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Consider a flow shop with M machines in series, through which a set of jobs are to be processed. All jobs have the same routing, and 
they have to be processed in the same order on each of the machines. The objective is to determine such an order of the jobs, often 
referred to as a permutation schedule, so as to minimize the total completion time of all jobs on the final machine. We show that when 
the processing times are statistically exchangeable across machines and independent across jobs, the Shortest Processing Time first (SPT) 
scheduling rule, based on the total service requirement of each job on all M machines, is asymptotically optimal as the total number of jobs 
goes to infinity. This extends a recent result of Kaminsky and Simchi-Levi (1996), in which a crucial assumption is that the processing 
times on all M machines for all jobs must be i.i.d.. Our work provides an alternative proof using martingales, which can also be carried 
out directly to show the asymptotic optimality of the weighted SPT rule for the Flow Shop Weighted Completion Time Problem. 

1. INTRODUCTION 
Flow shop scheduling, as modeled by a tandem queue, is 
a rich classical topic motivated mainly by practical needs 
in the manufacturing context. With recent developments in 
communication networks, the role of tandem queue schedul- 
ing becomes increasingly significant. Research has concen- 
trated on different issues such as buffering, service effort 
allocation, and completion time minimization. Results such 
as reversibility, duality, and the bowl-shaped phenomenon 
are all well known in the literature, as established by Muth 
(1979), Pinedo (1995a), and Hillier and Boling (1979). 
A more detailed literature review of these issues can 
be found in Buzacott and Shanthikumar (1993), Pinedo 
(1995b), and Weber (1992). 

In this paper, we restrict our attention to the issue of com- 
pletion time. Consider a flow shop with M machines in se- 
ries, through which a set of jobs are to be processed. All jobs 
have the same routing, and they have to be processed in the 
same sequence on each of the machines. The objective is 
to determine a sequence of jobs, often referred to as a per- 
mutation schedule, that minimizes the average-or equiva- 
lently, the total-of the completion times of all jobs on the 
final machine. It is assumed that the buffer space between 
machines is unlimited and that the jobs are processed indi- 
vidually without preemption. This problem is well known 

to be NP-hard even in the two-machine case, as pointed out 
by Garey et al. (1976). 

Research on completion time can be divided into two 
categories. One focuses on makespan, the time needed to 
complete processing all jobs, which takes a social point of 
view from the system side. The other concentrates on the 
average completion time of all jobs on the final machine, 
which focuses more on the individual jobs. Although the lat- 
ter captures important real-life managerial scheduling con- 
cerns that are not reflected in makespan related objectives, 
the analysis is often very complicated and difficult. So far, 
most results in this area have focused on minimizing the 
makespan. For a complete survey of makespan related work 
see, for example, Pinedo (1995b). 

For average completion time related scheduling, most of 
the previous research has studied deterministic problems 
using branch-and-bound strategies and is often limited to 
a small number of jobs and machines. Examples include 
Krone and Steiglitz (1974) and Van de Velde (1990), along 
with many others. In this paper, we look at the stochas- 
tic case instead and search for an asymptotically optimal 
schedule. We adopt the notion of asymptotically optimal 
scheduling that has been recently considered by Shanthiku- 
mar and Xu (1997), and Xia (1999), in queueing con- 
trol problems. The limiting performance of tandem queues 
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has been studied extensively by, for example, Glynn and 
Whitt ( 1991 ). In this study, we combine ideas from both and 
apply them to the Flow Shop Average Completion Time 
Problem. We show that as the number of jobs to be sched- 
uled becomes larger and larger, which is often demanded 
in real-life applications, the Shortest total Processing Time 
(SPT) first rule is asymptotically optimal, provided that the 
processing times are statistically exchangeable across ma- 
chines and independent across jobs. 

It should be noted that this research was motivated by a re- 
cent result of Kaminsky and Simchi-Levi (I1996b), in which 
it was first pointed out that the SPT rule was asymptotically 
optimal when the processing times are i.i.d. across machines 
and jobs. We provide a simplified proof using martingales 
and extend the result to a more general realm, where the jobs 
need not be identical an assumption crucial to their paper. 
We show that for the SPT rule to be asymptotically optimal, 
the jobs can have different processing time distributions, as 
long as they are independent across jobs and the processing 
times of each job on all machines are statistically exchange- 
able (not necessarily independent). In addition, our argu- 
ment can be easily extended to show the asymptotic optimal- 
ity of SWPT-Shortest Weighted total Process Time first 
rule-for the Flow Shop Weighted Completion Time Prob- 
lem. This extends another result of Kaminsky and Simchi- 
Levi (1996a) and simplifies their argument. 

The remainder of the paper is organized as follows. 
Section 2 introduces the basic model. Section 3 reviews the 
well-known critical path approach using an activity network 
in determining the final completion time for each job. The 
total completion time for all jobs is then evaluated in ??4 
and 5, where a simple lower bound and an upper bound are 
presented, respectively. In ?6 we show, using martingales, 
that when scheduling is based on the total service require- 
ment on all machines for each job, the difference between 
the upper bound and the lower bound converges to zero 
under an exchangeability hypothesis. The main result is 
then presented in ?7. 

2. THE MODEL 

We consider the traditional Flow Shop Average Completion 
Time Problem, which is well known in the field of schedul- 
ing. In this problem, a flow shop consisting of M machines, 
each with unlimited buffer space, must sequentially process 
n jobs. Each machine can handle at most one job at a time, 
and each job can be processed on only one machine at a 
time without preemption. Job j, j 1, 2,. .., n has a pro- 
cessing time tym on machine m, m 1,2,...,M, and the 
processing times must satisfy the following assumptions. 

ASSUMPTION Al. Processing times of different jobs are 
independent, i.e., ((tj,i,...,tjAd):j >1) is a sequence of 
independent random vectors. 

ASSUMPTION A2. For each job, the processing times on the 
M machines are exchangeable random variables, i.e., for 
any given j ( > 1), tj , ...,tj,M are exchangeable.' 

We restrict our attention to the set ofpermutation schedul- 
ing policies, where the order in which the jobs are processed 
on the first machine is maintained throughout the system; 
that is, once the order of processing the n jobs on the first 
machine is scheduled, all other machines process the jobs 
in afirst come first serve (FCFS) manner. It should also be 
noticed that permutation schedules are not necessarily op- 
timal for the general flow shop scheduling problem where 
reordering is allowed at each machine. For simplicity, we 
consider only the permutation schedules. 

The objective is to determine 7r a schedule, or sequence 
of the jobs, such that Zj,(n), the total completion times of all 
jobs on the last machine M is minimized. Let Z4(n) denote 
the optimal objective function value. 

This paper provides a proof of the asymptotic optimality 
of the well-known rule in scheduling theory, known as the 
Shortest Processing Time (SPT) first policy. According to 
this policy, jobs are sequenced in increasing order of their 
total service requirements on all M machines. 

Note that there may exist different SPT schedules asso- 
ciated with the same total processing time sequence (when 
there is a tie in the total processing time). For the general 
flow shop problem (without Assumptions Al and A2), these 
SPT schedules are not necessarily optimal. See Kaminsky 
and Simchi-Levi (1996b) for such a counterexample. Nev- 
ertheless, given Assumptions Al, A2, and some finite mo- 
ment conditions on the processing times, we show that SPT 
is asymptotically optimal in the sense that 

Z* M(n) 1 a.s. as n -- oc, 

where 7SPT(n) denotes the corresponding total completion 
time for processing the n jobs under the SPT policy. 

3. CRITICAL PATH 

It is well known that an Activity Nenvork, composed of 
nodes and directed arcs, is helpful in calculating completion 
times in a flow shop. We consider the model in which jobs 
are processed according to their nominal order 1, 2,... , n. 
Let node (j, m) be associated with the activity of processing 
job j on machine m. Activity node (j, m) is connected with 
its immediate consequent activities, i.e., node (j + 1, m) 
and node (j, m + 1) with a directed arc of length t1,,,. This 
represents the fact that only when job j is completed on 
machine m, which should take time tj,rn, can the service ofjob 
j + 1 on machine m and the service ofjob j on machine m + 1 
be initiated. Figure 1, for example, illustrates the activity 
network graph for processing jobs 1, 2, and 3 sequentially 
on machines 1 and 2. 

Let Fm,,, be the completion time of job j on machine m. 
A basic recursion for the completion times is 

Fk+lni max{Fkn,,Fk+?1n-1} + tk+1,m- (1) 

From (1), it is easy to establish the following lemma by 
induction. 
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Figure 1. Activity network graph. 

1,2,t 

1,1 2,2 

LEMMA 1. The completion time ofjob k on the last machine 
M is given by: 

FkM= max 
I1 < 1 <, 12 ,.. <, 1M- I1 Ak 

( 1 12 k 

t 1 + htj,2 + + E tM > (2) 

fork= 1,...,n. 

Lemma 1 is a well-known result; see, for example, 
Conway et al. (1967), Pinedo (1995b), and Glynn and 
Whitt (1991). Graphically, based on the activity network, 
this is equivalent to saying that the completion time of the 
last activity must be the directed path with maximum length 
from the starting node to the finishing node, which is often 
identified as the Critical Path. 

4. A SIMPLE LOWER BOUND FOR THE TOTAL 
COMPLETION TIME 

Associated with the M-machine Flow Shop Average Com- 
pletion Time problem introduced in ?2 is the following 
single machine Average Completion Time problem: n jobs 
are to be processed on a single machine where job j has 
processing time Tj := El J 1,.. ., n. The objective 
is to determine a sequence of the jobs so as to minimize 
the average completion time of all jobs. Let Z*(n) be the 
corresponding optimal total completion time. 

It turns out that the optimal total completion time of a 
single machine scheduling problem naturally gives a lower 
bound for the total completion time of the M-machine 
scheduling problem. This was first observed by Kaminsky 
and Simchi-Levi (1996b), and we state their result in the 
following lemma. 

LEMMA 2. Consider the M-machine Flow Shop Average 
Completion Time Problem and the Associated Single 
Machine Scheduling Problem. Suppose that the corre- 
sponding optimal total completion times are ZM(n) and 
Z*(n), respectively. We then have 

MZ* (n ) < ZM(n ). (3 ) 

It is well known that the Shortest Processing Time first 
rule is the optimal solution to the single machine scheduling 
problem; see for example Conway et al. (1967) and Pinedo 

( I995b). Therefore, if we order jobs 1, 2,. . ., n in the increas- 
ing order of TVs, such that T1 < T2* < T, then the opti- 
mal total completion time is given by Z*(n) = En TV 

In later sections we will see that the optimality of the SPT 
rule for single machine scheduling is directly related to the 
asymptotically optimal scheduling of M-machine schedul- 
ing. To be more specific, we will show that the lower bound 
given by (3) is asymptotically tight, which then yields the 
asymptotic optimality of the SPT rule based on the TIs for 
the original problem. 

5. UPPER BOUND FOR THE TOTAL COMPLETION 
TIME 

From (2) we obtain 

k 

Fk,M ->3 t/,I 

AllA2m.axAM~ ( (tj, 2- tj, I 

k M-1 

+ ...+ 2 (ti M- tj l + 2: tlmli 

M lb 

1: I 
m~ax bkE(tj'm - tj,l) 

m=2 b= la 
M-1 

I <11 <12,< -a.%lM-1 <k 2t m~1 

M / 

E2 lm Sk 
2 m 3(tjm - tj, I) + M max tii. 

Given that the n jobs are processed in an order 
defined by a permutation U(n, then the total completion time 
Z (n) EnS= I ,F(k),M will satisfy 

ZM (n) - k 1#J tn( j), 1 
k 

n2 

n M / 

>3 2 max ~ > n? tar4),1 

k=1 m=2 f S I 

I n 

+ M -2 E 1 Maxktn~) 
k= 1 

M I 

E n l max A E(tc,(I),m -ta,(j),l) 
m=2 jIl 

1 

For a sequence of jobs 1, 2, . .., let b?:= ov(Ti, T2, .. .), i.e., 
b? is the cr-algebra consisting of all the information associ- 
ated with the total service requirement on all M machines 



618 / XIA, SHANTHIKUMAR, AND GLYNN 

for each job. Note that S includes all the information that is 
needed for the initial scheduling using SPT. We next show 
that if a, is W-measurable, meaning we schedule the jobs 
only based on the Tjs, then the right-hand side of (4) con- 
verges to zero as n -4oo under some mild conditions. 

6. CONVERGENCE THEOREM 

LEMMA 3. Given a probability space (Q, A, P), assume that 
((tykeA ? <m AM):j ?> 1 ) satisfies Assumptions A] and A2. 
Then 

(i) E[t,,(j),m - tny (j), 1 0.] - ? 

(ii) Conditional on A, tan(j),nI - ta,,(j), I (1 < j < n) are 
independent r. v.s. 

PROOF. We fix M =2 in this proof. The same argument 
works for the general case. Note that 

P(tjm Edxjm, 1 jIn, m 1,21fi) 
n 

- J7JP(tjm Cdxjm m-1, 21i) 
jowl 

1f 

flP(tj, m C dxjm, m 1,21T). 
j~ 1 

Because the processing times are exchangeable, i.e., 
(tj, t)?- (ti, tj), we have 

P(tj,1 IC dXjI, t,2 C dxy2|Tj) = P(tj,2 C dxi 1, tj, I C dXj2 I Ti). 

The results then follow immediately. El 

THEOREM 1. Assume the conditions of Lemma 3. If on is 
'V-measurable, and 

sup var(tj,1 )<00, (5) 

then, for 6 > 0, 

maxI n I Ui (t~n(j),ni tcrn(j)A 

1l,12+6 

as ni -- oc, Vm 2,.. ., M, where means convergence in 
distribution. 

PROOF. We fix m =2 in this proof. The same argument 
works for the general case. 

Based on Lemma 3, tQn(j),2 - t(y,(j),I (1 <j n) are 
conditionally independent random variables with zero 
mean. Hence, by Kolmogorov's inequality, (refer to, e.g., 
Williams, 1991) we have: 

P Z E( an(j)t,2 - t(j), ) >XKit) 

2 

E[Ei~ (ta,,( j~2- to-,(j) 1I] 

,X2 

E 1=1 _tj- tj, 1 )2 S] 
=~~~~~~ 

X2 

4 , var(tX 1 
9 

Hence it follows that 

( max -tto(j), 2-ta,(J),) >X 
1ln 

21 2 1 
- Y E [var(ti, IIS)]S < ?2 ZE va varK)]?I 

The result follows immediately from this inequality. L 

REMARK. In general, condition (5) is valid when the process- 
ing times have uniformly finite expected residual lives, i.e., 

R: - sup sup E[tj,,, - tItjm > t] < o. (6) 
j t>O 

To see this, we note that 

E[t nil] = 2EF (tin, -) du 

- 2EF (tj i- U)I(tj, n > u) du 

= 2j A E[tj, m- t ni > U]P(tj nl > u) du 

0C 

42 R P(tjnl >U) du 

-2RE[tjn '-I2R2, 

where the exchange of the expectation and the integral in 
third equality is justified by Fubini's theorem. 

Examples satisfying condition (6) include cases where: 

1. The tj,,,s are uniformly bounded. 
2. tj,n, - exp(pj ) with infj Hj > O. 
3. The tjms are new better than used in expectation 

(NBUE) with supj E[tj, m] < ??. 

Our next theorem deals with the almost sure convergence 
to zero of the right-hand side of (4) as n goes to infinity, 
which requires the following stronger condition. 

THEOREM 2. Assume the condition of Lemma 3. If 

supE[Itj, l lP] <oo, (7) 
ji> 

for some p > 2, and (as, n > 1 ) is a sequence oJf 
i-measurable permutations, then 

max1?A l? n EK- (ta,,( j),rn -tetj 

-0 a.s. as i - ox. 
n 
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PROOF. Again, we look only at m = 2 and extend the same 
argument to general m. 

For 1 < / < n, let 'I := V U(t6n(j),2 - tan(j),: 1 j ). 
Then (Z=1 (tan(j),2 - tan(j) ): O < 1 < n) is a martingale with 
respect to (*I: I 1 <l n). This is obvious because, given 
W, the increments are conditionally independent with zero 
conditional expectation, as established in Lemma 3. Hence 
for p> 1, 

( Z@ ( ta (j ), 2 - tan (j),) :I 0 < < n) 

is a submartingale, provided that 

E ( 3 (tan (j),2 - tan(), 1) ) < o, (8) 

for 1 -j-n. 
In order to verify (8), note that under condition (7) we 

have 

oo >E tE , Itj 2-tj, ) = ?E nE Itan (j),2 - tan(j), l) 

n 

=E E(I tan (j), 2 -ta,(j) II IP) 

j=1 

So, it follows that E( t6n(j),2 -t6n((),l lP)< 00 for 1 j- n. 
Note that x IP is a convex function in x; therefore, by 
Jensen's inequality, 

E ( Z(tan(j), 2 -tan()l) P) 

E E( tan (j), 2 -tan (j), I I P<) ' . 

j=1 

We now apply the maximal inequality for submartingales 
(see Chung 1974, p. 303): 

P (max E (tann(j),2 
- 

tan(j) 1) X 

P max (tan(j)2 - ta,(j),) >X) 

?<x PE ( E (tn(), 2 - tan(j), 1 )| 

Hence, 

P (1 max Z(ta,(j),2 
- ta6(j), ) >X) 

,<x 
- 

PE ( E (tj, 2 -t1,1) P) 

Under condition (7), we know that for p > 2, 

sup E[ t1,2 -t, 1,IP] < ?? 
j]? 

This implies, using the Burkholder-Gundy square inequality 
for martingales (see Burkholder 1972), that 

E [Z(tj,2-tjl) ] =Q(nI p) (9) 

Therefore, V's> 0, 

p (P max Z( an(j),2 - tn(j)l) >?n 

Zoo ( tn P 9) 

00 

= ,-P E n-PO(np12) < oo- 

n=1 

Consequently, the Borel-Cantelli lemma establishes that 
if cn is W-measurable, then 

max1 Sln IE=I (tan (),2 -tan(j), I 
-0 a.s.asn ->o. 

n 

D 

REMARK. In general, condition (7) is valid given that the 
processing times have uniformly finite (p - 1)th moment 
for the residual lives, i.e., 

sup sup E[(tj,m - )p- I t],m > t] < oo. 
j t)O 

Examples include: 

1. The tjms are uniformly bounded. 
2. tj, m - exp(uj ) with infj pji > 0. 

7. ASYMPTOTIC OPTIMALITY 
Based on (4), Theorems 1 and 2 then establish, respectively, 
the weak convergence and almost sure convergence of 

Z T(n)- 
I 

1 ?1 t-(])l 1 
- ~~~~~~to zero as n-> oo. 
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Returning to ?5, if instead we reformulate (2) as 

k 

Fk M ? tij + max 
J=I 

t;M s~rn Y (tj,S tj, M) + Y tl.m M 

U=l, ,.M;s:1nm i=lx-1 s=l 

where 1o 1 I and IM =k, similar arguments can then be 
carried out to obtain the convergence of 

Z73(n) - L =1 Lk tcn, j), 
to zero as n - oo, 

n2 

for m = 1, 2, ... , M. 
The next result then follows immediately. 

THEOREM 3. In an M-machinefloiv shop, assume the condi- 
tions of Lemma 3. If jobs 1, 2,..., n are processed accord- 
ing to a p-measurable permutation a,, and Z7j(n) is the 
corresponding total completion time, then 

(i) under condition (5), 

ZM(n) - M: k=11: I T'g7(j) 1 
n2 

as n -o, 
(ii) under condition (7), 

Z~(n) - M=1 E J=1 Ek J( j 

Z-~(n) - -j0 a.s. as n-*oc. (11) n2 

If we process the n jobs based on the SPT rule, i.e., the 
permutation Un is defined such that 

Tan~ <ATI~n (2) <- T n(n), (12) 

and call the corresponding performance ZMPT(n), then 

MZ(n)< ZM(n) ZM (n), 

where Zt(n) ZSPT(n)= 
n 
Ek% 1 Ta j). Therefore, 

ZM (n) - Z,(n) < ZM (n) I 

ZM (n) - >k > I Tn(j) | 

From Theorem 3 it then follows immediately that, as n - oc, 

4ZM7(n) - Z1M(n) 0 
0 under condition (5), 

n2 

and 

ZT(n)-Z(n). 7 

LEMMA 4. If there exists a 8 > 0 such that 

inf P ftj, n7) >? 1 (13) />_ I 

then 

Zt(n) 
lim inf I >)0 a.s. 

PROOF. For notation simplicity, let Y J:P{T, >8} and 
i,:=infjj. Clearly (13) implies O< 1 . 

For a given increasing sequence a I < a2 < < a,, sup- 
pose a, is the first ai larger than 8, then n + 1 - I is the total 
number of ais larger than 8, and we have 

1? k 91 /1 

E E, a, = E (n + I1-j)a, 6 E (n + I1-j) 
k=l j=l j=1 J=1 

2(n + 1I -)(n + 2-1). 2 

Applying this to the increasing sequence in (12) then 
gives 

n k 

Zl (n) = EE To-, (j) N, 2s(NIn + 1), 
k=1 j=1 

where Nn =E= I Z> T. >_ } - 

Let Yzj -I{fTl}J{U I}, where {Uj: j? 1} is a se- 
quence of independent uniform random variables, in- 
dependent of the processing time processes. Note that 
P( Yj 1 ) =y for all js, therefore the Yjs are i.i.d. r.v.s. 
Hence, based on the SLLN, 

N1> Ej= E[ Yj] >O0 
n n 

It then follows that 

Zt(n) Nn(Nn + 1), 120 

n2n2 2 

as n -> oc. Thus the claim in Lemma 4 follows. I 

REMARK. If infj . E[tj],l] > Oand condition (5) is assumed, 
condition (13) holds. 

To see this, let c be the upper bound on the variances im- 
plied by (5), and let b be the assumed lower bound on the 
means of the t,1 , s. Then, for 0 < ? < 1, Chebyshev's inequal- 
ity implies that 

b (_E[tj nj] = P(t1,, > u) du J 

= P(tjn > u) d u + P(tj n? > u) dti 
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e+ ( ) P(ti > E) + j 2 du 

< - E P(tj,m > E) + (I + C)E. 

Hence, 

P(ti, n > E)b- (1 + c)e 

By choosing E sufficiently small, we find the required pos- 
itive lower bound on P(tj,m > c). Examples of distributions 
satisfying the lower bound property are: 

1. the tjms are uniformly bounded away from zero, and 
2. ti m exp(uJ) with supj1Hi < oc. 

We then conclude with the following main result. 

THEOREM 4. For the M-machine flow shop total completion 
time scheduling problem, the SPT rule is asymptotically 
optimal in the sense that 

(i) under the conditions of Lemma 3 and (5), 

ZSPT(n)-ZM(n) =, 0 as n o, 

n2 

(ii) under the conditions of Lemma 3 and (7), 

ZSPT(n) - Z(n )- a.s. as n oo. 
n2 

If, in addition, all the processing times tjms are uniformly 
bounded away from zero, then 

ZM IM ) ,1 a.s. as n -0. 
ZM (n ) 

REMARK. The same argument can be applied to the Flow 
Shop Weighted Completion Time Problem. In this prob- 
lem, the processing times of job j, j 1,... ,n, are given 
an associated weight o)j, with 0 <co1 <1, and the objec- 
tive is to determine a permutation schedule that minimizes 
the total weighted completion time of all jobs on the final 
machine. For example, if the n jobs are processed in the 
nominal order 1,. . ., n, then the total weighted completion 
time is Z = WJ o) F),M. Under the assumption that the pro- 
cessing times are i.i.d., Kaminsky and Simchi-Levi (1996a) 
have established the asymptotic optimality of the Shortest 
Weighted Completion Time (SWPT) first rule, which se- 
quences the jobs in the increasing order of the weighted total 
processing times cw1 Tj, j = 1, ... ., n. 

By applying the convergence theorems in ?6 to the 
weighted sum and with Assumptions Al and A2, we may 
prove theorems analogous to Theorems 3 and 4, showing 
that the SWPT rule is asymptotically optimal. This extends 
Kaminsky and Simchi-Levi (I 1 996a) to a more general 
setting than i.i.d. processing times. 

8. CONCLUSION 

In this paper we have provided a martingale approach that 
proves the asymptotic optimality of the SPT rule for the 
Flow Shop Average Completion Time Problem when the 
processing times on the machines are i.i.d., or more gen- 
erally, statistically exchangeable across machines and inde- 
pendent across jobs. The same argument can also be carried 
out to show the asymptotic optimality of the SWPT rule 
for the Flow Shop Weighted Completion Time Problem. 
This extends the recent results of Kaminsky and Simchi- 
Levi (1996a, 1996b). 

END NOTES 

Random variables Xl,.. .,Xk are said to be exchangeable if 

(XI,.. ., Xk)-(X~k(1), ... * Xak (k) )for any deterministic per- 
mutation Sk of {1,. .., k}. 
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