated, Industrial, Rich Democracies 
(or “WEIRD” samples). Yet, culture influences norms and values 

that shape message effectiveness (58) and implementation of neur
al processing (59). Although early evidence suggests that neural in
dicators of message effectiveness are more cross-culturally stable 
than self-report measures (39), a domain-general theory of mes
sage effectiveness for diverse target audiences ultimately requires 
empirical evidence across equally diverse samples.

Conclusion
By combining 16 neuroimaging datasets, we found that neural in
dicators of reward, mentalizing, emotion, and language process
ing were associated with message effectiveness in individuals 
and at scale. These insights highlight the potential of specific 
neural markers to serve as: (i) useful proximal indicators of mes
sage effectiveness that can be assessed across message types, do
mains, and disciplines, (ii) key components of cross-disciplinary 
theorizing and knowledge exchange on message effectiveness, 
and (iii) potential targets for intervention approaches geared to
wards evoking, for instance, reward or social processing in target 
audiences. Taken together, these findings advance our under
standing of why some messages are effective while others are 
not, opening up new avenues for research on message effective
ness and effective communication strategies in fields such as 
health promotion, marketing, and public policy.

Materials and methods
This mega-analysis utilized 16 fMRI datasets involving 572 par
ticipants and 739 diverse messages (totaling 21,688 trials) col
lected by the co-authors. All but one of these datasets have 
been reported elsewhere (Table 1). Section S1.1 reports details 
on the unpublished Dataset F. Like all other included studies, 

Fig. 3. A) Analysis overview. B) LMMs examining associations between normalized brain activity (x-axis) and normalized message effectiveness (ME; 
y-axis), both in individuals (left) and at scale (right). C) Neurosynth topic decoding overview. ROI, region of interest; PFC, prefrontal cortex; NAcc, nucleus 
accumbens; VTA, ventral tegmental area; dmPFC,  dorsolateral prefrontal cortex; vmPFC, ventromedial prefrontal cortex; PCC, posterior cingulate 
cortex; TPJ, temporoparietal junction; TP, temporal pole; Cereb, cerebellum; FWHM, full width at half maximum.
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Dataset F is based on an ethically approved protocol (IRB protocol 
#818800) and full informed consent from all participants. In each 
study, participants were exposed to several messages while 
undergoing fMRI using 3T magnets. Self-report indicators of mes
sage effectiveness were collected from the study participants (ei
ther during neuroimaging or shortly thereafter). Indicators of 
message effectiveness at scale were obtained from larger, inde
pendent samples or populations, in the form of either self- 
reports or behavioral observations (e.g. click-through rate of 
web banners, donations).

The included studies represent diverse topic domains including 
health and crowdfunding campaigns, newspaper articles, web 
banners, television commercials, public service announcements, 
movie-trailers, and online videos (Table 1; Sections S1.2 and S1.3, 
and Figs. S1 and S2).

The analysis overview is illustrated in Fig 3A. In brief, for each 
dataset, we extracted trial-wise brain activity (from each partici
pant during exposure to each message). Then, we modeled rela
tionships between brain activity and message effectiveness (in 
individuals and at scale).

Brain activity extraction
We preprocessed the raw neuroimaging data using the default 
fmriprep pipeline (60) (apart from seven datasets for which neuro
imaging data were available in preprocessed form based on SPM 
pipelines), and estimated single-trial beta images (i.e. whole-brain 
responses to individual messages) per participant and message 
exposure using general linear models (GLMs). We used the 
least-squares-all approach, estimating all trials simultaneously 
in a single model using separate boxcar regressors (61). The dur
ation of the boxcar regressors corresponds to the message expos
ure time, which varies across datasets and stimuli (from ∼4 s for 
static images to 60 s for TV advertisements). The results of these 
GLMs are brain images containing beta values that represent the 
average brain activity during the entire duration of exposure to 
each message for each participant. Details on preprocessing and 
GLM estimation can be found in Sections S2.1 and S2.2. From 
the beta images, we extracted brain activity using three methods: 
(i) predefined ROIs based on Neurosynth, (ii) whole-brain parcella
tion maps, and (ii) whole-brain voxels.

Neurosynth ROIs
To examine our primary hypotheses related to reward and social 
processing, we relied on Neurosynth (version 7; (62)), an auto
matic meta-analysis of 14,371 neuroscientific articles, to identify 
the pertinent neural substrates. Specifically, we used the whole- 
brain statistical maps of voxels in which activity is associated 
with the terms “reward” and “mentalizing,” respectively, thresh
olded at P < 0.01 corrected for false discovery rate (FDR). These 
maps are based on reports in extant neuroscientific studies con
taining these terms. To further explore the role of individual sub- 
regions within the two larger masks, we isolated major contigu
ous clusters per mask and organized them in distinct groups 
(Sections S2 and S3). From the “reward” mask, we identified 
VTA, NAcc, and PFC clusters; from the “mentalizing” mask, we 
identified vmPFC, dmPFC, PCC, bilateral TPJ, bilateral TP, and bi
lateral cerebellar clusters. Within the reward and mentalizing 
masks and each sub-region ROI, we averaged the voxel-wise 
beta values of the single-trial images to operationalize neural re
sponses to messages. To facilitate the integration of our findings 
with the existing literature, we also tested ROIs that have been 

reported to be involved in reward and social processing in previ
ous literature (Table S5).

Whole-brain parcellation
In addition to Neurosynth ROIs, we conducted exploratory whole- 
brain analyses to identify potential additional neural correlates of 
message effectiveness. To this end, we parcellated the brain into 
450 regions using published brain atlases: 400 cortical regions 
(63), 16 subcortical regions (64), and 34 cerebellar regions (65). 
Within each parcellated region, we averaged the voxel-wise beta 
values of the single-trial images as the brain activity measure.

Whole-brain voxel
To enable a Neurosynth decoding analysis (details below), we 
further examined brain activity in individual voxels across the 
whole brain. After resampling the beta images from different da
tasets into a common 3 × 3 × 3 mm affine, a 5 mm full width at 
half maximum smoothing kernel was applied. Since each study 
and participant has slightly different brain coverage which af
fects this voxel-wise analysis more severely than the ROI ana
lyses above, we retained only voxels where in every dataset, 
BOLD signal was recorded in at least half of that study’s partici
pants (52,059 voxels) for whole-brain voxel-wise Neurosynth de
coding (see Section S2.4, Fig. S3).

Explaining message effectiveness with brain 
activity
After each extraction method (Neurosynth ROIs, whole-brain par
cellations and whole-brain voxels), linear mixed-effects models 
(LMM) were estimated with message effectiveness in individuals 
(Fig. 3B, left panels) and at scale (Fig. 3B, right panels) as the de
pendent variable (DV) and brain activity as independent variable 
(IV), with a nested random slopes-and-intercepts structure for 
each dataset and each participant (message effectiveness in indi
viduals), or for each dataset (at scale). There were 21,688 observa
tions for which both measures of message effectiveness in 
individuals and at scale were available (i.e. each participant’s ex
posure to each message in each dataset). For message effective
ness at scale, we calculated the averaged brain activity for each 
message in each dataset, resulting in 739 observations (one per 
message). Both IV and DV were normalized within datasets before 
LMM estimation. Further cross-validation analyses are described 
in Section S4.3.

For Neurosynth ROIs and their sub-regions, we analyzed LMM 
coefficients to determine whether brain activity was associated 
with message effectiveness in individuals and at scale. 
Whole-brain parcellation LMMs allowed further identification of 
other neural substrates of message effectiveness, with statistical 
significance adjusted for FDR.

To help interpret the underlying psychological processes, the 
whole-brain statistical maps from the voxel-based LMMs were 
compared against the Neurosynth database. We used a published 
set of 100 whole-brain statistical maps associated with various 
topics extracted by latent Dirichlet allocation topic modeling 
from the abstracts of neuroscientific articles in the Neurosynth 
database (100-topic space) (66). These topics ranged from neuro
pathology (e.g. topic 10: schizophrenia, symptoms, risk, abnor
malities, disorder…) to various psychological processes (topic 50: 
perceptual, perception, interaction, sensory, visual…; 71: reason
ing, mind, mental, social, tom, states…). We used LASSO regres
sions to identify which of these 100 Neurosynth topic maps best 
explained the message effectiveness maps in individuals and at 
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scale (Fig. 3C). The regularization parameter was determined by a 
10-step search in [0.1, 1] using 5-fold cross-validation. For each re
gression, the message effectiveness maps and the Neurosynth 
topic maps were resampled to be a common affine, vectorized, 
and normalized. We also tested 50- and 400-topic spaces and 
found similar results (Table S6).

Finally, to examine whether brain activity provided additional 
explanatory power in predicting message effectiveness at scale 
beyond self-reports from neuroimaging participants, we esti
mated LMMs that included both averaged brain activity and 
averaged self-report message effectiveness of the same partici
pants as IVs.
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