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ON THE MARKOV PROPERTY OF THE GI/G/®
GAUSSIAN LIMIT

PETER W. GLYNN,* Stanford University

Abstract

It is shown that the heavy-traffic Gaussian limit for GI/G/® queues is
Markovian if and only if the service-time distribution H(t) is of the form
1-H(t)=pe ™ for «>0 and 0<p=1.

GI/G/s QUEUE; LIMIT THEOREM: GAUSSIAN PROCESS

A recent paper by Whitt (1981) investigates the heavy-traffic limit
behaviour of the GI/G/» queue from a new perspective. The idea is to
approximate a non-degenerate service-time distribution by an exponential
phase-type distribution, and to consider the vector-valued continuous-time
process that records the number of customers in service in each phase.
Convergence to a multidimensional Ornstein—Uhlenbeck (O-U) process is then
obtained by letting the arrival rate tend to o with the service-time distribution
held fixed. The well-known results of Iglehart (1965) and Borovkov (1967) are
retrieved by summing the components of the process, thereby proving a limit
theorem for the total number of customers in the system at time t.

The Gaussian limit of Borovkov arises as a natural consequence of the total
number in system being a linear transform of the O-U process, which is itself
Gaussian. The fact that Borovkov’s limit is generally non-Markovian is as-
sociated with the fact that projections of Markov processes are usually non-
Markov. The proof given by Whitt shows that by recording the additional
information involving the number of customers in service for a time less than
or equal to t (basically equivalent to recording the number of phases com-
pleted, for an exponential phase-type distribution), the limit is Markov. Hence,
the non-Markovian Borovkov limit arises from not keeping track of enough
information.
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In light of the preceding discussion, it seems natural that the Borovkov limit
should be Markovian precisely in the case in which only one exponential phase
need be recorded—namely, where the service-time distribution H(t) is of the
form 1-H(t)=pe ™ for 0<p=1 and a >0. We now proceed to prove this.

The queue-length limit process of Borovkov is a Gaussian process {Y(¢), t=
0} with EY(t) =0 and covariance function K given by

K(s,s+t)=EY(s)Y(s+1)

= J: G(x)H(x+1) dx

for s, t =0, where H(x)=1—H(x) and G(x) = AH(x)+a2A>H(x)(c®, A >0). In
order that a Gaussian process be Markovian it is necessary (and sufficient) that
K satisfy the factorization condition

K(s,s+t+u)K(s+t,s+t)=K(s,s+t)K(s+t,s+t+u)
for s,t,u=0 (see e.g. Doob (1953), p. 233). Hence, if {Y(t), t=0} is to be
Markov, H(t) must satisfy
s s+t
L Gx)H(x+t+u)dx. J; G(x)H(x) dx
(D

s+t

= Ls G(x)H(x+1) dx. J G(x)H(x +u) dx.
0

Differentiating (1) with respect to s, we obtain the equality

G(s)H(s+t+u) LSH G(x)H(x) dx

+ J: Gx)H(x+t+u)dx.G(s+t)H(s+1)
(2 _ s+t ~
=G(s)H(s+1) J; G(x)H(x+u) dx
+Is Gx)H(x+1)dx. G(s+t)H(s +t+u)

(1]

for almost every s. As the integrals are clearly continuous functions of s, we
have that both sides of (2) are right continuous and consequently equality must
hold in (2) everywhere. In particular, setting s =0, we get

3) H(t+u) Lt G(x)H(x) dx = H(t) L' G(x)H(x +u) dx.
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Put

f1(t, u) = ‘[: G(x)H(x +u) dx

fa() = L G dx.

It will simplify some later differentiation arguments if we now show that G(t)
and H(t) are continuous. We start by observing that since H is the distribution
function of a non-degenerate random variable, G(0)H(0) is positive and thus
the right continuity of G(t)H(¢) at t =0 implies that f,(t)>0 for ¢t >0. Also, the
fact that H(t) has at most countably many discontinuities means that H(t+
u,) — H(t+u) for almost every ¢t whenever u, — u=0. Hence, by bounded
convergence, the integral on the right-hand side of (3) is continuous in u, and
thus we may infer from (3) that H(t+u) is continuous in u =0 for each t>0.
Putting this together with the right continuity of H(t) at t=0 yields the
conclusion that H(t) and G(t) are continuous on [0, ).

Returning again to (3), we note that it is equivalent to

@ A0S e 0= fulo w) 4 0
from which we obtain

d
a (f1(t, w/f,(1))=0.

Thus,

(5) f1(t, Wi, () = e,

for all positive values of t. Letting ¢t 10, and employ_ing L’Hopital’s rule, gives
(©) o, =lim < (6w /4 fz(t)=g((g))‘

On the other hand, an obvious consequence of (3) is that

(7 H(t+u)=H() . fi(t, w)/fa().

Equations (5) through (7) together provide the functional equation

(8 a(t+u)=a(t)a(u)

where a(t)=H(t)/H(0). Since a(t) is bounded, the only possible solution
(Feller (1950), p. 459) of (8) is a(t) = e™™, proving the necessity of our claim.
The sufficiency is easy to verify.
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