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Abstract

In this paper, we show how to exactly sample from the distribution of the maximum of a
random walk with negative drift. We also explore related variance reduction methods. c© 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

Let X = (Xn: n¿1) be a sequence of real-valued independent identically distributed
(i.i.d.) random variables. Put S0 = 0; Sn = X1 + · · · + Xn, so that S = (Sn: n¿0) is
the associated random walk. Our concern, in this paper, is with the development of
an exact sampling technique for generating i.i.d. replicates of the random variable M ,
where

M =max{Sn: n¿0}:
Obviously, if E X1¿ 0 or if E X1 = 0 with var X1¿ 0, then M =+∞ a.s. Hence, our
focus here is on the case in which S has negative drift (or, equivalently, E X1¡ 0).
The random variable M plays a key role in the Wiener–Hopf theory for random

walk (see, for example, Chapter 8 of Chung, 1974). In addition, the study of M
arises naturally in several important applications. For example, the tail probability �=
P(M ¿x) arises in the risk setting, in which � can be interpreted as the probability
that an insurance company with initial capitalization x will eventually go bankrupt
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(see, for example, Asmussen, 1987). The probability �= P(M ¿x) also is of interest
in the consideration of “one-sided” sequential probability ratio tests (see Siegmund,
1985, Chapter 8 for details).
Furthermore, in queueing theory, the random variable M has a distribution identical

to that of the random variable W (∞), where W (∞) is the steady-state waiting time
associated with the single-server G=G=1 queue. In particular, if Wn is the waiting time
(exclusive of service) of the nth customer in the single-server �rst-come �rst-serve
queue in which the inter-arrival times are i.i.d., as are the service times, then (provided
the mean inter-arrival time is greater than the mean service time) W = (Wn : n¿0) is
a Markov chain for which Wn ⇒ W (∞) as n → ∞, where W (∞) D=M (D= denotes
equality in distribution). Here, the random variable Xi is formed by subtracting the
(i+1)st inter-arrival time from the ith service time. (See Asmussen, 1987 for details.)
One approach to generating M is, of course, to approximate M by Mn = max{Sk :

06k6n} with n large. However, this approximation introduces bias into any estimate
corresponding to expectations associated with M . Perhaps even more serious is that
generating the random variable Mn requires simulating the random walk for n time
units and the resulting estimator is therefore computationally expensive for n large.
An alternative is to simulate the Markov chain W and to average over the chain’s

trajectory in order to estimate the expectation of any given functional of M . While
this approach is widely used in practice, it su�ers from the fact that the estimator
produced tends to be biased, due to the inability to generate a stationary version of W .
In addition, the values over which the estimator is averaged are highly correlated due
to the Markov dependence inherent in W .
Our main contribution in this paper is Theorem 1, in which we describe how to

generate the random variable M in �nite time, or equivalently how to generate a
stationary version of the Markov chain W . Thus, our contribution can be viewed as
being in the same spirit as the recent activity in which various researchers have pro-
duced algorithms intended to simulate stationary versions of certain Markov chains that
arise in applied probability, statistical physics, and Bayesian statistics; see Asmussen
et al. (1992), and Propp and Wilson (1996) for representative examples. Theorem 1
also may be of interest in its own right as a potential theoretical tool for studying
M , as it provides a “coupling” between M and a certain closely related exponen-
tial random variable. In addition, the ability to generate i.i.d. replicates of M (or
equivalently W (∞)) allows one to apply standard nonparametric methodology to the
estimation of various functionals corresponding to M . For example, one can now po-
tentially estimate quantiles of W (∞) by appealing to con�dence intervals based on
order statistics (see, for example, p. 103 of Ser
ing, 1980); such intervals remove
the need to estimate certain statistically challenging parameters (e.g. the density of
W (∞)).
This paper is organized as follows. Section 2 establishes our main result, namely

Theorem 1, in which we provide a means of simulating i.i.d. replicates of M . In
Section 3, we provide some re�nements that are pertinent to obtaining variance reduc-
tions in computing expectations associated with M ; these variance reduction methods
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are closely related to ones introduced by Asmussen (1990). In Section 4, we apply our
estimators to the examples considered in Asmussen (1990). Finally, in Section 5, we
compare the e�ciency of the various estimators.

2. The basic idea

Set  (�) = logE exp(�X1) and assume that

A. (i) There exists � ∗ ¿ 0 such that  (� ∗) = 0;
(ii) There exists �¿ 0 such that  (� ∗ + �)¡∞.

By the convexity of  (·), such a root � ∗ will necessarily be unique. While A fails
to hold for random variables X1 for which P(X1¿x) decreases as a power of x as
x → ∞, it typically is in force for distributions in which the right tail goes to zero at
least exponentially fast (e.g. bounded random variables and normal random variables).
Put

F∗(dx) = exp(� ∗x)P(X1 ∈ dx)
for x ∈ R, and note that F∗ is a probability, due to the de�nition of � ∗. Let P∗

be the probability measure under which X = (Xn: n¿1) evolves as an i.i.d. sequence
with increment distribution given by P∗(Xi ∈ ·) = F∗(·), we further suppose that our
probability space is su�ciently rich so as to support an additional random variable U
which is independent of X under P∗ and has the uniform distribution. Let E∗(·) be
the expectation operator corresponding to P∗.
It is easily veri�ed that under P∗; (Sn: n¿0) is a random walk having positive drift.

In fact, E∗ X1 =  ′(� ∗) (and the convexity of  (·), together with the observation that
 (0) =  (� ∗) = 0, ensures that  ′(� ∗)¿ 0). As a consequence, N (t)¡∞ P∗ a.s.,
where N (t)=min{n¿1 : Sn ¿ t}− 1. (We de�ne N (t) in this way to preserve the no-
tational similarity with renewal counting processes in which the Xi’s are non-negative.)
Furthermore, it is well known (see, for example, Chapter 12 of Asmussen, 1987) that

P(M ¿x) = E∗ exp(−� ∗SN (x)+1): (2.1)

Noting that 06exp(−� ∗SN (x)+1)61, we can rewrite (2.1) as

P(M ¿x) = E∗[P∗(U6exp(−� ∗SN (x)+1)|Sn : n¿0)]

= P∗(U6exp(−� ∗SN (x)+1))

= P∗
(
SN (x)+16− 1

� ∗ logU
)

: (2.2)

Put Z = −(1=� ∗) log(U ) and note that Z is exponentially distributed with parameter
� ∗. To proceed further, we de�ne the (strict) ascending ladder height epochs of the
random walk (Sn: n¿0) under P∗ via the formula

�(n+ 1) = inf{m¿�(n): Sm ¿S�(n)};
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subject to the initial condition �(0) = 0. For x¿0, let

Ñ (x) = max{n¿0: S�(n)6x}

be the number of (strict) ascending ladder heights in (0; x], and set

� = S�(Ñ (Z)):

Observe that because SN (x)+1 must coincide with a (strict) ascending ladder height,
SN (x)+1 = S�(Ñ (x)+1) so that

P∗(SN (x)+16Z) = P∗(S�(Ñ (x)+1)6Z)

= P∗(S�(Ñ (Z))¿x)

= P∗(�¿x):

Relation (2.2) therefore yields the following result.

Theorem 1. Under A; P(M ∈ ·) = P∗(� ∈ ·).

Consequently, M has the same distribution as the last strict ascending ladder height
of (Sn: n¿0) under P∗ prior to the random walk’s passing above the level �. Therefore,
under assumption A, we may simulate i.i.d. replicates of M associated with distribu-
tion P, by equivalently simulating i.i.d. replicates of � under P∗. It follows that the
algorithm below produces a replicate of M (associated with distribution P):

1. Generate an exponential random variable Z having parameter � ∗.
2. Independently simulate the random walk (Sn : n¿0), using increment distribution

F∗, until N (Z) + 1.
3. Set M = S�(Ñ (Z)).

In terms of computational e�ciency, it should be noted that the random walk needs
to be simulated to time N (Z) + 1. By Wald’s identity,

E∗ SN (x)+1 = E∗(N (Z) + 1)E∗ X1:

If P(Xi6a) = 1 for some a¡∞ (so that the positive increments of the random walk
are bounded above by a under both P and P∗), then

|SN (x)+1 − Z |6a;

so that

1
 ′(� ∗)� ∗6E∗(N (Z) + 1)6

1
 ′(� ∗)

(
1
� ∗ + a

)
: (2.3)

The bounds (2.3) suggest that a rough measure of the number of Xi’s needed to
generate M is something on the order of 1=( ′(� ∗)� ∗).
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3. A re�nement

As indicated in the Introduction, the ability to generate M in �nite time guarantees
that one can simulate time-stationary versions of the waiting time sequence (Wn : n¿0)
corresponding to the G=G=1 queue.
However, suppose that the task at hand is instead to compute, for a given functional

f : [0;∞)→ R, the expectation

�= E f(M):

Noting that

06Z − S�(Ñ (Z))6XN (Z)+1;

it is evident that S�(Ñ (Z)) is strongly correlated with Z . This suggests using Z as a
control variate, much as in the spirit of Asmussen (1990). Assuming that E∗f(Z) can
be computed (either analytically or numerically), it is clearly the case that

�(�) = f(S�(Ñ (Z)))− �(f(Z)− E∗ f(Z))

has mean � under P∗. (The quantity f(Z)− E∗ f(Z) is known as a “control variate”
in the simulation literature, and � is the associated “control coe�cient”; see Bratley et
al. (1987) for details.) The optimal control coe�cient �∗ which minimizes the variance
of �(·) is given by

�∗ =
cov∗(f(S�(Ñ (Z))); f(Z))

var∗ f(Z)

(where the notation cov∗(·); var∗(·) re
ects the fact that the covariance and variance
must be computed under P∗). Since �∗ is typically unknown, it can be estimated by
substituting the sample covariance and sample variance of the (f(�i); f(Zi))’s produced
by simulating replicates of (�; Z), thereby producing an estimator �n that is consistent
for �∗. The corresponding point estimate for �, based on a sample of size n, is

�̂2 =
1
n

n∑
i=1

�i(�n): (3.1)

Note that estimating �∗ in this way introduces bias into the estimator �̂2 of �. If one
wishes to avoid the bias and=or the additional computation associated with calculating
�n, a reasonable choice of � is to use �= 1.
With this choice of �, the estimator for �= E f(M) takes the form

�̂1 = E∗ f(Z) +
1
n

n∑
i=1

(f(�i)− f(Zi)): (3.2)

Another class of estimators for � can be derived by noting that

E f(M) = E∗ f(S�(Ñ (Z)))

= E∗[E∗[f(S�(Ñ (Z)))|Sn: n¿0]]



132 K.B. Ensor, P.W. Glynn / Journal of Statistical Planning and Inference 85 (2000) 127–135

= E∗
[∫ ∞

0
f(S�(Ñ (t)))�

∗e−� ∗t dt
]

= � ∗E∗
[∫ ∞

0
f(S�(Ñ (t)))P

∗(Z ¿ t) dt
]

= � ∗E∗
[
E∗

[∫ ∞

0
f(S�(Ñ (t)))I(Z ¿ t) dt | Sn: n¿0

]]

= � ∗E∗
[
E∗

[∫ Z

0
f(S�(Ñ (t))) dt | Sn: n¿0

]]

= � ∗E∗
∫ Z

0
f(S�(Ñ (t))) dt:

Consequently, �=E f(M) can be estimated by simulating i.i.d. replicates of the random
variable

� ∗
∫ Z

0
f(SN (t)) dt (3.3)

under P∗. A natural control variate to use in conjunction with (3.3) is

� ∗
∫ Z

0
f(t) dt − E∗ f(Z): (3.4)

This random variable has mean zero and can be used analogously to how (f(Z) −
E∗ f(Z)) was used earlier to “control” f(�). Denote the resulting estimators by �̃0; �̃1
and �̃2, corresponding to no control variate (control coe�cient is zero), control coef-
�cient of one, and control coe�cient estimated from the observed series.
Estimator (3.3) is closely related to one introduced by Asmussen (1990, Eq. (4:1)).

However, his approach requires that f be di�erentiable and works with f′ directly.

4. Examples

As an illustration of the proposed estimators, we consider estimation of � = E(M)
(so that f(t) = t) for the M=M=1;M=D=1 and D=M=1 queues considered in Asmussen
(1990). The parameters for each queue are given in Table 1. The rates are given
for the exponential random variables, whereas the mean is given for the determin-
istic components. Also, provided in Table 1 are the parameters under P∗. The

Table 1
Examples considered

Queue Parameters under P Parameters under P∗

T U � � ∗ T U

M=M=1 0.9 1 9 0.1 1 0.9
M=D=1 0.9 1 4.5 0.207147 1.107147 1
D=M=1 1=0:9 1 4.179 0.193100 1=0:09 0.806900
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Table 2
Point estimates (PI) and standard errors (SE) for M=M=1; M=D=1, and D=M=1 queues

n �̂0 �̂1 �̂2 �̃0 �̃1 �̃2 �k

M=M=1 queue with � = 9
100 PE 8.671 9.113 9.114 7.757 9.136 9.055 95.3

SE 0.910 0.080 0.079 1.444 0.098 0.041
1000 PE 9.064 9.001 9.002 8.884 8.993 8.988 101.1

SE 0.309 0.030 0.030 0.616 0.037 0.021
9000 PE 8.847 9.010 9.008 8.674 9.023 9.008 99.1

SE 0.103 0.010 0.010 0.218 0.013 0.007

M=D=1 queue with � = 4:5
100 PE 4.760 4.541 4.542 4.861 4.484 4.493 61.2

SE 0.498 0.022 0.022 1.285 0.036 0.016
1000 PE 4.456 4.502 4.502 4.559 4.502 4.504 52.8

SE 0.156 0.008 0.008 0.351 0.011 0.005
9000 PE 4.525 4.497 4.497 4.604 4.500 4.500 53.8

SE 0.052 0.002 0.002 0.118 0.004 0.002

D=M=1 queue with � = 4:179
100 PE 3.897 4.258 4.235 3.565 4.216 4.135 43.5

SE 0.468 0.102 0.101 0.764 0.127 0.075
1000 PE 4.512 4.227 4.237 4.967 4.116 4.193 51.4

SE 0.177 0.032 0.032 0.392 0.047 0.028
9000 PE 4.168 4.173 4.172 4.129 4.178 4.173 50.0

SE 0.053 0.011 0.011 0.105 0.014 0.009

random walk is simulated based on the increment distribution X1 = U − T de�ned
under P∗, where U and T are independent random variables representing the service
and inter-arrival times, respectively.
The proposed point estimators are based on n i.i.d. replicates of S�(Ñ (Z)) or (3.3)

(refer to these observations as y1; : : : ; yn) and the respective controls (referred to as
q1; : : : ; qn); and thus for large n, derive their distributional properties from the central
limit theorem. An estimate of the standard error is given by s2=n where: s2 = s2y, the
sample variance of y1; : : : ; yn if no control variable is used (i.e., estimates �̂0 and
�̃0); s2 = s2d, the sample variance of di = yi − qi if the control variable is used with
control coe�cient set to one (�̂1 and �̃1), and s2=(1−r2)s2y, with r denoting the sample
correlation coe�cient between y1; : : : ; yn and q1; : : : ; qn, if the control coe�cient �∗ is
estimated (�̂2 and �̃2). Application of these six estimators to the three examples given
in Table 1 is summarized in Table 2. As a measure of the computation time required
to simulate a replicate of M for each example, the mean number of increments in the
n simulated random walks ( �k) is reported in Table 2.
From Asmussen (1990), application of the Minh–Sorli estimator (see Asmussen,

1990, pp. 1855 and 1890) based on 9000 cycles to the M=M=1 queue yielded an
estimate of 8.993 with a standard error of approximately 0.0165 compared to our
observed standard error for �̃2 of 0.007 based on 9000 replications. For the D=M=1
queue, Asmussen reports an estimate of 4.593 with a standard error of approximately
0.0015 when estimating � using the Minh–Sorli method. Again, this standard error is
comparable to our observed standard error for �̃2 of 0.009 based on 9000 replications.
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5. E�ciency comparison

Given the various estimators that we have introduced here, it is of some interest
to compare them from an e�ciency standpoint. An appropriate “�gure of merit” to
use in making such comparisons is the product of the mean time required to generate
each observation with the variance per observation (Glynn and Whitt, 1992). We will
compare this “�gure of merit” in a certain asymptotic regime.
Speci�cally, our interest lies in the behavior of the estimators when the drift of

the random walk under P is small and negative, so that the random walk is close to
null recurrent; this corresponds, in the queueing setting, to the queue being in “heavy
tra�c”. To be precise, let V be a spread-out random variable having zero mean, and
suppose that its moment generating function converges in a neighborhood of the origin.
We further require var(V )¿ 0. Set  V (�) = logE exp(�V ). Then, for �¿ 0 and small,

P�(dx) = exp(−�x −  V (−�))P(V ∈ dx)

is the distribution of a random variable having mean  ′
V (−�)¡ 0. Suppose that

P(X1 ∈ ·) = P�(·)

for � small and positive. Our interest is in considering the e�ciency issue as � ↓ 0 for
the choice f(x) = x (in which case we are computing EM).
Firstly, the computer time required to generate M via our algorithm of Section 2 is of

order �−2 (see Asmussen, 1990, Theorem 2). In addition, it is a standard result that �M
converges in distribution to an exponential random variable as � ↓ 0. This suggests that
var(M) is of order �−2 (see Asmussen, 1990 for complete details). Consequently, the
estimator, �̂0, based on averaging copies of M (and using our algorithm to generate the
Mi’s) has a �gure of merit of order �−4. This matches the �gure of merit associated
with estimating EM by simulating the Markov chain (Wn : n¿0); see Asmussen
(1992). Turning now to the estimator �̂1 given by (3.2), var∗(�− Z) is O(1) as � ↓ 0
(see the proof of Theorem 1 of Asmussen, 1990); the �gure of merit for this estimator
is of order �−2 as � ↓ 0. Finally, the estimator based on averaging replicates of

E∗ f(Z) + � ∗
∫ Z

0
[f(SN (t))− f(t)] dt

has a variance that is O(1) as � ↓ 0. (Again, see Theorem 1 of Asmussen (1990)
for a similar proof.) Hence, the �gure of merit for the estimator (�̃1) constructed by
combining (3.3) and (3.4), is of order �−2 as � ↓ 0. However, it can be shown that if
one estimates the optimal control coe�cient in combining (3.3) with the control (3.4)
(estimator �̃2) that the variance is then of order O(�), so that the �gure of merit is of
order �−1 as � ↓ 0. Summarizing the above discussion:

the �gure of merit de�ned above, as � ↓ 0, it is of the order of �−4 for estimator
�̂0; �−2 for estimators �̂1 and �̃1 and �−1 for estimator �̃2.
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Thus the performance of �̃2 matches the performance of any of the estimators con-
sidered in Asmussen (1990), including the “heavy tra�c” estimator of Minh and Sorli
(1983).
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