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A NEW VIEW OF THE HEAVY-TRAFFIC LIMIT THEOREM 
FOR INFINITE-SERVER QUEUES 

PETER W. GLYNN,* Stanford University 
WARD WHfIT, **AT & T Bell Laboratories 

Abstract 

This paper presents a new approach for obtaining heavy-traffic limits for 
infinite-server queues and open networks of infinite-server queues. The key 
observation is that infinite-server queues having deterministic service times can easily 
be analyzed in terms of the arrival counting process. A variant of the same idea 
applies when the service times take values in a finite set, so this is the key assumption. 
In addition to new proofs of established results, the paper contains several new 
results, including limits for the work-in-system process, limits for steady-state 
distributions, limits for open networks with general customer routes, and rates of 
convergence. The relatively tractable Gaussian limits are promising approximations 
for many-server queues and open networks of such queues, possibly with finite 
waiting rooms. 

MANY-SERVER QUEUES; HEAVY TRAFFIC; DIFFUSION APPROXIMATIONS; QUEUEING 
NETWORKS; GAUSSIAN DISTRIBUTIONS; STRONG APPROXIMATIONS; G/G/oo QUEUES 

1. Introduction 

In this paper, we describe a new approach for obtaining heavy-traffic limits for 
open infinite-server queueing systems. Heavy traffic is achieved by sending the 
arrival rate to infinity while holding the distribution of the service times fixed. As a 
consequence, the number of busy servers goes to infinity, thereby justifying the use 
of the term 'heavy traffic'. The limit processes obtained in this setting are typically 
non-Markov Gaussian processes having mean and covariance functions that depend 
on the detailed form of the service-time distributions. This is in contrast to the 
heavy-traffic limit theory associated with systems having a finite (fixed) number of 
servers. The limit processes obtained there are typically reflecting Brownian motion 
Markov diffusion processes having infinitesimal means, variances, and reflection 
terms that depend on the service-time distributions only through their mean and 
variance parameters; see for example Reiman (1984). 

Even though the limit process is not Markov and it depends on the distribution of 
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the service times in a relatively complicated way, the one-dimensional marginal 
distributions (and the limiting stationary distribution) are remarkably simple, being 
Gaussian with tractable expressions for the means and variances. The relatively 
simple Gaussian limits occur here in part because the boundary at the origin 
disappears in the limit. Indeed, it is evident that all servers being idle will be a very 
rare event in a many-server queue with a high arrival rate. 

In this paper we consider only infinite-server systems, but it is important to note 
that the boundary-free Gaussian limits may serve as useful approximations for 
systems with a large finite number of servers, possibly with a finite waiting room. 
Indeed, the Gaussian limits also are limits for s-server models with r waiting spaces, 
0 r 

_ oo, if s goes to infinity sufficiently fast as the arrival rate increases (so that 
having all s servers busy is asymptotically negligible). 

While Gaussian approximations and heavy-traffic limits for infinite-server queue- 
ing systems have already been established by Iglehart (1965), Borovkov (1967), 
(1984), Newell (1973) and Whitt (1982), we believe that the approach in this paper 
provides some additional insight. The key observation that we exploit throughout 
this paper is that infinite-server queues having deterministic service times can easily 
be analyzed in terms of the counting process that records the cumulative number of 
arrivals. We then note that a variant of the same idea applies to systems in which 
service times take values in a finite set. Hence, we consider only service-time 
distributions that take values in a finite set. From a practical standpoint, we do not 
view this assumption as being particularly restrictive. In fact, it is similar in spirit to 
the assumption of Whitt (1982) that the service-time distributions are phase-type. 

Our approach has several advantages. 
1. We are able to give an elementary proof (using standard weak convergence 

arguments such as the continuous mapping theorem) to obtain heavy-traffic 
limits for the queue-length (number of busy servers) and departure processes 
for a single station. Although these limits have been obtained previously, our 
proof is entirely probabilistic and avoids the explicit analytical calculation 
present in the earlier work. (For example, both Iglehart (1965) and Whitt 
(1982) calculate infinitesimal means and variances of related Markov proc- 
esses; Borovkov (1967), (1984) works with weak convergence of finite- 
dimensional distributions.) 

2. Our limit processes are explicitly described as functionals of increments of a 
vector-valued Brownian motion process. This seems attractive from a com- 

putational viewpoint, particularly in comparison with the multivariate 
Ornstein-Uhlenbeck processes that underlie the analysis of Whitt (1982); see 
Section 5 for further discussion. 

3. We obtain new heavy traffic limits for the work-in-system process of an 
infinite-server queue; see Theorem 3. 

4. Our approach enables us to model stochastic dependencies among and 
between interarrival and service times that can not be analyzed using previous 
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techniques. (For example, previous papers require that the service time 

sequence at a given station be i.i.d.) A wide variety of dependencies can be 
analyzed. Furthermore, our analysis reveals the statistical information that 
must be gathered to cope successfully with correlated service times; see 
Section 3. 

5. We are able to apply 'strong approximation' techniques to obtain rates of 
convergence for our limit theorems when the interarrival and service times are 
independent and i.i.d.; see Theorem 4. 

6. We obtain explicit expressions for the steady-state distributions of our 
queueing processes and show that they, in turn, converge to the steady-states 
of our Gaussian limits. This complements work of Whitt (1982) and verifies the 
conjecture on p. 540 of Whitt (1984); see Theorem 6. 

7. We are able to obtain other new results for the GI/D/oo queue (single-station 
queue with renewal arrivals and deterministic service times); see Theorems 5 
and 7. 

8. We are able to apply our method to the analysis of networks of infinite-server 
queues; see Theorem 8 for the heavy-traffic behavior of the vector queue- 
length process in heavy traffic. As mentioned in (2) above, we believe that our 
representation in terms of increments of a vector-valued Brownian motion 
process permits more efficient computation of the limiting distribution than the 
Ornstein-Uhlenbeck approach in Whitt (1982). 

This paper is organized as follows. In Section 2, we describe our basic limit 
theorems for the queue-length, departure, and work-in-system processes in the 
setting of a single station. In Section 3 we focus on the basic assumption used to 
derive these limit theorems. The 'fully independent' GI/GI/oo model previously 
analyzed in the literature (in which arrivals come from a renewal process 
independent of i.i.d. service times) is a special case of our framework, as is the 
GIGIloo model considered by Borovkov (1967) in which independence among the 
interarrival times is relaxed. In Section 4, we return to the analysis of the 
single-station system. We obtain rate-of-convergence results, as well as limit 
theorems for the steady-state distributions of the various queueing processes. In 
Section 5, we show how to extend the theory of Sections 2-4 to networks. Finally, 
Section 6 contains all proofs. 

2. A simple proof for a single-station system 

Suppose that N (N(t): t _0) is the cumulative number of arrivals to a single 
infinite-server station during the interval [0, t]. Assume that the station is idle at 
time t = 0. (If this were not the case, we would be obligated to describe the residual 
service times for each of the active servers, in order to obtain a well-defined 

description of the state of the system at time 0. We avoid this by making our current 
assumption.) Our fundamental observation is that the process Q -(Q(t): t 0) 



A new view of the heavy-traffic limit theorem for infinite-server queues 191 

describing the number of customers at the station at time t is easily described in 
terms of N when the service times are deterministic. In particular, if the service 
times equal x almost surely, then 

Q(t) = N(t) - N(t - x), t > 0, 

where we adopt the convention that N(t) = 0 for t < 0. 
To send the station into heavy traffic, we let the arrival rate go to infinity. In 

particular, we consider a sequence of queueing systems in which the arrival rate to 
the nth system is of order n. This can be modelled by letting the arrival process 
Nn (Nn(t): t O0) to the nth system be defined by scaling time by n, i.e., through 
the relation N,(t) = N(nt). If Q-, = (Qn(t): t ?0) is the number of customers in the 
nth system at time t, then 

Q,(t) = N(nt) - N(n(t - x)), t 
- 
0. 

Thus, Q,, is a simple function of an 'accelerated' version of the process N. Since 
accelerated counting processes typically satisfy strong laws of large numbers 
(SLLNs) and functional central limit theorems (FCLTs), it follows that Q& ought to 
inherit the same type of behavior. 

To pursue this approach for non-deterministic service times, we use the following 
problem formulation. We assume that all customers that enter the station have 
service times belonging to the finite set {x1, -*-, x, }. We say that a customer 

requiring service time xi is a customer of type i. For 1 5 i 5 m, let N'(t) denote the 
cumulative number of arrivals of customers of type i to the station by time t. 
Assuming that the station is idle at time t = 0, the number of customers of type i in 
the system at time t is given by 

Q'(t) = N'(t) - N'(t - xi), t i0O. 

Suppose that we increase the arrival rate by a factor of n, so that the arrival process 
for type-i customers in the nth system is given by N'(t) = N'(nt). Then, the total 
number of type-i customers in the nth system at time t is given by 

(2.1) Qi(t) = N'(nt) - N'(n(t - xi)), t 
- 

0. 

Let &(t) = (Nl(t), -.-, Nm(t)). To obtain suitable limit theorems for 

Q= - ((Q (t), ..., Qm(t)): t_ 
0) and Q, = (Q,(t) t 0), where 

Qn(t) 
= Ql(t) + 

S.. + Qm"(t), we shall require that N = (N(t):t ? O) satisfy an SLLN and an FCLT. 
Here is the SLLN: 
(2.2) there exists a (deterministic) vector A•-( , (A , , Am)E emW such that 

t -1/(t)--+ 
A a.s. as t oo. 

The following result is a simple consequence of (2.2). Let 
[x]? 

= max {x, 0}. 

Proposition 1. If (2.2) is satisfied, then 
n-1Q',(t)-- Ft(t) 

= (mg(t), .- 
., m'(t)) 

and 
n-'Q,(t)-- 

m(t) a.s. as n- oo, where m'(t) = A~,(t - [t - xi]) and mQ(t) = 

ml(t) + ... + mg(t). 
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Proposition 1 states that O,(t);= ndQ(t) when n is large (where - means 
'approximately equal'). From a practical standpoint, this suggests using the 
approximation Q(t)=- Em=l A,(t - [t - xi]+), when the arrival rates Al, A2,2 " ", Am 
are large. To refine this approximation, we require the FCLT hypothesis. 

Let = denote convergence in distribution (weak convergence) and let 
D, D[O0, oo) be the space of right-continuous Rm-valued functions with left limits 
having domain [0, oo), endowed with the standard Skorohod (1956) J1 topology; see 
Billingsley (1968), Whitt (1980) and Ethier and Kurtz (1986). Let 0,: D, --+ D , be 
the shift operator defined by O,(x)(t) = x(t + s), t + s ? 0 and O,(x)(t) = O0, t + s < 0, 
t > 0. We exploit the fact that 8, is a continuous operator for s < 0. (Note that it is 
not continuous for s > 0. To see this, consider s = 1, x(t) = 1[l,)#(t), and x(t) = 
1[+,--1,.)(t), where 1A(t) is the indicator function of the set A.) For x D,, let 
Disc (x) be the set of discontinuity points of x in [0, oo). Here is our key FCLT 
assumption. 
(2.3) Assume that there exist a process 2~ (2(t): t >0) in Dm for which 

P(Disc (Zi) Disc (Os,(Z))) = 0 for all i, j and s <0 (for which i :/j or i =j 
and s : 0), a vector A and a constant y > 0 such that 

Z,n > Z in Dm as n -+ c, 
which we denote by 

2,n(t) 
n Y(n-1 (nt) - At) > Z(t) in Dm as n - oo. 

Remark 2.1. Under (2.2) and (2.3), the two A vectors must coincide, because 
both (2.2) and (2.3) imply a weak law of large numbers (WLLN). 

Remark 2.2. The discontinuity condition in (2.3) is always satisfied if 2 has 
continuous paths which covers the standard case in which 2 is an m-dimensional 
Brownian motion. The discontinuity condition in (2.3) is important to cover cases in 
which Z does not have continuous paths. In particular, it is easy to see that the 
discontinuity condition is satisfied if the limit process 2 has independent marginals 
Z, in D1 and if each marginal process Z, has independent increments with Z,(t) 
continuous at t almost surely for each t. For example, this covers standard stable 
process limits (which are composed of independent one-dimensional marginal stable 
processes). 

Given (2.3) we can easily obtain FCLTs for Qe(t) and Qn(t). Throughout this 
paper, we adopt the convention that all processes are extended to (-oo, 0) by setting 
them identically equal to zero over that interval. 

Theorem 1. If (2.3) holds, then 

n (n -'in(t) - '*Q(t)) = (t) in D, as n ,- oo 
and 

n '(n 
-FQn(t) 

- mQ(t)) :: Q(t) in D1 as n - o, 
where 

(t) = (Ol(t), a 
? 

, ,d(t)), 
Q(t)= 01(t) 

+ 
' 

+ 
,m(t) and 

Oi(t) = Zi(t) - Zi(t - Xi), t E 
0. 
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Of course, typically (2.3) holds with y = 2 and Z = B, where B (B(t): t > 0) is 
an m-dimensional Brownian motion, so that Z is a Gaussian process. Then it is 
immediate that the limit processes Q and Q are also Gaussian, e.g., see p. 87 of 
Feller (1971). Hence, when Z = B, Theorem 1 supplies Gaussian approximations for 
the distributions of Q(t) and Q(t). To use this approximation in a practical setting, 
recall that if the processes N1, ... , Nm are appropriately uniformly integrable, then 
the covariance matrix C of the limiting Brownian motion B can be related to that of 
the counting process N as follows: 

lim t-1 cov (N'(t), N'(t)) = Cij as t--* oo 

For t > max {x, - - , x,,,}, the ordinary-CLT consequence of Theorem 1 with 2 = B 
and y = can be interpreted as stating that if the arrival rates Al, 

A2,- 
~ m are 

large, then 

(2.4) Q(t) = (Ql'(t), - - - , Qm(t)) 
~ 

N(iQ, CQ) in 
'"m 

with 
rQ 

(AlXl," 
* , AmXm), C~= Ci(xi xj), 

and 

(2.5) Q(t) N x, C 
, i=1 i= j= 1 

where denotes 'approximate equality in distribution', xi A xj = min {xi, xj} and 
N(M, C) denotes a normally distributed random vector with mean vector M and 
covariance matrix C (variance in R1). 

We turn next to the study of the departure process 1)(t) = (Dl(t), , Dm"(t)) 
which records the cumulative number of customers of each type to depart the station 
during the interval [0, t] and the overall departure process D(t)= D1(t)+ ... + 
Dm"(t). We note that if the service times are all of duration x almost surely, then the 
number of departures prior to time t is precisely equal to the number of arrivals 
prior to time t - x. As a consequence, we conclude that with m service types the 
number of departures of type i prior to time t in the nth queueing system is given by 

D',(t) = Ni(n(t - xi)), t > 0. 

Theorem 2. (a) If (2.2) is satisfied, then 
n-11Dn(t)-+ I'D(t) and n-1D,(t)-+ mD(t) 

a.s. as n -- 00, where MiD(t) = (mb(t), . , mm(t)), mD(t) = mb(t) + * + mm(t) and 

mio(t) 
= Ai[t - xi]+, t 

=> 
0. 

(b) If (2.3) holds, then 

n (n-1,(t) - noD(t)) > D (t) in 
Dm and 

n Y(n-1Dn(t) - mo(t)) 4 
1)(t) in D1 as n--+ o, 

where D(t) 
= (01(t), 

? 
- , D,(t)), )(t) = B1(t) + 

" 
+ 

1Dm(t) 
and 11i(t) = Zi(t- x,), 

t> 0. 
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The proof of Theorem 2 mirrors that of Proposition 1 and Theorem 1 and is 
therefore omitted. Indeed, the proof of Theorem 1 can easily be modified to obtain 
a joint FCLT for [Q,(t), Dn(t)] 

with limit [Q, D] in D2m. 
Theorem 2 suggests that with Z=B, y=1 and tmax{x1,--, xm}, the 

departure processes D(t) and D(t) may be approximated as 

(2.6) D(t + s) - D(t) N(riD, CD) 

with 

AD - (AlS, . . . 
, AmS), CP = C1,([s - xi -xil]+), 

and 

(2.7) D(t + s) - D(t) N E s, 
Ci) 

for s ?0, provided that the arrival rates Al, A2, ', AAm are large. 
Our final limit theorem in this section is for the work remaining in the system at 

time t. As a first step in obtaining such a limit theorem, we consider the process 
Q'(t, y), defined as the number of type-i customers at the station at time t having a 
remaining service time greater than y. Note that if the service times are equal to x 
almost surely, then the customers in the system at time t having remaining service 
time greater than y(y <x) are precisely those customers that arrived in the interval 
(t - x + y, t]. Hence, if Q'(t, y) is the number of type-i customers in the nth system 
having a remaining service time greater than y, then 

Q,(t, y) = N'(nt) - N'(n(t - [xi -y]+)). 

Note that for each customer in the system at time t, the remaining work for that 
customer may be expressed as 

f I(remaining service time > y) dy, 

where I(A) is 1 if A is true and 0 otherwise. Hence, we conclude that the type-i 
work remaining in the nth system at time t can be expressed as 

V'(t) 
= 

Q(t, 
y) dy. 

We are now ready to state SLLNs and FCLTs for Q(t, y) =- (Q(t, y), 
VP ,Q(t, y)), Qn(t, y) .QI(t, y) + + + Q7(t, y), 1,(t) (Vl(t), ***, V"(t)) and 

v,(t) Vn(t) + 
. 

+ V"m(t). 

Theorem 3. (a) If (2.2) is satisfied, then (for y O) 

n-1in(t, y)a-n ny(t), 
n-1Qn(t, y)-a- 

m, (t), 

n- 
v(t)--- rv(t) 

and 
n-lV,(t)-'my(t) 

a.s. as 
n-- 

oo, 
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where 
~,(t) = 

(my(t), 
- - 

-, my(t)), m (t) = 
AMi(t 

- [t - [xi - yl+]+) 

mVt) = fm(t) dy and mv(t) = mx4t) +'" 
+ mm(t). 

(b) If (2.3) holds, then (for y 
_ 

0) 

n Y(n-Id,(t, y) 
- Wy(t)) Q Oy(t) in D,, 

n Y(n 
-lQ,(t, 

y) - my(t)) ,y (t) in D1, 
n 

(n-lV,(t) 
- 

~iv(t)) => V(t) in 
Di,, n '(n -1Vn(t) - my(t)) > V(t) in D1 as n 

-- 
l o, 

where 

OY(t) = 
(Oyl,(t),', 

Oym(t)), YO(t)= (0(t) 
+' 

+ 
O+ym(t)), 

P(t) = (V•i(t), 
? ? ?, •rm(t)), 

V(t)= 
Vl(t) 

+ 
' ' 

+ 

Vm(t), 

1i(t) = 
,yi(t) dy and 

,yi(t) 
= 

2,(t) - Z(t - [x,- yl). 
Theorem 3 suggests that if Z = B, y = ., t >max {xi: 1 -i i m} and the arrival 

rates A•, iA2, " 
., .,, 

are large, then we can use the following approximation for the 
distribution of the vector of workloads in the system at time t: 

(2.8) V(t) N(Mv, Cv) 
with 

S (Ax V ) (Xi A Xj) (Xi A Xj)3 
= 2 ' 2 C = C(x 

and 

"Ax• 

2 
n 2 

l 

(2.9) (t) N 
- ,-' cV j=1 2 i=1"=1 

To obtain (2.8) and (2.9), note that 1(t) and f7(t), involving the integral and sum 
of Gaussian processes, are themselves Gaussian. Furthermore, 

CY=f cov [B,(t) - B,(t - xi + y), B (t) - B (t - xj + z)] dz dy. 

A straightforward calculation then yields CY in (2.8). 

Remark 2.3. It is worth noting that when Z = B the process OX = (X(t + s): 
t > 0) is a stationary Gaussian process when s > max {xi: 1 _ i = m } and X is any of 
the following limit processes considered in this section: Z(u + t) - Z(u) for u 0, 

O(t), O(t), 15(u + t) - 1(u) and D(u + t) - 1(u) for u O, 4_(t), 
Qy(t), 

1(t) and 
V(t). Hence, these limit processes obtained here have the interesting property that 
they exhibit steady-state behavior in finite time (as the original processes do with a 
Poisson arrival process). 
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Remark 2.4. From a practical standpoint, it is easy to see that the approximations 
(2.4)-(2.9) actually hold whenever at least one of the Ai's is large. (In other words, 
we do not need all the Ai's to be simultaneously large.) For example, suppose A, is 
large and A2, "",A, ,,m 

are small by comparison. Then, Gaussian approximations hold 
for the type 1 customers. On the other hand, the type i customers for 

i- 
2 

contribute very little to the limit. For 
i- 
?2, we conclude that the content relative to 

type 1 is negligible. 

Remark 2.5. The FCLTs in Theorems 1-3 can be combined to obtain a joint 
FCLT for all the processes considered. 

3. Verification of the basic assumptions 

In this section, we discuss in greater detail the assumptions (2.2) and (2.3) that 
were critical to the analysis of Section 2. We start by noting that assumptions (2.2) 
and (2.3) work with the counting processes N1, N2, .-, Nm as the primitive 
modelling elements, i.e., the model is directly formulated in terms of these m 

counting processes. In certain applications, this may be a reasonable starting point 
for the analysis. For example, in some manufacturing applications, one may have m 
different products being processed, each with its own characteristic (deterministic) 
processing time. The only stochastic elements that enter the picture are the arrival 
instants of the individual jobs to be processed. In such a setting, using the counting 
processes N1, N2, , Nm as primitive modelling elements may be quite natural. 

Even when it is natural to consider the m counting-processes N1, N2, 
?- ?, 

Nm, the 
data may naturally consist of arrival times for each of the m streams of customers. In 

particular, suppose that A(i, n) is the instant at which the nth customer of type i 
arrives to the queue. If A(n) = (A(1, n), - - - , A(m, n)) are the data, then we need 
to obtain properties of N from properties of A. Fortunately, it is known that in great 
generality SLLNs and FCLTs hold for N if and only if they do for A, and the limits 
are directly related; see Iglehart and Whitt (1971), Vervaat (1972) and Section 7 of 
Whitt (1980). We state a specific consequence of this theory here without proof. Let 

[xJ be the greatest integer less than or equal to x. Let X-' = (Ai-, 
.. 

). 

Proposition 2. Suppose that 0 < A, < o for 1 - i _ m. 

(a) t-1Ni(t)-+ -Ai a.s. as t- oo if and only if n -A(i, n)--+ >i-1 a.s. as n -- 00; 

(b) Z,(t) n?(n-'lR(nt) - At)-: Z(t) in Dm as n--> oo with Z having continuous 

paths almost surely if and only if 

ZZ(t) 
n-(n-'A([nt]) 

-xt) ~ Z*(t) in Dm as n -+ 

with Z* having continuous paths almost surely. If the limits exist, then Z2(t)= 
-),Z*(Qit), 1=i-m. 

In addition, if the limits exist, then Z* is a centered 
Brownian motion if and only if 2Z is a centered Brownian motion, in which case the 
covariance matrices C* and C are related by C,; = 

(A1;j)CiC. 
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Remark 3.1. The limit processes Z and Z* in Proposition 2(b) need not have 
continuous paths if we switch to the Skorohod (1956) M, topology; see Theorem 7.5 
of Whitt (1980). 

In some applications contexts, it is rather unnatural to work directly in terms of 
the counting processes N, - - - , Nm. For example, the standard queueing modell- 
ing approach is to consider a single stream of homogeneous customers that are 
handed out service times S1, S2, - .. stochastically. Assuming that the range of the 
Si's consists of the finite set {x1, .., xm}, we can set up counting processes 
Ii(n), , Im(n) defined as 

n 

Ij(n) = I(Sk = xj). 
k=l 

Thus, Ij(n) counts the number of customers, out of the first n to arrive, that are 
assigned service time xj. 

The process •I= 
(N1,.. 

, Nm) may be described in terms of the process 
I(n) = (l1(n), 

- 
. 

-, Im(n)) and the arrival time sequence A(n), where A(n) denotes 
the arrival time of the nth customer to the station. We now relate the SLLN and 
FCLT behavior of the processes (I(n), A(n)) and V. 

Proposition 3. (a) Suppose that there exists A, 0 < A < o, such that n-1A(n)--+ A- 
a.s. as n--+oo. If 

n-1I(n)---+jP 
a.s. as n--+ oo, then t-•1N(t)--+ Af a.s. as t --+ . 

(b) Suppose that A, 0 < A < oo, and the vector 
,j 

are deterministic. If 

(t)n=-( 
nInt••>)- 

Jt, nt -it)f(t) 
in 

Dm+l 

as n -- o, 

then 
Zn(t) 

= 
n(n-1N(nt) - At)- Z(t) in Dm as n--+oo, 

where 
Z(t) = Yi(Qt) -piAYm+i(At), t >O. 

In addition, if f(t)= B, a centered (m + 1)-dimensional Brownian motion with 
covariance matrix C, then Z is a centered m-dimensional Brownian motion with 
covariance matrix C, where 

Cii = ACij - A2PiCi,m+l - 2pjCj,m+l +• 
3ApipjCm+1,m+1. Proposition 3 provides a general basis for approximations. It also indicates the 

relevant data, namely, A, pi (1 
4 i - m) and the (m + 1) x (m + 1) covariance 

matrix C of the limiting Brownian motion. As an application of Proposition 3, 
suppose that the service times (S,:n > 1) are i.i.d. (with probability mass function 
P(S, = xi) 

= pi) and independent of the arrival-time sequence (A(n): n ? 1). If we 
further assume that A(n) satisfies a FCLT of the form 

(3.1) n ( 
)--t 

) oBo(t), n 
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where Bo is a standard (one-dimensional) Brownian motion, then the assumptions of 
Proposition 3 are satisfied, so that ,,(t) ->(t), where Y is a zero-drift Brownian 
motion with covariance matrix elements Ci =Pi (1 - p) (1 

_ 
i in m), •,+1,m+1 = o2, 

Ci = 
-pipj (1 

_-i, 
j 

- 
m), and 

Ci,m+, 
= Cm+,i = 0. Then, Proposition 3 states that 

the covariance matrix C of the Brownian motion limit process Z appearing in (2.3) is 
given by: 

C=-Api(1 
- 

Pi) + A3po2, i=j 
(3.2) C = 

- 

•pip 

+ A3pipor2, i j 
= Ap6 + (A2 - 1)ppi, 

where bij = 1 if i = j and 6,i = 0 otherwise. 
Assuming that the covariance matrix C takes the form (3.2), the covariance 

function of the limiting Gaussian process Q in Theorem 1 may be represented as 

(3.3) cov (Q(s), Q(s + t)) = H(u)H(t + u) du + o2A3 H(t + u)H(u) du 

for s, t >0, where H(u)= EXkkXk>MPk and R(u) = 1 - H(u), which agrees with 

previous results; see for example p. 176 of Whitt (1982). 
From (3.2), we see that the covariance matrix C is diagonal when r2A 2= 1, 

implying that each of the arrival streams N1, -..., Nm can be approximated by 
independent Brownian motions. As might be expected, this leads to enormous 

simplification in all the approximations derived in Section 2. Since the condition 

oA2 = 1 is always satisfied when N is a Poisson process, the condition o?A2 = 1 may 
be interpreted as stating that the arrival process, when appropriately rescaled, 
behaves like a Poisson process. For the M/G/oo system, it is well known that the 
number of busy servers and the cumulative number of departures at time t are 
independent Poisson random variables for each t; see pp. 18, 29 of Ross (1970). The 
mean (and variance) of the number of busy servers at time t is then A•' ft(u) du; 
i.e., the time-dependent mean and variance in the Gaussian approximation are then 
exact. 

The set-up described above, in which the service times are i.i.d. and independent 
of an arrival process satisfying (3.1), is the context in which all previous limits for 
the infinite-server queue have been established. Historically, the first contribution to 
this area was that of Iglehart (1965), in which the case of exponential interarrival- 
time and service-time distributions was considered. Borovkov (1967) (1984) then 
extended Iglehart's result to the above 'independent' framework, thereby permitting 
interarrival and service time distributions to be non-exponential. Later, Whitt (1982) 
provided a simplified proof of an important special case of Borovkov's result, 
namely that in which the interarrival times are i.i.d. (rather than merely satisfying 
(3.1)) and the service times are of phase type. The latter argument gives a clear 
explanation as to why the infinite-server Gaussian limit (see the definition of Q in 
Theorem 1) is typically non-Markov. It arises from the fact that one needs to keep 
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track of the residual service times of the customers in the system in order to obtain a 
limit process which is Markov; see also Glynn (1982). One characteristic of the 
above proofs is that they are all highly analytical, in the sense that they all involve 
reasonably explicit computations involving convergence of the finite-dimensional 
distributions (for example, both Iglehart (1965) and Whitt (1982) calculate certain 
infinitesimal means and covariances for related Markov processes). 

By contrast, the approach taken here is entirely probabilistic and involves only 
standard weak convergence tools, such as continuous mapping ideas and converging- 
together arguments. While it is limited to service times that are discrete-valued, this 
is not a significant limitation from a practical standpoint. Furthermore, the approach 
taken in this paper allows for significantly more complicated dependencies between 
interarrival times and service times. Our analysis clearly shows that, in contrast to 
the heavy-traffic limit theory for a single-server station, an FCLT for the service 
time sequence does not provide adequate information in the current setting. Rather, 
as suggested by Theorem 3, one needs to assume that an invariance principle holds 
for the 'empirical density' process (I(n),... 

- - - , I,(n)). Thus, in predicting the 
performance of a system having a large number of servers, one needs to gather 
significantly more statistical information than in the heavy-traffic single-server 
context. The theory that we have developed here points to the type of information 
that needs to be collected (namely, estimates for A, f, and C). 

We conclude this section by describing the covariance matrix C in one special 
dependent setting. Suppose that {(S,, A(n) - A(n - 1)): n 

>_ 1} is regenerative. For 
example, the service times and interarrival times may jointly form a finite-state 
irreducible Markov chain. If the first regeneration occurs at n = 1 and T1 denotes the 
time of the next regeneration, then it is easy to show that 

C, = E( I(S. = 
xi)-piAA(T- 1) )( I(S ,=x)-pjAA(TI-1) E[A(TI - 1)1 

Ln=1n=1 

p, = E I(S = xi) E(Ti - 1) 

A = E[A(T1 - 1)]/E(Ti - 1), 
if E[T + A2(T1)] < 00. In addition to providing a basis for calculation of A, p and C 
given model structure, these formulas provide a basis for estimating them from data. 

4. More on the heavy-traffic limit for a single station 

In this section, we return to the heavy-traffic limit theory of Section 2, and further 
investigate its structure. Our first result is a rate-of-convergence theorem for the 
'fully independent' GI/GI/oo single-station model. Specifically, we assume that the 
customer interrival-time sequence {A(n) - A(n - 1): n 

- 
1} is i.i.d. (with A(0) = 0) 

and independent of an i.i.d. service-time sequence {S,: n ? 1}, where as before the 
S,'s take values in the finite set {x, 

..., Xm,}. 
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Theorem 4. Suppose that EA(1)P <oo for some p >2 in the GI/GI/oo model. 
Then, for each t 

-> 
0, 

P(nt(n-'Q.(t) - mQ(t)) 
-x) 

= P(Q(t) 
5 x) + o(n-(P-1)/2(p+1)), 

P(n'(n- D,(t) - mD(t)) 5 x) = P(D )(t) 5 x) + o(n-(p-)2(p+')) 
and 

P(ni(n-'V,(t) - mv(t)) 5 x) = P(V(t) 5 x) + o(n-(p-1)/2(p+l)) as n - o0, 

where Q(t), 15(t) and V(t) have the Gaussian distributions in (2.5), (2.7) and (2.9) 
arising when Z in (2.3) is Brownian motion. 

The proof of Theorem 4 is based on the theory of strong approximation as in 

Csorg6 and R6vesz (1981)); see Cs6rg6 et al. (1987a) for related results in queueing. 

Remark 4.1. The rates of convergence in Theorem 4 are expressed for the 
one-dimensional marginal distributions, which are typically of principal interest in 

applications. However, as can be seen from the proof, the rates also apply to the 
random elements of D([0, T]) using the uniform metric on D([0, T]) and the 
Prohorov metric on the space of probability measures. 

Our next result combines strong approximation theory and the fluctuation theory 
for Brownian motion to obtain an approximation for the maximum of the 

queue-length process of a GI/D/oo queue in heavy traffic. 

Theorem 5. Consider a GI/D/oo queue in which E exp (bA(1)) <oo for some 

6 > 0. If t ,--+ satisfies tn = O(exp (n')) for some 0 5 r < 1, then 

sup Q(t) Q(t))(2x log (tn/x))- => 
1 as n --+m, 

where A-1= EA(1) and o2 = var A(1). 

Our next results pertain to approximations for steady-state versions of the 
queue-length, departure, and work-in-system processes. Our goal is to show that 
these steady-state processes converge to the steady-states of the corresponding 
limiting processes. To define the steady-state versions of these various processes, we 
consider the shifted processes O,(Qn), 0,(VM), B,(ADn) and B,(AN,), where 
AX(t) = X(t) - X(O), e.g., 

6e(Qn)(t) = 
Qa(s 

+ t), t 0 

6,(AN,)(t) = N,(s + t) - N,(s), t O. 

Proposition 4. Let Sk take values in {x1, .. , xm} and assume that (Sk k 
=1) 

is a 
stationary sequence independent of the arrival process N. If N is a renewal process 
in which A(1) has a continuous c.d.f with EA(1) = A?- < 0, then 

[0,(AN,), 0e,(AD,), o,(Qa), 0(v~)1] [N,,, ,,, Q,,, V,,] in Di as s 5-0, 
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where /D,, Q, and 2V, are the corresponding queueing processes associated with 
(Sk : k -1) and N,. Moreover, Qn and Vn are stationary processes, while N, and D/ 
have stationary increments. 

We now state our heavy-traffic limit theorem for the steady-state processes Q,, i, 
and V,,. Let Q*, D* and V* be the stationary versions of the limit processes from 
Section 2, i.e., 

* = Om(Q), D* = Om*(AD) 

and V* = Om.(V), where m* = max {xi: 1 5 i m}. (Under the following assump- 
tions, the limits in Section 2 will exist.) As noted earlier, Q* and V* are stationary 
Gaussian processes, whereas D* is Gaussian with stationary increments. 

Theorem 6. In addition to the assumptions of Proposition 4, assume that 
EA(1)2 < oo and 

fin(t) 
- 

nI(n-l1([nt]) - ft)# B(t) in Dm as n--oo, 

where B is m-dimensional Brownian motion. Then Proposition 3(b) holds for N as 
well as N with Y the common Brownian motion limit, so that 

n-1(,(t) - nAE pxi ) Q*(t) in D1, 
i=1 

n-1a2(f,(t) 
- nAt) D*(t) in D1, 

n- ((t) - 
-n-pix 

2) V*(t) in D, as n -- oo, 

where A-1 = EA(1). 

Theorem 6 supplements Theorem 2 of Whitt (1982), which applied a stochastic- 
order argument to prove that a normalized version of ,,(t) converges to Q*(t) 
when the service times are i.i.d. and exponential. Our result for D,, verifies a 
conjecture stated on p. 540 of Whitt (1984); this conjecture was used in several of 
the results stated there. 

Our final theorem of this section is a rate of convergence result for the 
steady-state distributions described above. Specifically, we shall obtain a Berry- 
Esseen theorem for the central limit approximation to the distribution of Q,(t) 
where the system under consideration is the GI/D/oo model. It shows that the error 
in the Gaussian approximation for Qn(t) is roughly of the order of the reciprocal of 
the square root of the arrival rate. 

Theorem 7. Consider a GI/D /loo queue in which A(1) has a continuous c.d.f. and 
satisfies EA(1)4 < oo. If S, = x, A-1= EA(1) and a = (var A(1))12 > 0, then 

P{n-?(Qn(t)- nAx) - aA•xdy} 
= P{N(O, 1) y} + O(n-?) as n--* o0. 
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5. Extension to networks 

Our purpose now is to show how the theory developed for single stations can be 
applied to networks. We assume that the network consists of d stations and m 
customer classes (d < oo and m < oo). We assume that the routing is deterministic for 
each class. Customers in class i visit 1(i) < oo stations, not necessarily distinct, before 

leaving the network. Let si(j) be the jth station visited by customers in class i. We 
also assume that class-i customers receive deterministic service time sii at the jth 
station along their route. Thus, a customer of the ith class that enters the network at 
time t leaves station si(j) at time t + xi,, where xij = sil + * * * + si. 

Let N'(t) be the total number of class-i customers to arrive to the network in the 
interval [0, t]. We say that a customer of class i is at stage j of his route when the 
customer is at the jth station of his route, which is station s1(j). Then the number of 
class-i customers at stage j of their route at time t is given by N'(t - xij-1) - N'(t - 

xi). Hence, the total number of customers at station k at time t is just 
m 1(i) 

Qk(t) = >E 6(s,(j), k)[N'(t - xi,j-1) - N'(t - 
xij)], 

i=1 j=1 

where 6(j, k) = 1 if j = k and 0 otherwise. We accelerate the arrival rate by a factor 
of n to construct the nth queueing system. Hence, the vector queue-length process 

O1(t) = (Q(t), , Qd(t)) associated with the nth system has components given by 
m 1(i) 

Qk(t) = 6(si(j), k)[N'(n(t - xi,j-1)) 
- N'(n(t - xij))]. 

i=1j=1 

We can now argue precisely as in Theorem 1 to obtain the following limit theorem 
for Qn(t). 

Theorem 8. If (2.3) holds, then 

n (n -10n(t) - n 
(t)) Q * 

*(.) in Dd as n 
- oo, 

where 
n'(t)= 

(m1(t), 
. . ., 

md(t)) and Q*(t) = (Q *(t), - 
. ., Q* (t)), with 

m 1(i) 

mk(t) = E E 6(Si(j), k)ki([t - xi,j-1]+ - [t - xij]+) 
i=1 j=1 

m 1(i) 

QZ(t) = 6 (si(j), 
k)[Zi(t 

- 
Xi,j-1) 

- 
Zi(t 

- 
Xii)]. i=1 j=1 

Similar limit theorems can be obtained for other processes, such as the cumulative 

departure processes, both internal and external to the network, and the vector 
workload process. 

Network limit theorems for the vector queue-length process are also described in 
Whitt (1982). The approach taken there is to assume that all but one of the arrival 
streams for the various customer classes are Poisson (with the remaining arrival 
stream being a general renewal process); the service times are independent random 
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variables of phase type. While the number of customer classes m in our set-up would 
typically grow rapidly as a function of d, similar growth appears in the phase-type 
analysis. Furthermore, the limit processes that appear in Whitt (1982) are 
multivariate Ornstein-Uhlenbeck processes, whereas ours is a sum of increments of 
Brownian motion. The covariance function of an Ornstein-Uhlenbeck process is 
obtained by solving a system of linear differential equations. On the other hand, the 
covariance structure of Q* above can be easily analyzed by using the stationary 
independent increments property of the vector-valued Brownian motion B. As a 
consequence, it seems likely that the approach taken in Theorem 8 is algorithmically 
more attractive for calculating the covariance structure of the Gaussian limit. 

It is important to note that we can extend the approach beyond deterministic 
service times and deterministic routing. First, suppose that we wish to assume for 
a given customer class that the service times experienced along the route are 
random variables. This can be done by approximating the joint distribution of the 
service time sequence by a distribution with finite support on the appropriate 
product space. We then split the original customer class according to the number of 
point masses in the discrete approximation to the joint distribution. Each sub-class 
thus created then experiences only deterministic service times. Hence, it can be 
captured within our current framework. Similarly, we can split the original customer 
classes to represent stochastic routing. Thus, the approach in this paper permits 
significant modelling flexibility. 

Remark 5.1. It is important to note that in the case of Poisson arrivals with 
general routing (independent of the arrival process), the exact distribution has a 
relatively simple product-form for each t; i.e., the queue lengths are independent, 
Poisson distributed and independent of the Poisson number of departures by time t; 
see Harrison and Lemoine (1981). Then the means and variances in the Gaussian 
approximations are exact, so that the approximation reduces to familiar Gaussian 
approximations for the Poisson distributions. 

6. Proofs 

Proof of Proposition 1. Under (2.2), 2(nt)/n = tl(nt)/(nt)---tA a.s. as 
n---.oo. Hence, for each s O, N'(ns)/n -*- A•s a.s. as n -- oo. Plugging these limits into (2.1) 

yields the result. 

Proof of Theorem 1. Observe that n (n -,g(t) - (ZQQ(t)) = 
g(2n)(t), 

where 
g:Dm,-Dm is defined by 

g(z)i(t)=z,(t)-z,(t-xi). 
Hence, we can apply the 

continuous mapping theorem, Theorem 5.1 of Billingsley (1968), to conclude that 

g(Z•) :g(Z) in Din,. The map g is measurable and continuous almost surely with 
respect to Z by Theorem 4.1 of Whitt (1980), the discontinuity condition in (2.3) 
and the continuity of the shift operator O, for s <0. The discontinuity condition in 
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(2.3) implies that 

PU [Disc (Z1) Disc (0-x,,)] = 0, 

which is what we need here. Next, we obtain n7(n-lQ,(t) - mQ(t)) =>Q(t) by 
applying the continuity map with addition, again invoking Theorem 4.1 of Whitt 
(1980) and the discontinuity condition in (2.3). Here we need the union of all 

(2) pairwise intersections of the sets 

Disc(Zi) 

and 
Disc(0-,,i) 

to have 

P-measure 0, which is implied by the continuity condition. 

Proof of Theorem 3. The results of Q,(t, y) and Q,(t, y) follow as in the proof of 
Theorem 1. To obtain the limits for V, we apply the continuous mapping theorem 
once again with the functions h:Dm,--+ Dm defined by 

h(z)i(t) = f [zi(t) - z1(t - xi + y)] dy, 

which is continuous (see Lemma 1 below), and simple addition, which is also 
continuous because h(z) has continuous paths for all z E D. To do part (a), note 
that (2.2) implies the corresponding FSLLN, i.e., that 

n-1•(nt)--- 
Xt in D, as n- a 

a.s.; see Theorem 4 of Glynn and Whitt (1988). 
To show that the function h above is indeed continuous, we apply the following 

lemma. 

Lemma 1. The function g defined by g(z)(t) = fbz(t-y)dy, c 
- 

t d, is a 
continuous mapping of D([a - d, b - c], R) into C([c, d], R), where D is endowed 
with any of the Skorohod (1956) topologies and C is endowed with the uniform 
topology. 

Proof. Suppose that z, -- z as n --) o in D([a - d, b - c], R) endowed with one of 
the Skorohod (1956) topologies. This implies convergence in Skorohod's weakest M2 

topology, which is equivalent to convergence in the Hausdorff metric m applied to 
the completed graphs in [a - d, b - c] x R, where the completed graph is the set 

F(z) = {(t, x): z(t-) -5x -5 z(t), a - d -5 t -5 b - c}; 
see Pomarede (1976). It is easy to see that Ig(z,)(t) - g(z)(t)l is bounded above by 
the area of the E-neighborhood of z in the Hausdorff metric when m(z., z) 

= 
E. It is 

easy to see, using Lemma 1 on p. 110 of Billingsley (1968), that for each z this area 
converges to 0 as m(z,, z)-+-> . To see that g(z) is continuous, note that 

Ig(z)(t + E) -g()(t)l = 
z(t+ 

E - y) - z(t - y) dy 

-2E 
sup Iz(t)l. 

a--e•.tb 
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Proof of Proposition 3. (a) Let N(t) count the number of arrivals during [0, t]. As 
in part (i) of Proposition 2, N(t)/t-- A a.s. as t-, oo. Then, Ni(t) = FN(t) I(S, = xi) = 

Ii(N(t)), 
so N'(t)/t = I,(N(t))/(N(t)) - 

(N(t)/t)-*piA a.s. as t-, oo. 

(b) Observe that 

(6.1) Zni,(t) 
= 

Ini(n 
-N(nt)) - 

pi•n,,,m+ 
(n - N(nt)) 

+ n-pijA(A(N(nt)) - nt), t ?0. 

By Proposition 2, 

ni (nt) 
-t, 

t (_m+A(t), -A'm+i(At)) in D2 as n -+ oo. 
n n 

Then, by applying composition plus addition, Theorem 5.1 of Whitt (1980), 

(6.2) n -(A(N(nt)) - nt) 
: 

0 in D1 as n -- 0. 

Combining (6.1) and (6.2), plus Theorem 4.1 of Billingsley, we find that 

(Z,,(t): 1 : i : m) ~ 
(i(At) 

- piAYm+(At): 1 5 i 5 m) in Dm as n -- oo. 

Proof of Theorem 4. The idea is to use the theory of strong approximation as in 
Csorgo and R6vesz (1981). Note that 

N(t) N(t) 

(t) = I(S, 
= x), - - - I(S, = xm) 

n=1 n=1 

We can combine Theorem 4 of Einmahl (1989) and Theorem B of Csorgo et al. 
(1987a) to obtain a multivariate analog of Theorem 1.1 (ii) of Csiorgo et al. (1987b). 
(We use the same argument as given for the scalar case.) 

This yields the inequality 

P sup IIN(ns) - nAs - B(ns)ll > x) - 
(n)nx -P 

\05s:-nt 

for an appropriately defined probability space, where 13(n)---0 as n---*oo. As a 
consequence, we have 

P(In-(Q,,(t) - nmQ(t)) - Q,(t)l > n~-x) < fl(n)nx-P 
where Q,(t) = 

n-Em-1 
[Bi(nt) - Bi(n(t - xi))] has a distribution independent of n. 

Suppose that x,, is chosen so that n-Ix, = 
p(n)nxnP; 

then n-x,, = o(n-(P-1)/2(p+)). 
It follows from Theorem 1.2, p. 96, of Ethier and Kurtz (1986), that the Prohorov 
distance E, between the distributions of n-?(Q,(t)-nmQ(t)) and Q(t) is 
o(n-(p-)/2(p+1)). Hence, it follows, by definition of the Prohorov metric, that 

P(n-(Qn(t) - nm(t))I x) P(O(t) x + 2E,) + 2E,. 

Since Q(t) is Gaussian, it has a continuous density, so that P(Q(t)<x + 2e,)= 

P(O(t) 
-x) 

+ O(e,). So, 

P(n-?(Q,(t) - nm,(t)) 
-x) - 

P(Q(t) 
-x) 

+ o(n-(p-)/2(p+l)) 
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We can similarly show that 

P(n -(Q (t) - nmQ(t)) ; x) 5 P(Q(t) > x) + o(n-(p-1)2(p+1)), 

proving the result for the queue-length process. Similar arguments work for the 
other two processes. 

Proof of Theorem 5. We apply a strong approximation argument due to Csorgo 
et al. (1987b) to conclude that on an appropriately defined probability space, 

sup IN(s) - As - a_)B(s)l = O(log t) a.s., 
O0<_sSt 

where B is a standard Brownian motion; see (1.10) of Csorgoi et al. (1987a). Then, 
after inserting the scaling by n, 

sup [Q,,(t) 
- nmQ(t)] = aA sup [B(nt) - B(n(t - x))] + O(log n) + O(log t,) a.s. 

0<t:-tn 
O-t tn 

Hence, 

(6.3) n-1 sup [Q,,(t) 
- nmQ(t)] - aAl sup [n-I(B(nt) - B(n(t - x)))] 

O tSt, 
O--t<tnt 

= V1iogtO(Vl1og /tn) 
+ o(l) = o(iog t,) a.s. as n 

-•o. 
(We use t, = O(exp n') to get O()i ogtIn) = o(1).) But 

(2x log (t,,x))-1 sup [n-IB(nt) - n-B(n(t - x))] 
Ot<-tn 

2 (2x log (t,,x))-1 sup [B(t) - B(t - x)]-- 1 a.s. as n-)oo, 
O-t'tn 

from (1.2.2) of Csorg6 and R6v6sz (1981) with aT = x. ( denotes equality in 
distribution.) Combining this with (6.3) yields our result. 

Proof of Proposition 4. First, the convergence O8(AN,,) > N,, as s --o0 is just the 
familiar convergence to the equilibrium renewal process associated with N,. By the 
standard renewal argument, the interval until the first point in 0,(AN,,) converges 
weakly to the stationary forward recurrence time associated with the renewal 
process 9,,, which has interarrival times n-1A(1). The limiting stationary forward 
recurrence time is proper because EA(1) <o0. Consequently, by Theorem 3.2 of 
Billingsley, there is convergence of the entire interarrival-time sequences in R". 
Finally, since A(1) has a continuous c.d.f., all interarrival times are strictly positive 
almost surely so that there is weak convergence of the associated counting 
processes, as in Section 2 of Whitt (1974). The other limits follow by applying more 
continuous mappings, as in Whitt (1974). The assumptions that N is renewal and 
A(1) has a continuous c.d.f. guarantee that no two jumps (arrivals or departures) 
occur at the same time in the limit process (almost surely). As we have seen before, 
the assumption that Sk takes values in the finite set {x1, ? ?, x,,,} enables us to easily 
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express the processes explicitly. To illustrate, we treat the queue length process for 
n = 1. (The other processes can be treated similarly. Setting n 

>_-2 
just rescales the 

interarrival times.) 
Note that 

m 

Os(Q1)(t) - Ql(s 
+ t) = > [N'(t + s) - N'(t + s - xi)] 

i=l 1 

m N(t+s) 

= Y, I(S,= x,) 
i=1 n=N(t+s-xi)+1 

m N(t+s)-N(s) 

•_ 
I(Sn =x,), 

i=1 n=N(t+s-xi)--N(s)+1 

which implies that 

m Ni(t+xm) 

O,(Q)(t) 0 Q(t + S) I(S, = xi) in D1 as s - oo 
i= 1 n =RN(t+xm -xi)+ 1 

where, without loss of generality, we assume that xl < ... <Xm. (We introduce the 

xm term to ensure that the time argument of N is non-negative for all t 
-0. 

To 
justify the weak convergence, use the almost sure representation of the weak 
convergence of 6B(AN,) provided by the Skorohod representation theorem. Also 
use the continuity of the c.d.f. of A(1) to ensure that in the limit, almost surely, no 
arrivals and departures occur simultaneously.) 

Finally, to see that the claimed stationarity holds for the limit process [9N,/, ,, 
Q,, 

•,], 
note that the same limit holds for the original processes shifted by 0+,, 

as 

s--O0, but these shifted processes converge to the shifted limit process [8,(AN), 

O,(AD), 6,(Q,,), 6,(B,,)] as s---oo. 

Proof of Theorem 6. Proposition 3(b) holds for both counting processes N and N 
by Donsker's theorem for the interarrival times, the assumed convergence of fln, 
and Theorem 3.2 of Billingsley. (The first interarrival time of N,, is asymptotically 
negligible, so it does not alter the result by Theorem 4.1 of Billingsley.) Proposition 
3(b) implies that (2.3) holds with y = 2 and 2 Brownian motion, and it characterizes 
the limiting covariances. The limits for Q,,, ,, and 17, then follow from Theorems 
1-3, using the counting process N,, and restricting attention to the space D([m*, 00), 
R). For example, note that 

m N(n(t+xm)) 

(6.4) Qn(t) 
= - Z I(S> = xi), 

i=1 j=N(n(t+xm-xi)+I 

which is a valid representation for Q,,(t) for t >m* using the arrival process N. 

Proof of Theorem 7. From (6.4), we see that Q.(t) ~ (nx) where N is the 
equilibrium renewal process associated with N. Let A(m) be the arrival times 
associated with N. Of course, {A(m) - A(m - 1): m 

- 
2} {A(m) - A(m - 1): 
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m 
_2}) 

and A(1) is independent of (A(m) - A(m - 1): m 2}. Moreover, 

EA(1)3 = A 
x13p(A(1) > x) dx EA(1)4< 

Hence, we can apply the Berry-Ess6en theorem for non-identically distributed 
summands on p. 544 of Feller (1971) to show that 

sup IP((A(n) - A-ln)]/n oy) - P(N(O, 1) y)I = O(n-). 
y 

Then, 

P(N(nx) - nAx > zn?) = P(A([nAx + zn]J) <nx) 

( 
nx --([nx+ znoj) = P N(0, 1) < + O(n -) 

P= (N(0, 1) < -A-2x -z 0+ O(n-1)) + O(n-1) 

= P(N(O, 1) < -Afx- za-')+ O(n-1), 

where we used the fact that the normal distribution has a bounded continuous 
density. 
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