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TRANSIENT SIMULATION VIA
EMPIRICALLY BASED COUPLING

EucGeNE W. WONG, PETER W. GLYNN, AND DONALD L. IGLEHART®

Department of Engineering-Economic Systems and Operations Research
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Stanford, California 94305-4023

In this paper we consider the use of coupling ideas in efficiently computing a certain
class of transient performance measugsecifically we consider the setting in
which the stationary distribution is unknowand for which no exact means of
generating stationary versions of the process is kndwrihis context we can
approximate the stationary distribution from empirical data obtained from a first-
stage steady-state simulatidris empirical approximation is then used in place of
the stationary distribution in implementing our coupling-based estimiataddi-

tion to the empirically based coupling estimator itselé also develop an associ-
ated confidence interval procedure

1. INTRODUCTION

Let X = {X(t):t = 0} be a stochastic process that represents the output of a simula-
tion. This paper is concerned with the efficient computatida simulation of tran-
sient performance measures of the form

a = EB,
whereg is defined by
B = o f(X(1))G(dt). (1.1)

We assumgin Eq. (1.1), thatf is a given real-valued function defined on the state
spaceSof X, andG is a given finite measure
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A number of important transient performance measures can be represented in
the form of Eq (1.1).

Example 1: To computex = Ef(X(t)), setG(ds) = §,(ds) for s= 0, wheres,(-) is
a unit mass at the point t

Example 2: To compute the expected cumulative “cost” of running the system to
timet, we letG(ds) = 1 (0 = s=t) ds (We interpreff (x) as the rate at which cost
accrues wheix occupies state.)

Example 3:Assumeg as in Example 2thatf(x) represents the rate at which the
system accrues cost wh(is in statex. If

a= Ef[om) e "' (X(1)) dt,

the infinite-horizony-discounted costthis performance measure may be repre-
sented as a special case of Egl) by settingG(dt) = e *'dtfort=0.

In a previous pape(Glynn and Wong[7]) we showed how coupling ideas
can be used to efficiently compute performance measures of the form if1.Eg
(for general background on couplingee Lindvall[8]). Specifically suppose that
Xis a strong Markov process that possesses a unique stationary distriutiion
we are able to generate variates fremthis gives us the ability to simulate a
stationary versiorX* of the procesgby initiating the Markov procesX with its
stationary distributionr). Suppose that we simultaneously simulatén such a
way thatX and X* “couple” In other words X and X* are jointly simulated so
that the random tim& = inf{t = 0: X(t) = X*(t)}, known as the “coupling tim&
is almost surely finite Note that fort = T, we may setX(t) = X*(t) without
changing the distribution oX. So

a= EJ;O,T) f(X(1))G(dt) + Ef[ f(X*(1))G(dt)

T,00)

=E f(X(t)) — f(X*(1))]G(dt E
fm[u)) (X*(O)IG(dD + f[

[oX

f(X*(t))G(dt).
o)

Note thatEf(X*(t)) = Ef(X*(0)) for t = 0 by stationarity ofX*. Consequentlyif
Ef(X*(0)) can be computed either analytically or numericalye above argument
ensures thak = ET’, where

r= f[o T)[ f(X(1)) — f(X*(t))]G(dt) + gEf(X*(0)). (1.2)

The quantityg appearing in Eg(1.2) is the total mass d&. This identity proves that
a can be computed by generatingd. replicates of the random variallie

Glynn and Wond 7] study the efficiency of the above coupling-based simula-
tion algorithm in the context of Examples 1 throughF8r Examples 1 and, 2t is



TRANSIENT SIMULATION VIA EMPIRICALLY BASED COUPLING 149

shown that a$ — oo, the coupling-based estimator dominates the naive estimator
algorithm (based on replicating). The coupling-based estimator is also shown
to improve efficiency in the setting of Example I3 addition various extensions
of the methodology are providethcluding an extension to the setting in which
Ef(X*(0)) must be computed by simulation

All the methodologies described fii] presume the ability to generate variates
from the stationary distributiosr. While there are a number of important applica-
tions in which this is possibléand for which the transient behavior is intractable
most real-world simulations do not possess this prop@itis paper is devoted to
extending the above coupling-based methodology to this latter sefiiregidea is
first to simulateX over some long time horizon and then compute an empirical
approximation tar from the simulation dat@y using the empirical approximation
in place ofzr, we can then simulate an approximately stationary versiox &ur-
thermoreEf(X*(0)) can be estimated via the time-average obtained from the initial
simulation If a suitable coupling exisfsve can then generate an approximation to
the random variabl€; see Eq(1.2). By generating replications of this approxima-
tion toT’, we can then compute an estimator fo\We refer to this estimator as our
empirically based coupling estimator fer

The main contributions of this paper include

1. development of a central limit theorei@LT) for the empirically based cou-
pling estimator for (Theorem ;

2. development of a confidence interval procedure for our empirically based
coupling estimatofTheorem 2;

3. discussion of conditions under which the empirically based coupling esti-
mator is to be preferred to the conventional estimé@ased on averaging
i.i.d. replications of3);

4. introduction of several different empirical approximations to the distribu-
tion 7r that are suitable for use in our empirically based coupling estimator

The empirically based coupling estimator is carefully described in Section 2
and its basic properties discussedoofs are deferred to Section @ur computa-
tional results are discussed in Section 3

2. DESCRIPTION OF THE ALGORITHM AND MAIN RESULTS

To describe the above algorithnve start with a given computer budgetA pro-
portionr (0 < r < 1) is allocated to generating an empirical approximatiomrio
whereag1 — r) is allocated to generating the replicates of the approximation to the
random variabld’. Soc; = rc andc, = (1 — r)c are the amounts of computer time
allocated to the first and second “stage” of the procedloesimplify our analysis
and notationwe assume that simulated time equals computer,tsoghat witht
units of computer timgexactlyt time units ofX can be simulatedVith (possibly a
trivial change of time scalahis assumptiopwhile not true in an exact sende at
least approximately true in most real-world simulations
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The first stage of the procedure requires simulartg timec,, at which time
an empirical approximatiosr to 7 is obtained from the simulated dateor exam-
ple, if X has discrete state spaeesuitable empirical approximation is given by the
empirical distribution

1 (&
me(+) = —f I(X(s) € -)ds (2.3)
C1Jo
For continuous state space processeswill need to use other approximationsto
we will discuss this point in further detail latén addition the first stage provides
the estimator

y(cy) = gfsf(y)wc(dy)

to the quantitygE f(X*(0)) appearing in Eg(1.2).

In the second stage we independently generate approximations to the random
variablel'. Let u be the initial distribution of the procedsfor which we are trying
to compute the unknown transient performance measuréen let X;, andX;, be
two versions ofX, in which X4 is initiated with distributionu and X, is initiated
with distributions.. Assuming thaX,; andX;,are simulated in such a way that they
couple at timdly, this yields an approximation (c) to the random variablg, namely

Ii(c) = f[OT : [ F(X1a(t) — F(Xp2(1)]G(dD) + y(cy).

We then expend the remainiggtime units of our computer budgebdependently
generating additional replicatéX,4, X»,),(Xa1, X32), ... of (X114, X1,) until our bud-
getis exhausted.et N(c,) be the number of such replicates produced in the remain-
ing ¢, time units Then our empirically based coupling estimator is given by

o 1N
alc) = NG _21 L;(c). (2.4)

Something needs to be said about how to construct the couplinditiorg X4, Xi»).
If the state space is discrete aMds an irreduciblepositive recurrentcontinuous-
time Markov chainthen we may simulat&;; and X;, independently until they
(necessarily meet at timeT;, after which we seiX;; = X;,. If the state space is
continuous X;; andX;, may never meet if they are simulated independeMigre
sophisticated couplings may be necessary in these circumstafjces

In order to describe our main resyltge need to be precise about the assump-
tions underlying our analysi$Ve shall assume thatis anSvalued Markov pro-
cesshaving initial distributioru, and possessing stationary transition probabilities
We require thalS be a complete separable metric spatlerough suitable use of
“supplementary variablgsvirtually any discrete-event simulation may be viewed
as such a processee Glynn[5] for details (Note that Euclidean spacg® and
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finite/countably infinite state spaces are complete separable metric spAleess-
sume thai has right continuous paths with left limjtand possesses a stationary
distributionsr. Thus X = {X(t):t = 0} € D, the space of right-continuo®valued
functions with left limits

Our most critical assumption is that for any initial statee S the process
initiated atx can be coupled to the process initiated with distribugiorA more
careful statement of this assumption involves letfifagD X D — D be the coordi-
nate projections defined b¥ (xq, X5) = X;, fori = 1L2. Let T = T(Xy, Xp) = inf{t =
0:x,(t) = Xx(t)}. Our coupling assumption demands the existence of a family
(Pi: x € S) of probability distributions oD X D such that

i. P(B) is measurable iy for each(measurableB
i. B(X,E-)=P(XE ), xES
iii. B(X,€-)=P(X€E -|X(0)=x),xES
iv. PB(T<ow)=1x€ES

distribution, X, has the distribution oK initiated atx, and the coupling time is
finite. (In ii above it should be noted that the distributié¢halways denotes a dis-
tribution under whichX has initial distributiory.)

For any two probabilitie®; andP, defined on the same sample spdeé

Py — Po| = supPy(A) — P,(A)]
A

be the “total variation distance” betwe@&pandP..
It turns out that the hypotheses we have stated imply Xhiatrecurrent in a
certain sense

DEeFINITION 1: A Marka process Z {Z(t):t = 0}, takingvalues in Sis said to be
a Harris recurrent Marke process if there exists a probability measyrsuch that
wheneer n(A) > 0,

P(fml(Z(t) € A)dt = +o0|Z(0) =Z> =1

forallze S

ProrosiTiON 1: The Marka process X is Harris recurrenturthermore
IP(X(t) € -|X(0) =x) —a(-)| >0 (2.5)

ast— oo, for each xe S

Note that Proposition 1 establishes that our hypotheses pre2lddam having
periodic behaviar

To analyze our algorithmwe now define our empirically based estimator in
more rigorous termsln addition to simulating the proces§ up to timec,, the
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algorithm further involves thé-valued random elements and coupling times
(X11, X12, T, Xo1, X200, To,...) associated with the remaining budgst We shall
assume that our sample spdeés sufficiently rich so as to suppgrfior eachc >

0, (Xq1(€), Xq2(c), T1(€), X54(C), Xo0(C), To(C),...). The algorithm also requires the
existence of an empirical approximatian to 7. Forc = 0, let 7. = {w(B) : (mea-
surablg B C S} be a set-indexed process such that

a. . is measurable with respect{¥(s):0 = s= c,}. (In other wordsz.is a
(deterministig function of{X(s):0 = s= ¢;}.)

b. 7(-) is a probability orS.

The probabilityP defined onQ) is chosen so that has the same distribution as
before (In particular X is Markov with initial distributionp.) Furthermore we
chooseP so that

¢. P((Xia(c), Xi2(c),Ti(c)) € Ai, 1=i = n|X) = TIiL1 [sme(dX) P((Xq, X, T)
e A).

So conditional onX, {(X;;(c), Xi»(c),Ti(c)):1 =i = n} are ii.d., with X;;(c)
having the distribution oK, X;,(c) having the distribution oK initiated underr,
andT;(c) representing the corresponding coupling tirBet

h©= [ [HXa(e0) - FXae 16D + ¥
[0,Ti(c)

wherey(c;) = gfsm(dy)f(y). Let s = sup{t = 0: G(t) < G(c0)} be the right
end-point of the support db. Note that computing;(c) requires simulating(c)
and X;,(c) up to timeT;(c) Os. Thus y;(c) = 2(T;(c) Os) is the computer time
involved in generatind;(c) (incremental to that associated wijt{c;)). Hence
N(c,) = max{n = 0: y,(c) + --- + xn(c) = c,} is the number of;(c)’s gener-
ated within the second stage’s budget Our empirically based coupling estima-
tor can then be defined via EQ.2).

Our first major result is a central limit theoref@LT) for a(c). In preparation
for this set

R= f [ F(Xy(t) — F(Xa(t)]G(dt),
[0.m)
gp(x) = ExRP, andh,(x) = Ex(T Os)P. We assume that
Al. go(X) <ooforx € S hy(x) <ocoforx & S and
J | f(X)| 7 (dX) < co.
S

Letk(x) =f(x)g+ ExR. Observe that Eq1.2) asserts thafisk(x) 7 (dx) =
a. We require the existence of a finitdeterministi¢ constantr; such that
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A2. VCi([sk(y)m(dy) — a) = 01N(0,1) asc; — oo, where= denotes weak
convergence

As for the empirical approximation;, we require thatr satisfy

A3. |7.— 7| — 0as;

A4, [sQ(X)c(dX) — [s@2(x) 7 (dX) as.;

A5. [shy(X)m(dX) — [sho(X)7(dX) as.; asc — oo.

We will discuss conditions A3—A5 in greater detail lateor A2, we may invoke

the CLT for Harris processgeby virtue of Proposition 1see Glynr 6] for such a
CLT. Let

P*() =L7T(dX)F’x(')-

THEOREM 1: AssumeA1-A5. Then A1 = 2E*(TOs) < co ando? = var'R < oo,
where E'(-) andvar*(-) are the expectation angariance operators associated with
P*, respectvely. Furthermore

Ve(a(c) — a) = oN(0,1)
as c— oo, Where

2 -1.2
() A [
O'2=T+ 1-r1° (2.6)

The quantityA o2is precisely the asymptotic variance constant that appearsin
the CLT when exact coupling is applicab&pecifically this corresponds to the case
whenEf(X*(0)) can be computed exacflgnd it is possible to generate variates
from 7. It should also be noted that the variance constappearing in Theorem
1 is not the same as that which appears wBéaX*(0)) is unknown with the pos-
sibility of exact generation of variates from In this latter casge f(X*(0)) must be
estimated from a first-stage steady-state simulatiok.dlowever the first-stage
plays no role in initializing the second-stage coupling-based replica#@s con-
sequencgt turns out that the asymptotic variance in this latter setting has the same
form as Eq(2.6), with the sole modification being that? is then the time-average
variance constant for the functigf(x) (instead ofk(x)).

We now perform an asymptotic analysis order to get a sense of when our
empirically based coupling estimator is preferable to conventional simulétion
which i.i.d. replicates of3 are averagedWe consider first Example in which8 =
f(X(t)). In this casewe typically expecE,R — 0 ast — oo; this is guaranteed ff
is boundedAlso, 03 — 0 ast — oo is to be expecteddence for larget, o2 ought to
be roughly equal to the time-average variance constafr{tX(ft)), divided byr. On
the other hangdthe corresponding variance constant for the conventional estimator
grows linearly int ast — oo [ 7]. Hence the empirically based coupling estimator is
a clear winner fot large
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As for Example 2in which 8 is a cumulative cost ovégb, t], both the empiri-
cally based coupling estimator and conventional estimator have respective variance
constants that typically grow in proportiont& Herg no clear winner existeven
for larget. Finally, in the context of Example,8 cannot be generated in finite time
so the conventional estimator is infeasiljldowever alternatives to the empirically
based coupling estimator exisee Fox and Glynp4].) Thus the empirically based
coupling estimator is again a winner

We now turn to the question of producing confidence intervalgifdrased on
the estimatorx (c) that we have introduced in this pap&he challenge here is
dealing withoZ, that involves the unknown functidaTo deal with this problenwe
use the method of batch mea® validate this proceduyave require stronger
hypothesis on the empirical approximatiopto .

A6. For eachc > 0, there exists a family of probabilitieg’ (c, x,-) : x € S}
such that

1 [«
m(B) = C—fo v(c, X(s),B) ds

1

A7. There exists a finitédeterministi¢ constanio; and a standard Brownian
motion B such that

1 t
@(EfoLk(y)v(C,X(S),deS-at) = o, B(t)

asc — oo. Here= denotes weak convergence in the topology associated
with the spac®g of real-valued right-continuous functions with left limits

Assumption A7 isfrom a practical standpoinonly slightly stronger than A2
Observe that we can generatg(c,0), X,,(c,0),... from the distributions

v(c,X(cU,),-),v(c, X(cUy),-),...,

whereU,,U,, ... is an independent sequence ofd uniform rv.’s on[0,1). Then
forl=i=mlet

© m N§)R()I<i_l<U< i>+gmfic1/m (@) d
a(c) = —— Ol —=U<—|+— s)) ds
N(c)) =1 : m " m C1 Ji-1c,/m

Note that

1 m
a(c) = a;ai(c).
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Let

s(c) = \/—E(a.(C) a(c))?

THEOREM 2: Fix m= 2. Under Assumption81 and A3 to A7, it follows that

a(c) —«
m( s(c) )ZH"H

as c— oo, where f,_; is a Student r.v. with m— 1 degrees of freedom

Theorem 2 implies that if is a solution taP(—z=t,_;=2z) =1 - §, then

z3(c) z9(c)
[ ()—?a() m}

is an approximate 10Q — §)% confidence interval fooe whenc is large Hence
Theorem 2 yields a confidence interval methodology for our empirically based cou-
pling estimator

A natural question that arises here is the computation of the optimal vatue of
An easy calculation shows that the value dhat minimizessr? is

AN lo? e
=1+ > .
01

Because we do not knolwexplicitly, it is unclear how to estimate? consistently
Instead we can use the followingreasonableheuristic procedurdf we wish to
computex using an approximately optimal value gfwe first do a couple of “trial
runs” usingr = 3 andr = 3, respectivelyand the same computer budgeErom the
two trial runs we obtain two confidence interval half-widtl$, andH,, respec-
tively. Then

t? 3
H? ~ E (30’12 + 5 )\_10'22>

t2/3
HZ ~ €<§0'12+ 3)\_10'22>.

Hence

Consequently
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Thus we can now do our “production riihusing computer budgetandr =r* as
obtained through the above formula

We conclude this section with a discussion of empirical approximatiQihs =
that satisfy our hypothesed/e consider first the case in whi@is discrete

PropPosITION 2: Suppose S is either finite or countably infinile

1 (@
m(B) = C_fo [(X(s) €B)ds

1

then|7.— 7| — 0as. as c— co.

We turn next to the verification of A3 whe8is continuousin this setting it is
typically untrue that the empirical distribution itself will convergezta.s. in the
sense of total variatiorSo we use a different empirical approximation hahée
assume that there exists a probabifitgnd 0< ty < oo such that for eack,y € §

P(X(to) € dy|X(0) = Xx) = p(x,y)n(dy), (2.7)

wherep: SX S— N is a known(density function It is rarely the case that such a
density will be computable in continuous timignless the entire transient distribu-
tion is known. However in discrete timethe situation is quite different

Specifically the theory developed in this paper for continuous time Harris re-
current processes extends easily to sequef¥gs = 0} that are Harris recurrent
Markov chains In particulay by embedding{X,,;: n = 0} in continuous time via
X(t) = X for t = 0, the estimatorr(c) and corresponding confidence interval
methodology continue to be valid for simulations of such chdinssuch a discrete-
time chain P(X; € dy| X, = x) can easily be computed in closed far®w, in discrete
time, the above assumption is quite reasonable

ProPOSITION 3: Suppose pSX S— I is continuous and boundetf

1 (=
7(B) = —fo pr(X(S),y)n(dy) ds

C
then| 7. — 7| — 0 a.s. as c— oo.

Note that A4—A7 can easily be verified for the empirical approximations we
have proposed abovmn particular A4 and A5 require invoking the strong law for
Harris processesvhereas A7 involves using the functional CLT for Harris pro-
cesses

Another class of empirical approximatigapplicable wheis= ¢ is based on
setting

v(c,x,dy) = P(x + b(c)N(0,1) € dy),

whereb(c) — 0 at a suitable rate as— oo. If {b(c):c > 0} is chosen appropriately
the corresponding empirical approximation has a density that conves)¢s the
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stationary densitysee Devroy¢3] for details in the.i.d. context Verifying A4—A7
again comes down to invoking laws of large numbers and central limit theorems for
Harris processes

3. NUMERICAL EXPERIMENTS

In this sectionwe compare the performance of the empirically based coupling es-
timator and the conventional estimator by the means of numerical experirrents
addition we report the performance of the coupling-based estimator for the purpose
of comparisonThe experiments are done on models for which both the transient
means and stationary distributions are available analyticBilg models we have
chosen are thsl/M/oc queue-length procesthe M/M/1 waiting time processand
the AR(1) autoregressive process

In order to provide a fair comparispwe assign the same computer budget to
each of the estimatorgVe assume the computer time can be taken as equivalent to
the simulation timeThis assumption simplifies matters because of the machine-
dependent subtleties that arise by explicitly timing each of these algotithms

The coupling-based estimator and its confidence interval feere introduced
in[7]. The empirically based estimator and its confidence intervals were constructed
using the batch means method described in the last se@th@number of batches
we used in each of the experiments is set toEfore the actual simulation of the
empirically based estimatowe perform a pilot run to determine the optimal value
of r based on the heuristic method given in the last section

SinceHZ andHZ may not be good approximations for

t2 3
z (30’12 + E /\10'22>

and

t2/3
s (E ol + 3/\10'22>,

respectivelywe may end up having

In that casewe simply set to some default valyuéor example0.5. Note that we use
the same to generate our estimator in each replication

We then replicate the experiment on each estimator a number of.tirhes
mean errqgrthe mean square ert@nd the coverage of confidence intervals relative
to the true mean is calculated for each estimatdrhe mean error is given by
averaging the difference of the estimator and the true mean for all replicatiens
mean square error is the average of the square of the difference of the estimator and
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the true mean for all replicationand the coverage is defined as the number of
confidence intervals that containdivided by the total number of confidence inter-
vals generatedVe expect ir, 20, and 3r coverages to correspond roughly to 68%
95% and 997% of the confidence intervals covering

The first model we consider is thd/M/cc queue-length proces$his is a
birth-death process = {X(t) : t = 0} that has birth rates, = A and death ratgs, =
nufor n = 0. In this caseX lives in a discrete state spadeis well known that if
X(0) = 0, thenX(t) is Poisson distributed with parameter(1 — exp( ut))/u). Sup-
pose we are interested in estimating the quatity E(X(t)). This corresponds to
settingf (x) = x andG(dx) = §,(dx) in Eq. (1.1). Then

A(1— exp(—pt))
—

a = Ef(X()) =

Let ¢ be the total computer budget aog= rc (r € (0,1)). The coupling used here

is the independent couplinge simulate the two processes independently until they
couple Tables 1 and 2 compare the absolute errbrs mean square errgend the
coverage of the conventional estimateg(c), the coupling-based estimatar (c),

and the empirically based coupling estimates(c).

The performance of the conventional estimaésrmeasured by the mean square
error, degrades as gets large whereas the performance of the coupling-based
estimatora4(c) improves ag — oco. It should come as no surprise that the vari-
ance ofay(c) goes to zero as — o. The empirically based coupling estimator
a,(c) does not show significant change as> c. As discussed in the previous
section the variance associated with the estimatof, converges to a constant as
t — oo. Since the empirically based coupling estimator does not degitsdeer-
formance is better than the conventional estimator for largs shown in the
experimentsin terms of confidence intervals coveragdl three estimators give
reasonable results

The next model we study is ti/M/1 waiting time proces®V={W(i):i = 0}
with traffic intensity p < 1. It is an irreducible positive recurrentdiscrete-time
Markov chain living on a continuous state spate’. Here we are interested in
estimatingEW(n) for n > 0. Again, we use independent couplingith coupling
time

T,(c) = inf{m= 0: W,,(c,m) = W,,(c,m) = 0}.

Since the aperiodic chalWvisits state 0 infinitely ofteywe haveP (T, (c) < oo) =1

The expected valuEW(n) can be obtained as followket p be the probabil-
ity that the existing customer will be served before a new customer ar8@s
p = W/(A + w); the corresponding probability that a new customer will arrive before
an existing customer is servedjs- 1 — p. Let P; be the probability thaif there are
currentlyi customers in the systeitinere will bej customers in the system just prior
to the arrival of the next customérherefore for eachi,



TABLE 1. M/M/co Queue-Length Process with= 0.5, u=1.0

t Estimator Replications c r Error MSE i 20 30

0.5 ap 100 20000 0 —0.000075670 (MO0006657 b4 093 099
0.5 ay 100 20000 0 —0.000178395 MO00005022 ®3 099 100
0.5 a; 100 20000 %4 —0.000157398 M00024756 o 097 099
10 ag 100 20000 0 M00177221 00013352 e 099 099
10 ay 100 20000 0 —0.000006267 MO00006702 ®8 095 099
10 a; 100 20000 40 —0.00015954 (00007541 %68 092 099
2.0 ag 100 20000 0 —0.001160358 MO00035513 e 095 100
2.0 ay 100 20000 0 00154736 MO00003761 ®8 095 099
2.0 an 100 20000 k1 000029991 (00008595 ®5 092 099
5.0 ap 100 20000 0 00993973 M00127154 a2 094 100
5.0 ay 100 20000 0 00014310 M00000296 ®4 090 099
5.0 a; 100 20000 61 000052970 (00008346 %6 095 098
7.0 ag 100 20000 0 —0.000922645 00211488 ®1 093 100
7.0 ay 100 20000 0 —0.000039807 MO0000043 ®5 091 095
7.0 a; 100 20000 61 0001339981 (00083268 B4 096 099

ONINTdNOI A3ISVA ATIVIIHIdING VIA NOILYININIS LNIISNVHL
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TABLE 2. M/M/co Queue-Length Process with= 2.0, u=1.0

t Estimator Replications c r Error MSE i 20 30

0.5 ap 100 20000 0 M00988069 (00020286 B4 097 100
0.5 ay 100 20000 0 00220167 00085861 ®5 093 100
0.5 a; 100 20000 @®9 —0.00200724 (00018906 (V4°) 097 099
10 ag 100 20000 0 —0.000526618 00072227 ®7 091 099
10 ay 100 20000 0 MO3797064 MO00086822 ®8 096 100
10 a; 100 20000 ®7 0002258368 00299082 g 099 100
2.0 ag 100 20000 0 00167566 M00132771 x4 099 100
2.0 ay 100 20000 0 02803725 MO00073235 B4 091 100
2.0 an 100 20000 %46 —0.003322026 00462243 ®5 092 100
5.0 ap 100 20000 0 —0.001049106 00409169 a3 095 100
5.0 ay 100 20000 0 M00505925 M00004452 56 091 097
5.0 a; 100 20000 070 —0.007038762 M00381976 %0 090 098
7.0 ag 100 20000 0 —0.005216124 MO0756011 ®38 097 099
7.0 ay 100 20000 0 00116769 MO0000512 ®1 086 094
7.0 a; 100 20000 o1 —0.004858809 00265057 o 095 099
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q if j=i+1

0 ifj>i+1
Pi = pitlg ifi=j=1

pt  ifj=o0.

Now we generat&W(n) iteratively Let 5" denote the probability that when thith
customer arrives in the systemiere will already bg customers presen$etting
83 =1, the vecto{§": j = 0} may be computed recursively b Then the expected
waiting time for theNth arriving customer is given by

N—1

1
E(WIN)) = - 3% ja)
j=1

The experimental results for this model can be found in Tables 3 and 4

Again the performancémeasured in mean square ejrof the conventional
estimator degrades &s—»> oo. The coupling-based estimator continues to have su-
perior performance for largeThe empirically based coupling estimatex(c) dom-
inates the conventional estimatortas oo, since it does not change significantly as
t gets largeNote that the confidence interval coverages for the coupling-based es-
timatora4(c) are not close to their nominal valu&ghe reason is that the tiny vari-
ances contribute to a relatively large skewndsis creates small-sample difficulties
in the normal approximatian

4. PROOFS
PROOF OF PrOPOSITION 1: FOr anyx € §
IPCX(t) € -[X(0) = x) = P(X(t) € -]
= [B(Xa(t) € ) = B(Xy(t) € ) =P(T>1) >0

ast — oo. On the other hand
l(-) = P(X(t) € -)| = Lw(dX)IIP(X(t) € -[X(0) =x) — P(X(1) € -)I,

so|w(-) = P(X(t) € -)|| — 0 ast — o alsa Hence Eq. (2.3) follows. Furthermorg
for any bounded, Eq. (2.3) implies thatE[ f(X(t))|X(0) = x] — Ef(X*(0)) as
t — co. We may then invoke Theorem 1 of Glyh6] to conclude thaX is Harris
recurrent n

ProoF oF THEOREM 1: Let

RO = [ [HXa(et) - f(Xa(c )]G,
[0,Ti(c)



TABLE 3. M/M/1 Waiting Time Process with = 0.2, = 1.0

N Estimator Replications c r Error MSE b 20 30
10 ap 100 20000 0 —0.00027 000002 064 094 100
10 ap 100 20000 0 0352 000005 046 081 095
10 ay 100 20000 ao —0.00044 000035 063 094 098
2.0 aop 100 20000 0 —0.00066 000005 064 094 100
2.0 a 100 20000 0 0322 000004 048 077 093
2.0 a; 100 20000 %2 —0.00113 000015 066 096 099
5.0 ag 100 20000 0 MO084 000016 066 093 100
5.0 ay 100 20000 0 0051 000001 052 080 098
5.0 a; 100 20000 o7 —0.00110 000014 072 090 097
7.0 ap 100 20000 0 —0.00154 000019 065 096 100
7.0 ap 100 20000 0 —0.00001 000000 049 093 097
7.0 ay 100 20000 %8 000084 000016 063 092 098

10.0 ap 100 20000 0 MO089 000035 063 093 099

10.0 a; 100 20000 0 MO005 000000 023 067 079

10.0 a; 100 20000 60 —0.00174 000014 055 088 098
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TABLE 4. M/M/1 Waiting Time Process with = 0.5, = 1.0

N Estimator Replications c r Error MSE b 20 30
5.0 ap 100 20000 0 MO047 000051 066 094 099
5.0 ap 100 20000 0 m4128 000240 017 041 070
5.0 ay 100 20000 a2 000321 000513 058 095 100
7.0 aop 100 20000 0 —0.00284 000087 063 097 100
7.0 a 100 20000 0 3006 000146 029 060 086
7.0 a; 100 20000 b4 —0.00820 000264 075 092 100

10.0 ag 100 20000 0 m0129 000136 066 097 099

100 a 100 20000 0 1532 000066 040 078 093

100 a; 100 20000 ®9 —0.00473 000238 069 093 099

200 ap 100 20000 0 MO555 000361 063 095 098

20.0 ap 100 20000 0 0497 000022 049 079 091

20.0 ay 100 20000 o2 000554 000240 068 095 099

50.0 ap 100 20000 0 —0.01112 000724 066 097 099

50.0 a 100 20000 0 —0.00007 000001 02 0.6 0.68

50.0 a; 100 20000 ®3 000647 000282 064 097 100
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Note that
IP(Ry(c) € -[X) —P*(RE )|

f(rrc(dx) —m(dx)P(R &€ )H =|wm.— 7| —0as
S

asc — oo. Furthermore

ERHOIX) = [ m(onE,R?
S

zfrrc(dx)gg(x)a Jw(dx)gz(x) =E*R? as.

asc — oo, S0{R%(c): ¢ > 0} is a uniformly integrable family of.v.’s. As a conse-
quencewe may apply the Lindeberg—Feller Cl3ee Chung2, p. 205]) path-by-
path to conclude that

LAacz)
P(JTCZ 21 (Ri(c) — E(Ry(c)[X)) = .|x> = P(0,N(0,1) = -)as.  (4.8)

asc — oo. Also, for e > 0,

[Acy(1-e)]
P(N(c2)) < Acy(1—€)[X) = P< 2 xi(c) > sz>

[Acs(1—€)]
SP< > (xi(0) —E[xi(0)|X])

>C—[Ac(1— 6)1E[X1(C)|X]|X>
- var( y,(c)[X)[Ac,(1—€)]
(6= [Aca(1 = €)[E[ x1(0)[X])?

asc — oo, by virtue of A3 and A5 Similarly, P(N(c,)) > Ac,(1+€)|X) — 0 as. as
c — 0. Sq,

— 0as.

P(IN(c,) — Ac,| > ec,|X) = 0 as. (4.9)
asc, — oo. Furthermorebecaus&;(c), R,(c),... are independent conditional &

Kolmogorov’s Inequality implies that for > 0,
X>

[Acy] N(cz)
P( 21 (Ri(c) —E(R(c)|X)) — 21 (Ri(c) —E(Ri(c)|X))| > evE;

[Ac)+j

3 (RO -EROIX)]| >/ ‘x)

i=[Ac
+ P(IN(Cc;) — Acy| > €c,| X)
_ var(R,(c)| X)e3c,

6202

= P( max

1=|j|=c%c,

+ P(|N(CQ) - )\C2| > 63C2|X).
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If we let ¢ — oo, followed by lettinge — 0 (and apply A3 A4, Eq. (4.1), and
Eqg. (4.2)), we may conclude that

JAG, i-1
asc — co. Utilizing Eq. (4.2) again we find that

1 N
P( (N( 3 E[Ri<c>|x1>> = -|X)

N(0,1) = ) as.

1 N(cp)
P< > (Ri(c) —E[R(0)|X]) = -|X> = P(o>N(0,1) = -) as.

()
-pl—=2_
<V( -
asc — oo. Hence for eachd,

1 N(cy) —020'22
Eexp(iO\E(N( . JZ (Ri(c) — E[Rl(C)IX]))|X> —>exp<m>

asc — oco. Consequentlynoting that

I;(c) = Ri(c) — E[Ry(c)|X] +Lwc(dX)k(X),

we get
Eexp(idve(a(c) — a))
. 1 N(cz)
= Eexp(W«E( NG, — E[Ry(0)|X]) +J;wc(dx)k(x) - a>>
= E{exp(i@@(c—l fo 1|((X)77'C(dx) - a>>
1 N(cy)
X Eexp<i0@( NG E[R1(0)|X])>>}
(_ o262 B 0'2202 >
—eXp 2r 2A(1—r)
asc — oo, proving the theorem ]

Proor oF THEOREM 2: Using A7, a proof very similar to that of Theorem 1 estab-
lishes that
\FC(CY]_(C) Q... ,ozm(C) - a) = Um(Nl(o’ 1)9 LEEE) Nm(o,l))

asc — oo, whereN;(0,1),...,Ny(0,1) are ii.d. normally distributed.r.’s with mean
zero and unit varianc& he conclusion follows from an application of the continu-
ous mapping principlésee Billingsley[1]). u
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Proor or ProrosiTiON 2: Note that

sgp Cilf:l(x(s) € B)ds— w(B)‘

1 (o
E—f I(X(S)=y)ds—7r(y)‘
0

= sup
B |yeB C1
1 (=
Sygs c_lfo I(X(S)=y)ds—7r(y)‘
1 (= 1 (o
=2y§S<w(y)—C—lfo I(X(S)=y)d5>l<vr(y)>c—lf0 I(X(s)=y)ds>.

The summands are dominated by @) (which is summableand converge to
zero as. Applying the dominated convergence theorem path-by-path leads to the
conclusion that the above sum converges to zes@mac — oo. u

ProoF ofF ProrosiTION 3: Let

o(y) = f (AP Y),

== [ pxe.y s
Py o s p Y

By stationarity ofr,

m(B) =L7T(dX)pr(X,y)n(dy)

= Lp(y)n(dy)-

Also,

7e(B) = f po(y)m(dy).

Fix e > 0. Becausen and are tight[1], there exists a compact sktsuch that
1n(K®) <e,andw (K°®) <e. Set| p| = sup{p(x,y): X,y € S}. Note that p| = p(y),
| pll = pc(y) forc> 0,y € S Sincepis necessarily uniformly continuous #nx K,
there existyy, v,,...,Yy; € K such that for eacli € K, there is ay; for which

[p(X,y) = p(X,yi)| <e
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for x € K. Hence
sup pe(y) — p(y)|
yeK

<supfp(x y) 1jcll(X(s)edx)ds—w(dx) + €lp]
yeK K ’ C1 Jo

1 (o
= max pr(x,yi)<C—lfo I(X(s)edx)ds—w(dx)> + 3¢l pl
= max| = [ p(x(9),y)1(X(9) € K)
- | ), PO € Kas

+ 3¢l p| — 3e€llp| as. (4.10)

—Lp(x,yi)l(xe K)(dx)

asc — oo, by the law of large numbers for Harris processagplied to the finite
collection of sample functions associated with...,y;). Then

sgnwc(B) —m(B)| sup

fB Bu(y)m(dy) — f p(y)n(dY)‘
= Llpc(y)—p(y)ln(dy)

= lepc(Y)—p(Y)n(dY)Jrépll

= :;:gg p(y) — p(y)| + €[ p].

By virtue of Eqg (4.10), we conclude that
lim sup 7.(B) — 7(B)| = 4e|p|.
C—co B

Sincee was arbitrarythis proves the result u
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