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ABSTRACT

The ratio estimation problem arises in many different

applications settings. This paper is concerned with the

interplay between gradient estimation and ratio estima-

tion. Given unbiased estimators for the nnmerator and

the denominator of the ratio, as well as their gradients,

joint central-limit theorems for the ratio and its gradient

are derived. The resulting confidence regions are of poten-

tial interest when optimizing such ratios numerically, or

for sensitivity analysis with respect to parameters whose

exact value is unknown. The paper also briefly discusses

low-bias estimation for the gradient of a ratio.

1 INTRODUCTION

Let (,4, B) be a pair of jointly distributed real-valued

random variables. The estimation of the ratio a =

E[A]/E[B] is known, in the simulation literature, as the

m t io estimation problem. Such ratio estimation problems

arise in many different applications settings. For example,

it is well known that the steady-state mean of a positive

recurrent regenerative stochastic process can be expressed

as such a ratio of expectations; see, for example, Section

3.3.2 of Bratley, Fox, and Schrage (1987) or Chapter 2 of

Wolff (1989). In Section 2 of this paper, we will discuss the

ratio estimation problem in greater detail and offer addi-

tional examples. It will turn out that the infinite-horizon

discounted cost of a non-delayed regenerative process can

also be expressed in terms of an appropriately chosen ra-

tio estimation problem. This fact was first pointed out by

Fox and Glynn (1989).

Recently, the simulation community has devoted a

great deal of attention to the use of simulation as an opti-

mization tool. An important component of this research

effort has been the development of estimation method-

ology for computing the gradient of a real-valued per-

formance measure with respect to a (finite-dimensional)

decision parameter vector. Such gradients play an im-

portant role in many iterative algorithms for performing

both constrained and unconstrained mathematical opti-

mization. This paper is intended as a study of the ques-

tion of how to use this gradient estimation methodology

in the setting of the ratio estimation problem.

The paper is organized as follows. In Section 2, a

number of different applications in which ratio estimation

problems arise are discussed, and the mathematical frame-

work for the remainder of the paper is described. Section

3 is devoted to deriving a confidence interval methodol-

ogy for estimating the partial derivative of a ratio. In ad-
dition, a joint central-limit theorem for the simultaneous

estimation of the entire gradient is obtained. In Section 4,

low-bias estimation issues are discussed. Finally, Section 5

discusses some experimental results related to gradient es-

timators for ratios, and Section 6 concludes the paper with

a brief summary. The proof of our main theorem (Theo-

rem 1) is given in the Appendix. The other proofs are not

given here. A (future) more elaborate version of the paper

will contain all the proofs, derive a joint central-limit the-

orem that can be used to simultaneously estimate the gra-

dient and the Hessian of mixed second-partial derivatives

of a ratio, and provide further numerical illustrations.

2 EXAMPLES OF RATIO ESTIMATION PROB-

LEMS

As discussed in the introduction, the ratio estimation

problem is concerned with the estimation of the ratio

E[A]

a = E[13] ‘

where (A, 1?) is a pair of jointly distributed real-valued

random variables. We now proceed to offer several exam-

ples of this estimation problem.

EXAMPLE 1. Let X = {X(t), t ~ O} be a real-valued

(possibly) delayed regenerative process with regenerative

times O ~ 7’(0) < ‘T(1) . . . .. For z >1, let

/

T(, )

ii, = lX(s)jds
T(I-1)

/

T(c)

A, = X(s)ds

T(i-1)

B, = T(i) – T(g – 1).
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If E[~l -FBI] < co, then it can be shown (see, for example,

Asmussen 1987, or Wolff 1989) that

Ilim: t X(s)ds a=’ (r= EIAl]/E[B,].
t-m t ~

Hence, as discussed in the introduction, the steady-state

mean of such a process can be expressed as the ratio of

the two expectations EIAI] and E[l?l].

EXAMPLE 2. Let X = {X(t), t z O} be a non-delayed

regenerative process, taking values in a state space S, with

regenerative times O = T(O) < T(l) < . . .. Let f and g

be two real-valued non-negative (measurable) functions

defined on S, and set

J
t

v(t) = g(x(s))ds
o

cl . E

[Jm 1exp[–V(t)]~(X(t) )dt .
0

Then, a is the infinite-horizon expected discounted cost,

the process g(X(t)) corresponds to the (state-dependent)

discount rate at time t, and ~(X(t)) is the (undiscounted)

rate at which cost is incurred at time t.A common choice

for g is the one in which g(.) is constant and equal to

p >0, in which case

(ICE [./”exp[-pt] f (X(t))dt
o 1

is the infinite-horizon p-discounted cost. Let

‘1 = L:exp[-ltg(x(s))dsl$(x(t))d’
cl = exp [–V(T(l))]

BI = l–cl.

Because of the regenerative structure of X, it is evident

that a satisfies the equation a = EIAI] + EICl]a. Thus, if

EICI] <1, it follows that a is finite and can be expressed

as
EIA1]

a=~”

Hence, the infinite-horizon discounted cost for a regenera-

tive process can be expressed in terms of a ratio estimation

problem; see Fox and Glynn (1989) for further details.

EXAMPLE 3. Let X be a regenerative process as in

Example 2, and assume that X has right-continuous paths

with left limits. Let F be a non-empty subset of the state

space S, and let T(F) = inf{t ~ O I X(t) c F} be the first

hitting time of the subset F. Then,

a = E[T(F)]

is the mean hitting time of F. Such expectations are of

interest, for example, in the reliability y set ting, in which

case T(F) would typically correspond to the system failure

time, and T(1) to a time at which the system is brought

back to an ‘as good as new” state. Let

Al = min[r-(F), T(l)]

B1 = IIT(F) < T(l)],

where 1 denotes the indicator function. If P[r(F) < co] >

0 (note that this is equivalent to requiring that P[T(F) <

T(l)] > O), it is easily shown that

EIA1]

“=~”

See Goyal et al. (1991) for additional details. Thus, the

mean hitting time of a regenerative process can be formu-

lated in terms of the ratio estimation problem.

EXAMPLE 4. Let X be a real-valued random variable

and let C be an event with P(C) > 0. Suppose that we

wish to estimate

@ = E[x I c],

namely the conditional expectation of X, given that the

event C has occured. If E[l X 1] < co, then we can express

a in terms of the ratio a = EIAl]/EIBl], where

Al = x I(c)

B1 = I(c).

Hence, conditional expectations are expressalble in terms

of the ratio estimation problem.

Thus, the ratio estimation problem arises in a variety

of different applications contexts. We shall nclw introduce

a decision parameter vector 0 into the discussion. For each

O G IRd, let Pe be the probabfity measure associated with

the parameter value 0, and let EO be its ccmresponding

expectation operator. In addition, we shall permit the

random variables A(0) and B(0) to depend explicitly on

8 c R.d. Then, for each 8 c IRd, the ratio of expectations

can be expressed in the form

where u(O) = Ee[A(0)] and 1(13) = EoIB(0):I. Given our

above examples, computing the gradient of such a ratio

a(0) is useful for sensitivity analysis or optimization of

any of the following : steady-state costs or rewards in

regenerative processes; infinite-horizon disccmnted costs;

mean time to failure in reliability systems; conditional ex-

pectations and probabilities.

3 CONFIDENCE INTERVALS FOR GRADI-

ENT ESTIMATORS OF RATIOS

Let (?oc lRd be fixed. In order for the gradient esti-

mation problem to make sense, we shall require that both
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u(. ) and l(. ) have gradients at O = 60. We shall fur-

ther assume that there exists unbiased estimators for not

only U(OO) and 1(8o), but also their gradients VU(OO ) and

VI(60 ). Focussing now on the i-th component of the gra-

dient, we shall specifically assume that there exist jointly

distributed random variables (A, B, C, D) such that

E[A] = ?J(80)

.E[B] = 1(60)

where t3, denotes the partial derivative with respect to t?;,

and 8, is the i-th component of 8.

There is now a great deal of literature on various

ways of constructing unbiased estimators for 6’,zL(OO)and

i3,t(O0). The two principal approaches that have been ex-

plored are likelihood ratio gradient estimation (see Glynn

1990 for a survey) and infinitesimal perturbation analysis

(see Glasserman 1991). For links between the two meth-

ods and for a general survey, see L’Ecuyer (1990, 1991).

We shall now assume that it is possible for the sim-

ulator to generate a sequence {( A,, Bj, Cj, Dj ), j ~ 1}

of i.i.d. replicates of the random vector (A, B, C, D). In

each of the problem settings described in Section 2, this

is typically straightforward.

To estimate

L3,CY(60) =
f(&J)f3itt(OO)– ‘Boil

f2(oo)

= ~j?t(do) – Cr(OO)d:t(OO)
qeo) ‘

the natural estimator to use is

C. – ffnDn
Sa(’n) = ~ ,

n

where

,=1

and

0’. = An/ B..

Our first proposition states that under reasonable con-

ditions, &i(n) is a consistent estimator for ~, cr(OO).The

proof is straightforward and therefore omitted.

PROPOSITION 1. Suppose that EIIA1 I + IBII + lCll +

lD~(j < co and that EIB1] # O. Then,

To develop a confidence interval methodology for ~i (n),

we need a central-limit theorem (CLT) for the estimator.

Let

and note that under the assumptions of Proposition 1,

E[ZJ] = E[Wj ] = O. This observation is an important

element in the proof of the following theorem.

THEOREM 1. Assume that E[Zf + W:] < W. If, in

addition, the conditions of Proposition 1 are in force, then

as n ~ CO, where

E[W, - (EIDI]/E[BI])ZI]2
CT2=

(E[B,])2 ‘ ‘

Theorem 1 has been previously established, using dif-

ferent methods, by Reiman and Weiss (1989) in the con-

text of likelihood ratio gradient estimation for regenera-

tive steady-state simulation. Their expression for the vari-

ance constant U2 is formally different, but algebraically

identical.

The final step needed to develop a confidence interval

methodology for & (n) is the construction of an appropri-

ate estimator for a2. Let

v(n) =

where

:5 [m- (waJz,]2
J=l

(Bn)z

-2, = AJ – onQ,

WJ = CJ – crnDJ - &(n)Bj.

The next proposition gives conditions under which v(n)

is strongly consistent for a2. The proof is straightforward

and therefore omitted.

PROPOSITION 2. Suppose that E[A~ + B: + C; +

D:] < cm. IjEIBI] # O, then

Iim v(n) a=’ a’. ~
n-m
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We note that if v(n) is computed via a two-pass ap-

proach in which cr~ and &(n) are computed in the first

pass through the data {(Aj, l?j, Cj, Dj), 1< j < n} and

the sum of squares computed in the second pass, then it

is essentially guaranteed that v(n) will be computed as

a non-negative quantity on any finite-precision computer.

More importantly, this means of computing v(n) is likely

to be more stable numerically than that associated with

the computation described in Reiman and Weiss (1989).

We are now ready to describe a general confidence in-

terval methodology for estimating partial derivatives of

ratios. Suppose that we wish to compute a 100(1 – $)~o

confidence interval for ~i cr (OO ). We use the following pro-

cedure :

Algorithm CI.

1. Generate {( Aj, Bj, Cj, Dj), j > 1}.

2. Compute an and 6; (n).

3. Compute v(n) (using the two-pass approach de-

scribed above).

4. Find z(6) such that PIN(O, 1) ~ z(6)]= 1 – 8/2.

5. Compute

Ln = 6t(n) - z(qym

u. = 6,(.) + %(6)/-. m

Then, [L., Un] is an (approximate) 100(1 – 6)% confidence

interval for Oi CY(OO). In particular, if the conditions of

Proposition 2 are in force and U2 >0, then

lim P[~:~(Oo) c [L~, U~]] = 1 – 6.
n-co

We conclude this section with a brief discussion of the

problem of generating a confidence region for the vector

(Cr(oo), txcr(oo), . . . . 6’da(OO )). A joint confidence region

could be of potential interest in a number of optimization

settings, since virtually ail iterative (deterministic) opti-

mization algorithms choose their search direction, at each

iteration, by considering the full gradient.

Let C(Z) and D(i) be unbiased estimators for tltt(OO )

and tJ’, /(00), so that

E[c(a)] = a,u(eo)

E[D(i)] = U(80).

If {( A3, B$, CJ(l), D~(l),. ... CJ(d), DJ(d)), 1 ~ j ~ n}

is a set of n i.i.d. replicates of the random vector

(A,l?, C(l), D(l) ,. ... C(d), D(d)), then the estimators cr~,

&(n), . . . . 6d(?Z) can be constructed from the sample in

the obvious way, namely

an = An/B.

b_i(n) = (Cn(’i) – cYnD*(2))/Bn.

Define

Wj(i) = Cj(i) - cY(eo)Dj(i) – 13,cr(eo)tlj.

We are now ready to state a joint CLT for (an, 61(n), . . . .

6~(n)).

THEOREM 2. Assume that EIA~+B~+C~(l)+D~ (l)+

0.. + C?(d)+ D;(d)] <00. It E[13] # O, then

fi[a~ –cx(OO), 61(n) – t% Q(OO),...,

6d(n) – ~dcr(80)] E[.IA] + IV(O, C)

as n + co, where C = (C,j, O < i, j < d) is 01 covariance

matrix whose elements are given by

coo = E[Z:]

Coi = C,o

E

[( )1

EIDl(i)l ZI ZI= ‘l(i) – E[~l]

c,, = C,i

=E

[(

EIDI (01 Z1
‘l(i) – E[~,]

)

(

EID1 (j)] ~1
W1 (J – qq

)1

forl<i, j~d. I

The proof of this theorem mirrors that of Theorem 1

and is therefore omitted.

A procedure for producing asymptotically valid con-

fidence regions for (a(80), ~1 CY(80), . . . ~d@(60)) can now

easily be derived, using the same ideas as those described

earlier in this section for ~i a (OO ). We leave the details to

the reader.

4 LOW BIAS ESTIMATION FOR THE GRA-
DIENT OF A RATIO

Since the gradient of the ratio is a nonlinear function

of the expectations E[A], E[B], .EIC(l)], II[D(l)], . . . .

E[C(rf)], E[D(d)], itfollows that the estimator 6,(n) is, in

general, biased for ~,cY(OO).

We will now proceed to (formally) derive a bias ex-

pansion for ii, (n). The proof of Theorem 1 sk~ows that

6,(n) – 13,cr(f30)=
w. – (D./B.)z.

l?. ‘“
(1)

We would like to approximate the expectation of that. We

note that since & is close to p ‘~f

can use the power series expansion

to obtain

+ = +-(+]-’

EIBI] for large n, we

for j(z) = (1 – z)-l
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= ,-1[1+(1-+)+(+2+...]

= ‘-’1+(1-%)1

2,. - B.
=

fJ2 “

Using this approximation in (l), we find that

6,(TJ) - ihr(do)

2wn znDn – Bnwn
—+

2znDn
=

P P2 ‘- pBn

2wn
—i-

‘znDn – Bnwn 2znD.(2/l - B.)
N

P P2 – P3

2wn znDn + Bnwn ~ 2znDnBn—_=
P flz P3 ‘

(2)

where & = & – p. Recall that E[Wj] = E[Zj] = O.

Observe that for i #j, .E[13, W3] = E[B:]E[Wj] = O, since

B, and Wj are independent. Therefore,

Similarly, E[i?nDn] = EIZ1 Dl]/n. Also, E[Zt Dj(Bk –

p)] = O whenever i # k. Therefore,

E[Z’.D.I3.] =
JZIZ,DI (BI - p)]

nz

+ (n - l) EIZ,(B, - f4)]E[D,]

nz

= EIZI BI]EIDIJ
+ o(l/n).

n

Now, taking the expectation in (2) yields

E[6i (rL)]– 6’;CY(O~)

~ z~[zl&]~[~l] – @[Bl W, + ZID1]

nps

This bias approximation suggests an obvious means of re-

ducing the bias of gradient estimators for ratios. The idea

is to estimate the bias term and correct for it by subtract-

ing off the estimated bias. In this case, this approach leads

to the estimator

where Z] and Wj are defined just before the statement of

Proposition 2 in Section 3.

Under appropriate regularity hypotheses, and by ap-

plying techniques similar to those used in Glynn and Hei-

delberger (1991), one can rigorously prove that $,(n) re-

duces the asymptotic bias, in the sense that

E[&(n)] = 6’, cr(60) + o(l/n).

A second approach that is frequently used to correct

for “nonlinearity bias” of the above type is to “jackknife”

the estimator. Specifically, for 1 ~ j < n, let

k=l, k#J

()
n n

x c, - ~n(j) x D3

%(,) =
k=l, k#J ksll kjt~

n

k=l, k+>

%3) = Wn(j) – (n – l),&(j).

Then,

J=l

is the jackknife estimator for 6’,CY(60). Also,

fi(~t(n) - ~iC2(O~))
* IV(O,1),

sJ(n)

where

,=1

is a consistent variance estimator. As in the case of the

estimator &(n), one can prove rigorously (under suitable

regularity hypotheses) that the estimator 6,J(n) reduces

asymptotic bias, in the sense that

E[6~(n)] = ~,cr(eo) + o(l/n).

It turns out that the improved bias characteristics of

these estimators are costless relative to the variance, in the

sense that the estimators $, (n) and 6:(n) obey precisely

the same CLT as does 6,(n). Hence, the estimators exhibit

the same degree of asymptotic variability.

THEOREM 3. Assume that E[A~ +Bf+Cf +Df] < co

and that EIBI] # O. Then,

fi(&(n) - atCY(&J))+ aN(O, 1)

@(b:(n)– acl(eo)) =’ aN(o,1)

where 02 is the same constant as in Theorem 1. ~
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an

cl:
ti(n)

6J(n)

Table 1: Bias, Half-Widths, and Coverages of Confidence Intervals for 8 = 0.2

(cr(0) = 0.25 and a’(d)= 1.5625)

I

n=l(l fJ = 100

bias half-width cover. bias half-width

-.010+.002 .129+.002 .77+.01 -.001+.001

-.001+.002 .149+.002 .80+.01 -.000+.001

-.401+.024 .914+.021 .43+.01 -.113+.013

.059+.001

.061+.001

.857+.014

-.120+.035 1.345+.038 .52+.01 -.014+.013 .921+.017

cover. I bias

.90+.01 -.000*.001

.90+.01 -.000+.001

.74+.01 \ -.004+.005

.76+.01 -.001+.005

n = 1000

half-width-

Table 2: Bias, Half-Widths, and Coverages of Confidence Intervals for O = 0.5

ffn

cl:
6(n)

.021+.001

.021+.001

.391+.004

.395+.004 —

(’

n=lo

bias half-width cover.

-.135+.009 .440+.005 .57+.01

-.036+.011 .634+.012 .65&.01

-2.072+.050 1.692+.057 .26&.01

6J(n) \ -1.152+.089 2.6942c.084 .37+.01

cover,

.94*.01

.94+.01

.88+.01

.88+.01

‘O) = 1.0 and a’(0) = 4.0) —

bias

-.019+.004

-.001*.004

-.407+.048

-.049+.063

5 A NUMERICAL EXAMPLE

We will now illustrate some of the ideas developed in

this paper with a numerical example. We consider the

steady-state sojourn time of a customer in an M/M/l

queue with arrival rate A = 1 and mean service time 0,

where O < 0 < 1. The sojourn time is the sum of the

time spent by a customer waiting for service, plus that

customer’s service time. Let X. = O and, for i > 1, let X,

be the sojourn time of the i-th customer, starting from an

empty system. It is well known that

x, := (x,-l - 2/,)+ + 0(,,

where {VI, [I, VZ, ~z, . . .} is a sequence of i.i.d. exp(l) ran-

dom variables. For this model, the mean steady-state so-

journ time a(e) can be computed in closed form:

a(e) = 0/(1 – e).

Hence,

a’(e) = 1/(1 – 0)2

This system regenerates when customers arrive to an

empty queue. Consequently, as discussed in Example 1 of

Section 2, the steady-state mean sojourn time of a cus-

tomer can be expressed in terms of a ratio estimation

problem, and the methodology of this paper is therefore

applicable. It is also straightforward to apply the likeli-

hood ratio method for gradient estimation to this problem

n = 100 n = 1000

half-width cover. bias half-wic~

~—-T--
.313+.004 ,82+.01 -.003+.002 .125+.001 .92+.01

.339+.004 .84+.01 -.001+.002 .126+.001 .92+.01

2.333+.051 .57+.01 -.056+.019 1.493+.022 .81+.01

2.919+.077 .63+.01 -.012+.020 1.541+.022 .82+.01

(see L’Ecuyer, Giroux, and Glynn 1991), thereby obtain-

ing the required unbiased estimators for the numerator

and denominator of the ratio (as discussed in Section 3).

It turns out that while infinitesimal perturbation analysis

can be applied to obtain strongly consistent steady-state

gradient estimators for this problem, it fails to give unbL

ased estimators of the gradient of the numeratc)r and of the

gradient of the denominator of the regenerative ratio for-

mula. See Heidelberger et al. (1988) for further details. As

a consequence, the theory of this paper is not applicable to

the infinitesimal perturbation analysis steady-state gradi-

ent estimator for this problem. But on the other hand, the

infinitesimal perturbation analysis derivative estimator is

itself the estimator of a ratio of expectations, so that one

can apply the standard theory relative to the construction

of confidence intervals for ratios of expectations (Iglehart

1975, Wolff 1989).

Tables 1 and 2 report the experimental results ob-

tained for this example. Simulation runs were carried out

at two parameter values, namely O = 0.2 and O = 0.5,

using n = 10, 100, and 1000 regenerative cycles. A to-

tal of four estimators were considered in this experiment,

namely the ratio estimator rr~ for a(~) and its jackknifed

analog o: (see Iglehart 1975), and the derivative estima-

tor 6(n) (Section 3) for o’(O) and its corresponding jack-

knifed analo~ $J(n) (Section 4). Standard regenerative

confidence intervrds were constructed for the estimator

cr., and the confidence interval met hodology of Section

3 was used to analyze 6(n). For the jackknifed versions,
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confidence intervaJs were constructed based on the vari-

ance estimator (s ‘(n))2 given in Section 4. At each of the

two parameter vahes and three choices of n (the number

of regenerative cycles), a tot zd of 10,000 $J5~0 confidence

intervals was replicated for each of the four estimators.

From that, we are able to report estimates for the bias, ex-

pected half-width, and coverage (the probability that the

quantity being estimated lies in the confidence intervrd),

as well as 9570 confidence intervals for the bias, expected

half-width, and coverages themselves.

One can observe that for small n, for all estimators,

the coverage is really lower that what is to be expected.

This bad behavior gets worse when 0 increases (heavier

traffic). Jackknifing clearly reduces the bias significantly.

It also gives a better coverage for small n, but usually at

the expense of a wider confidence interval. For small n,

the coverage is too low anyway. For larger n, jackknifing

still helps reducing the bkis, but (perhaps surprisingly)

does not improve the coverage significantly. Of course,

this is just a particular illustration, and one must be care-

ful about drawing any general conclusions from these nu-

merical results.

6 CONCLUSION

Ratio estimation problems arise in many different ap-

plications settings. When estimation is to be used to an-

alyze the sensitivity of (or to optimize) a system in which

the ratio estimation problem occurs, the results of this

paper become pertinent. We have derived a numerically

stable confidence interval procedure for computing partial

derivatives of such ratios, and have developed the appro-

priate joint CLT’S necessary to extend this methodology

to the computation of confidence regions for the full gradi-

ent of the ratio. In addition, we have discussed low-bks es-

timators for computing such partial derivatives. We have

also described preliminary computational experience with

some of the methods developed in this paper.

ACKNOWLEDGMENTS

The work of the first author was supported by the

U.S. Army Research Office under Contract DAAL03-91-

G-O1O1. The work of the second author was supported by

NSERC-Canada grant rm. OCPO1100S0 -d F’CAR 6..A

no. EQ2831.

APPENDIX

Proof of Theorem 1. We note that

l%[6t(n)- acr(eo)]

= C?. - O’.D. - ~iff(9~)B.

= w. - (a. - Cr(el))pn

= w. - (D./Bn)z.

= w. – (EIDl]/EIBJzn
- (Dn/Bn - EIDl]/E[B,])2..

Clearly, @Z. ~ (EIZ~])l/2N(0, 1) as n ~ 00 and

Dn/Bn ‘~ EID1]/EIB1] as n ~ co. It follows, by the

converging-together principle, that

fi (WE. – JqDl]/EIBl])z + o

as n - cm. The CLT for i.i.d. random variables also

proves that

m (w. - (E[lA]/q&])zn) + J?qBl]aN(o, 1)

asn+m. A second application of the converging-

together principle then yields

One final application of the converging-together principle

(note that & ‘~ .EIBI] as n ~ co) proves the theorem.

m
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