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In this paper we consider the use of coupling ideas in efficiently computing a certain
class of transient performance measures+ Specifically, we consider the setting in
which the stationary distribution is unknown, and for which no exact means of
generating stationary versions of the process is known+ In this context, we can
approximate the stationary distribution from empirical data obtained from a first-
stage steady-state simulation+ This empirical approximation is then used in place of
the stationary distribution in implementing our coupling-based estimator+ In addi-
tion to the empirically based coupling estimator itself, we also develop an associ-
ated confidence interval procedure+

1. INTRODUCTION

Let X5 $X~t! : t $ 0% be a stochastic process that represents the output of a simula-
tion+ This paper is concerned with the efficient computation, via simulation, of tran-
sient performance measures of the form

a 5 Eb,

whereb is defined by

b 5E
@0,`!

f ~X~t!!G~dt!+ (1.1)

We assume, in Eq+ ~1+1!, that f is a given real-valued function defined on the state
spaceSof X, andG is a given finite measure+
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A number of important transient performance measures can be represented in
the form of Eq+ ~1+1!+

Example 1:To computea 5 Ef ~X~t!!, setG~ds! 5 dt~ds! for s$ 0, wheredt~{! is
a unit mass at the point t+

Example 2:To compute the expected cumulative “cost” of running the system to
time t, we letG~ds! 5 I ~0 # s # t! ds+ ~We interpretf ~x! as the rate at which cost
accrues whenX occupies statex+!

Example 3:Assume, as in Example 2, that f ~x! represents the rate at which the
system accrues cost whenX is in statex+ If

a 5 EE
@0,`!

e2gt f ~X~t!! dt,

the infinite-horizong-discounted cost, this performance measure may be repre-
sented as a special case of Eq+ ~1+1! by settingG~dt! 5 e2gt dt for t $ 0+

In a previous paper~Glynn and Wong@7# ! we showed how coupling ideas
can be used to efficiently compute performance measures of the form in Eq+ ~1+1!
~for general background on coupling, see Lindvall@8# !+ Specifically, suppose that
X is a strong Markov process that possesses a unique stationary distributionp+ If
we are able to generate variates fromp, this gives us the ability to simulate a
stationary versionX* of the process~by initiating the Markov processX with its
stationary distributionp!+ Suppose that we simultaneously simulateX in such a
way thatX and X* “couple+” In other words, X and X* are jointly simulated so
that the random timeT 5 inf $t $ 0 :X~t! 5 X*~t!%, known as the “coupling time,”
is almost surely finite+ Note that for t $ T, we may setX~t! 5 X*~t! without
changing the distribution ofX+ So

a 5 EE
@0,T !

f ~X~t!!G~dt! 1 EE
@T,`!

f ~X*~t!!G~dt!

5 EE
@0,T !

@ f ~X~t!! 2 f ~X*~t!!#G~dt! 1 EE
@0,`!

f ~X*~t!!G~dt!+

Note thatEf ~X*~t!! 5 Ef ~X*~0!! for t $ 0 by stationarity ofX*+ Consequently, if
Ef ~X*~0!! can be computed either analytically or numerically, the above argument
ensures thata 5 EG, where

G 5E
@0,T !

@ f ~X~t!! 2 f ~X*~t!!#G~dt! 1 gE f~X*~0!!+ (1.2)

The quantityg appearing in Eq+ ~1+2! is the total mass ofG+ This identity proves that
a can be computed by generating i+i+d+ replicates of the random variableG+

Glynn and Wong@7# study the efficiency of the above coupling-based simula-
tion algorithm in the context of Examples 1 through 3+ For Examples 1 and 2, it is
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shown that ast r `, the coupling-based estimator dominates the naive estimator
algorithm ~based on replicatingb!+ The coupling-based estimator is also shown
to improve efficiency in the setting of Example 3+ In addition, various extensions
of the methodology are provided, including an extension to the setting in which
Ef ~X*~0!! must be computed by simulation+

All the methodologies described in@7# presume the ability to generate variates
from the stationary distributionp+While there are a number of important applica-
tions in which this is possible~and for which the transient behavior is intractable!,
most real-world simulations do not possess this property+ This paper is devoted to
extending the above coupling-based methodology to this latter setting+ The idea is
first to simulateX over some long time horizon and then compute an empirical
approximation top from the simulation data+ By using the empirical approximation
in place ofp, we can then simulate an approximately stationary version ofX+ Fur-
thermore, Ef ~X*~0!! can be estimated via the time-average obtained from the initial
simulation+ If a suitable coupling exists, we can then generate an approximation to
the random variableG; see Eq+ ~1+2!+ By generating replications of this approxima-
tion to G, we can then compute an estimator fora+We refer to this estimator as our
empirically based coupling estimator fora+

The main contributions of this paper include:

1+ development of a central limit theorem~CLT! for the empirically based cou-
pling estimator fora ~Theorem 1!;

2+ development of a confidence interval procedure for our empirically based
coupling estimator~Theorem 2!;

3+ discussion of conditions under which the empirically based coupling esti-
mator is to be preferred to the conventional estimator~based on averaging
i+i+d+ replications ofb!;

4+ introduction of several different empirical approximations to the distribu-
tion p that are suitable for use in our empirically based coupling estimator+

The empirically based coupling estimator is carefully described in Section 2,
and its basic properties discussed; proofs are deferred to Section 4+ Our computa-
tional results are discussed in Section 3+

2. DESCRIPTION OF THE ALGORITHM AND MAIN RESULTS

To describe the above algorithm, we start with a given computer budgetc+ A pro-
portion r ~0 , r , 1! is allocated to generating an empirical approximation top,
whereas~12 r ! is allocated to generating the replicates of the approximation to the
random variableG+ Soc1 5 rc andc2 5 ~12 r !c are the amounts of computer time
allocated to the first and second “stage” of the procedure+ To simplify our analysis
and notation, we assume that simulated time equals computer time, so that witht
units of computer time, exactlyt time units ofX can be simulated+With ~possibly! a
trivial change of time scale, this assumption, while not true in an exact sense, is at
least approximately true in most real-world simulations+
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The first stage of the procedure requires simulatingX to timec1, at which time
an empirical approximationpc to p is obtained from the simulated data+ For exam-
ple, if X has discrete state space, a suitable empirical approximation is given by the
empirical distribution

pc~{! 5
1

c1
E

0

c1

I ~X~s! [ {! ds+ (2.3)

For continuous state space processes,we will need to use other approximations top;
we will discuss this point in further detail later+ In addition, the first stage provides
the estimator

g~c1! 5 gE
S

f ~ y!pc~dy!

to the quantitygE f~X*~0!! appearing in Eq+ ~1+2!+
In the second stage we independently generate approximations to the random

variableG+ Let m be the initial distribution of the processX for which we are trying
to compute the unknown transient performance measurea+ Then, let X11 andX12 be
two versions ofX, in which X11 is initiated with distributionm andX12 is initiated
with distributionpc+Assuming thatX11andX12are simulated in such a way that they
couple at timeT1, this yields an approximationG1~c! to the random variableG, namely

G1~c! 5E
@0,T1!

@ f ~X11~t!! 2 f ~X12~t!!#G~dt! 1 g~c1!+

We then expend the remainingc2 time units of our computer budget, independently,
generating additional replicates~X21,X22!,~X31,X32!, + + + of ~X11,X12! until our bud-
get is exhausted+ Let N~c2! be the number of such replicates produced in the remain-
ing c2 time units+ Then, our empirically based coupling estimator is given by

a~c! 5
def 1

N~c2! (
i51

N~c2!

Gi ~c!+ (2.4)

Something needs to be said about how to construct the coupling timeTi for ~Xi1,Xi 2!+
If the state space is discrete andX is an irreducible, positive recurrent, continuous-
time Markov chain, then we may simulateXi1 and Xi 2 independently until they
~necessarily! meet at timeTi , after which we setXi1 5 Xi 2+ If the state space is
continuous, Xi1 andXi 2 may never meet if they are simulated independently+ More
sophisticated couplings may be necessary in these circumstances@7# +

In order to describe our main results, we need to be precise about the assump-
tions underlying our analysis+ We shall assume thatX is anS-valued Markov pro-
cess, having initial distributionµ, and possessing stationary transition probabilities+
We require thatS be a complete separable metric space+ Through suitable use of
“supplementary variables,” virtually any discrete-event simulation may be viewed
as such a process; see Glynn@5# for details+ ~Note that Euclidean spaceRd and
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finite0countably infinite state spaces are complete separable metric spaces+! We as-
sume thatX has right continuous paths with left limits, and possesses a stationary
distributionp+ Thus, X5 $X~t! : t $ 0% [ D, the space of right-continuousS-valued
functions with left limits+

Our most critical assumption is that for any initial statex [ S, the process
initiated atx can be coupled to the process initiated with distributionµ+ A more
careful statement of this assumption involves lettingXi :D 3 D r D be the coordi-
nate projections defined byXi ~x1, x2! 5 xi , for i 51,2+ Let T 5 T~x1, x2! 5 inf $t $
0 : x1~t ! 5 x2~t !%+ Our coupling assumption demands the existence of a family
~Px : x [ S! of probability distributions onD 3 D such that

i+ Py~B! is measurable iny for each~measurable! B

ii + Px~X1 [ {! 5 P~X [ {!, x [ S

iii + Px~X2 [ {! 5 P~X [ {6X~0! 5 x!, x [ S

iv+ Px~T , `! 5 1, x [ S+

Assumptions ii, iii , and iv assert thatX1 has distribution ofX associated with initial
distributionµ, X2 has the distribution ofX initiated atx, and the coupling time is
finite+ ~In ii above, it should be noted that the distributionP always denotes a dis-
tribution under whichX has initial distributionµ+!

For any two probabilitiesP1 andP2 defined on the same sample space, let

7P1 2 P27 5
def

sup
A
6P1~A! 2 P2~A!6

be the “total variation distance” betweenP1 andP2+
It turns out that the hypotheses we have stated imply thatX is recurrent in a

certain sense+

Definition 1: A Markov process Z5 $Z~t! : t $ 0%, takingvalues in S, is said to be
a Harris recurrent Markov process if there exists a probability measureh such that
whenever h~A! . 0,

PSE
0

`

I ~Z~t! [ A! dt 5 1`6Z~0! 5 zD5 1

for all z [ S+

Proposition 1: The Markov process X is Harris recurrent+ Furthermore,

7P~X~t! [ {6X~0! 5 x! 2 p~{!7r 0 (2.5)

as tr `, for each x[ S+

Note that Proposition 1 establishes that our hypotheses precludeX from having
periodic behavior+

To analyze our algorithm, we now define our empirically based estimator in
more rigorous terms+ In addition to simulating the processX up to timec1, the
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algorithm further involves theD-valued random elements and coupling times
~X11,X12,T1,X21,X22,T2, + + + ! associated with the remaining budgetc2+ We shall
assume that our sample spaceV is sufficiently rich so as to support, for eachc .
0, ~X11~c!,X12~c!,T1~c!,X21~c!,X22~c!,T2~c!, + + + !+ The algorithm also requires the
existence of an empirical approximationpc to p+ For c $ 0, let pc 5 $pc~B! : ~mea-
surable! B , S% be a set-indexed process such that:

a+ pc is measurable with respect to$X~s! :0 # s# c1%+ ~In other words, pc is a
~deterministic! function of$X~s! :0 # s# c1%+!

b+ pc~{! is a probability onS+

The probabilityP defined onV is chosen so thatX has the same distribution as
before+ ~In particular, X is Markov with initial distributionµ+! Furthermore, we
chooseP so that

c+ P~~Xi1~c!,Xi 2~c!,Ti ~c!! [ Ai , 1 # i # n6X ! 5 ) i51
n *Spc~dx!Px~~X1,X2,T !

[ Ai !+

So conditional onX, $~Xi1~c!,Xi 2~c!,Ti ~c!! :1 # i # n% are i+i+d+, with Xi1~c!
having the distribution ofX, Xi 2~c! having the distribution ofX initiated underpc,
andTi ~c! representing the corresponding coupling time+ Set

Gi ~c! 5E
@0,Ti ~c!!

@ f ~Xi1~c, t!! 2 f ~Xi 2~c, t!!#G~dt! 1 g~c1!,

whereg~c1! 5 g*Spc~dy! f ~ y!+ Let s 5 sup$t $ 0 :G~t! , G~`!% be the right
end-point of the support ofG+ Note that computingGi ~c! requires simulatingXi1~c!
andXi 2~c! up to timeTi ~c! ∧ s+ Thusxi ~c! 5 2~Ti ~c! ∧ s! is the computer time
involved in generatingGi ~c! ~incremental to that associated withg~c1!!+ Hence,
N~c2! 5 max$n $ 0 :x1~c! 1 {{{ 1 xn~c! # c2% is the number ofGi ~c!’s gener-
ated within the second stage’s budgetc2+ Our empirically based coupling estima-
tor can then be defined via Eq+ ~2+2!+

Our first major result is a central limit theorem~CLT! for a~c!+ In preparation
for this set

R 5E
@0,T !

@ f ~X1~t!! 2 f ~X2~t!!#G~dt!,

gp~x! 5 ExRp, andhp~x! 5 Ex~T ∧ s! p+We assume that

A1+ g2~x! , ` for x [ S, h2~x! , ` for x [ S, and

E
S

6 f ~x!6p~dx! , `+

Letk~x!5 f ~x!g1ExR+Observe that Eq+ ~1+2! asserts that*Sk~x!p~dx!5
a+We require the existence of a finite~deterministic! constants1 such that
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A2+ !c1~*Sk~ y!pc~dy! 2 a! n s1N~0,1! asc1 r `, wheren denotes weak
convergence+

As for the empirical approximationpc, we require thatpc satisfy

A3+ 7pc 2 p7r 0 a+s+;

A4+ *Sg2~x!pc~dx! r *Sg2~x!p~dx! a+s+;

A5+ *Sh2~x!pc~dx! r *Sh2~x!p~dx! a+s+; asc r `+

We will discuss conditionsA3–A5 in greater detail later+ ForA2,we may invoke
the CLT for Harris processes, by virtue of Proposition 1; see Glynn@6# for such a
CLT+ Let

P*~{! 5E
S

p~dx!Px~{!+

Theorem 1: AssumeA1–A5+ Then, l21 5 2E*~T ∧ s! , ` ands2
2 5 var*R , `,

where E*~{! andvar*~{! are the expectation andvariance operators associated with
P*, respectively+ Furthermore,

!c~a~c! 2 a! n sN~0,1!

as cr `, where

s2 5
s1

2

r
1

l21s2
2

12 r
+ (2.6)

The quantityl21s2
2 is precisely the asymptotic variance constant that appears in

the CLT when exact coupling is applicable+Specifically, this corresponds to the case
whenEf ~X*~0!! can be computed exactly, and it is possible to generate variates
from p+ It should also be noted that the variance constants2 appearing in Theorem
1 is not the same as that which appears whenEf ~X*~0!! is unknown, with the pos-
sibility of exact generation of variates fromp+ In this latter case, Ef ~X*~0!! must be
estimated from a first-stage steady-state simulation ofX+ However, the first-stage
plays no role in initializing the second-stage coupling-based replications+As a con-
sequence, it turns out that the asymptotic variance in this latter setting has the same
form as Eq+ ~2+6!, with the sole modification being thats1

2 is then the time-average
variance constant for the functiong f ~x! ~instead ofk~x!!+

We now perform an asymptotic analysis, in order to get a sense of when our
empirically based coupling estimator is preferable to conventional simulation~in
which i+i+d+ replicates ofb are averaged!+We consider first Example 1, in whichb 5
f ~X~t!!+ In this case, we typically expectExRr 0 ast r `; this is guaranteed iff
is bounded+Also, s2

2 r 0 ast r` is to be expected+ Hence, for larget, s2 ought to
be roughly equal to the time-average variance constant off ~X~t!!, divided byr+ On
the other hand, the corresponding variance constant for the conventional estimator
grows linearly int ast r` @7# + Hence, the empirically based coupling estimator is
a clear winner fort large+
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As for Example 2, in which b is a cumulative cost over@0, t# , both the empiri-
cally based coupling estimator and conventional estimator have respective variance
constants that typically grow in proportion tot 2+ Here, no clear winner exists, even
for larget+ Finally, in the context of Example 3, b cannot be generated in finite time,
so the conventional estimator is infeasible+ ~However, alternatives to the empirically
based coupling estimator exist; see Fox and Glynn@4# +! Thus, the empirically based
coupling estimator is again a winner+

We now turn to the question of producing confidence intervals fora, based on
the estimatora~c! that we have introduced in this paper+ The challenge here is
dealing withs1

2, that involves the unknown functionk+To deal with this problem,we
use the method of batch means+ To validate this procedure, we require stronger
hypothesis on the empirical approximationpc to p+

A6+ For eachc . 0, there exists a family of probabilities$n~c, x,{! : x [ S%
such that

pc~B! 5
1

c1
E

0

c1

n~c,X~s!,B! ds+

A7+ There exists a finite~deterministic! constants1 and a standard Brownian
motionB such that

!cS1

c
E

0

tE
S

k~ y!n~c,X~s!,dy! ds2 atDn s1B~t!

asc r `+ Heren denotes weak convergence in the topology associated
with the spaceDRof real-valued right-continuous functions with left limits+

Assumption A7 is, from a practical standpoint, only slightly stronger than A2+
Observe that we can generateX12~c,0!,X22~c,0!, + + + from the distributions

n~c,X ~cU1!,{!,n~c,X~cU2!,{!, + + + ,

whereU1,U2, + + + is an independent sequence of i+i+d+ uniform r+v+’s on @0,1!+ Then,
for 1 # i # m, let

ai ~c! 5
m

N~c1! (
j51

N~c1!

Rj ~c! IS i 2 1

m
# Uj ,

i

m
D1

gm

c1
E

~i21!c10m

ic10m

f ~X~s!! ds+

Note that

a~c! 5
1

m (
i51

m

ai ~c!+
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Let

s~c! 5 ! 1

m2 1 (
i51

m

~ai ~c! 2 a~c!!2+

Theorem 2: Fix m$ 2+ Under AssumptionsA1 andA3 to A7, it follows that

!mSa~c! 2 a

s~c!
Dn tm21

as cr `, where tm21 is a Student-t r+v+ with m2 1 degrees of freedom+

Theorem 2 implies that ifz is a solution toP~2z# tm21 # z! 5 1 2 d, then

Fa~c! 2
zs~c!

!m
,a~c! 1

zs~c!

!m G
is an approximate 100~1 2 d!% confidence interval fora whenc is large+ Hence,
Theorem 2 yields a confidence interval methodology for our empirically based cou-
pling estimator+

A natural question that arises here is the computation of the optimal value ofr+
An easy calculation shows that the value ofr that minimizess2 is

r * 5 S11 !l21s2
2

s1
2 D21

+

Because we do not knowk explicitly, it is unclear how to estimates1
2 consistently+

Instead, we can use the following~reasonable! heuristic procedure+ If we wish to
computea using an approximately optimal value ofr, we first do a couple of “trial
runs” usingr 5 1

3
_ andr 5 2

3
_ , respectively, and the same computer budgetc+ From the

two trial runs, we obtain two confidence interval half-widthsH1 andH2, respec-
tively+ Then,

H1
2 '

t 2

c
S3s1

2 1
3

2
l21s2

2D
H2

2 '
t 2

c
S3

2
s1

2 1 3l21s2
2D+

Hence,

l21s2
2

s1
2 '

2H2
2 2 H1

2

2H1
2 2 H2

2 +

Consequently,

r * ' S11 !2H2
2 2 H1

2

2H1
2 2 H2

2D21

+
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Thus, we can now do our “production run,” using computer budgetc andr 5 r * as
obtained through the above formula+

We conclude this section with a discussion of empirical approximationspc to p
that satisfy our hypotheses+We consider first the case in whichS is discrete+

Proposition 2: Suppose S is either finite or countably infinite+ If

pc~B! 5
1

c1
E

0

c1

I ~X~s! [ B! ds,

then7pc 2 p7r 0 a+s+ as cr `+

We turn next to the verification of A3 whenS is continuous+ In this setting, it is
typically untrue that the empirical distribution itself will converge top a+s+ in the
sense of total variation+ So we use a different empirical approximation here+ We
assume that there exists a probabilityh and 0, t0 , ` such that for eachx, y [ S,

P~X~t0! [ dy6X~0! 5 x! 5 p~x, y!h~dy!, (2.7)

wherep :S3 Sr R is a known~density! function+ It is rarely the case that such a
density will be computable in continuous time~unless the entire transient distribu-
tion is known!+ However, in discrete time, the situation is quite different+

Specifically, the theory developed in this paper for continuous time Harris re-
current processes extends easily to sequences$Xn : n $ 0% that are Harris recurrent
Markov chains+ In particular, by embedding$Xn : n $ 0% in continuous time via
X~t! 5 X{t} for t $ 0, the estimatora~c! and corresponding confidence interval
methodology continue to be valid for simulations of such chains+For such a discrete-
time chain,P~X1 [ dy6X05x! can easily be computed in closed form+So, in discrete
time, the above assumption is quite reasonable+

Proposition 3: Suppose p:S3 Sr R is continuous and bounded+ If

pc~B! 5
1

c1
E

0

c1E
B

p~X~s!, y!h~dy! ds,

then7pc 2 p7r 0 a+s+ as cr `+

Note that A4–A7 can easily be verified for the empirical approximations we
have proposed above+ In particular, A4 and A5 require invoking the strong law for
Harris processes, whereas A7 involves using the functional CLT for Harris pro-
cesses+

Another class of empirical approximations, applicable whenS5Rd, is based on
setting

n~c, x,dy! 5 P~x 1 b~c!N~0,1! [ dy!,

whereb~c! r 0 at a suitable rate ascr`+ If $b~c! :c . 0% is chosen appropriately,
the corresponding empirical approximation has a density that converges a+s+ to the
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stationary density; see Devroye@3# for details in the i+i+d+ context+ Verifying A4–A7
again comes down to invoking laws of large numbers and central limit theorems for
Harris processes+

3. NUMERICAL EXPERIMENTS

In this section, we compare the performance of the empirically based coupling es-
timator and the conventional estimator by the means of numerical experiments+ In
addition,we report the performance of the coupling-based estimator for the purpose
of comparison+ The experiments are done on models for which both the transient
means and stationary distributions are available analytically+ The models we have
chosen are theM0M0` queue-length process, theM0M01 waiting time process, and
theAR~1! autoregressive process+

In order to provide a fair comparison, we assign the same computer budget to
each of the estimators+We assume the computer time can be taken as equivalent to
the simulation time+ This assumption simplifies matters because of the machine-
dependent subtleties that arise by explicitly timing each of these algorithms+

The coupling-based estimator and its confidence interval fora were introduced
in @7# +The empirically based estimator and its confidence intervals were constructed
using the batch means method described in the last section+ The number of batches
we used in each of the experiments is set to 20+ Before the actual simulation of the
empirically based estimator, we perform a pilot run to determine the optimal value
of r based on the heuristic method given in the last section+

SinceH1
2 andH2

2 may not be good approximations for

t 2

c
S3s1

2 1
3

2
l21s2

2D
and

t 2

c
S3

2
s1

2 1 3l21s2
2D ,

respectively, we may end up having

2H2
2 2 H1

2

2H1
2 2 H2

2 , 0+

In that case,we simply setr to some default value, for example, 0+5+Note that we use
the samer to generate our estimator in each replication+

We then replicate the experiment on each estimator a number of times+ The
mean error, the mean square error, and the coverage of confidence intervals relative
to the true meana is calculated for each estimator+ The mean error is given by
averaging the difference of the estimator and the true mean for all replications, the
mean square error is the average of the square of the difference of the estimator and
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the true mean for all replications, and the coverage is defined as the number of
confidence intervals that containa divided by the total number of confidence inter-
vals generated+We expect 1s, 2s, and 3s coverages to correspond roughly to 68%,
95%, and 99+7% of the confidence intervals coveringa+

The first model we consider is theM0M0` queue-length process+ This is a
birth-death processX5 $X~t! : t $ 0% that has birth ratesln5 l and death ratesµn5
nµ for n $ 0+ In this case, X lives in a discrete state space+ It is well known that if
X~0! 5 0, thenX~t! is Poisson distributed with parameter~l~12 exp~µt!!0µ!+ Sup-
pose we are interested in estimating the quantitya 5 E~X~t!!+ This corresponds to
settingf ~x! 5 x andG~dx! 5 dt~dx! in Eq+ ~1+1!+ Then

a 5 Ef ~X~t!! 5
l~12 exp~2µt!!

µ
+

Let c be the total computer budget andc1 5 rc ~r [ ~0,1!!+ The coupling used here
is the independent coupling;we simulate the two processes independently until they
couple+ Tables 1 and 2 compare the absolute errors, the mean square errors, and the
coverage of the conventional estimator, a0~c!, the coupling-based estimator, a1~c!,
and the empirically based coupling estimator, a2~c!+

The performance of the conventional estimator, as measured by the mean square
error, degrades ast gets large, whereas the performance of the coupling-based
estimatora1~c! improves ast r `+ It should come as no surprise that the vari-
ance ofa1~c! goes to zero ast r `+ The empirically based coupling estimator
a2~c! does not show significant change ast r `+ As discussed in the previous
section, the variance associated with the estimator, s2, converges to a constant as
t r `+ Since the empirically based coupling estimator does not degrade, its per-
formance is better than the conventional estimator for larget as shown in the
experiments+ In terms of confidence intervals coverage, all three estimators give
reasonable results+

The next model we study is theM0M01 waiting time process,W5 $W~i ! : i $ 0%
with traffic intensityr , 1+ It is an irreducible, positive recurrent, discrete-time
Markov chain living on a continuous state space, R1+ Here we are interested in
estimatingEW~n! for n . 0+ Again, we use independent coupling, with coupling
time

Ti ~c! 5 inf $m$ 0 :W11~c,m! 5 W12~c,m! 5 0%+

Since the aperiodic chainWvisits state 0 infinitely often,we haveP~Ti ~c! ,`! 51+
The expected valueEW~n! can be obtained as follows+ Let p be the probabil-

ity that the existing customer will be served before a new customer arrives+ So,
p5 µ0~l 1 µ!; the corresponding probability that a new customer will arrive before
an existing customer is served isq512 p+ Let Pij be the probability that, if there are
currentlyi customers in the system, there will bej customers in the system just prior
to the arrival of the next customer+ Therefore, for eachi,
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Table 1. M0M0` Queue-Length Process withl 5 0+5, µ5 1+0

t Estimator Replications c r Error MSE 1s 2s 3s

0+5 a0 100 20000 0 20+000075670 0+000006657 0+54 0+93 0+99
0+5 a1 100 20000 0 20+000178395 0+000005022 0+68 0+99 1+00
0+5 a2 100 20000 0+44 20+000157398 0+000024756 0+70 0+97 0+99

1+0 a0 100 20000 0 0+000177221 0+000013352 0+76 0+99 0+99
1+0 a1 100 20000 0 20+000006267 0+000006702 0+68 0+95 0+99
1+0 a2 100 20000 0+40 20+00015954 0+00007541 0+68 0+92 0+99

2+0 a0 100 20000 0 20+001160358 0+000035513 0+76 0+95 1+00
2+0 a1 100 20000 0 0+000154736 0+000003761 0+68 0+95 0+99
2+0 a2 100 20000 0+51 0+00029991 0+00008595 0+65 0+92 0+99

5+0 a0 100 20000 0 0+000993973 0+000127154 0+72 0+94 1+00
5+0 a1 100 20000 0 0+000014310 0+000000296 0+64 0+90 0+99
5+0 a2 100 20000 0+61 0+00052970 0+00008346 0+66 0+95 0+98

7+0 a0 100 20000 0 20+000922645 0+000211488 0+61 0+93 1+00
7+0 a1 100 20000 0 20+000039807 0+000000043 0+65 0+91 0+95
7+0 a2 100 20000 0+61 0+001339981 0+000083268 0+64 0+96 0+99
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Table 2. M0M0` Queue-Length Process withl 5 2+0, µ5 1+0

t Estimator Replications c r Error MSE 1s 2s 3s

0+5 a0 100 20000 0 0+000988069 0+000020286 0+64 0+97 1+00
0+5 a1 100 20000 0 0+000220167 0+000085861 0+65 0+93 1+00
0+5 a2 100 20000 0+29 20+00200724 0+00018906 0+79 0+97 0+99

1+0 a0 100 20000 0 20+000526618 0+000072227 0+67 0+91 0+99
1+0 a1 100 20000 0 0+003797064 0+000086822 0+68 0+96 1+00
1+0 a2 100 20000 0+57 0+002258368 0+000299082 0+74 0+99 1+00

2+0 a0 100 20000 0 0+000167566 0+000132771 0+74 0+99 1+00
2+0 a1 100 20000 0 0+002803725 0+000073235 0+64 0+91 1+00
2+0 a2 100 20000 0+46 20+003322026 0+000462243 0+65 0+92 1+00

5+0 a0 100 20000 0 20+001049106 0+000409169 0+73 0+95 1+00
5+0 a1 100 20000 0 0+000505925 0+000004452 0+56 0+91 0+97
5+0 a2 100 20000 0+70 20+007038762 0+000381976 0+60 0+90 0+98

7+0 a0 100 20000 0 20+005216124 0+000756011 0+68 0+97 0+99
7+0 a1 100 20000 0 0+000116769 0+000000512 0+61 0+86 0+94
7+0 a2 100 20000 0+71 20+004858809 0+000265057 0+70 0+95 0+99
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Pij 5 5
q if j 5 i 1 1

0 if j . i 1 1

pi2j11q if i $ j $ 1

pi11 if j 5 0+

Now we generateEW~n! iteratively+ Let dj
N denote the probability that when theNth

customer arrives in the system, there will already bej customers present+ Setting
d0

051, the vector$dj
N : j $ 0% may be computed recursively inN+ Then, the expected

waiting time for theNth arriving customer is given by

E~W~N!! 5
1

µ (
j51

N21

jdj
N+

The experimental results for this model can be found in Tables 3 and 4+
Again the performance~measured in mean square error! of the conventional

estimator degrades ast r `+ The coupling-based estimator continues to have su-
perior performance for larget+ The empirically based coupling estimatora2~c! dom-
inates the conventional estimator ast r`, since it does not change significantly as
t gets large+ Note that the confidence interval coverages for the coupling-based es-
timatora1~c! are not close to their nominal values+ The reason is that the tiny vari-
ances contribute to a relatively large skewness; this creates small-sample difficulties
in the normal approximation+

4. PROOFS

Proof of Proposition 1: For anyx [ S,

7P~X~t! [ {6X~0! 5 x! 2 P~X~t! [ {!7

5 7Px~X2~t! [ {! 2 Px~X1~t! [ {!7# Px~T . t! r 0

ast r `+ On the other hand,

7p~{! 2 P~X~t! [ {!7 # E
S

p~dx!7P~X~t! [ {6X~0! 5 x! 2 P~X~t! [ {!7,

so7p~{! 2 P~X~t! [ {!7r 0 ast r` also+Hence, Eq+ ~2+3! follows+ Furthermore,
for any boundedf, Eq+ ~2+3! implies thatE @ f ~X~t!!6X~0! 5 x# r Ef ~X*~0!! as
t r `+ We may then invoke Theorem 1 of Glynn@6# to conclude thatX is Harris
recurrent+ n

Proof of Theorem 1: Let

Ri ~c! 5E
@0,Ti ~c!!

@ f ~Xi1~c, t!! 2 f ~Xi 2~c, t!!#G~dt!+
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Table 3. M0M01 Waiting Time Process withl 5 0+2, µ5 1+0

N Estimator Replications c r Error MSE 1s 2s 3s

1+0 a0 100 20000 0 20+00027 0+00002 0+64 0+94 1+00
1+0 a1 100 20000 0 0+00352 0+00005 0+46 0+81 0+95
1+0 a2 100 20000 0+10 20+00044 0+00035 0+63 0+94 0+98

2+0 a0 100 20000 0 20+00066 0+00005 0+64 0+94 1+00
2+0 a1 100 20000 0 0+00322 0+00004 0+48 0+77 0+93
2+0 a2 100 20000 0+42 20+00113 0+00015 0+66 0+96 0+99

5+0 a0 100 20000 0 0+00084 0+00016 0+66 0+93 1+00
5+0 a1 100 20000 0 0+00051 0+00001 0+52 0+80 0+98
5+0 a2 100 20000 0+47 20+00110 0+00014 0+72 0+90 0+97

7+0 a0 100 20000 0 20+00154 0+00019 0+65 0+96 1+00
7+0 a1 100 20000 0 20+00001 0+00000 0+49 0+93 0+97
7+0 a2 100 20000 0+58 0+00084 0+00016 0+63 0+92 0+98

10+0 a0 100 20000 0 0+00089 0+00035 0+63 0+93 0+99
10+0 a1 100 20000 0 0+00005 0+00000 0+23 0+67 0+79
10+0 a2 100 20000 0+60 20+00174 0+00014 0+55 0+88 0+98
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Table 4. M0M01 Waiting Time Process withl 5 0+5, µ5 1+0

N Estimator Replications c r Error MSE 1s 2s 3s

5+0 a0 100 20000 0 0+00047 0+00051 0+66 0+94 0+99
5+0 a1 100 20000 0 0+04128 0+00240 0+17 0+41 0+70
5+0 a2 100 20000 0+12 0+00321 0+00513 0+58 0+95 1+00

7+0 a0 100 20000 0 20+00284 0+00087 0+63 0+97 1+00
7+0 a1 100 20000 0 0+03006 0+00146 0+29 0+60 0+86
7+0 a2 100 20000 0+54 20+00820 0+00264 0+75 0+92 1+00

10+0 a0 100 20000 0 0+00129 0+00136 0+66 0+97 0+99
10+0 a1 100 20000 0 0+01532 0+00066 0+40 0+78 0+93
10+0 a2 100 20000 0+59 20+00473 0+00238 0+69 0+93 0+99

20+0 a0 100 20000 0 0+00555 0+00361 0+63 0+95 0+98
20+0 a1 100 20000 0 0+00497 0+00022 0+49 0+79 0+91
20+0 a2 100 20000 0+72 0+00554 0+00240 0+68 0+95 0+99

50+0 a0 100 20000 0 20+01112 0+00724 0+66 0+97 0+99
50+0 a1 100 20000 0 20+00007 0+00001 0+2 0+6 0+68
50+0 a2 100 20000 0+53 0+00647 0+00282 0+64 0+97 1+00
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Note that

7P~R1~c! [ {6X ! 2 P*~R [ {!7

5 **E
S

~pc~dx! 2p~dx!!Px~R [ {!** # 7pc 2 p7r 0 a+s+

asc r `+ Furthermore,

E~R1
2~c!6X ! 5E

S

pc~dx!Ex R2

5E
S

pc~dx!g2~x! r E
S

p~dx!g2~x! 5 E*R2 a+s+

asc r `, so $R1
2~c! : c . 0% is a uniformly integrable family of r+v+’s+ As a conse-

quence, we may apply the Lindeberg–Feller CLT~see Chung@2, p+ 205# ! path-by-
path to conclude that

PS 1

#lc2
(
i51

{lc2}

~Ri ~c! 2 E~R1~c!6X !! # {6XDn P~s2 N~0,1! # {! a+s+ (4.8)

asc r `+ Also, for e . 0,

P~N~c2!! , lc2~12 e!6X ! # PS (
i51

[lc2~12e!]

xi ~c! . c26XD
# PS (

i51

[lc2~12e!]

~xi ~c! 2 E @x1~c!6X # !

. c2 2 [lc2~12 e!]E @x1~c!6X #6XD
#

var~x1~c!6X ![lc2~12 e!]

~c2 2 [lc2~12 e!]E @x1~c!6X # !2 r 0 a+s+

ascr`, by virtue of A3 and A5+ Similarly, P~N~c2!! . lc2~11 e!6X ! r 0 a+s+ as
c r `+ So,

P~6N~c2! 2 lc26 . ec26X ! r 0 a+s+ (4.9)

asc2r`+ Furthermore, becauseR1~c!,R2~c!, + + + are independent conditional onX,
Kolmogorov’s Inequality implies that fore . 0,

PS* (
i51

{lc2}

~Ri ~c! 2 E~Ri ~c! 6X !! 2 (
i51

N~c2!

~Ri ~c! 2 E~Ri ~c!6X !! 6 . e!c2 *XD
# PS max

1#6 j 6#e3c2
* (

i5{lc}

{lc}1j

~Ri ~c! 2 E~Ri ~c!6X !! 6 . e!c2 *XD
1 P~6N~c2! 2 lc26 . e3c26X !

#
var~R1~c!6X !e3c2

e2c2

1 P~6N~c2! 2 lc26 . e3c26X !+
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If we let c r `, followed by lettinge r 0 ~and apply A3, A4, Eq+ ~4+1!, and
Eq+ ~4+2!!, we may conclude that

PS 1

#lc2
(
i51

N~c2!

~Ri ~c! 2 E @Ri ~c!6X#! # {6XDn P~s2 N~0,1! # {! a+s+

asc r `+ Utilizing Eq+ ~4+2! again, we find that

PS!cS 1

N~c2! (
i51

N~c2!

~Ri ~c! 2 E @Ri ~c!6X # !D # {6XD
n PS s2

%~12 r !l
N~0,1! # {D a+s+

asc r `+ Hence, for eachu,

E expSiu!cS 1

N~c2! (
j51

N~c2!

~Rj ~c! 2 E @R1~c!6X # !D6XDr expS 2u2s2
2

2~l~12 r !!D
asc r `+ Consequently, noting that

Gj ~c! 5 Rj ~c! 2 E @R1~c!6X # 1E
S

pc~dx!k~x!,

we get

E exp~iu!c~a~c! 2 a!!

5 E expSiu!cS 1

N~c2! (
j51

N~c2!

~Rj ~c! 2 E @R1~c!6X # ! 1E
S

pc~dx!k~x! 2 aDD
5 EHexpSiu!cS 1

c1
E

0

c1

k~x!pc~dx! 2 aDD
3 E expSiu!cS 1

N~c2! (
j51

N~c2!

~Rj ~c! 2 E @R1~c!6X # !DDJ
r expS2

s1
2u2

2r
2

s2
2u2

2l~12 r !
D

asc r `, proving the theorem+ n

Proof of Theorem 2: Using A7, a proof very similar to that of Theorem 1 estab-
lishes that

!c~a1~c! 2 a, + + + ,am~c! 2 a! n s!m~N1~0,1!, + + + ,Nm~0,1!!

ascr`,whereN1~0,1!, + + + ,Nm~0,1! are i+i+d+ normally distributed r+v+’s with mean
zero and unit variance+ The conclusion follows from an application of the continu-
ous mapping principle~see Billingsley@1# !+ n
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Proof of Proposition 2: Note that

sup
B

* 1

c1
E

0

c1

I ~X~s! [ B! ds2 p~B!*
5 sup

B
* (

y[B

1

c1
E

0

c1

I ~X~s! 5 y! ds2 p~ y!*
# (

y[S
* 1

c1
E

0

c1

I ~X~s! 5 y! ds2 p~ y!*
5 2 (

y[S
Sp~ y! 2

1

c1
E

0

c1

I ~X~s! 5 y! dsD ISp~ y! .
1

c1
E

0

c1

I ~X~s! 5 y! dsD+
The summands are dominated by 2p~ y! ~which is summable! and converge to
zero a+s+ Applying the dominated convergence theorem path-by-path leads to the
conclusion that the above sum converges to zero a+s+ asc r `+ n

Proof of Proposition 3: Let

p~ y! 5E
S

p~dx!p~x, y!,

pc~ y! 5
1

c1
E

0

c1

p~X~s!, y! ds+

By stationarity ofp,

p~B! 5E
S

p~dx!E
B

p~x, y!h~dy!

5E
B

p~ y!h~dy!+

Also,

pc~B! 5E
B

pc~ y!h~dy!+

Fix e . 0+ Becauseh andp are tight@1# , there exists a compact setK such that
h~K c! , e, andp~K c! , e+ Set7p75 sup$ p~x, y! :x, y [ S%+Note that7p7$ p~ y!,
7p7$ pc~ y! for c . 0, y [ S+ Sincep is necessarily uniformly continuous onK 3 K,
there existsy1, y2, + + + , yl [ K such that for eachy [ K, there is ayi for which

6p~x, y! 2 p~x, yi !6 , e
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for x [ K+ Hence,

sup
y[K
6pc~ y! 2 p~ y!6

# sup
y[K

*E
K

p~x, y!S 1

c1
E

0

c1

I ~X~s! [ dx! ds2 p~dx!D* 1 e7p7

# max
1#i#l *EK

p~x, yi !S 1

c1
E

0

c1

I ~X~s! [ dx! ds2 p~dx!D* 1 3e7p7

5 max
1#i#l * 1

c1
E

0

c1

p~X~s!, yi ! I ~X~s! [ K ! ds

2E
S

p~x, yi ! I ~x [ K !p~dx!* 1 3e7p7r 3e7p7 a+s+ (4.10)

asc r `, by the law of large numbers for Harris processes~applied to the finite
collection of sample functions associated withy1, + + + , yl !+ Then,

sup
B
6pc~B! 2 p~B!6 5 sup

B
*E

B

pc~ y!h~dy! 2E
B

p~ y!h~dy!*
# E

S

6pc~ y! 2 p~ y!6h~dy!

# E
K

6pc~ y! 2 p~ y!6h~dy! 1 e7p7

# sup
y[K
6pc~ y! 2 p~ y!61 e7p7+

By virtue of Eq+ ~4+10!, we conclude that

lim
cr`

sup
B
6pc~B! 2 p~B!6 # 4e7p7+

Sincee was arbitrary, this proves the result+ n
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