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ABSTRACT

This paper is concerned with the use of simulation to

compute the conditional expectations that arise in the

method of conditional least squares. Our approach

involves performing simulations at each point on a

discrete grid imbedded within a statistical parameter

space. Our main result concerns the number of grid

points and amount of simulation necessary in order

to obtain a degree of accuracy comparable to that in

the case in the which the conditional expectations are

available in closed form.

1 INTRODUCTION

In this paper, we discuss a method known as “condi-

tional least squares” that is widely used for purposes

of statistical parameter estimation in the stochastic

process setting; see Hall & Heyde (1980) for an intro-

duction to the method. This method requires mini-

mizing a function over the parameter space that in-

volves conditional expectations defined in terms of

the stochastic process under consideration. In certain

applications, it is natural to compute the conditional

expectations via Monte Carlo simulation. In doing

so, it is clearly practical only to perform simulations

at a finite number of different parameter values. This

leads naturally to the concept of “grid-based simula-

tion”, in which simulations are performed at various

points comprising a grid.

In Section 2, we introduce the method of condi-

tional least squares in the context of parameter esti-

mation for continuous time Markov chains (CTMCS).

Section 3 concerns the asymptotic analysis of condi-

tional least squares under the assumption that the

relevant conditional expectations can be computed

in closed form. Finally, Section 4, we study the
use of grid–based simulation in the CTMC context

and prove our main result (see Theorems 1 and 2).

We show that if the CTMC is observed at n equally
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spaced time points, then one needs to simulate on the

order of n2 time units of the CTMC so as to ensure

that the simulation based minimization gives roughly

the same solution quality as that associated with the

case in which the conditional expectations are avail-

able in closed form. This is accomplished by starting

with a coarse grid, and refining it successively as more

information on the likely location of the minimizer

becomes available.

2 PROBLEM FORMULATION

Suppose that we observe a stationary finite-state
continuous–time Markov chain X = (X(t) : t > O),
with the intention of using the observed data to make

inferences about the generator underlying X. In this

paper, we shall adopt a parametric statistical formu-

lation for this inference problem. Specifically, we shall

require that the generator underlying X be a mem-

ber of a parametric family (A(O) :8 c A) (of genera-

tors defined on the state space S associated with X.

Our goal, then, is to develop a means of estimating

the “true” value of the d-dimensional parameter 0,

call it @, underlying X. For example, in the context

of the M/M/l/co single-server queueing model, this

would correspond to attempting to estimate the vec-

tor 6* = (A”, p“ ), where ~“ and p“ are the arrival and

service rates for the queue, respectively.

Without any significant loss of generality, we shall

assume that the parameter set A is the d-dimensional

unit hypercube. We shall further assume that:

Al. i) ISI < co;

ii) A(13* ) is irreducible;

iii) A(.) is three times continuously differen-

tiable on A;

iv) { (z, y) : A(8, z, y) # O }

OEA;

v) O* lies in the interior of A.

is independent of
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If X is observed continuously over some finite inter-

val [0, t], the method of maximum likelihood applies

directly here (see, for example, Billingsley 1961). In
particular, let A(6, z, y) be the (z, y)’th element of

the generator A(O), let Y = (Y. : n ~ O) be the em-

bedded discrete–time Markov chain associated with

X, and let J(t) be the number of jumps of X over

[0, t]. Then, the likelihood function LC(6, t) can be

easily written down explicitly:

(1)

i =0

. exp(~~ A(6, X(s), X(s)ds).

The maximum likelihood estimator for O* is then

taken to be the maximizer of L= (., t) over A.

However, in many applications, X is observed

only discretely, see for example Bridges, Ensor and

Thompson (1992). In particular, we shall be con-

cerned with the situation in which X is observed

only at the integer times O, 1,2, ..., n. Let PO(.)

be the probability measure on the path space of X

under which X evolves according to a stationary
process with generator A(8), and set P((3, t, z, y) =

P@(X(t) = y I X(0) = c). If we put Xi ~ X(i), then

the likelihood function Lm (6) associated with the dis-

crete sample (X., . . . , Xn ) is given by

n-1

L.(O) = ~ P(61 l, Xi, Xi+l).
inO

However, in contrast to (l), the likelihood function
here is not a simple function of the matrices (A(9) :

0 E A) that are typically directly specified by the

modeler. Rather, in order to compute Ln (0), it is

necessary to compute the P(O, 1, ~, y)’s from A(6).

Setting P(O, t) = (P(8, t, z, y) : z, y ● S), this may

be accomplished either by taking advantage of the

fact that

P(6, t) = exp(A(f7)t)

or by noting that the transition semigroup (P(6, t) :

t > O) is the unique solution of both the backward

Kolmogorov differential equations

P’(8, t) = A(0)P(@, t)

such that P(O, O) = I

and the forward Kolmogorov differential equations

P’(O, t) = P(O, t)A(6)

such that P(6, O) = 1.

Clearly, significant numerical effort will generally be

required to compute L.(6) for a fixed value of 6.

Given that L.(.) needs to be maximized over A in

order to compute the maximum likelihood estimator,

the numerical challenge is even more daunting.

In an effort to develop a more tractable numeri-

cal approach to such inference problems, Klimko and

Nelson (1978) proposed the method of conditional

least squares. In particular, for a given ~ : S ~ l?,

the idea is to define the estimator O: as the minimizer

of the sum of squares

: ‘&xz+l - -w(x+l)lx])’-
,=0

Setting g(~, ~) = Ee[~(X1 ) I X. = z], we note that

the method of conditional least squares requires the

computation of g(8) = (g(O, z) : z E S). This can

be accomplished by, for example, solving the linear

system of differential equations

U’(6, t) = A(6)u(6, t) (2)

subject to u(O, O) = ~,

in which case g(t9) = u(6, 1). However, our interest

in this paper stems from the fact that g(/3) can also

be computed via Monte Carlo simulation. The sim-

ulation alternative is particularly attractive, relative

to (2), when ISI is large. The idea that simulation

has a useful role to play in the statistical estima-

tion context has received significant attention from

the statistics and econometric communities; see, for

example, Cook and Stefanski (1994), Diggle & Grat-

ton (1984), Duffie and Singleton (1993), Ensor (1994),

Lee (1992), Keane (1994), Maa et al. (1993), Mc-

Fadden (1989), Pakes and Pollard (1989), Thompson,

Brown and Atkinson (1988).

Before concluding this section, it should be noted

that conditional least squares typically exacts a cost

from a statistical standpoint. While more numeri-

cally tractable then maximum likelihood, the asymp-

totic variance of 19~tends to be larger than that of

the maximum likelihood estimator. Thus, d; does

not extract as much of the statistical information

present in the sample as does the method of maxi-

mum likelihood. This is typical of the trade off be-

tween statistical efficiency and computation tractabil-

ity that is common to the area of statistical inference
for stochastic processes.

3 LIMIT THEORY FOR CONDITIONAL
LEAST SQUARES IN THE CTMC SET-
TING

In this section, we fully work out the asymptotic limit
theory for conditional least squares in the CTMC set-
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ting. (The existing literature tends to focus on dis-
cussion of the method in a general framework, under
hypotheses that need to be verified on a case-by–case
basis).

Our first goal is to verify consistency of O; as an.
estimator of 6*. Our argument requires that we start
by establishing smoothness of g(.). Letting ei be the
i’th unit vector in R?d. Assume, without any loss of
generality, that ei is an admissible direction from the
point 60, in the sense that 60+ hei belongs to A for h

sufficiently small. Then we can use Al iv), (1), and
Taylor’s theorem to write

h-1(P(60 + hei, t,x,y) – P(OO,t,z,y)) (3)

[
= Ef)o I(x(t) = y) ;~;;:;; [ x(o) =.]

c

where ~ lies on the line segment connecting 60 and
60 + hei and 8,LC(~, t) is the i’th component of the
gradient of L=(., -t) with respect to 6, evaluated at ~.
Now,

Jo

By Al i) and iii) it follows that l~iLc(&, t)l ~ (a +

bJ(t))Lc (~, t) for deterministic constants a and b.
Furthermore, for c arbitrarily small, positive, and
deterministic, we can find ho so that for Ihl < ho,

L.(L$,~)/L.(eo,~) < (1 + C)J(tJd with d > 0 and de-
terministic. Since J(t) is stochastically dominated
by a Poisson random variable having mean equal to
sup{ –A(6o +hei,~,~) : Iht < ho, x E S } we may

conclude that E@O(a+ bJ(t))(l + c)J(~)d < m for c
sufficiently samll, thereby permitting the application
of the dominated convergence theorem in (3). Hence,
P(-, t, z, y) is differentiable on A. One may easily pro-
ceed to show that P(s, t, x, y) is, in fact, three times
differentiable under Al iii).

Let P(.) and E(.) denote the probability and ex-
pectation operators on the path–space of X associ-
ated with A(19*). Also, let ~ = (m(z) : z c s)
be the stationary distribution of X under P, and
let P(z, y) = P(O*, 1, z, y). The strong law of large
numbers for irreducible CTMC’S guarantees that for
z,y Es,

as n - cm. Setting a(f3) = E[(~(XI ) – g(d, XO))2],
we note that

an(e) = ~(f(y) – g(e, *)) Z?rn($, ~/)

X!.Y

and hence

sup lam(e) – a(o)l
6~A

<sup{ (f(y) –g(@, a))2: z,y GS, 6cA}

.maxr,y 17rn(z,y) - 7r(~)P(z, y)l.

The supremum of lg(6, $)1 over 19E A and! $ E S is
finite because of the continuity of P(., 1,$, y) over A
(a compact set), and the finiteness of S. l[n view of
(4), we have therefore proved the following result.

Proposition 1 UndeT Al, a.(.) conveTges uni-

formly P ia.s. to a(.) oveT A.

Let 6; be any (measurable) selection frc~m the set
of global minimizers of an(.). In view of Proposition
1, strong consistency of 19~to 19*follows if we show
that 6* is the unique global minimizer of a(.). For
this, we need an identifiability assumption.

A2. If f31,02 E A and g(O1) = g(02), then 191= 62.

Observe that

[
a(6) = a(O* ) + 2E (f(Xl ) – g(e” , Xo))

.(9(6*, XO) - 9(~, xo)) 1
[ 1+E (g(6J*, Xo) – g(O, Xo))2 .

Since ~(X1 ) – g(o”, Xo) is a martingale difference un-
der P, the second term on the right-hand side van-
ishes. So, under A2, 0“ is indeed the unique global
minimizer of a(.), proving our next result.

Proposition 2 UndeT A1-A2, O: d O* P as. as
n+ccl.

To deal with the central limit theory for the es-
timator 19~,note that since both an(.) and a(.) are
smooth, it is evident that Van (6J ) = VW(6* ) = O
(note also conditon Al v)), so that

Van(e; ) – van (e* ) = Va(e” ) – van, (e* ).

Let t%an (~) be the second partial derivative of an
with respect to Oi and 6j, evaluated at <. Then, by
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Taylor’s
segment

theorem, there exists <ni lying on the line
connecting 19;and 8* such that

(d~j~.(f.~) :1< j < d)(6J-8*) = 8,a(@)-~iO’.(&)

holds for 1 < i < d. Set H. = (t3~’a.(~.i) : 1 <
i, j < d). Then,

H.(e: – 19*)= Va(e”) – v%(w).

The proof of Proposition 1 also carries over to show-
ingthat f)~jan(.) converges uniformly P as. to ~~j~(”)

on A. Since 6: ~ 9* P as. as n ~ co, It fol-
lows that H. ~ H P as. as n + m, where
H = (t3@(&) : 1 < i,j < d). Because 0“ is the
unique global minimum of a(.), H is positive defi-
nite, and consequently H; 1 exists for n sufficiently
large, and H~l + H-l P as. as n a co. Hence,

0; - 0“ = H; ’(Va(O*) - VCYn(@*)).

But .71

,“

i=l

where Di = 2(~(Xi) – g(8*, Xi-l )) Vg(O*, Xi_l).
Now, (D; : i ~ 1) is a stationary sequence of
square-integrable martingale differences, and conse-
quently the martingale central limit theorem (CLT)
(see Ethier and Kurtz (1986)) yields

fi(va(o”) - van (e*)) -% IV(O, c)

as n ~ cm where N(O, C’) is a d–dimensional mul-
tivariate normal random variable having covariance

T. We have therefore establishedmatrix C = ED1 D1

the following CLT for 6:.

Theorem 1 Under AI-A2,

fi(% -0”) ~ H-lWO, C)

asn~co.

The above analysis presupposes that g(.) can be
easily evaluated, so that O: can be computed without
difficulty. As indicated earlier, we are especially con-
cerned with problems in which g(.) is computed via
simulation, thereby introducing additional error into
our estimator of 6*; this is the subject of Section 4.

4 GRID-BASED SIMULATION

Clearly, the conditional expectations associated with
g(o) can easily be computed via simulation of X.
Specifically, suppose that (W’ (i, 6, Z) : i, ~ z 1, 0 E
A, x c S) is a collection of independent random vari-
ables in which (Wj (i, 8, z) : i, ~ ~ 1) is identically

distributed with com-mon dist~bution PO(f (Xl ) c

. IX.= z). We let P(.) and E(.) denote the prob-
ability and expectation operator associated with the
probability space that supports the Wj (i, 8, ~)’s and
the process X. Then,

is an estimator of g(e, x). Furthermore, an(0) can be
calculated numerically via the Monte Carlo estimator

an(e, i, m) = ~(f(y) – g(e, z, i, rn))j 7rn(z, y). (5)
Z,Y

We note that, computationally speaking, an (6, i, m)
requires only that g(O, x, z’,m) be calculated for states
ZE{XO, ..., X~_l }; this observation can result in
significant computational savings when IS[ is (very)
large.

However, it is clearly impossible to compute the
function an (., i, m) over the entire parameter space
A. Instead, one needs to restrict attention to a fi-
nite subset of A. Our approach will be to generate
an (., i, n) on a uniform grid (hence, the term “grid–
based simulation” ). The grid will then be successively
refined aa more information becomes available on the
likely location of the minimizer of an (.).

More specifically, the iteration proceeds as follows.
Suppose that at iteration i, we have a “guess” 19~(i–l)
available as to the likely location of some point in the
set argmin{ ctm(6) : 0 E A }. For z >0, let

I(z) ={(il,... ,id ):ijez, lijl<z, l<j<d}.

For 6 positive, we then proceed to generate
an (6, i, mn (i)) over the grid points 6 ~ Am(i), where

An(i) = (@J(i – 1) -t- n-(i+1J6.1(n2&)) n A.

We next select 19~(i) to be any point in the set of
global minimizers of {an (0, i, mm(i)) : 0 ~ An(i) },
and move on to the next iteration. The algorithm
is initiated by setting o;(0) = O, and is terminated
at iterati~n k with the final computed parameter es-
timator O. = O;(k). Our choice for the sequence
{mn(i):i> l}” IS mn (i) = [n4[i+2)&] (where [.]
denotes the greatest integer).

Let II - II be the norm on lRd defined by I[zll =
maxl<i <d Izi 1. Our main mathematical result of this.-
section is the following.

Proposition 3 Assume A1-A2?. FOTeach jized k ~ 1
and 6> 0,

F([[6: –O;(i)ll < n-~$, 1< i <k) + 1

asn~co.
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Proof. Let Gn; = a(Xo,... , Xl, Wj(l, 6, z) :0 E
A, x ES, j ~ 1, 1< i). Then,

~(11% –e:(i) [1< n-i$, 1< i < k) (6)

1.f(\[ O: – 19:(k) II< nk6 I @~-l) .

On the event { II 8; – 19*(k – 1) II ~ ntk-1J6 }, the
convex hull of An (k) contains 19~.Hence, there exists
a point 13~C(k)c Am(k) for which II &m– 6Jc(k) II <
n ‘S(k +1). We next observe that a sufficient condition

for 6:(k) to be within n -Jk of 6; (in the mm II . 11)

is that ~~c(k) have a strictly smaller objective value
(with regard to the objective function an(., k, mfl (k))
than all those points 0 E Am(k) such that II6: – 6 II >

–‘6 We now proceed to establish that this eventn.

occurs with high probability under our hypotheses.
Observe that for any positive deterministic ii, there

exists deterministic no such that for n > no,

{ @n(e, k,mn(k)) > %(%(~), ~, WI(~)),

O E An(k), 110–8; II > n-k& }

~ { an(~) > CIn(tlgc(k)) + iin-2k6, 6 c An(k),

Ile-e:ll>n-”}

n{ IG(6) – am(tl, k, 7n~(k))l <

0 c An(k)}.

Hence, for n sufficiently large,

(P an(o, k,?nn (k)) > an(e;c(k), k, inn(k)),

6 e An(k),ll 6 – 19~II > n-k~ I %,~-1
)

(7)

(~I an(e) > CYn((3~c(k))+ iin- 2k6,0 c An(k),

110-0~ II > n-k’
)

o ~ #( [%(e) -%(e,k,%(~)) [
OcAm(k)

)
< n-2(k+’)’ ] ~n,k-1 o

(We used above the fact that 6~C(lc) is ~~,k-~ mea-
surable and the independence of the Wi(i, 6, z)’s.)
Since d: is a minimizer of an(.), Van (e:) = O so
Taylor’s theorem (see, for example Sen and Singer
(1993)) yields

.

%(6) = %(%)+ ;(8–fz)Tm(&(fo)(@– %)>

where ~n(0) lies on the line segment connecting @and
6J, and llm (z) is the Hessian of am(.) evaluated at
z. Now, as asserted earlier, lIn (.) is a continuous
matrix function which converges uniformly on A, as
n * CQ, to the limitingcontinuous matrix function

H(.), where H(.) is the Hessian of a(.). Furthermore,
0“ is the unique global minimizer of a(.), so H(.) is
positive definite in a neighborhood of 0“. Now, the
minimal and maximal eigenvalues of a positive defi-
nite matrix are continuous functions of their matrix
argument. As a consequence, the minimall and max-
imal eigenvalues of H.(.) converge uniformly to the
corresponding eigenvalues of H(.). Thus, it is evident
that there exists positive constants e, t, ~~such that
foranyzEEtd,llO-O*ll<E,

for n large enough P as. (We also use here the fact
that our norm can be bounded above and below by
constant multiples of the Euclidian norm.) Now, for
k z 2, the diameter of An(k) shrinks as n ~ co.
Consequently, on { II 19~– 8; (k – 1) II ~ n-6(k-1) },

and for n large enough,

for 6 G A.(k), k ~ 2. In view of the fact that
II O~c(k) -6: [1 ~ n-8(’+1) itfollows from (8) that
for k z 2, there exists a ~n,l measurable random

variable Nk that is finite P as. such that

on { II (?; – O:(k – 1) II < n-6(k-lJ } (if we choose
a small enough 6. For k = 1, we use the fact

that an(.) converges uniformly to a(.) outside any e–
neighborhood of 8: and use the estimates (8) inside
the e-neighborhood, to arrive at (9).

Turning now to the second factor on the right-hand
side of (7), observe that the W’ (i, 6, z)’s are a family
of uniformly bounded random variables (bounded by
max( I f($) I ) : z E S). It is easy to see that
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(p[~n(~) – CYn(O,k,~n(k)) / < 77,-2(~+1)6

\ %@-, ) (lo)

(~~P I g(e, a) – g(e, Z, k,mn( k)) I
26s

< ~n-2(k+l)6

)

for ~ chosen small enough and deterministic (see (5)).

(11)

= 1 – ;-pc(p)n-2fp max ( I j(z) 1P: ~ ~ S)

s 1 – ?m-@’;

the Burkholder inequality was applied in the second
inequality; see Hall & Heyde (1980), p. 23. Applica-
tion of (7), (9), (10), and (11), together with repeated
conditioning in (6), yields the inequality

$(lle~ –O:(i) II s n-i&, 1<2’ g k)

~F(N1<n,... ,N~<n)

.(1 - ~#p)1S14A~(k)l.k

~qN1<n,... ,Nk@

.(1 - rn-2&p)1s1”(2m2’+ l)dh.

By choosing p sufficiently large and letting n ~ co,
we obtain the desired result. ❑

We note that by choosing kb > ~, Proposition 3

and Theorem 1 combine to yield a CLT for in.

Theorem 2 Assume A1-A2 and suppose kti

Then

fi(tin - 6*) A II--W(O, c)

as n ~ 00, where H and C are as in Theorem

> :.

1.

In term: of the computational effort required to
calculate t9~, note that the i’th iteration requires
simulation at (2n 26+ l)d points. Each simulation at
the i’th iteration, for a given point, requires n4(i+2)6

replications. Thus, the total work required at itera-
tion i is of the order of n26d+4(i+2)&. Summing over

the k iterations, we conclude that the total work is
of order n2&d+A(~+2)6. But k and 6 can be chosen ar-

bitrarily, subject to the constraint k6 > ~. Hence,
by (for example), choosing the number of iterations k
large, and 6 = (#+ q)/k for q positive, we note that
we can make the exponent 26d + 4(k + 2)6 aS close
as we wish to 2. Thus, roughly speaking, the com-
putational effort required to compute $. is of order
n2.

This should come as no surprise. In the limit,
an accuracy of order n ‘~12 in the location of the
minimizer requires that we perform “function evalua-
tions” that have accuracy n-1 (because of the locally
quadratic structure of the objective function). To
obtain simulations of accuracy n-1 requires a run–
length of order n2.

While the analysis of this paper is asymptotic, it
does suggest that in implementing grid–based simu-
lation, it is important to slowly refine the grid (i.e. k

large), and that using a course grid (6 small) reduces
the impact of dimensionality considerations (i.e. the
impact of d being large).
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