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ABSTRACT 

This paper qives a short survey of Monte 

Carlo algorithms for stochastic optimization. 

Both discrete and continuous parameter 

stochastic optimization are discussed, with 

emphasis on the analysis of convergence rate. 

Some future research directions for the area 

are also indicated. 

1. IRTRODlJ~IOEX 

Stochastic optimization is concerned 

with the general problem of optimization 

under uncertainty. This problem arises in 

contexts as diverse as long-range economic 

planning, warehouse inventory operations, 

automated manufacturing systems, and computer 

communications networks. In this tutorial, 

we hope to provide a hierarchal framework for 

stochastic optimization. Within this fram- 

work, we will discuss the major research 

problems and indicate the current status of 

solution methodologies to these problems. 

The scope of the survey given here is 

not intended to be exhaustive, nor do we 

intend to describe solution algorithms in 

great detail. Rather, we wish to give the 

reader of this brief paper a flavor for the 

current state of the art and future 

directions for research in the area. The 

opinions expressed here are subjective, and 

should be viewed as such. Having stated 

this, let ue proceed. 

2. A XiIERARcHAL FRAUIWORK WR STOCHASTIC 
OPTIFIIZATIOEJ 

Roughly speaking, stochastic optimiza- 

tion can be viewed in terms of the tree 

structure expresslad by Figure 1. A8 a first 

cut, one can diffcsrentiate stochastic opti- 

mization according to whether the dimension- 

ality of the space of decision variables is 

finite or infinite. 
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FIGURE I 

i.] infinite-dimensional stochastic 

optimization: Here, one is usually 

concerned with optimization over a class 

of permissible control policies. This 

is typi.cal of applications in which the 

objective is to determine a time-varying 

control policy U = {U(t,w) : t > 0) 

which minimizes the expected cost of 

running a stochastic system: i.e. 

Find U* to solve 

min EC(U(*,w),w) . 
U 

This problem of stochastic control can 

frequently be treated by dynamic pro- 

gramming arguments. In particular, it 

is often possible to obtain U* by 

solving Bellman's optimality equation: 

see Bellman and Dreyfus (1962). 

Of course, for complex systems, it 

is usually not possible to analytically 
* 

8blve for U . In erlch cases, it may be 

possible to find U* by using numerical 

algorithms (i.e. value iteration or 
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policy iteration) based on the theory of 

Markov decision processes: see, for 

example, Denardo (1982). Even if U* 

can not be determined numerically, the 

theory of dynamic programming may be 

useful in obtaining a qualitative 

characterization of the optimal control. 

For example, it is known, under quite 

general conditions, that the optimal 

control for operation of certain invent- 

ory systems is characterized by two 

critical numbers s and S (a re-order 

point and an ordering amount): these are 

the so-called (s,S) inventory systems. 

Thus, dynamic programming has reduced 

the optimization problem from that of 

determining the infinite-dimensional 

control U * to solving for the two 

parameters 8 and S (i.e. a two- 

dimensional optimization problem). 

ii.) finite-dimensional stochastic 

optimization: Whereas the infinite- 

dimensional problem generally involves 

optimization over some infinite-dimen- 

sional function class, finite-dimension- 
al optimization concerns optimization 

(roughly speaking) over some subset of 

Euclidian space. To be precise, let 

(n,F,Pe) be a probability space in 

which the parameter 8 takes values in 

As Rd(d>l). The probability measure 

Pe describes how the random environment 

is affected by the choice of 9. For 

each e f A, let X(e) be a real- 

valued random variable corresponding to 

the cost of running the "system" under 

9. Then, 

is the expected cost of running the 

system under 0. The general finite- 

dimensional stochastic optimization 

problem involves finding 9* E A to 
minimize a(e) subject (possibly) to 

constraints of the form 

Ll Yi(B,w)Pe(do) > 0 , 

lci<m, where {Yi(e) : 

lticm) is a collection of "random 

constraints". 

If the above expectations can be 

evaluated analytically in closed form, then 

the problem is amenable to solution by 

standard non-linear programming algorithms. 

Otherwise, any numerical procedure for 

solving this problem must (at least 

implicitly) numerically integrate in order to 

calculate the expectations. If the structure 

of the numerical integration is complicated, 

then Monte Carlo simulation may be the only 

viable procedure for performing the required 

integrations. 

The remainder of this paper is therefore 

devoted to Monte Carlo algorithms for solving 

complex finite-dimensional stochastic optimi- 

zation problems. Before proceeding, it is 

worth noting that the best possible conver- 

gence rate possible with "pure" Monte Carlo 

algorithms is of order t -l/2 in the compu- 

tational effort t. This rate of convergence 

is essentially a consequence of the "central 

limit theorem" behavior that is typical of 

good Monte Carlo estimators a(t) for a 

parameter a: 

tli2(a(t) - a) ==> oN(D,l) 

as t + OI. Note that a convergence rate of 

order t-1/2 implies that one must multiply 

the run length by a factor of 100 to obtain 

an additional significant figure of accuracy, 

a factor of 10000 to obtain two additional 

significant figures, etc. Thus, even the 

best possible Monte Carlo convergence rate is 

extremely slow. As a result, one should 

never use Monte Carlo simulation to solve a 

problem if conventional numerical approaches 

can be easily applied to the problem at hand. 

Returning to the optimization context 

under study here, it turns out that some 

Monte Carlo algorithms converge even more 

slowly than at rate t -l/2, these methods 

should clearly be avoided, if at all 

possible. We will come back to this point 

later in the paper. 
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As for the finite-dimensional stochastic 

optimization problem currently under dis- 

cussion, there are two basic variants: 

a.) A discrete 

b.) A continuous. 

As in deterministic mathematical pro- 

gramming, the techniques used to solve the 

discrete and continuous problems are very 

different. As in the deterministic case, the 

continuous optimization problem is, in some 

sense, easier than the discrete problem. It 

is to be expected that solution methodologies 

for the discrete problem will need, for the 

most part, to be tailor-made to the applica- 

tion. Continuous algorithms will be nwre 

robust, in the sense that they can be 

successfully applied to fairly general 

classes of problems. 

3. CONTINUOUS PKRAHSTER STOCEiASTIC 
OPTIMIZATION 

Throughout this section, we shall assume 

that we are working with the unconstrained 

problem in which A= Rd and Yi(e) = 0 for 

all 9: for cons,trained algorithms, we 

suggest looking at Kushner and Clark (1978). 

Roughly speaking, there are four major 
classes of Monte Carlo algorithms currently 

available for continuous parameter uncon- 

strained optimizai:ion: see Figure 2. 

COhTlNUOUS PARAMETER 
STOCHASTIC OPTIMIZATION 

Hethodology Ouasi -Gradient Algorithm MOW0 
Hethads Algorithm 

FIGURE 2 

i.) response surface methodology: The 

basic idea here is to select n points 

e1r e 2r...re11 in the decision variable 

space. One then estimates a( ei) t 
1 < i < n by ii and fits a 

"smooth" surface to the n pairs 

(e i,ii(ei)), 1 c i < n. The "smooth" 

surface usually consists of some poly- 

nomial approximation. A solution for 

the original optimization problem is 

then obtained by optimizing the fitted 

surface (i.e. the optimizer of the 

fitted surface is taken to be the opti- 

mixer of the original problem). This 

method can give poor results if: 
a.) n is not large enough 

b-1 the points ei are not selected 

appropriately 
. 

c.) the estimators ai are not 

"close enough" to ai 
d.) the original surface a(*) is 

not well described by a poly- 

nomial approximation. 

ii.) stochastic quasi-gradient methods: The 

idea here is to adapt gradient-driven 

deterministic mathematical programming 

algorithms to the stochastic context by 

substituting Monte Carlo finite- 

difference estimates for the gradients: 

see Polyak (1976) and Ermoliev (1983). 

A main difficulty with this approach is 

that Monte Carlo finite-difference 

gradient estimation tends to have a 

very slow rate of convergence. To see 

this, let 

Ag(e;h, = h-lC;;te+h) - ,;ce,1 

where 
-1 -2 
"n and an are independently 

generated sample means of X(e+h) 

(under 'e+h) and X(e) (under P,), 

respectively. Then, 

MSE(Aan(e:h)) = E(Aan{e;h) - a'(e))2 

= var(Ain(e:h)) + CEA&(B;h) - a'(e)12 . 

Expanding at-1 via a Taylor series, 

one finds that for h small, 

EAA[e:h) . a'(e) + ha"(e)/2 

so that 
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MSE&n(a;h)) - 2h-2vargX(9)/n + 

h2a"(e)2/4 . 

If one chooses h to depend on n in 

the optimal way (in reality, one can't 

generally do this well), then 

h=h, (L nm1j4 

and 

MSE(Aan(e;hn)) = n 
-l/2 

. 

Consequently, the rate at which 

Ain( Ech,) converges to a'(e) is 

,-l/4, in the number of observations 

n generated. (Observe that the root 

mean square error converges at rate 
,-l/4; for more on this issue, see Fox 

and Glynn (1986) and Zazanis and Suri 

(1985). It turns out that if central 

differences, rather than finite 

differences, are used, then one can 

obtain faster rates of convergence, 

although the rate is still slower than 

n -l/2 (the optimal Monte Carlo rate). 

In any case, this analysis 

suggests that any algorithm which 

attempts to consistently estimate the 

gradient via Monte Carlo finite 

differences will converge at a rate 

slower than t -l/2 in the computa- 

tional effort t. 

iii.) Kiefer-Wolfowitz algorithm: To 

simplify the discussion, assume d = 1. 

If at-1 is differentiable, an 

optimizer e 
l 

must be a root of 

a'(e*) = 0 , 

furthermore, if 8* is to be a mini- 

mizer, a' (e*+) > 0 and a' ( 9 l -) < 0. 
To find a root of a', consider 

Newton '8 method: 

e n+l = e n - a' (en)/a"( en) . 

Assume that a"(e*) > 0. For large n, 

a” ( 0,) - a”(e*), so the algorithm 

looks like 

e n+l * 'n - a’(@,)/6 

where 6 = a"(e*). Since we cannot 

evaluate a or a' in closed form, we 

use a Monte Carlo estimate instead. 

Suppose that Y,(8,) is generated so 

that 

Ef.Yn(Bn) 1 81,.-..8,) - a'(en) . 

This suggests choosing en+l so that 

e n+l - 'n - yn(en)/6 . 

However, yn( en) may be a very "noisy" 

estimate of a’(e,): consequently, to 

"damp out" the random effects, weight 

the "current" value en by its corre- 

sponding sample size n, and the 

proposed "new" point en - Y,(e,)/r3 by 

its corresponding sample size 1: 

e n+l - c&len + (&)(e, - yn(en)/f3) 

= e n - (n+l)-lYn(en)/s . 

The Kiefer-Wolfowitz (KW) algorithm 

involves using 

Yn(en) = cil(xllen+cn) - x2(en)) 

when x1 ( e,+c,) and x2(,,) are 

independently generated from 'en+cn 
and Pe , respectively. 

n 
Note that the Kw algorithm does 

not attempt to consistently estimate 

a' ( en) before iterating to en+l* 
However, because of the use of finite 

differences to evaluate a' (en). the 

method suffers from a 81~ convergence 

rate. When the RW algorithm converges 

to e*, the convergence rate, except 

in rare cases, is t -l/3 in the compu- 

tational effort t: see Sacks (1958). 

iv.) Robbins-Monro algorithm: The Robbins- 
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Monro (RM) algorithm is obtained when 

one can find an unbiased estimator 

Yn( en) for a'(e,), in which case 

e -1 
n+l = 'n - (n+l) Y,(e,)/e ; 

since the algorithm is driven by 

unbiased derivative estimates, the 

convergence rate (except in rare cases) 

is t-1/2, in the computational 

effort t. In other words, RM 

algorithms attain the best possible 

Monte Carlo convergence rate. 

More precisely, the convergence 

rate is of the form at-112. To make 

a as small as possible, choosing 

6 = aI* is optimal. However, the 

algorithm converges with a t -l/2 

convergence rate regardless of the 

choice of 6. 

Given that RM algorithms achieve the 

best possible ratIs of convergence, it is 

incumbent upon thla user to find an unbiased 

estimator for the derivative of OL. Recall 

that 

a(e) = EeX(e) . 

If the expectation did not depend on e (ie. 

if a(e) = EX(e)), then (assuming the inter- 

change of derivative and expectation was 

valid), it would Eollow that a'(e) = Ex'te). 

Thus, by driving ,the PM algorithm according 

to the iteration 

e n+l = r. e - (n+l)-'x'(e,)/E , 

we would obtain a convergence algorithm. 

However, Pe doe:3 depend on 8. 

To eliminate this dependence, two basic 

approaches are possible. Both are most 

easily illustrated when n = R', in which 

case P, is dete:rmined by a distribution 

function F(e,.). The first idea involves 

observing that 

a(e) = J_“, X(e,o)F(Brdtfi) 

= ,; X(0.F -'(e,w))de 

= EX(e,F-'(e,U)) 

where F -l(e, -1 is the inverse distribution 

function defined by F-l(e,x) = sup{y : 

I'(e,y) c x), and U is a uniform (O,l) 

T.V. Thus, if X(.,.) and F-1(.,x) are 

differentiable, it follows that 

a'(e) = EW(e) 

where 

w(e) = E(e F-l ax1 ' (e,u)) + j$-(e,Fe1(8.u)) l 

2 

$g F-l (e.u) . 

If we generate the sequence {en : n > 1) 

via the iteration 

(3.11 e n+l = e n - (n+11-1w(en)/5 

(W(e,) generated independently of the past 

history), then the algorithm is in the 

setting of the classical RM algorithm, and we 

may expect n -l/2 convergence. 

A second way of eliminating dependence 

of PC) upon e goes as follows. Assume 

that F(B,*) has a density f(e,.). Let 

g( -1 be the density of a r.v. 2 for which 

the density is positive everywhere (eg. 

2 - N(O,l)). Then 

a(e) i= J_“, x(e,x)f(e,x)dx 

:= J_“, x(e,x) $f$- . g(x)dx 

= Ex(e,z)f(e,z)/g(z) 

where z has density g. If X(.,x) and 

f( 1 l , x are differentiable, then one expects 

that 
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a’(6) = EW(9) 

where 

w(e) = g x(9,2) l 

(3.2) 
g f(e.2) . 

Again we may expect that (3.1) yields n -l/2 

convergence. 

Note that the first method involves 

representing the response in terms of a 

single random variable; thus, the first 

method can be viewed as an application of 

common random numbers to derivative esti- 

mation. (See Rubinstein (1981).) It turns 

out that this approach applies also to 

discrete-event systems; the estimator W(9) 

developed in the discrete-event context is 

the perturbation analysis estimator due to Ho 

and Suri (see Suri (1983)). 

The second technique is an application 

of importance samplinq to derivative estima- 

tion (see Clll). For a version of W(6) 

applicable to Markov chains, see Glynn 

(1986). For those familiar with statistics, 

one may interpret the ratio f(e,Z)/g(Z) as 

a likelihood ratio: as a consequence, we 

refer to Monte Carlo derivative estimators 

based on (3.2) as likelihood ratio derivative 

estimators. 

It should be noted that the common 

random number approach requires that X be 

smooth in both arguments, whereas the like- 

lihood ratio technique postulates smoothness 

only in the e-component. As a result, the 

common random number approach is more suscep- 

tible to difficulties in interchanging the 

derivative and expectation; see Heidelberger 

(1986). 

It should be evident that a major 

element of continuous optimization concerns 

evaluation of the gradient of a. The 

gradient can be viewed as an indication of 

the sensitivity of a to perturbations in 

the vector 8. Recently, Schruben (1986) has 

investigated a frequency domain approach to 

obtaining sensitivity estimates: it is to be 
anticipated that such an approach will prove 

useful in the optimization process. 

To conclude this section, we note that 

the best that we can generally hope to 

achieve with an iterative algorithm of the 

type described above is moderately fast (i.e. 

order t -li2) convergence to a local opti- 

mizer. As in the deterministic mathematical 

programming context, one should never expect 

convergence to the global optimizer. Of 

course, if the global optimizer is the unique 

local optimizer, then one can expect conver- 

gence (as in the deterministic case). 

4. DISCRETE PARAMRTER STOCHASTIC 

OPTIMIZATION 

As in Section 3, we assume that yi(e) = 
0 for all 8. However, A is now hypothe- 

sized to be a discrete subset of Rd. Note 

that the problems indexed by A need have no 

relation to each other. This is in contrast 

to the continuous setting where continuity 

and differentiability considerations force 

the problems to "mesh" together. 

The unstructured discrete optimization 

problem takes the form: 

(4.11 min 
Bi<A 

acq . 

Of course, (4.1) can be viewed as the 

"selection of best system" problem. The 

enormous statistical literature on ranking 

and selection applies to this setting. Note, 
however, that the formulation (4.1) and the 

associated selection algorithms make 

essentially no use of problem structure that 

may be present. To some extent, problem 

structure can be used by applying specially 

tailored variance reduction techniques to 

estimating atei), Bi c A. 

A more non-trivial application of 

problem structure is presented in Gly~ and 

Sanders (1986). The idea there is to deform 

the discrete optimization problem into one 

that has an easily determined solution. For 
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example, the pallet loading problem for an 

automatic assembly system has a trivial 

solution if the machine jam rate x is zero. 

One now increases X to the "real world" jam 
* 

rate A , follow:ing the optimizer through x 

space to the X*-optimizer. 

This type of approach has met with 
considerable success in the deterministic 

mathematical programming context (see 

Allgower and Georg (1983)). Appropriate 

Monte Carlo algori.thms for following the 

optimal path are currently under investiga- 

tion. 

To summarize, discrete parameter Monte 

Carlo optimization is in its infancy, and is 

not as well developed as in the continuous 

case. As in the deterministic setting, one 

expects efficient Monte Carlo algorithms to 

exploit problem structure as fully as 

possible. For example, in buffer sizing 

problems, it shou:.d be possible to use the 

nested nature of the k-buffer problem within 

the (k+l)-buffer problem. 
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