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A Batch Means Methodology for Estimation 

of a Nonlinear Function of a 

Steady-State Mean 

David F. Munioz * Peter W. Glynn 
Departamento de Administracio'n, Instituto Tecnolo'gico Auto'nomo de Me'xico, 

Camino a Santa Teresa 930, Me'xico D.F. 10700 
Department of Operations Research, Stanford University, Palo Alto, California 94305 

W e study the estimation of steady-state performance measures from an Ad-valued sto- 
chastic process Y = {Y(t): t 2 01 representing the output of a simulation. In many 

applications, we may be interested in the estimation of a steady-state performance measure 
that cannot be expressed as a steady-state mean r, e.g., the variance of the steady-state dis- 
tribution, the ratio of steady-state means, and steady-state conditional expectations. These 
examples are particular cases of a more general problem-the estimation of a (nonlinear) 
function f(r) of r. We propose a batch-means-based methodology that allows us to use jack- 
knifing to reduce the bias of the point estimator. Asymptotically valid confidence intervals 
for f(r) are obtained by combining three different point estimators (classical, batch means, 
and jackknife) with two different variability estimators (classical and jackknife). The per- 
formances of the point estimators are discussed by considering asymptotic expansions for 
their biases and mean squared errors. Our results show that, if the run length is large enough, 
the jackknife point estimator provides the smallest bias, with no significant increase in the 
mean squared error. 
(Simulation Output Analysis; Steady-State Simulation; Nonlinear Estimation; Batch Means; Jack- 
knifing) 

1. Introduction 
Performance measures of a stochastic system are usu- 
ally expressed in terms of expected values or long-run 
averages. In most applications we consider systems that 
are stable in the sense that the fd-valued stochastic pro- 
cess Y = {Y(s): s 2 01, representing the output of our 
simulation, possesses a steady-state mean r, that is, 

def 1t 
r(t) t I Y(s)ds w (rl, r2, . .., rd)' = r, (1) 

t J 

where r eE Jd is a constant and w denotes weak con- 
vergence (as t - oo unless specified). 

0025-1909/97/4308/1121$05.00 
Copyright C) 1997, Instittute for Operations Research 
and the Management Sciences 

The vast majority of the existing literature on 
steady-state simulation focuses on estimation of the 
vector r, and construction of associated confidence 
regions. In this paper, however, our emphasis is on 
the development of general methods appropriate for 
handling estimation problems associated with per- 
formance measures that cannot be expressed as a 
steady-state mean (cf. Law and Kelton 1991: 285- 
287; Fishman and Moore 1979; Iglehart 1976; Shedler 
1987). 

EXAMPLE 1. Steady-state variance: Let us suppose 
that the stochastic process X = {X(t) : t 2 01 is an 

MANAGEMENT SCIENCE/Vol. 43, No. 8, August 1997 1121 



MUNOZ AND GLYNN 
Estimation of a Nonlinear Function of a Steady-State Mean 

H-valued stochastic process that has a steady-state dis- 
tribution F, that is, 

X(t) X (X), 

where X(cx) is a random variable with cumulative dis- 
tribution function F. The steady-state variance of X is 
defined as 

Var[X(oo)] = E[X2(oo)] - (E[X(oo)l)2 = r2- r 2, (2) 

where r2 = E[X2(OC)I and ri = E[X(oo)]. Note that, if 

(f X(s)ds, fb X2(S)ds) w (rl, r2)', 

then r = (rl, r2)T is a steady-state mean for the process 
Y = {Y(t): t 2 01, where Y(t) = (Y1 (t), Y2(t))T, Y1(t) 
= X(t) and Y2(t) = X2(t) for t 2 0. Of course, it is ob- 
vious that Var[X(cx)] can be estimated as in (1), pro- 
vided that one takes Y(t) = (X(t) - ri)2. Thus, in prin- 
ciple, estimation of the steady-state variance takes the 
form of the classical estimation problem (1). But, in re- 
ality, such an approach is infeasible, since the parameter 
ri = E[X(??)] is unknown, and hence the process Y 
= Y(t) : t ? 01 just constructed cannot be observed 
directly from the output of the simulation. Conse- 
quently, it is necessary to apply the "nonlinear" meth- 
ods described in this paper. 

EXAMPLE 2. Steady-state conditional expectations: 
Consider a stochastic process X that has a steady-state 
distribution F as in Example 1. One may be interested 
in a conditional expectation of the form 

E[g(X(??)) I X(?) E Al 

E[g(X(xo))I(X(xo) E A)] ri 3 
E[I(X(xo) E A)] r2 

where g is a given real-valued function and I denotes 
the indicator function, that is, for any event B, I(B) is 1 
if event B occurs, and 0 otherwise. Note that, as in Ex- 
ample 1, r = (rl, r2)T can be viewed as the steady-state 
mean of a suitably defined stochastic process Y = {Y(t): 
t 2 01. 

EXAMPLE 3. Steady-state mean of a discrete-event 
stochastic system: Let the process X be the output pro- 
cess corresponding to a discrete-event simulation with 
state transition times 0 = ((0) < ((1) < ... satisfying 

W(n) -o a.s., as n -o o a.s. (Glynn 1989), where "a.s." 
denotes convergence almost surely (see p. 29 of Chung 
1974), and let g be a real-valued function. In a discrete- 
event simulation, the output process X has piecewise 
constant sample paths, so that it typically takes the form 

00 

X(t) = I X[W(n)II[((n) c t < ((n + 1)]. 
71=0 

Suppose that 

1 Sn-1 
- I, g(Y[~(Oj][((i + 1) - ((i)]r+ r a.s., (4) 
n i=O 

and 

- (n)- r2 a.s., (5) n 

as n - , where rl, r2 are finite constants, and r2 > 0. 

The above laws of large numbers hold in great gener- 
ality in the discrete-event systems setting. In any case, 
under these assumptions, it follows that 

t g[X(s)Ids - a.s. 
t r2 

The proof of this result is given in Glynn and Iglehart 
(1988). Therefore, the estimation of the steady-state 
mean of a discrete-event simulation can be viewed as 
the estimation of the ratio 

ri 

r2 

The above ratio representation of a steady-state mean is 
particularly advantageous in computational settings in 
which the simulation is implemented asynchronously, 
so that the "natural" time scale for collecting observa- 
tions is that based on state transition epochs. 

The estimation of the performance measures of Ex- 
amples 1, 2, and 3 is a particular case of a more general 
problem. The general problem we address in this paper 
is the estimation of a (possibly nonlinear) function f(r) 
of a (multivariate) steady-state mean r. The classical 
point estimator for the performance measure f(r) is the 
evaluation f [r(t)I of the function f at the sample average 
of the process r(t) (where t is the run length). In a sys- 
tem that possesses a steady-state mean, the sample 
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average r(t) is a consistent estimator for the steady-state 
mean r, so that f[r(t)] is a consistent estimator for f(r) 
(under the assumption of continuity of f). The main dif- 
ficulty in the estimation of f(r) is that, even for indepen- 
dent and identically distributed (i.i.d.) observations, in 
general we are not able to produce unbiased estimators 
(if f is nonlinear, the classical estimator f[r(t)I is biased 
(Miller (1974)). For this reason, different estimation pro- 
cedures will be compared in this paper according to the 
magnitude of the bias that they introduce and/or their 
mean squared errors. 

In addition, the construction of confidence intervals 
for such nonlinear parameters requires appropriate 
methodology. While classical statistical methods apply 
to the estimation of f(r) when r can be expressed as the 
mean of a vector-valued terminating simulation (Ser- 
fling 1980), this problem has not heretofore been ad- 
dressed in the steady-state context. One of the major 
contributions of this paper is the development of a 
mathematically rigorous and asymptotically valid con- 
fidence interval procedure to produce confidence inter- 
vals for f(r). Specifically, we propose a batch-means- 
based methodology that produces asymptotically valid 
confidence intervals under the assumption that a func- 
tional central limit theorem (FCLT) holds (see ?2). The 
main advantages of our proposed methodology are its 
robustness (see, for example, Glynn and Iglehart 1990 
and ?1.2.3 of Munioz 1991), and the simplicity of its im- 
plementation. 

We start in ?2 by describing the mathematical frame- 
work that underlies the study of our proposed meth- 
odology. In particular, we state our FCLT assumption 
concerning the stochastic process representing the out- 
put of the simulation. In ?3, we describe our proposed 
methodology. Assessing the variability plays a key role 
in the construction of confidence intervals. We are in- 
terested not only in the point estimation of f(r), but also 
in the assessment of the variability of the point estima- 
tor. We exploit the batch means method, which has 
demonstrated good performance in the estimation of 
the steady-state parameter r when f is linear. Based on 
the batch means method, we consider three consistent 
estimators for f(r) (including a jackknife point estimator 
(cf. Miller 1964)) and two variability estimators (includ- 
ing a jackknife variability estimator). Under an FCLT 

assumption, we obtain asymptotically valid confidence 
intervals for f(r) based on these estimators. In ?4, we 
discuss the performances of the point estimators given 
in ?3 by considering asymptotic expansions for their bi- 
ases and mean squared errors. In ?5, we present and 
discuss experimental results from the application of our 
methodology to estimate a nonlinear function of a 
steady-state mean. 

2. Mathematical Framework 
As discussed in the Introduction, it is necessary that the 
output process Y satisfy the law of large numbers (1), 
in order that the steady-state estimation problem be 
well defined. However, the development of a confi- 
dence interval methodology requires making additional 
assumptions that permit one to describe the variability 
of the estimator r(t) about the steady-state mean r. In 
particular, a standard assumption that (implicitly) un- 
derlies much of the existing steady-state simulation 
methodology is that r(t) satisfies a multivariate form of 
the central limit theorem (CLT), namely, that there ex- 
ists a d x d nonsingular matrix G such that 

tl/2(r(t) - r) > GNd(O, I), (6) 

where Nd(O, I) denotes the normal d-variate distribution 
with mean 0 and covariance matrix I (the identity). Note 
that 0 = GGT is the covariance matrix of the limiting 
normal random vector appearing in the right-hand side 
of (6). 

It turns out that the methodology that we shall pro- 
pose here requires a slightly stronger type of assump- 
tion. Set 

Yl (t) = Y(s)ds, 
u J 

and 

XI,(t) = u1/2(YI,(t) - rt), 0 c t c 1. 

Recall that a d-dimensional standard Brownian motion 
is a stochastic process B = {B(t): t 2 01 with stationary 
independent increments such that B(t) has a Nd(O, tI) 
distribution. We shall demand the following so-called 
functional central limit theorem (FCLT) for Y to be 
valid: 
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ASSUMPTION 1. There exists a nonsingular d x d matrix 
G such that 

Xii w GB, 

as u - oo (in the topology of weak convergence in Cd[O, 1], 
the space of Jd-valued continuous functions defined on [0, 
1]; see Ethier and Kurtz 1986 for additional discussion). 

The reason that the ordinary CLT (6) typically holds 
for a steady-state simulation depends on the fact that 
observations taken from Y that are widely separated in 
time are approximately independent and identically 
distributed. As a consequence, r(t) behaves very much 
like an average of i.i.d. random vectors, and one can 
therefore expect a CLT to hold. The same independence 
argument leads naturally to the additional structure as- 
sociated with the FCLT required in Assumption 1. From 
a mathematical viewpoint, FCLT theorems have been 
established for Markov processes in discrete and contin- 
uous time and stationary processes satisfying so-called 
"mixing conditions"; see Glynn and Iglehart (1990) and 
Munioz (1991) for additional details. 

We note that Assumption 1 implies the law of large 
numbers (1). Thus, the steady-state estimation problem 
is always well defined under Assumption 1. In addition, 
we remark that while the mathematical discussion of 
this paper will focus exclusively on continuous-time 
output processes Y, any discrete-time output process Z 
= {Z,: n 2 01 can be incorporated into our framework 
by setting Y(t) = ZLtj where LtI is the integer part of t. 

ASSUMPTION 2. The function f is differentiable in a 
neighborhood of r. 

As we can see, Assumptions 1 and 2 together guar- 
antee that f[r(t)] is a consistent estimator for f(r). 

3. Methodology 
3.1. Point Estimators 
We have already seen that f[r(t)] is a consistent (point) 
estimator for f(r). Bias in f[r(t)] is a consequence of the 
presence of initial transient effects, as well as the non- 
linearities inherent in f. Many algorithms have been 
proposed in the literature for determining an appropri- 
ate "deletion time," before which all simulation output 

is discarded; see for example, Wilson and Pritsker 
(1978). By using such methods, one can expect that the 
resulting point estimator r(t) is then approximately un- 
biased as an estimator of r. Assuming that such an ini- 
tial bias deletion algorithm has been implemented, the 
only significant bias effects on f[r(t)] must then ensue 
from the nonlinearity of f. The estimation techniques 
that we shall consider in this paper are designed exclu- 
sively to deal with this "nonlinearity bias." 

As mentioned in the Introduction, we will be using a 
batch-means-type methodology to produce confidence 
intervals for f(r). Computational considerations there- 
fore suggest that it is especially convenient if our bias 
adjustments take advantage of the specific batch struc- 
ture used. In view of this, suppose that we now subdi- 
vide the run length into m batches of equal length. Set 

xi(t) 
m / Y(s)ds, i = 1,2, ..., m. (7) 
t (i-lWintt 

We shall consider three different point estimators for 

f (r): 
(i) Classical estimator: 

f[r(t)] = f f: Y(s)ds. (8) 

(ii) Batch means estimator: 

1 tn 

fni(t) = - f[X(t)]. (9) 

(iii) Jackknife estimator: 

1 ni 

cat (t) - - J1 (t) (10) 

where 

J?fl(t) = mf[r(t)] - (m - 1)f[Xki(t)] 

and 

x in (t) i X(t) m - 1 

Note that all three estimators coincide in the case 
where f is a linear function (i.e., when we are estimating 
a steady-state mean). The jackknife estimator was first 
introduced by Quenouille (1956) as a method of last 
resort when an unbiased estimator for a parameter is 
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not available. As was shown by Miller (1964, 1974), if 
X1, X2, ..., Xin are i.i.d. observations, the bias of f(X77?), 

where Xn is the sample mean of the Xi's, is of the order 
of m-1, whereas the bias of the jackknife estimator is of 
the order of m-2. As we are going to see in ?4, under 
Assumption 1, the jackknife estimator (as defined in 
(10)) has a bias of lower order than that of the classical 
estimator (as defined in (8)). 

To obtain an asymptotic confidence interval for f(r), 
we need to derive a CLT for the point estimator we are 
considering. It turns out that Assumption 1 allows us 
to obtain a CLT for each of the point estimators pro- 
posed. To establish our CLTs, we first consider a joint 
CLT for the batch means. 

PROPOSITION 1. Let m 2 1 be fixed. Then under As- 
sumption 1 we have 

Xil(t) - r\ 
b t > / X2(t) - r 

Vm _ 
Xin(t) -r 

where 

G O ... \ 
O G ..O 

Gi7ll - . .. . . (11) 

O O .. G/ 

PROOF. We can view each batch of the simulation as 
an increment of the averaged cumulative process, by 
considering the function A7T Cd[0O 1] -_ Cd[0O 1] defined 
by 

(Aq'x)(t) = x[(i + t)/m] - x(i/m), 

O c--i m - , O'---t'l--. 

Then, if we define Am: Cd[0, 1] Rd,l such that 

(Aol x)( 1) 

Ain (x) = A x E Cd[0, 1], 

(An1-1X)(1 ) 

we have that Am(GB) is distributed as G,,1Nd,,,(0, I)/ 
ml/2. 

On the other hand, 

(AiXJ)(1) = u1/2( Z(i + 1)/m] - Y(i/rm) - - 
\ ~~~mJ 

Y(s)ds - r) 
m u I 

u /2 

=-rn [Xi+1(u) - r], m 

so that 

Xl(u) - r 

A(XI) =U X2(u) - r ) (12) 

Xr\ll(u) - r 

Since A"1 is a continuous mapping, the conclusion fol- 
lows from (12), Assumption 1, and the continuous map- 
ping theorem (Corollary 1.9 of Ethier and Kurtz 
1986). D 

Recall Assumption 2 concerning the differentiability 
of f. In order to derive our CLTs, we consider the first- 
order Taylor series expansion: 

f(x) = f(r) + [Vf(r)IT(x - r) 

+ k (x - r), x (E 91', (13) 

where the function k: 1d -_ N satisfies 

k(u) 
lim ( 0, (14) 
U-O Ilull 

and Ilull denotes the Euclidean norm of u e 9n. From 
(13), an expansion for f [ r (t) ] is given by 

f[r(t)] = f(r) + [Vf(r)]T(r(t) - r) + k(r(t) - r). (15) 

Similarly, from (9) and (13), we have 

fm (t) = f(r) + [Vf(r)]T(r(t) - r) 

1 III 
+ - k(Xi(t) - r). (16) 

m = 

Further, (9), (10), (13), and some algebra yield 

ca,, (t) = f(r) + [Vf(r)]7r(t) - r) + mk(r(t) - r) 

- m - 1 ( kX'( - r). (17) 
m i=1 

As we see from (15), (16), and (17), the linear term 
in our expansions is the same for all three point 
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estimators. A CLT for the linear term can be derived 
from the CLT (6). 

LEMMA 1. Under the CLT (6), we have 

tl"2[Vf(r)]T(r(t) - r) a oN(O, 1), 

where o2 = [Vf (r) ]TGGTVf (r). 

PROOF. Since the function w: gd -> 9f defined by 
w(x) = [Vf(r)]Tx, x E gtd, iS continuous, the conclusion 
follows from the continuous mapping theorem. D 

Now, if we scale (15), (16), and (17) by tl/2, we can 
show that the remainder terms converge weakly to 0. 
Consider, for example, (16). If we let 

tk(u)/IIuII, u * 0 
0, u=O, 

since k(O) = 0, we have 

tl/2k(Xi(t) - r) - t112Xi(t) - rllkl(Xi(t) - r), 

i= 1,2, ... ,m. (18) 

Under Assumption 1, it follows from Proposition 1 that 
IIXj(t) - rll * 0. Note also that (14) implies that kl(u) is 
continuous at u = 0. Hence, if f is differentiable at r, 
from (14) and the continuous mapping theorem we 
have that 

ki (Xi(t) - r) =* O, i = 1, 2, . ,m. (19) 

Now, from Proposition 1 and the continuous mapping 
theorem we have 

tl 12I1gi (t) - rll n mM1/2IIGNd(O, I) 11. 

Then, from (18) and the converging together principle 
(cf. Billingsley 1986) we have 

tl /2 k(Xi(t) - r) * 0, i = 1, 2,.. 

so that from the converging together principle we have 

t1 /2 ??I 

- k(Xi(t) - r) = 0. (20) 
m i=1 

Similarly, we can show that, under Assumption 1 we 
have 

tl/2k(r(t) - r) * 0, (21) 

and 

- ^\ti vr) rJ U. (22 
m 

From (20)-(22), (15)-(17), and Lemma 1 we have the 
following proposition. 

PROPOSITION 2. Under Assumptions 1 and 2, we have 

tl/2[f1m(t) - f(r)I w aN(0, 1), 

where fm(t) can be f[r(t)], f.7.(t) or acn4(t). 

From the last proposition we see that if a is consis- 
tently estimated (e.g., using the regenerative method), 
we can obtain asymptotic confidence intervals for f(r). 
To be more precise, if s(t) is a consistent estimator for 
a and a > 0, an asymptotic 100(1 - 6)% confidence 
interval for f(r) is given by 

[fm(t) tl/2 (t fn(t) + Z6 ti /2] 

where zb is the constant chosen so that P[N(O, 1) c z6] 
= 1 - 6/2. 

We concentrate our attention on the case where a is 
not consistently estimated. That is, we will try to cancel 
out the constant a by scaling the process appropriately. 
For the batch means method, the proper scaling de- 
pends on the sample variance of the batch means. By 
following a similar approach, we scale the process by 
considering variability estimators that are sample vari- 
ances obtained from the batches. We define our vari- 
ability estimators in ?3.2. 

3.2. Variability Estimators 
In this subsection, we assess the variability of the point 
estimators fj7(t). The following variability estimators 
can be proposed: 

(i) The batch means variability estimator: 

1 n 
S7(t) = 1 f[X(t)] - f,(t)I2. (23) 

m - 1 i=1 

(ii) The jackknife variability estimator: 

1 III 
S2(t) = 1 [Ji(t) -c4(t)] (24) 

IT"-()1- j(24 

The batch means variability estimator is the sample 
variance of the f[Xi(t)]'s and the jackknife variability 
estimator is the sample variance of the pseudovalues 
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Ji (t). One important property of the jackknife variabil- 
ity estimator that holds in the i.i.d. case is known as the 
Efron-Stein inequality (cf. Efron and Stein 1981; Karlin 
and Rinott 1982), which states that the jackknife vari- 
ability estimator overestimates the variance of a nonlin- 
ear function of the sample mean. This result suggests 
that confidence intervals based on the jackknife vari- 
ability estimator tend to provide larger expected half- 
width than those based on the batch means variability 
estimator. 

As we are going to see in the next set of propositions, 
under Assumption 1 we can obtain CLTs for the point 
estimators proposed in ?3.1 by considering either of 
these variability estimators. 

THEOREM 1. Under Assumptions 1 and 2, we have 

f..(t) - f(r) * t(m-l) 

Sm(t) / M 

where fm(t) can bef[r(t)],fTn(t) or acJ4(t), Sm(t) is defined in 
(23) and t(m_1) denotes the Student-t distribution with m - 1 
degrees of freedom. 

PROOF. We first consider the case fm(t) = f,1(t). Let 
us denote 

f [X1 (t)] - f(r) 

fm(t) 
f 

f[X2(t)] - f(r) 

f[Xtn(t)] -f(r) 

It follows from (13), (20), Proposition 1, and the con- 
verging together principle that 

/ 1\/2 
(i j' fm(t) W I"N, (0, I). (25) 

Let A = {x E- 9m: xl =x2 x7,"} and consider 
the function w: 9m -, 9t such that 

[ Xm - xe9tm -A, 

w(x) ={s(x)/m 
t0, x E A, 

where, for x = (X1, X2, * * X,n)T 
9 tm 

1=1 Xi 
X771= m cand 

2 min 1 Xi- 7J 
s (x) , 

mr-i 

Then w is a continuous function on 91 - A. Also, since 
a > 0, w(WN,n(0, I)) follows a t(,n-1) distribution, and 

P[aN.7.(0, I) e A] = 0. Therefore, it follows from the 
continuous mapping theorem that 

w[(t/m)12 fin(t)] t(in-l) (26) 

Now we consider the caseS f.(t) = f[r(t)] or a Im(t). Let 
us define the function u: 9'n _- 9f by 

(m - 1)S2(X) 
u2(X) = 52 

Then, u[oN.7.(0, I)] follows a X(,7-1-) distribution, so that, 
from (25) and the continuous mapping theorem we ob- 
tain 

u[(t/m)1/2fm(t)] 2t(m - 1)S7(t) (27) 
mua2 

Therefore, since P[X27_l) > 0] = 1, we have 

(m /2S-l(t) 1 (m - 1)1/2 -1 (28) 
t atii 

t ( -) 

where 

(m - 1)1/2 1 
X (7n-1 ) 

is a proper random variable (since a > 0). Now, from 
(28), (20)-(22), and the converging together principle, 
we have 

1=1 k(Xi(t) - r) * 0 (29) 
Msk.(t) /- 

k(r(t) - r) 0, and (30) 
S ...(t) / ;M 

(m - 1) ET 1 k(XT (t) - r) 
---- w ~~0. (31) 

Ms ...(t) / ;M- 

Hence, the conclusion follows from (29)-(31), (26), and 
the converging together principle. D 

THEOREM 2. Under Assumptions 1 and 2, we have 
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fin(t) - f(r) 

Sj (t) / FM m 

where Sj(t) is defined in (24), and fm(t) can be f[r(t)], 

f,7n(t) or atn(t). 
PROOF. From (13) and (10) we have 

Ji (t) - a' (t) = [Vf(r)]T[Xg(t) - r(t)] 

m - 1 [VT(r)[X(t) - r] 
m j=1 

- (m - 1)k(X9N(t) - r), 

and 

f[Xi(t)] - fin(t) = [Vf(r)I'4X (t) - r(t)] 

1 m 
+ k(Xi(t) - r) - - k(Xj(t) - r), m11 

i= 1, 2, ..., m, so that 

JT(t) - a I(t) = f[Xi(t)] - f (t) 

+ ? (t), i-1,2,...,m, 

where 

6 (t) - - (m - 1) (k(X i(t) - r) - -? k(X7(t) - r)) 

1 nl 
- k(Xi(t) - r) + - k(Xj(t) - r), 

1, 2,..., m, 

so that 

2 
SJ2(t) = S2i(t) + - 1 i=1 

1m 
- fi(t)I + m - (t). (32) 

Under Assumption 1, we see from (20) and (22) that 
t112'Ei(t) 0, i = 1, 2, .. , m. Also, from (25) we see that 
t/2 (f (i(t)) - fm(t)) converges weakly to a finite ran- 
dom variable as t - oo, i= 1, 2, ..., m. Therefore, 

t 2 Ei(t)3f2[9(t) fn(t)) + E ?I (t) w o. 

Hence, from (32) we obtain 

t[S2t) StJ - tm] =w U. (33 

Now, since 

P[X(-1) > 0] = 1, 

we have from (27) that 

[ tS2lt ( t )]-l ( X( l-1 )) III ~ m - l 

Therefore, from (33) and the converging together prin- 
ciple we have 

S2(t) 
S2(t) 

so that 

Sm (t) 1 (34) 

SJ(t) 

The conclusion follows from (34), Theorem 1, and the 
converging together principle. D 

Theorems 1 and 2 form the core of our main results 
on confidence interval construction. Together, they state 
that any of our three point estimators, in conjunction 
with either of our two variability estimators, produce 
asymptotically valid confidence intervals for f(r). To be 
more precise, if a2 > 0, an asymptotic 100(1 - 6)% con- 
fidence interval for f(r) is given by: 

[fn(t) - t(fn-l) 1/2 1 fm(t) + t(61-,)m1/2 ] (35) 

where t(6,,,) is the constant chosen so that P[t(,,?-l) 
c t(onil1)] = 1 - 6/2 and g',(t) can be S,,(t) or S1(t). 

4. Asymptotic Bias and Mean 
Squared Error Expansions 

Let us suppose that 0 is a point estimator for a param- 
eter 0. There are two important measures that allow us 
to judge the accuracy and the precision, respectively, of 
A A 

0 in estimating 0. These measures are the bias of 0: 

Bias(0) = E[0 - 0], (36) 

and the mean squared error of 0: 

mse(0) = E[(O - 0)2] = Var(O) + Bias2(0). (37) 

In this section, we compare the long-run performance 
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of the three point estimators defined in ?3.1, according 
to their asymptotic biases and their asymptotic mean 
squared errors. Because of the fact that all three candi- 
date estimators are reasonable from a confidence inter- 
val viewpoint, the goal here is to study these "second- 
order" issues with the intent of using this second-order 
structure to differentiate among the three candidates. 
We start by obtaining asymptotic bias expansions. 

4.1. Asymptotic Bias Expansions 
As described in ?3.1, the expansions for f ?,l(t), f[r(t)], 
and a&,(t) based on first-order Taylor series expansions 
differ only in their residuals, so that the expansions do 
not allow us to compare the magnitude of the bias cor- 
responding to each estimator. To analyze the bias, we 
need to consider a second-order Taylor series expan- 
sion. Let us suppose that f is twice differentiable at r. A 
second-order Taylor series expansion for f(x) is given 
by 

f(x) = f(r) + [Vf(r)](x - r) 

2 -(x - r)TH(x - r) + w(x - r), (38) 

where w: 9J{d -- 9f satisfies 

w(u) 
liLm L =0 
II+ lull2 

and H = (hij) is the Hessian matrix of f evaluated at x 
= r, that is, 

h Of(x) xIr i, j = 1,2,...,Id. 
ij=XioXi Ix=r 

Then an expansion for f[r(t)] is given by 

f[r(t)] = f(r) + [Vf(r)]T(r(t) - r) 

? W(r(t) - r)TH(r(t) - r) + w(r(t) - r). 

(39) 

Similarly, we obtain 

f7n(t) = f(r) + [Vf(r)]T(r(t) - r) 

+ , (Xi(t) - r)TH(X9(t) - r) 
2m i=1 

1l - 
+ - w(Xi(t) - r), (40) 

m = 

aJ,,(t) = f(r) + [Vf(r)]7(r(t) - r) 

m 
+ 2 (r(t) - r)TH(r(t) - r) 

2 

m -1 

2m - (X'(t) - r)TH(XM'(t) - r) 
2mi=1 

m - 1 
+ mw(r(t) - r) - m w(Xn'(t) - r). 

mi=1 

(41) 

To compare the magnitude of the bias that each esti- 
mator introduces, we note that, under Assumption 1, 
the convergence rate of the residual terms in (39)-(41) 
is of order n-3/2, whereas it is of order n - for the quad- 
ratic term. Therefore, the bias from the second-order 
term will dominate the bias from the residuals for large 
n, so that we can base our analysis on the quadratic 
term. To precisely describe our results, however, we re- 
quire some control on the growth of f. To that end, we 
adopt the approach of Glynn and Heidelberger (1989) 
by imposing a regularity condition on the growth of f. 

DEFINITION 1. Let f: 9Md -- 9f. We say that f is poly- 
nomially dominated to degree q (q 2 0) if there exist 
constants A and D such that 

If (x) Ic-- A + DI IXIlq, x E Rid. 

Note that if f is bounded, then f is polynomially dom- 
inated to degree 0. Also, if all the partial derivatives of 
f of order q are globally bounded, then f is polynomially 
dominated to degree q. The next theorem provides as- 
ymptotic expansions for the bias of the point estimators 
proposed in ?3.1. 

THEOREM 3. Suppose that the process Y satisfies As- 
sumption 1, and f is polynomially dominated to degree q (q 
2 0) and differentiable at r. Let the number of batches m 

1 be fixed, and p = max(2, q I. If Y is a strictly stationary 
stochastic process, and there exists to > 0 such that Itp/2IIr(t) 
- rlIp: t 2 to} is uniformly integrable, then 

b 
Biastf[r(t)]I = - + o(t-l), (42) 

t 

as t --+o 
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Bias[Th77(t)I =mb + o(t), (43) 
t 

and 

Bias[ac (t)]0 ( = O(), (44) 

where 

b = 2 tr(GTHG). 

The proof of this theorem is given in Appendix D of 
Mufioz (1991). As we see from Theorem 3, for a run 
length t large enough, if b * 0, we have 

| Bias[aJ,(t)] | < | Biasjf[r(t)]} | < | Bias[T,,(t)] 1. 

4.2. Asymptotic Mean Squared Error Expansions 
In this subsection, we give asymptotic expansions for 
the mean squared error of each of the point estimators 
proposed in ?3.1. To provide meaningful results, we 
shall assume that the stochastic process Y is a strictly 
stationary stochastic process for which asymptotic in- 
dependence holds, that is, if t2 > tl, Y(tl) and Y(t2) be- 
come statistically independent as t2 - t- oo. The as- 
ymptotic independence is expressed in terms of a mix- 
ing assumption (see Theorem 4). To provide a precise 
statement of our main result, we first introduce the ap- 
propriate notation. 

If E[IIY(0)112] < oo, we can define the autocovariance 
function 

c(u) = E[(Y(t) - r)(Y(t + u) - OT], 

t?0,u:0. (45) 

Note that our steady-state mean r now becomes r 
= E[Y(O)] and that c(u) is not in general symmetric; 
however, if we take 

c(u) ? [cu)]T 
cU) 

2 0, (46) 

we can easily verify that c*(u) is symmetric for any u 
2 0. A symmetric matrix is appropriate to describe our 
results, since it has desirable properties, as for example, 
the square root A112 of a matrix A is well defined only 
if A is positive semidefinite and symmetric. Under suit- 
able mixing assumptions (as those of Theorem 4 below) 
we can define 

= c*(u)du and S1= uc*(u)du. (47) 

Also, provided E[IIY(0)1I31 < oo, we consider 

/L3(S1, S2, S3) = E[[Vf(r)]T(Y(s1) - r) 

X (Y(S2) - r)TH(Y(S3) - r)], (48) 

Si 2 0, i = 1, 2, 3. Note that if Y is a strictly stationary 
stochastic process that satisfies Assumption 1, then I 
= GGT. 

The next theorem provides asymptotic expansions for 
the mean squared errors of the point estimators pro- 
posed in ?3.1. We shall assume that Y is a strictly sta- 
tionary and strongly mixing stochastic process (see 
Ethier and Kurtz 1986 for a definition) and that {tp/2IIr(t) 
- rIl : t 2 01 is uniformly integrable (see Chung 1974 
for a definition). 

THEOREM 4. Let Y be a strictly stationary and strongly 
mixing stochastic process with mixing coefficients {+(t): t 
2 01. Assume that Y satisfies Assumption 1, f is polynom- 
ially dominated to degree q (q 2 0), and has (finite) partial 
derivatives of order 4 in a neighborhood of r. Let the number 
of batches m 2 1 be fixed, and p = max(8, 2q1. If E[IIY(0)1120] 
< 00, and there exist constants to > 0 and e > 0 such that 
(tp/2IIr(t) - rIlP: t 2 to) is uniformly integrable, and +(t) 
- o(w(6+E)), as t -+ oo, then 

msef [r(t)] I 

2a, 2a2+ 2(b1 + b2+ b3) c + 2c2+ 4d, 
t- t2 

+ 0(t-5/2), (49) 

as t -- oo, 

mse[f,..(t)] 

2a2 + 2m(b1 + b2 + b3) + m1 

2a1 + m(m + 1)c2 + 4md, 
t t2 

+ O(t-5/2), (50) 

and 
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mse[aJ,(t)] = 2at 
t 

2(m - 1)a2 + 2mc2 + 0(t-5/2), (51) 
(M _ 1)t2 

where 

a, = [Vf(r)]TVf(r), 

a2= [Vf(r)IT'1Vf(r), 
00 00 

bi = f 3 /13(0, u2, u3)du2du3, 

b2= r J/3(Ul 0, u3)du1du3, 

b3 = f f 13(Ul, u2, O)du1du2, 

cl = tr l/2 HE' /2), 

d d 

C2= E q2j, 
i=1 j=1 

d d d d 

di= X pi X X X XjklOijOkl, 
i=i j=1 k=1 1=1 

Vf(r) = (pl, P2, ... , Pd)', H = (hij) and Xjkl, are defined by 

= f(x) 
ai xi x=r 

fori = 1,2,...,d, 

= f(x) 
j (9XiXj x=r 

for i,j= 1,2,...,d, 

Xklk= 
Of(x) 

9XjXkXl x=r 

for j, k, I = 1, 2, ..., d, qij and oij are the (i, j)th entries of 
Q = V1/2H1 /2 and 1, respectively. 

The proof of this theorem is given in Appendix E of 
Munoz (1991). In practice, the assumptions stated in 
Theorem 4 are quite mild. For example, it is typical that 
IIY(O)II would have finite moments of all orders in real- 
istic discrete-event simulations. In any case, as we can 
see from Theorem 4, the rates of convergence of the 

mean squared errors for the three point estimators that 
we are considering are the same. Furthermore, we see 
that 

lim t mse[fi,(t)] = 2a1, 

where fm(t) can be any of the three point estimators. This 
result suggests that all three point estimators exhibit 
similar performance from the point of view of their 
mean squared errors. A better asymptotic performance 
for a particular point estimator cannot be established in 
general from Theorem 4, since the signs of bi, i = 1, 2, 3 
and d1 will depend not only on the moments of the un- 
derlying stochastic process Y but also on the particular 
function f that we are considering. However, we point 
out that the coefficient in t-2 for the mean squared error 
expansion of the jackknife estimator is simpler than that 
of the batch means or the classical estimator and can be 
smaller under appropriate assumptions. 

5. Experimental Results 
In this section, we present experimental results obtained 
from applying our proposed methodology to the esti- 
mation of a nonlinear function of a steady-state mean. 
The system selected to perform our experiments is an 
MIMI1 queue, and we consider the estimation of the 
variance of the steady-state distribution of the sojourn 
times (waiting plus service times). To compare the per- 
formances of our different point and variability esti- 
mators, we compute the (empirical) coverage, the (em- 
pirical) bias, the (empirical) mean squared error, the av- 
erage halfwidth and its standard deviation for all six 
combinations of point and variability estimators from a 
number of independent replications. Different numbers 
of batches were also considered. 

The output of our simulation is regarded as a discrete 
time stochastic process Z = {Zk: k 2 11, where Zk de- 
notes the sojourn time of the kth customer, k = 1, 2, .... 
As is clear from (8)-(10), the only information required 
to compute f[r(t)I, km(t) and aJ (t) are the values of the 
batch means Xi(t), i = 1, 2,... ., m. Since the steady-state 
sojourn time distribution in an MIM/1 queue is ex- 
ponential with parameter ,u(1 - p), our true steady-state 
variance becomes 
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Table 1 Performance of 90% Confidence Regions for the Variance of the Steady-State 
Sojourn Time Distribution from an MIMI1 Queue Based on 2,000 Independent 
Replications (t = run length = 150,000, p = 0.8) 

m Point Estimator Bias mse 

5 Classical -265 x 10-4 356 x 10-2 

Batch means -787 x 10-4 353 x 10-2 

Jackknife -134 x 10-4 357 x 10-2 

10 Classical -265 x 10-4 356 x 10-2 

Batch means -1432 x 10-4 349 x 10-2 
Jackknife -135 x 10-4 357 x 10-2 

20 Classical -265 x 10-4 356 x 10-2 
Batch means -2761 x 10-4 344 x 10-2 
Jackknife -134 x 10-4 257 x 10-2 

Halfwidth 
m Variability Estimator Average Halfwidth St. Deviation 

5 Classical 379 x 10-2 174 x 10-2 
Jackknife 380 x 10-2 176 x 10-2 

10 Classical 332 x 10-2 126 x 10-2 

Jackknife 336 x 10-2 131 x 10-2 

20 Classical 312 x 10-2 106 x 10-2 

Jackknife 320 x 10-2 113 x 10-2 

Empirical Coverage (Point Estimator * Variability Estimator) 

m Clas * Bat Clas * Jack Bat * Bat Bat * Jack Jack * Bat Jack * Jack 

5 0.889 0.889 0.887 0.887 0.890 0.889 
10 0.885 0.886 0.883 0.883 0.886 0.886 
20 0.882 0.887 0.871 0.876 0.882 0.887 

Var[X] = >(1 )2' 

where p is the traffic intensity. To remove the initial 
transient effects, Z1 was sampled from the steady-state 
distribution. 

In Table 1 we summarize the results of 2,000 inde- 
pendent replications with a run length of t = 150,000 
customers and p = 0.8. The 2,000 replications ensure a 
95% standard error of 0.0109 in the observed coverage. 
In Tables 2 and 3, we present the results with smaller 
run lengths (t = 25,000 and t = 75,000, respectively). 

From Table 1 we can see that, if the run length is large 
enough, all 6 combinations of point and variability es- 
timators provide good coverage, as stated in Theorems 
1 and 2. In this case, as we expected, the bias of the 
jackknife point estimator is smaller (by a half) than the 
bias of the classical estimator. Also, the largest bias is 
that of the batch means point estimator. This bias tends 
to be relatively larger as the number of batches m in- 
creases. This result is explained by the fact that the co- 
efficient in t1 in the asymptotic expansion for 

Bias[Tf,(t)] is m times the corresponding coefficient in 
the asymptotic expansion for Bias{f[r(t)]}. A second 
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Table 2 Performance of 90% Confidence Regions for the Variance of the Steady-State 
Sojourn Time Distribution from an MIMI1 Queue Based on 2,000 Independent 
Replications (t = run length = 25,000, p = 0.8) 

m Point Estimator Bias mse 

5 Classical -222 x 10-3 218 x 10-1 
Batch means -527 x 10-3 205 x 10-1 
Jackknife -145 x 10-3 221 x 10-1 

10 Classical -222 x 10-3 218 x 10-1 
Batch means -910 x 10-3 195 x 10-1 
Jackknife -145 x 10-3 221 x 10-1 

20 Classical -222 x 10-3 218 x 10-1 
Batch means -1665 x 10-3 184 x 10-1 
Jackknife -146 x 10-3 221 x 10-1 

Halfwidth 
m Variability Estimator Average Halfwidth St. Deviation 

5 Classical 796 x 10-2 512 x 10-2 
Jackknife 814 x 10-2 543 x 10-2 

10 Classical 674 x 10-2 383 x 10-2 
Jackknife 714 x 10-2 435 x 10-2 

20 Classical 590 x 10-2 298 x 10-2 
Jackknife 670 x 10-2 391 x 10-2 

Empirical Coverage (Point Estimator * Variability Estimator) 

m Clas * Bat Clas * Jack Bat * Bat Bat * Jack Jack * Bat Jack * Jack 

5 0.827 0.829 0.819 0.821 0.828 0.829 
10 0.804 0.813 0.784 0.793 0.806 0.816 
20 0.771 0.802 0.728 0.748 0.774 0.805 

observation from the results of Table 1 is that all three 
point estimators performed very closely in terms of 
their mean squared errors. This result agreed with our 
previous asymptotic expansions of ?4.2, since the mean 
squared error expansions for the three point estimators 
differ only in the coefficients in t-2, with no evidence 
that, in general one of these coefficients has to be smaller 
than another. In general terms, we can see from the re- 
sults of Table 1 that the jackknife point estimator pro- 
vided a smaller bias, with no significant increase in the 
mean squared error with respect to the classical or batch 
means point estimators. 

From Tables 2 and 3, we can see that our results can- 
not be generalized to the small sample context. In par- 

ticular, the bias of the jackknife point estimator can be 
larger than the bias of the classical estimator (as in Table 
3) if the run length is not large enough to provide good 
coverage. However, all three experiments still have 
some common patterns. For example, the biases of both 
the jackknife and the classical point estimators seem to 
be almost independent of the number of batches m, 
whereas the bias of the batch means estimators always 
increases with the number of batches. This result can be 
explained from the asymptotic expansions of Theorem 
3 (note that the constant b in Theorem 3 does not depend 
on m). With respect to the performance of the variability 
estimators, we can see from Tables 1, 2, and 3 that the 
jackknife variability estimator tends to be larger than 
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Table 3 Performance of 90% Confidence Regions for the Variance of the Steady-State 
Sojourn Time Distribution from an MIMI1 Queue Based on 2,000 Independent 
Replications (t = run length = 75,000, p = 0.8) 

m Point Estimator Bias mse 

5 Classical 726 x 10-4 787 x 10-2 

Batch means -313 x 10-4 766 x 10-2 

Jackknife 986 x 10-4 792 x 10-2 

10 Classical 726 x 10-4 787 x 10-2 

Batch means -1633 x 10-4 748 x 10-2 

Jackknife 989 x 10-4 792 x 1 0-2 

20 Classical 726 x 10-4 787 x 10-2 

Batch means -4315 x 10-4 717 x 10-2 

Jackknife 992 x 10-4 792 x 10-2 

Halfwidth 
m Variability Estimator Average Halfwidth St. Deviation 

5 Classical 523 x 10-2 292 x 10-2 
Jackknife 527 x 10-2 300 x 10-2 

10 Classical 454 x 10-2 218 x 10-2 

Jackknife 463 x 10-2 230 x 10-2 

20 Classical 420 x 10-2 184 x 10-2 
Jackknife 440 x 10-2 206 x 10-2 

Empirical Coverage (Point Estimator * Variability Estimator) 

m Clas * Bat Clas * Jack Bat * Bat Bat * Jack Jack * Bat Jack * Jack 

5 0.877 0.880 0.875 0.875 0.878 0.880 
10 0.858 0.859 0.855 0.857 0.857 0.860 
20 0.852 0.867 0.826 0.840 0.854 0.867 

the batch means variability estimator, so that it tends to 
provide better coverage (although the differences are 
not significant). It is our feeling that this result may be 
related to the Efron-Stein inequality. Also, we see that 
in all three experiments a better coverage is obtained 
either with the jackknife or the classical point estimator 
combined with the jackknife variability estimator. 

6. Conclusions and 
Recommendations 

In this article, we studied the estimation of a nonlinear 
function f(r) of a multivariate steady-state mean r using 

the output of a simulation. We propose a batch-means- 
based methodology that allows us to consider three 
point estimators: the classical estimator, the batch 
means estimator, and the jackknife estimator. We also 
consider two variability estimators: the batch means 
variability estimator and the jackknife variability esti- 
mator. 

Under the assumption that the stochastic process rep- 
resenting the output of the simulation satisfies a func- 
tional central limit theorem, we show that all six com- 
binations of the three point estimators and the two vari- 
ability estimators give asymptotically valid confidence 
intervals for f(r). To compare the long-run performance 
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of the three point estimators considered, we obtained 
asymptotic expansions for the bias and the mean 
squared errors of the point estimators. Our results show 
that, for a large run length, the jackknife point estimator 
has a smaller bias than the classical estimator, and the 
batch means estimator has the largest bias. In addition, 
all three point estimators exhibit similar mean squared 
errors. We run some experiments that confirm these re- 
sults. However, these experiments show that our as- 
ymptotic results can not be extended to the small sam- 
ple context. 

We point out an interesting direction for future re- 
search: the development of a general methodology 
based on the batch means method to estimate other 
long-run performance measures, such as quantiles of 
the steady-state distribution (see Munioz 1991).' 

' We thank Jim Wilson, the Associate Editor, and the referee for helpful 
comments. 
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