


I 
onsider a computer system 
having a CPU that feeds 
jobs to two input/output 
(I/O) devices having differ- 
ent speeds. Let B be the 
fraction of jobs routed to 

the first I/O device, so that 1 - 8 is 
the fraction routed to the second. 
Suppose that cy = a(@) is the steady- 
sate amount of time that a job 
spends in the system. Given that 0 is 
a decision variabl.e, a designer 
might wish to minimize a(@ over 13. 
Since a(.) is typically difficult to 
evaluate analytically, Monte Carlo 
optimization is an attractive meth- 
odology. By analogy with determin- 
istic mathematical programming, 
efficient Monte Carlo gradient esti- 
mation is an important ingredient 
of simulation-basecd optimization 
algorithms. As a consequence, gra- 
dient estimation has recently at- 
tracted considerable attention in 
the simulation community. It is our 
goal, in this article, to describe one 
efficient method for estimating 
gradients in the Monte Carlo set- 
ting, namely the likelihood ratio 
method (also known as the efficient 
score method). This technique has 
been previously described (in less 
general settings th.an those devel- 
oped in this article) in [6, 16, 18, 
2 11. An alternative gradient estima- 
tion procedure is in&itesimalpertur- 
bation analysis; see [ 11, 121 for an 
introduction. While it is typically 
more difficult to apply to a given 
application than the likelihood ratio 
technique of interest here, it often 
turns out to be statistically more 
accurate. 

In this article, we first describe 
two important problems which 
motivate our study of efficient gra- 
dient estimation algorithms. Next, 
we will present the likelihood ratio 
gradient estimator in a general set- 
ting in which the essential idea is 
most transparent. The section that 
follows then specializes the estima- 
tor to discrete-time stochastic pro- 
cesses. We derive lik.elihood-ratio- 
gradient estimators for both time- 
homogeneous and non-time homo- 
geneous discrete-time Markov 
chains. Later, we discuss likelihood 

ratio gradient estimation in contin- 
uous time. As examples of our anal- 
ysis, we present the gradient esti- 
mators for time-homogeneous 
continuous-time Markov chains; 
non-time homogeneous contin- 
uous-time Markov chains; semi- 
Markov processes; and generalized 
semi-Markov processes. (The anal- 
ysis throughout these sections as- 
sumes the performance measure 
that defines a(0) corresponds to a 
terminating simulation.) Finally, we 
conclude the article with a brief dis- 
cussion of the basic issues that arise 
in extending the likelihood ratio 
gradient estimator to steady-state 
performance measures. 

liilclent Gradlent 
Irtlmatlon: MothratIng 
nppllcatlonm 
As we have indicated, one motiva- 
tion for studying Monte Carlo gra- 
dient estimation is to be able to op- 
timize complex stochastic systems. 
More precisely, consider a stochas- 
tic system depending on d decision 
variables 0t, 02, . . . , 13,. Let a(e) 
(e = (e,, . . . , 0,)) be the expected 
“cost” of running the system at pa- 
rameter choice 0. 

A powerful method for comput- 
ing the value 0* which minimizes 
a(.) is the Robbins-Monro algo- 
rithm. This technique recognizes 
that, under suitable regularity on 
a(.), 0* must be a e-root of the 
equation 

va(e) = 0, 
(2.1) 

where Vn(0) is the gradient of a(.) 
evaluated at 0. The idea then is to 
construct a stochastic recursion 
which has the root 8* as its limit 
point. 

This approach is most clearly il- 
lustrated when d = 1. In this case, 
such a recursion is given by 

e n+l = 8, -avn+l 12 
(2.2) 

(a > 0) where the V,‘s mimic a’(.) in 
expectation. More precisely, one is 

required to compute V,‘s with the 
property that 

.Wn+,Ivo, eo, . . . , v,, e,} = d(e,) 
a.s. 

(2.3) 

(Throughout this article, a.s. is our 
shorthand for “almost surely,” 
otherwise known as “with probabil- 
ity one”). Under appropriate addi- 
tional hypotheses, it then follows 
that there exists a finite constant 
such that (T 

8, + O* a.s. 
#(en - e*) =$ c+~(o, 1) 

(2.4) 

as n + 00, where N(O,l) is a standard 
normal r.v. and j denotes “weak 
convergence” (also known as ‘<con- 
vergence in distribution”). The key 
result in (2.4) is the central limit 
theorem which asserts that 0, con- 
verges to 8* at rate n-l’*, in the 
number n of V;‘s generated. Since 
the convergence rate n-l’* is typi- 
cally the best that one can expect of 
a Monte Carlo algorithm (because 
of central limit effects), this sug- 
gests that recursive algorithms of 
the form (2.2) should lead to rea- 
sonably efficient procedures for 
calculating f3*. Of course, the criti- 
cal component of such an algorithm 
is the sequence of gradient esti- 
mates (derivative estimates when 
d = 1) {V,:n 2 0) appearing in 
(2.3). Thus, efficient stochastic op- 
timization is one setting which re- 
quires gradient estimation. 

A second problem context which 
leads naturally to gradient estima- 
tion is statistical estimation for com- 
plex stochastic systems. As an ex- 
ample, consider a single-server 
infinite capacity queue in which the 
inter-arrival distribution F, and ser- 
vice distribution F, are unknown. 
Suppose that one is given data XI, 
x2, . . . , X, for the inter-arrival 
times and observations Yt, . . . , Y, 
for the service times, with the goal 
of estimating the steady-state 
queue-length (Y. The parameter a 
may then be regarded as a function 
of the inter-arrival and service time 
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distributions, i.e., (Y = (u(F,,F,). If 
F,T and F,? are respectively the 
“true” inter-arrival and service time 
distributions, our goal here is to es- 
timate (Y* = cr(F,*,FT) from the data. 

Assume that Fz, F,$ are elements 
of one-parameter families of distri- 
butions {Fa(h)},{Fs(@dl, respec- 
tively, such that F$ = F,(@),FT = 
F.40,). We can then reduce the 
problem of estimating (Y* to that 
of determining 6(@,0,*), where 
W,,e2) = a(F,(Od, F,Ae2)). For ex- 
ample, if F,(&) and F,(e2) are both 
exponential and the performance 
measure is steady-state mean 
queue-length, the resulting system 
is an M/M/l queue with (& can be 
calculated analytically here): 

ww2) = 

uve2)(l - we2))- 1, 

1, 

6 < e2 

cc 8, 2 e2. 

On the other hand, if F,(a) and 
F,r(-) are Weibull with scale parame- 
ters 0, and e2 respectively, and non- 
unit-shape parameter, & is not 
available in closed form. Monte 
Carlo evaluation may then be nec- 
essary. 

The natural estimate for (Y* is 
& = 6(&,&), where et is an estimate 
for 0: calculated from Xt, . . . , X, 
and e2 is an estimate for 0% derived 
from Yt, . . . , Y,; h(.) is a Monte 
Carlo estimate for &(.). To calculate 
the error in & as an estimate for (Y*, 
note that 

AA * ^ ^ 
k - d = [qe,,el) T qe,,e,)i 

+ [qel,e2) - wT,eg)i. 
(2.5) 

The first term on the right-hand 
side of (2.5) is error incurred from 
the Monte Carlo estimation of 
&(i$,&); the second term, which is 
(conditionally) independent of the 
first, reflects the intrinsic error in 
(Y* due to uncertainty in the data 
sets. The error in the first term can 
be estimated from conventional 
output analysis procedures. For the 
second, note that if a(.) is differen- 
tiable, then 

qP,$,) - qeT,eg = 
vqe*)@ - e*). 

Typically, the vector 8 - t3* will be a 
mean zero multivariate normal, 
with a covariance matrix that can be 
easily estimated from the data sets. 
(This occurs, for example, if the 8;s 
are maximum likelihood estimators 
for the 0:‘s; see, for example, [ 131.) 
To calculate the distribution of the 
second term, it therefore remains 
to compute vqe*) or, more pre- 
cisely, its estimator V&(e). For ana- 
lytically intractable models (such as 
the single-server infinite capacity 
queue with uniform interarrival 
and service time distributions), this 
entails calculating a gradient via 
Monte Carlo simulation. 

The situation we have just de- 
scribed in the single-server queue- 
ing context is typical of many statis- 
tical problems that arise in the 
analysis of complex stochastic sys- 
tems. To fully resolve the statistical 
error generally requires Monte 
Carlo estimation of an appropriate 
gradient. Of course, one approach 
to estimating a gradient is to use a 
finite-difference approximation. 
However, when this is implemented 
in a Monte Carlo setting, it tends to 
be quite inefficient; see [8] for de- 
tails. Likelihood ratio gradient esti- 
mation offers a (much) more effi- 
cient alternative. 

From a mathematical viewpoint, 
there is no loss of generality in spe- 
cializing our gradient estimation 
discussion to the one-dimensional 
setting in which d = 1. We shall 
therefore make this simplification, 
in order to clarify the notation. The 
derivative formulas that appear in 
the remainder of this article can be 
easily translated into statements 
about the partial derivatives that 
comprise the components of the 
gradient vector. 

Likelihood Ratlo 
Derlvatlve 6rtlmatlon 
Here, we provide a brief introduc- 
tion to the basic ideas underlying 
likelihood ratio derivative estima- 
tion. To set the stage, consider a 
family of stochastic systems that is 
indexed by a scalar decision param- 
eter 0. For example, in a queuing 
context, e might correspond to the 

service rate at a particular station. 
Given the sample space 0, let X(&o) 
be the sample performance mea- 
sure observed at sample outcome o 
and decision parameter 0; we per- 
mit X(&w) to depend explicitly on 0 
in order to encompass situations in 
which the “cost” of running the sto- 
chastic system (as measured 
through X(0)) depends on the pa- 
rameter 8. (However, in many esti- 
mation settings, X(e) is independent 
of 0 and therefore depends only on 
w.) For example, in the “load- 
balancing” problem mentioned ear- 
lier (involving a single CPU and two 
I/O units), the performance mea- 
sure X(e) described is precisely the 
long-run sample average of the job 
“waiting times” experienced by the 
system, so that X(e,o) is a function 
solely of the sample trajectory, o, 
i.e., X(&o) =X(w). On the other 
hand, suppose that if a large frac- 
tion of jobs is routed through one 
I/O unit, there is a high propensity 
for the unit to fail, thereby increas- 
ing maintenance costs. To force the 
system to spread the load around, 
one might consider minimizing the 
performance measure x(e,w) = 
X(w) + [6J(l - t9-r, where X(w) is 
the performance measure de- 
scribed above. In this case, X(&o) 
depends explicitly on 0. 

In addition, the probability dis- 
tribution P0 on R typically depends 
on 8; PO then reflects the manner in 
which the random environment is 
affected by the decision parameter. 
The performance measure Lu(0) as- 
sociated with parameter value 0 is 
then defined as the expectation 

Lu(e) = 
I 

x(e,w)P,(do). 
0. 
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Our goal is to describe an estima- 
tion methodology folr calculating 

ffvo). 
The likelihood ratio method for 

derivative estimation is based on 
the following idea: Suppose there 
exists a measure /L (not necessarily a 
probability measure) such that 
P,Jdo) =f(ep)p(d~) i.e.,f(e,.) is the 
density of PO with respect to CL. For 
example, suppose tlhat n = IF! and 
that CL(&) = dw. Then, the assump- 
tion that P,(dm) ==f(e,o)p(do) 
merely asserts that J&o) is the 
(Lebesgue) density of the distribu- 
tion PO. On the other hand, if p is 
the distribution that assigns prob- 
ability mass 2-k to the point xk, then 
requiring that P@(dw) be represent- 
able asf(e,w)p(dw) asserts that PO as- 
signs all its probability to some sub- 
set of the xk’s, and that the 
probability assigned to xt isf(8,Xk)2k. 

Under our density assumption 
on P9, 

a(e) = 
I 

xv3,4fw44w. 
n 

(We note that if p i.s a continuous 
distribution, then thfe above expres- 
sion is an integral, whereas it re- 
duces to a summation when p is a 
discrete distribution..) Assuming the 
derivative and integral can be inter- 
changed, we obtain 

eeo) = I xvo,~)f(eo,4b4d4 
n 

+ x(eo,w)f(eO,4/4dW). I n 
(3.1) 

(For a generic r.v. h(@) depending 
on both 0 and o, the r.v. h’(eo,o) de- 
notes the derivative of h(0,o) with 
respect to e, evaluated at 8 = eo.) 
We note that the first term on the 
right-hand side of (3.1) is just 
&+,X’(&) (where EO(.) denotes the 
expectation operator associated 
with PO). Since this term can be rep- 
resented as the expectation of a T.v., 
standard Monte Carlo methods 
may be applied to estimate it. Spe- 
cifically, suppose that one simulates 
i.i.d. replicates of X’(eo) under dis- 

tribution PO,,; the sample mean of 
these observations then converges 
(at rate K”~ in the number TZ of 
observations) to the first term. 

To handle the second term using 
Monte Carlo methods, we need to 
represent it as the expectation of a 
r.v. To accomplish this, suppose 
that g(o) is a non-negative function 
that 

I g(h-4W = 1. 
n 

(3.2) 

Then, the measure P(do) = 
g(w)p(dw) is a probability distribu- 
tion on n. If g has the additional 
property that 

IWo44fvo,41 > 0 
implies that g(w) > 0, 

(3.3) 

then we can represent the second 
term as 

= weow(eo) 

where H(Bo,o) =f’(e,,o)/g(o) and 
E(e) denotes expectation relative to 
the probability P. (Note that (3.3) is 
required to avoid dividing by zero 
in (3.4).) Given the representation 
(3.4) of the second term as an ex- 
pectation, we can now easily apply 
Monte Carlo methods to estimate it 
(in the same way as for the first 
term). 

We now turn to the question of 
selecting the sampling density g. 
The theory of importance sampling 
asserts that the choice of g which 
minimizes the variance of the ob- 
servations of x(eo)H(eo) is 

Ix(eohw(eo4 
g*(o) = Snlx(eo,~)f’(eo,~)l~(d~) ’ 

(3.5) 

see [9,10], for further details. (In 
fact, if x(e,,tq(e,,o) 2 0, using g* 
results in an estimator having zero 
variance.) Unfortunately, the opti- 

mal sampling density g* basically 
requires knowledge of the integral 
(appearing in the second term in 
(3.1)) that we are trying to estimate. 
Therefore, the choice of g* as de- 
fined by (3.5) is typically impractical 
to implement. 

We now describe a popular alter- 
native to g*. Suppose that the den- 
sitiesf(e,w) are such that for 8 in an 
open neighborhood of 00, 

A(e) = {w:f(e,w) > 0) 
is independent of 8. 

(3.6) 

To gain an understanding of the 
condition, suppose that R = R and 
that the distribution p is supported 
onxl,xp, . . . Condition (3.6) states 
that the set of values xt, Q, . . . 
which have positive probability 
under PO must be independent of&J 
in some neighborhood of 00. Note 
that the support of the distribution 
PB cannot depend on 0, so that, in 
particular, a situation in which PO 
assigns positive probability to the 
point 0 is disallowed by (3.6). 

Then, f(eo,w) = 0 implies that 
f(0,w) vanishes in a neighborhood 
of 0, from which it follows that 
fvod4 = 0, so that 
f’(e,,w)X(e,,o) = 0. Thus, g(w) = 
f(eg,w)p(dw) satisfies both (3.2) and 
(3.3). In this case, 

H(Bo,o) = $f+ 

( = $10gf(8044 1 ; 

(3.7) 

the right-hand side of (3.7) is 
known as the likelihood ratio de- 
rivative (because H(hJJ) = 
d fed 

-- IS the derivative of the 
de f(eo44 
quantity known in the statistics lit- 
erature as the likelihood ratio of PO 
with respect to PO,,). 

This choice of g has an impor- 
tant advantage. Note that if we 
sample outcomes w according to 
f(eop)p(dw), we can use the r.v.‘s 
X(0,), X’(e,), and X(eo)H(eo) to esti- 
mate a(&) and both the terms ap- 
pearing on the right-hand side of 
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(3.1) simultaneously. Thus, with 
this choice of g, we may estimate 
a(&,) and a’(&) using the original 
sampling distribution associated 
with parameter &. At the same 
time, it should be noted that there 
are important problem classes (e.g., 
rare event simulations) in which 
much better choices of g can be 
made (better in the sense of smaller 
variance). For example, in reliabil- 
ity systems that are modelled as 
continuous-time Markov chains, 
one needs to “failure bias” (i.e., 
choose a g which forces the system 
to fail more frequently) the estima- 
tor X(0&7(0”) in order to obtain 
reasonable statistical efficiency (see 
E141). 

We will conclude by recalling that 
to derive (3.1), an interchange of 
the differentiation and expectation 
operators was required. In virtually 
all practical examples, the inter- 
change is valid under mild addi- 
tional regularity assumptions on 
the problem (see, [4,], p. 485). Con- 
sequently, we shall disregard this 
interchange issue throughout the 
remainder of this article. 

Llkellhood Ratio 

Derlvatlwe Rstlmatlon In 

DImcrete Time 

Here, we specialize the previous 
discussion to the case where X(0+) 
is a sample performance measure 
associated with a discrete-time se- 
quence Y = (Y,,:n 2 0) taking val- 
ues in a discrete state space S. Spe- 
cifically, we suppose that R = S x 

S X . and that Y, is the coordi- 
nate T.v. Y,,(w) = w, for w = 

( ~OWI, . . .) E 0. We assume that 
X(0) takes the form 

we) = Nwn,yI, . . .I, 

for some real-valued function h. 
Since S is discrete, there exist joint 
probability mass functions p,,p,, 

. . such that 

~dY0 = yo> . PY, = y,J = p7Ae$J 

(4.1) 

where s2 = 60, . . . J,,). Letting 

we can write (4.1) as the product 

POIYO = yo, . ,Y,, = yn) = 
(4.2) 

n-l 
pde,~d Ilpkwmk+d 

k=O 
. . . . ..~.........~~...~..........~.. 

Suppose now that X(e) is a function 
of Y up to some finite (determinis- 
tic) time horizon m, so that X(e) = 
h(O,?,J where ?m = (Yt,, . . ,Y,). To 
apply the idea of Section 3, we need 
to obtain a representation P&o) = 
f(e,h+(do) for some mea- 
sure CL. But observe that for 
wEan, 

m-l 

as h 1 0, from which it is evident 
that pk(& + h,i&;Wk+ t) < 0 for SOme 

h. But pk(&&+;wk+t) is a mass fUnC- 

tion and hence must be non-nega- 
tive. This contradiction guarantees 
that pk(t&,?&;tik+t) > 0. A similar 
argument shows that po(&,ot,) > 0 
whenever ph(&,wa) # 0. Hence, we 
may write (4.3) as 

po(dw) = pO(@O) n pkbwk;wk+l) 
k=O 

. cLm(dw) 

+ 

where i& = (on, . . . &) and CL, is 
counting measure on R, = S X 

s x ... x S(m + 1 times), i.e., pm as- 
signs unit mass to each point in R,. 
Hence, we may take 

Suppose we choose a g such that 
S~,,,gbhkW = 1 and f(k4 > 0 
implies that g(o) > 0; then (3.3) is 
automatically in force. (In particu- 
lar, setting g(w) =f(&,w) works.) 
Hence, we find that 

m-l 

f(h) = pd~~%) n pkumk;wk+d, 

eb) = Ee,,xvn) + ~gweow(eo) 

k=O 
(4.4) 

so that 
where Eg(.) denotes the expectation 
operator associated with the prob- 

m-l ability P,(dw) = g(o)pJdw), &(.) 
denotes expectation relative to us, 

f’teOTw) = pb(eo,o,)krllopk(eo,3a;wR,I), and 

m-1 

+ pO(e,,w,)k~~p;(e,,7;,;0,, I) 

We can simplify this formula some- 
what. We claim that if 
pi(e(),~k,ok+I) # 0, it must follow 
that &(&,sjk,wk+ ,) > 0. For SUppOSe 

that pk(&,?&ik;wk+r) = 0. Then it fol- 

lows that 

The same argument can be ex- 
tended to a certain class of random 
time horizons. In particular, sup- 
pose that T is a stopping time with 
respect to Y i.e., for each m 2 0, 
I(T = m) = k,(?,,J for some func- 
tion k,. For example, T is a stop- 
ping time if it can be represented as 
the first time that Y hits some speci- 
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fied subset; for further discussion, 
see [2]. We assume the perfor- 
mance measure X(0) is a function of 
the path of Y up to the random time 
horizon T i.e., there exists a family 
of functions h&t, . . . such that 

x 

x(e) = 2 h,(e,Tm)z(:r == m) 

m=O 

= h#&)I(T < m). 

(4.5) 

As in the derivation of (4.4), we 
need to represent lDO as Pe(do) = 

f(WMW. Let ClT = u;=, 
{Tjm E R,:k,(&,) = I} (,basically, CIr 
is the restriction of the sample 
space for Y in which T < m) and 
note that for w = (oc,,wt, . . ,or) E 
fiT, 

T--l ~~(~4 = po(~~oo) rI pk(6sjkiwk+ d 
k=O 

’ PT(~~J) 

(4.6) 

where wLT is countmg measure on 
or. Suppose that g is chosen as a 
non-negative function on or having 
the property that jng(w)&(dw) = 1 
and po(eO,wO)n~~~pk(eO,Tjk;ok, 1) ’ 0 

implies that g(o) 1 0 for 6~ E fir. 
By combining (4.5) and (4.6) and 
proceeding as in the derivation of 
(4.4), we obtain the following stop- 
ping time generalization of (4.4): 

d(eo) = z5e,xf(eo) i- k:,x(eo)zf(eo) 
(4.7) 

where 

H(eO) = pO(e,,,YO)nH,,‘pk(eO,~k;yk+ I) 

g.#T) 

ph(eO,YO) + T~‘&(~O,~kk;v,,, ] 

po(eo,yo) k=cI pk(oO,?ktk;Yk+ 1) 

As in the case of (4.4) one possible 
choice of g isf(eo), in which event 
(4.7) simplifies to: 

wo) = h,[xvo) + w,)w,)i 
(4.8) 

where 

N(e,)) = Pb(eoJo) __- 
po(eo,yo) 

+ T~‘p#h;?k;Yk+d ~- 

k=O pk(&?k;Yk+d 

(4.9) 

A few examples illustrate (4.7) and 
(4.8). 
EXAMPLE. Suppose that under 
distribution P*,Y is a time-homoge- 
neous Markov chain with initial dis- 
tribution p(0) and transition matrix 

pcq Assume that x(e) = 
hT(YT)I(T < 00) (with T a stopping 
time), so that a(0) = E~{!zT(?T);T < 
a}. Then, (4.8) yields 

a4d = b,b(~TfT)weo);T < 4, 
(4.10) 

where We01 = ~‘(eoJ’o)~~(~o,Yo) + 
~&~~‘(odk,yk+ I)moO,Yk,Yk+ I). In 

certain settings, the estimator sug- 
gested by (4.10) may have a large 
variance (e.g., rare event simula- 
tion). For such problems, suppose 
that we select g to satisfy the positiv- 
ity conditions stated earlier. Then 

wo) = q$T(~T)ff(eo);T < m), 
(4.11) 

where 

woo) = 
~(e”,yO)n~~~(P(eO,Yk,Yk+l)/g(~T) ’ 

bo~o,yo)h4~o~yo) + 

T-l 

&l”(e03yk,yk+ I)mo09yk7yk+ d1. 

In a “rare event” setting, one would 
typically choose g so as to bias the 
system to force the occurence of 
more rare events. 

EXAMPLE. In this example, we 
assume that under Pg, Y is a Markov 
chain with non-stationary transition 
probabilities, so that Pe{Yk+t = 
ykt llyk = r> = Pkb%yk,yk+ I). Then, if 

a(e) = E~{!zT(~T);T < m},(4.8) yields 

a’(eo) = &+,(hT(~TT)ff(eo);T < O”} 

where H(0,) = ~‘(Oo,Yo)l~(~o,Yo) + 
z~~~P;(eO,Yk,Yk+I)/F)k(eO,Yk,Yk+I); 

the obvious analog of (4.11) can 
also be written down. 

Llkellhood Ratlo 
Dcwlvatlwe Estlmatlon In 
Contlnuour Time 
We will now generalize the ideas of 
the previous section to continuous- 
time discrete-event dynamical sys- 
tems. We view x(e,4 as a sample 
performance measure associated 
with a continuous-time process 
(Y = Y(t):t 2 0) taking values in a 
discrete state space S. The process Y 
is assumed to be piece-wise constant 
with jump times St&, . , (S, -+ 00 
as n+ 00). Hence, if SO = 0 and 
Y, = Y(S,), we may write 

Y(l) = c Y,,Z(S, 5 t < Sn+,). 
,,=o 

Let A, = .S,,+t - S,, and put Z,, = 
(Y,,,A,). We suppose that R = s X 
.? x . where 3 = S x [O,m) and 
that Z,, is the co-ordinate r.v. 
Z,,(o) = 0, for w = (WOJJ,, . .) E 
cl. 

In order to proceed in parallel 
with the development of Section 4, 
we shall require that the distribu- 
tions PB on 0 have the property 
that there exist measures po,pI, . . 
such that 

where 2, = (Z,,, . ,Z,) and zn = 
h, . . . ,z,) E s x . . x s = 0, 
((n + 1) times). Then, analogously 
to (4.2) we may write 

where 
,I- I 

cL,,(d%) = ddzn) n Pk@+kdZk+ I). 
k=l 

Suppose now that we consider a 
performance measure X(0) that is a 
function of the path up to horizon 
T; this obviously includes any per- 
formance measure that depends on 
Y up to time ST+,. As in the previ- 
ous section, we require that T be a 
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stopping time with respect to Z = 
(Z,,:n 2 0) i.e., for each m 2 0, 
I(T = m) = k,,(Z,,,) for some func- 
tion k,,,. Then, the performance 
measure X(0) may be written in the 
form 

Let CIT = UG=O{Z;, E R,,,: k&&J 
=1} and note that for zr = 
(20, ,zr) E fir, we may extend 
(5.1) to 

P&j- E dz,} = T-l 
pdh,) n pk(mk;Zk+ 1) 

k-0 

. P&L) 

(5.2) 

where 
T-l 

By arguing identically as in the pre- 
vious section, we obtain the follow- 
ingcontinuous-time generalization of 
(4.7). Suppose g is chosen as a non- 
negative function on fir having the 
property that ~n&$r)&&$r) = 1 
and po(e,,2”)n,7,,‘pk(e,,,~,zk+ I) > 0 

implies that g(&) > 0 for rr E fir. 
Then, if E,,.) is the expectation 
operator+ associated with P(d$) = 
g(Tr)p(dz,), we obtain the derivative 
representation 

a’(&) = bl,,X’(~o) + ~gwhw(~o) 

for cr(0) = E,{h(B,&);T < a}, where 

T-l 

wo) = pd4m FI pk(eoZk;zk+,)i 
k=O 

,g(zT) . 

As mentioned earlier, one pos- 
sible choice for g is g(?r) = 

T-l 

po(e,.zo)k~~(8,,,~;~k+,), in which 

case P is identical to PO,,, yielding 

avo) = ~~,,wuu + wmwo)l 
(5.3) 

where 

+T$i(eo?~k;zk+ I) 

k=OpkvhZk;zk+l)~ 

These formulas are illustrated by 
the following examples: 
EXAMPLE. Suppose that under 
Po,Y is a continuous-time Markov 
chain with initial distribution p(0) 
and generator Q(0). Assume that 
X(0) = h(Y(s):O % s 5 t). Then, X(0) 
can be represented as X(0) = 
Jz(Z”,Z,, . . ,ZT) where T is the 
stopping time T = inf{n 2 
O:&oAk 2 t}. Set z,( = (y,,t,)(recall 
that z, E 3 = S X [O,m)). Then, 

where pd6yo,h) = hwo)4wo) 
. exp(-q(e,yo)lo),q(e,y) = -cmy,y), 
and p.n(dzo) is the product of count- 
ing measure and Lebesgue mea- 
sure. We note that pO(O,yyo,to) is a 
product of two terms, the first 
being a contribution of p(B,yo) from 
the distribution of the initial state 
and the second being the exponen- 
tial holding time density of the time 
spent in the initial state. Further- 
more, 

where p,(eZ;z,+d = Q(f4yn,yn+d 
.gwy,+ dexp(-q(e++ h+ d/4md 
and ~,,(~n,dz,+l) is again the prod- 
uct of counting measure and 
Lebesgue measure. Again, 

pro ,t,;z,+t) is the product of a state 
transition term (4(e.y,,,yn+,)/4(e,Y,,)) 
and an exponential holding time 
density. Formula (5.3) now be- 
comes 

d(e,) = iz,,,[h(Y(~): 0 5 5 5 tyf(e,)] 

(5.4) 

where 

+ ‘i’ ~‘(fhYk3~k+l) 

k=O mwktyk+l) 

EXAMPLE. Suppose that under PO, 
Y is a semi-Markov process with ini- 
tial distribution p(0), jump matrix 

R(e), and holding-time distribu- 
tions (F(B,x,dt):x E S). Suppose that 
for each x, F(B,x,dt) = f(O,x,t)p(x,dt) 
for some measure CL. Assuming that 
x(e) = h(Y(s):O 5 s 5 t), we again 
put T = inf{n 2 O:C&& 2 t}. For- 
mula (5.3) becomes 

d(e,) = Ee,,[h(~(s): 0 5 s 5 t)fqe,)] 

(5.5) 

where 

w%J) = 
k(eo,yo) 

P(eo.yo) 

T-lR’(eo,Yk,Yk+d 
+C 

k=O whYk3Yk+ I) 

+ -$h,yktAk) 

k=O f(@o?k,Ak) 

EXAMPLE. In this example, we 
show that (5.3) easily handles the 
case where the process is time- 
inhomogeneous. In particular, sup- 
pose that under PB,Y is a time- 
homogeneous continuous-time 
Markov chain with initial distribu- 
tion p(e) and time-dependent gen- 
erator Q(0,t). Then, 
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Q(W n+lrYmY) -q(W,,+ I + Lyr) 
q(b%+ I YrJ 

(I 

I 
.exp - qce,s,,, I + u&u dt 

” 1 

(5.6) 

where q(&t,y) = -QL(~J,y,yr). Sup- 
pose thatX(0) = h(Y(s):O 5 s 5 t). If 
we put T = inf{n ~2 O:C&,Ak 2 t), 
then (5.3) takes the form 

d(e,) = E~,,[~(Y(~): 10 5 s 5 t)H(eo)] 
(5.7) 

where 

H(h) = 
P’(eoYo) 
PL(~o,Yo) 

+ 7~g(ec~sk+l,Yk,Yk+l) 

k=O @~O,Sk+l,Yk,Yk+l) 

EXAMPLE. We now suppose that Y 
is a generalized serni-Markov pro- 
cess (GSMP) under Pe. A GSMP is a 
mathematical description of a very 
general class of discrete-event sto- 
chastic systems. Roughly speaking, 
any discrete event simulation can be 
viewed as a GSMP; see [5] for fur- 
ther details on GSMPs. In what fol- 
lows, we describe a GSMP by char- 
acterizing both the stochastic 
behavior of the sequence of discrete 
states visited and that of certain 
clocks that govern the amount of 
time spent in each :successive state. 
To be specific, let E be the event set 
of the GSMP. The initial state of the 
GSMP is chosen according to the 
distribution p(e), whereas the initial 
clock readings are chosen from the 
distributions F(B,e&), for e E E. 
When clock e initiates a transition 
from state y, the next state is chosen 
from the mass function p(e;y,e). 
Typically, when the GSMP enters a 
new state, certain clocks need to be 
stochastically reset. We assume that 
the distribution used to reset clock 
e’ in state y’ when a transition just 

occurred from state y with clock e as 
triggering event is given by 
F(&e’,y’,e,y,dl). We require that 
there exist measures Aedt), 
p(e’,y’,e,y,dt) such that 

F(W,y’,e,y,dt) = (5.8) 
f(e,e’,y’,e,y,t),~L(e’,y’,e,y,dt) 

F(O,e,dt) = f(O,e,t)p(e,dt). 

In a strict sense, the analysis of this 
section does not apply to GSMPs, 
since the appropriate state descrip- 
tor for a GSMP includes the value 
of all the clock readings. Such a 
state descriptor cannot typically be 
encoded as an element of s = S x 
[O,M). However, a close examination 
of the analysis given earlier shows 
that the essential feature was that 
(Y,,A,) be representable as a simple 
function of the process z,; z, need 
have no structure beyond (5.1). In 
particular, z, need not be an ele- 
ment of A. In the GSMP setting, the 
natural candidate for Z is the tuple 
z,, = (Y&J, where C, is the vector 
that describes the residual amount 
of time left on each of the clocks 
that are active in state Y,,. Clearly, 
A,, is a simple function of z, (in a 
GSMP with unit speeds, A, is just 
the minimal element in C,); fur- 
thermore, under (5.8), the distribu- 
tion PO for 2, can be written in the 
form (5.1). 

Let N(y’;y,e) be the set of clocks 
active in y’ that need to be stochasti- 
tally re-set when a transition from y 
just occurred with event e as the 
trigger. We further define e*(c) to 
be the index of the triggering event 
associated with clock vector c; we 
assume e* is uniquely defined for 
each c. Suppose X(e) = h(Y(s):O 5 
s 5 t). If we put T = inf{n 2 
O:&oAk 2 t}, it is easily verified 
that (5.3) takes the form 

a’(Oo) = E@(Y(s):O 5 s 5 T)H(e,)] 

where 

+ ~~l~‘(e~,~k+l;~k,e*(Ck)) 

k=O p(eO,Yk+ I ;yk&*(Ck)) 

+ ~.f(e0,e,G) 

y f(~o,e,Co,) 

+i 
k=l 

E N(Yk;&e*(Ck-I)) 
k-l 

f’(@Odk8*(Ck- lhyk- I &kd 

/(he,Yk3e*(Ck- I),Yk- I &he) 

The first sum over k is the contribu- 
tion to the likelihood ratio gradient 
from the sequence of discrete states 
visited, whereas the second sum 
over k is the contribution from the 
successive clocks that are set (the 
remaining sums are contributed by 
randomness in the initial condi- 
tion). 

These examples serve to illus- 
trate the great variety of stochastic 
processes to which likelihood ratio 
derivative estimation may be ap- 
plied. 

steady-state Gradlent 
Ertlmatlon 
The discussion of the previous sec- 
tions of this article basically pertains 
to the case in which the perfor- 
mance measure depends on the 
process up to some (finite-valued) 
stopping time T (see, for example, 
(3.6)). Hence, the material de- 
scribed thus far is principally moti- 
vated by terminating simulations. 
Here, we will briefly discuss some 
of the basic issues that arise in deal- 
ing with steady-state performance 
measures. 

Most of the technical difficulties 
associated with the likelihood ratio 
approach to steady-state gradient 
estimation stem from an assump- 
tion made in the section on Likeli- 
hood Ratio Derivatives Estimation 
that asserts existence of a smooth 
likelihood ratio-that there exists a 
measure /* and a function f(0,w) 
(smooth in 0) such that P,(do) = 

f(mMw. 
Now, a steady-state performance 

measures X (for a discrete-time 
process Y) typically can be ex- 
pressed in the form 
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for some real-valuedf, so that X de- 
pends on the infinite history of Y. 
Now, if Y is ergodic under PO, it fol- 
lows that there exists a (determinis- 
tic) constant a(e) such that 

+ a(0) PO c2.s. 

(6.1) 

Hence, Pe(A(B)) = 1, where A(0) = 

{w:X(o) = a(e)}. Therefore, unless 
a(e) = a(Oo), Pe(A(&)) = 0 for e 
arbitrarily close to 00, whereas 
Po,,(A(e,)) = 1. It follows that f(e;) 
has a support that is disjoint from 
that of f(6”;), regardless of how 
close 8 is to 00. This, of course, is 
incompatible with f(@) being dif- 
ferentiable in f3 at the point 00. 
Thus, f cannot be smooth in 8. 

Since smooth likelihood ratios do 
not exist over infinite time hori- 
zons, this suggests one ought to try 
to reduce the infinite horizon 
steady-state estimation problem to a 
finite horizon problem before ap- 
plying likelihood ratio techniques. 
(Recall that finite horizon problems 
can be treated by earlier tech- 
niques.) 

One class of stochastic systems 
that is perfectly suited to such a 
reduction is the class of regenera- 
tive stochastic processes (see [2] for 
a definition). Assume that Y is a 
nondelayed regenerative process 
with regeneration times To = 0 < 
T, < T2 < .... (For example, in a 
Markov process setting, the regen- 
eration times would typically corre- 
spond to successive hitting times of 
some fixed state.) Then, under suit- 
able moment conditions, it can be 
shown that 

+ u(e)ie(e) p. U.S. 

(6.2) 

as n + ~0, where 

7-I-l 

46) = Ee 2 fV’d 
k=O 

l(e) = E@T,. 

Hence, the steady-state of a regen- 
erative process can be expressed as 
a ratio of two expectations, in which 
both expected values correspond to 
performance measures that depend 
on Y only up to a stopping time, 
namely T,. Intuitively, in a regener- 
ative process, the infinite horizon 
steady-state behavior is faithfully 
represented by the behavior of the 
process over the “regenerative 
cycle” [0, T,) (which, of course, con- 
stitutes a finite horizon). 

The relation (6.2) asserts that the 
steady-state mean a(e) can be ex- 
pressed as a(e) = u(e)lt’(e). Thus, 
via the quotient rule of differen- 
tial calculus (i.e., a’(O) = 
l(e)-*[d(e)e(e) - r(e)u(e)]), it fol- 
lows that derivative estimation for 
a(.) can be reduced to that for u(.) 
and 1(.). But the derivatives of the 
performance measures u(e) and I(.) 
can be estimated via the likelihood 
ratio methods described in Sections 
2 through 5. For details on this ap- 
proach, see [S, 161. 

In the non-regenerative setting, 
likelihood ratio gradient estimation 
of steady-state performance mea- 
sures is more problematic. One 
approach that holds some promise 
is to observe that if the process Y is 
ergodic (i.e., (6.1) holds), then it 
typically follows that 

(6.3) 

as n+ M. Since the left-hand side 
depends on Y only up to the (finite) 
time horizon n, likelihood ratio gra- 
dient estimation techniques can be 
applied. In [7], this approach is dis- 
cussed in more detail. Related tech- 
niques are described in [ 1, 31. One 
difficulty is that since (6.3) is only 
an approximation for any finite n, 
the corresponding gradient estima- 
tor will be biased. This induces 
statistical inefficiencies in the esti- 
mator (i.e., a slower rate of conver- 
gence than that obtained in the 
regenerative setting). The develop- 
ment of more efficient likelihood 
ratio gradient estimators for 

steady-state nonregenerative per- 
formance measures continues to be 
an active research area. 
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