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The regenerative method possesses certain asymptotic properties that dominate those of other
steady-state simulation output analysis methods, such as batch means. Therefore, applying the
regenerative method to steady-state discrete-event system simulations is of great interest. In this
paper, we survey the state of the art in this area. The main difficulty in applying the regenerative
method in our context is perhaps in identifying regenerative cycle boundaries. We examine this
issue through the use of the “smoothness index.” Regenerative cycles are easily identified in systems
with unit smoothness index, but this is typically not the case for systems with nonunit smoothness
index. We show that “most” (in a certain precise sense) discrete-event simulations will have nonunit
smoothness index, and extend the asymptotic theory of regenerative simulation estimators to this
context.

Categories and Subject Descriptors: G.3 [Probability and Statistics]: Markov processes; 1.6.6
[Simulation and Modeling]: Simulation Output Analysis

General Terms: Theory

INTRODUCTION

Discrete-event modeling and simulation is one of the most widely used tech-
niques in operations research today. A widely accepted model of a discrete-
event dynamical system (DEDS) is a generalized semi-Markov process (GSMP)
[Whitt 1980; Glynn 1989b; Shedler 1993; Haas 1999]. Except in very special
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cases, closed-form analytical solutions for performance measures of GSMPs are
not known, so one turns to simulation for analysis of these systems.

Simulation output analysis methods allow one to make a statistically valid
statement about the output from discrete-event simulations. The regenerative
method for steady-state output analysis is one such method that holds great ap-
peal, for several reasons. First, the problem of “initialization bias” does not arise
in regenerative simulation [Bratley et al. 1987; Law and Kelton 2000]. Second,
regenerative estimators are relatively simple to construct. Third, it is known
that the regenerative method has the fastest asymptotic rate of convergence
(see Section 1) of all time-average variance estimation methods. Of course, this
final argument is subject to the usual proviso that it is an asymptotic result,
and may not be true for a finite runlength, perhaps because of excessively long
regenerative cycles. Further comments on this issue may be found in Section 5.

To motivate the content of this paper we need some notation. Let X = (X (¢) :
t > 0) be a stochastic process on state space S that models a DEDS, and let
f S — IR be a real valued cost (or reward) function on the state space S.
The steady-state estimation problem is the problem of estimating the “long run
average cost”

¢
a:liml/ f(X(s) ds,
t—oo t 0

when this limit exists. If the process X is regenerative, then under mild condi-
tions o exists and may be written as EY;/E t;, where Y; and t; represent the
cost accumulated over, and the length of, the ith regenerative cycle respectively.
Therefore, one can estimate « via

E?:l Y;
Z?:l T

Associated with the estimator o, is a “time-average variance constant” (TAVC)
estimator v2 that, together with o, may be used to construct confidence inter-
vals for «.

It is known (see Section 2) that any “well-behaved” steady-state simula-
tion is regenerative, and the resulting cycles are either independent, or one-
dependent. The independent cycle case has been extensively studied, but the
one-dependent cycle case has not. This suggests our focus on (i) and (ii) below. In
principle, (i) and (ii) provide all the steady-state simulation methodology one
will ever need for such well-behaved steady-state simulations. On the other
hand, we ultimately need to apply these ideas in the context of DEDS. So, we
need some basic theory to establish when classical (independent) regeneration
pertains, as opposed to one-dependent regeneration (see (iii) below).

We view the primary contributions of this paper as follows.

oy =

(i) The paper surveys the state-of-the-art for the basic mathematical theory
associated with the regenerative method for steady-state simulation. This
is done, in part, to provide a “frame of reference” for the later results on the
extension of the regenerative method to processes where the regenerative
cycles are one-dependent.
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(i1)) The paper extends the basic theory and methodology known for classically
regenerative processes to one-dependent processes. In particular, we ob-
tain a joint central limit theorem (Theorem 8) for «, and v, that extends
a result by Glynn and Iglehart [1987] for the independent case. Further-
more, we show that the biasin «,, is O(n~1) (Theorem 9), where the notation
O(g(n)) represents a deterministic sequence (d,, : n > 1) with the property
that |d,| < Dg(n) for some finite constant D. The estimator «, involves a
fixed number of cycles, but a random length of simulated time. One might
instead consider the estimator ay(), where N(¢) is the number of com-
pleted regenerative cycles by simulated time ¢. Meketon and Heidelberger
[1982] showed that in the independent case, the bias in ay() is O(™1),
while that of ax(),1 is O(t~2). This result was further explained by Glynn
and Heidelberger [1990], who showed that it results from a fortunate can-
cellation in asymptotic expressions for the bias. We extend the Meketon
and Heidelberger result to the one-dependent case (Theorem 10) by show-
ing that the bias in the estimator ax().o is o(t~1), so that the bias goes
to 0 at a rate that is faster than ¢£~1. (The notation o(g(n)) represents a
deterministic sequence (d,, : n > 1) with the property that d,,/g(n) — 0 as
n — 00.) To implement this estimator, one simply needs to complete the
cycle in progress at time ¢, and the following cycle as well.

(ii1)) A major thrust of this paper is to put the implications of the above method-
ology and theory into the DEDS environment, making clear to the simula-
tion community precisely the class of DEDS to which the classical regenera-
tive method applies, versus those to which the one-dependent regenerative
method applies. In this vein, our theory precisely partitions (for a large
class of DEDS) the family of GSMPs to which the two methods potentially
apply; see Theorem 17 and Proposition 18. This theoretical partitioning is
perhaps the single most important result in the paper.

(iv) As aby-product of our theoretical analysis in (iii), we obtain new results on
uniqueness of invariant (steady-state) measures for DEDS (Corollary 13),
which sheds light on the related question of when the steady-state distri-
bution is independent of the initial condition. We also obtain new results
on when a GSMP is nonexplosive (Theorem 15).

(v) We survey and discuss implementation issues regarding use of these re-
generative-type methods in the DEDS context.

This paper is primarily a theoretical contribution to the literature on the
regenerative method as it applies to discrete-event systems. We do not believe
that the paper proposes the final solution for dealing with models in which
nonunit smoothness indices arise. Rather, the paper clearly identifies this as
an issue that will need to be surmounted if the regenerative method is to be
applied, in generality, to such simulations, and it discusses the modifications
to conventional regenerative methodology that must be made in the presence
of the one-dependent cycles that arise in such a context.

This paper is organized as follows.

In Section 1 we describe GSMP models of DEDS, and show how one can
formally define the GSMP through a related general state-space Markov chain
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(GSSMC). GSMPs with “single-states” easily admit a regenerative analysis. We
outline this method for determining regenerative cycles, and provide several
asymptotic results for estimators constructed in this fashion.

In Section 2, we argue that one may restrict attention to GSMPs that give
rise to GSSMCs that are positive Harris recurrent, with essentially no loss of
generality. This is the “well-behaved” result referred to earlier. We will also
see that positive Harris recurrent chains may be classified according to their
“smoothness index.”

In Section 3, we consider chains with unit smoothness index. Two methods
are reviewed for determining regeneration points, and we show that if the chain
exhibits so-called “classical regenerative” behaviour, then it must have unit
smoothness index. The significance of this result is that the chains that are
discussed in the next section cannot exhibit classically regenerative behaviour.

Section 4 provides an analysis of chains with nonunit smoothness index.
We explain that a weakened form of regeneration exists for such chains, so
that the resulting cycles are one-dependent, and provide asymptotic theory for
estimators based on this form of regeneration.

We also review the known methods for detecting regeneration times in chains
with nonunit smoothness index m say. To implement these methods, one ba-
sically requires knowledge of the m-step transition probabilities of a GSSMC.
The m-step transition probabilities are typically difficult to compute (although
Henderson and Glynn [1999a] offer one promising direction for dealing with
this problem). Therefore, characterizing the class of discrete-event systems
with unit smoothness index is of great interest, and this is the subject of the
remainder of the paper.

Perhaps the most important result in this paper is Theorem 17, which basi-
cally shows that in the absence of “event cancellation,” the only systems with
unit smoothness index are those with single states.

The consequences of this observation, and the other results in the paper, for
regenerative simulation of discrete-event systems are discussed in Section 5.

Unless otherwise stated, proofs are given in Section 6.

1. GENERALIZED SEMI-MARKOV PROCESSES WITH SINGLE-STATES

We begin by defining a GSMP, following Whitt [1980] and Glynn [1989b] closely.
In contrast to Glynn, and as in Whitt, our event clocks record residual lives
and not time since last activation of the clock, thereby matching simulation
software more closely. In contrast to Glynn and Whitt, and as in Haas [1999], we
assume that state transitions are triggered by sets of events, and not necessarily
single events, thus bypassing the difficulty of ensuring unique triggering events.
Here we describe a time-homogeneous GSMP, henceforth referred to simply as
a GSMP.

Let S be a (finite or countable) collection of states, and let E be a finite
collection of events. Associated with each state s € S, there is a set of active
events E(s) C E that can trigger a state transition out of s. If E* denotes a set
of events that simultaneously trigger a transition from state s, then the new
GSMP state is chosen according to the probability mass function p(-;s, E*)on S
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independent of all else. We require p(-;s, E*) to be a probability mass function
on S for each s € S, and each E* C E(s).

Associated with each event e € E is a clock reading c. that indicates the
amount of time remaining before the event e is scheduled to occur. When the
clock reading ¢, runs down to zero, the associated event e (together with any
other active events in E that occur simultaneously) will trigger a state transi-
tion of the GSMP. We allow clocks to count down at different rates. When the
GSMP s in state s, and e € E(s), the reading c. decreases at rate ry.. Hence, if it
were uninterrupted, event e would trigger a state transition in ¢, /r¢ time units.

All inactive clocks and rates are set to 0: ¢, =r,, =0 for all e ¢ E(s). Further-
more, we require that ry,, > 0 for at least one e € E(s) for all s € S, so that the
GSMP does not “stall” in state s.

Define the clock-reading vector ¢ = (c, : e € E(s)) so that ¢ consists of the
(ordered) list of clock readings for all active events when the GSMP is in state
s. Now, when the GSMP is in state s, the time A = A(s, ¢) until the next state
transition is given by

A = min{c,/rs : e € E(s),rge > 0},

and the set of events which achieve this minimum is denoted E*. Suppose
that the GSMP then moves to state s’. The clock readings are updated as fol-
lows. Each event e € O(s', s, E*) £ E(s)N(E(s)— E*) is an “old” event that re-
mains active in the new state s’. Its clock reading ¢, must be adjusted for the
time that passed while in state s, so that the new reading is ¢} = ¢, — e A.
For each new event e’ € N (s, s, E*)éE(s’) — O(s/, s, E*), the associated clock
reading c, is sampled, independent of all else, according to a distribution func-
tion F'(-;s/,¢e', s, E*) that may depend on the old and new states, the triggering
events and the new event. To ensure that the new clock reading is nonnegative,
we require that F(0;s',¢e',s, E*) = 0 for all s,s’,e’ and E*. Each newly inactive
evente € E(s) — E(s’) has both its clock reading ¢, and its rate r,. set to 0. If E*
consists of a single event e say, then we write N(s/, s, e) for N (s, s, {e}), p(s’;s, e)
for p(s’;s, {e}), and so forth.

The GSMP is a continuous-time stochastic process that evolves on state space
S. To formally define the GSMP, we will first define its related GSSMC X =
(X, : n > 0). The idea is that X, represents the state and clock readings of
the GSMP immediately after its nth state transition, and we will write X, =
(S,, Cy), where S, is the state of the GSMP and C,, is the vector of active clock
readings.

Let R, = [0, 00), and ]R]i be the k-fold product space. Let R be the set of
possible active clock readings in state s, so that

R, = ]lel(s)l’

and let ¥ = (J,.¢{s} x R,. The set X is the state-space of our GSSMC. Let S
denote the usual product topology on ¥ consisting of counting measure on S and
Lebesgue measure on R;. Let X have distribution n, where u is a probability
measure on (2, S).
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We can now define the transition kernel P on T by setting

P((s,0),A)=p(s';s,E")  [[ Flass,e,s,EH [] I el0,al, 1)
e'eN(s',s,E*) ecO(s',s,E*)

where
A={s} x{c' e Ry:0=<c,<a. VeecE(s)},

and I(-)is the indicator function thatis 1ifits argument is true, and 0 otherwise.
It is a standard measure-theoretic result (see Theorem 3.3 of Billingsley [1986]
for example) that (1) uniquely specifies P. The definition of P, together with
the initial distribution u, uniquely defines the GSSMC X . The GSMP may now
be defined.

Let &, be the time of the nth transition in the GSMP, so that £y = 0, and forn >
0, &,41 =&, + A(S,, C,,). We henceforth assume that the GSMP is nonexplosive
in that §, — oo asn — oo P, almost surely, where P,(-) =S fz P(|Xo=x)uldx).
This condition holds, for example, when the state-space is finite [Haas 1985,
Proposition 2.1.18]. The GSMP X = (X (¢) : t > 0) may now be defined by

X (@) =Sy,
where
N(t) =supin : & <t}

is the number of state transitions to occur by time ¢. The nonexplosive assump-
tion implies that X (¢) is defined for all ¢ > 0.
See Shedler [1993] for examples of GSMPs.

Definition 1. Let X = (X, : n > 0) be a discrete-time stochastic process.
For an increasing sequence of finite random times 7' = (T'(k) : & > —1) with
T(—1) = 0 and T'(n) — oo with probability 1 as n — oo, define the collection of
random elements (cycles) W = (W,, : n > 0) constructed from T and X, where,
forn > 0, W, = (W,(k) : k > 0) is defined by

X714 fO<k <T@®m)—-T(-1), and
Wa(k) = {E otherwise,

and E is some distinguished point not contained in the state space of X. We
say that X is classically regenerative if there exists such a sequence T' with
the property that Wy, Wy, ... are independent, and W, Wy, ... are identically
distributed.

Remark 1. The point E acts as a “cemetery state,” with all cycles of the
process eventually absorbed in E. Note that E is simply a device to enable the
cycles to be defined for all 2 > 0, and not just up to an almost surely finite
random time.

Remark 2. An analogous definition applies when X is a continuous-time
process.

One method for determining regeneration times in GSSMCs that arise from
GSMPs is to identify single-states. This method for defining regenerations
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for GSMPs has been well studied; see Fossett [1979], Haas [1985], and
Shedler [1987, 1993]. Shedler [1993] discusses several queueing network mod-
els in which single-states can be identified, and provides references to further
applications.

Definition 2. Let X be a GSMP as defined above. We say that s € S is a
single-state if |E(s)| = 1, that is, there is only one active event when the GSMP
is in state s.

When a GSMP leaves a single-state, all active clocks in the new state
will have been set at the time of the transition, and are therefore indepen-
dent of the previous history of the chain. A regeneration therefore occurs. Let

P.()2P(|1Xo =x).

ProposITION 1. Let X be a GSMP as defined above, and let X be the related
GSSMC. Suppose that X has a single state s* such that

P.(S, = s" infinitely often) =1, forallx € .

Then, X is classically regenerative with regeneration times (T'(n) : n > 0)
given by

TO) = inflk >1:8S,_1=s"}, andforn >0,
Tn+1) = inflk > T(n) : Sp_1 = s*}.

Furthermore, X is regenerative, with regeneration times given by T(n) = &p,
(n = 0).

For a proof of this result, see Theorem 5.13 of Shedler [1993], or for a similar
result, see Proposition 4.3 of Haas and Shedler [1987].

Example 1. Consider the classical single-server queue in which the
interarrival times of customers to a server form a renewal process. Customers
are served in first in-first out order, and service times are independently
identically distributed, and independent of the arrival process. This system
may be modeled using a GSMP with state space S =0, 1, 2,..., and event list
E = {A, B}, where A corresponds to an arrival, and B corresponds to a service
completion.

For this system, S, represents the number of customers present in the
system immediately after the nth customer arrival or service completion.
Similarly, C, gives the time until the next customer arrival, and the time
until the next customer service (if S,, > 0) immediately after the nth customer
arrival or service. The GSMP (X (¢) : ¢ > 0) gives the number of customers X (¢)
in the system at time ¢.

If the mean service time is finite and less than or equal to the mean
interarrival time, then the state s* = 0 is a single-state, since only A is
active when the system is empty, and the system empties infinitely often. The
(integer) regeneration times (T'(n) : n > 0) for the Markov chain ((S;, C;) : i > 0)
correspond to the ordered indices n of arrival events where a customer arrives
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to an empty system: S,,_; = 0 and S,, = 1. The (real-valued) regeneration times
T(n) for the GSMP then correspond to the simulated time that a customer
arrives to an empty system.

These regeneration times correspond to epochs when the GSMP leaves a
single state, rather than when it enters a single state. This may be a source of
confusion for the reader familiar with regeneration times for irreducible, finite
state space continuous-time Markov chains defined by the times at which the
chain enters a distinguished state. Such times are regenerations because of the
conditional independence of the future and past evolution of the process, given
the state of the process at a given time. This special property does not hold
for the more general GSMP. But notice that the times at which an irreducible,
finite state space continuous-time Markov chain leaves a distinguished state
are also regeneration times, and these regeneration times are analogous to the
regeneration times in a GSMP with a single state.

For n > 0, the nth regenerative cycle (W, (¢) : ¢ > 0) is given by the number
of customers in the system at time T(n — 1) +¢ for 0 <t < T(n) — T(n — 1),
and by —1 say, otherwise. Note that here, we are using —1 as the cemetery
state =.

We now turn to limit theory for regenerative GSMPs. In particular, we discuss
how to estimate long-run averages of the form

t
limt’l/ fX(w)du,
0

t—00

where f : S — IR is a real-valued function on the state space of the GSMP.
Our first result is a strong law for classically regenerative GSMPs that estab-
lishes that this limit exists, and provides an expression for the limit in terms
of regenerative quantities.

For x € &, the state space of the discrete-time chain (X, : n > 0), let E,(-) =
E(-|X¢ = x). If v is a distribution on (X, S), let E,(-) S fz E,(Ov(dx).

THEOREM 2. Let X be a classically regenerative GSMP with regeneration
times (T'(n):n > 0), and let f : S — IR. Set p(dy) = P.(X 1) € dy) (note that
¢ is defined independently of x). For j > 1, set

;= T(j)-T( -1, and
T3) . (2)
Y; / f(X W) du.

T(j-1

If f = 0and E, 11 < oo, then

¢
alt) 2 t—l/ fXw)du— « = E, Y1/ E, 71 almost surely
0

ast — oo.

Proor. This is a special case of Theorem 3.1, of Asmussen [1987, p. 136]. O
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Remark 3. The quantities Y; and t; can be easily computed, since the
sample paths of X are piecewise constant. In particular,
T(j)-1
T = Z A(S,Cr), and
R=T(j-1)
T()-1
> ASK, Co)f(Sw).

R=T(j-1)

Y,

Theorem 2 establishes that under moderate conditions, a(¢) converges to a
constant as ¢ — oco. We now wish to assess the variability of a(¢) for finite ¢.
Suppose that E, 11 < oo and 7; has a spread out distribution. (We say that a
random variable with distribution function F is spread out if, for some n > 1,
the n-fold convolution of F' with itself has an absolutely continuous component
(see p. 140 of Asmussen [1987] for example.) Then a stationary version X* =
(X*(t) : t > 0) of the regenerative process X exists, and X (¢) converges in
distribution to X*(0) as t — oo (Corollary 1.4, p. 141, Asmussen [1987]). Under
quite general conditions,

t
Var(l/ f(X(u))du)
t Jo

l

2 [™ ~ N
= / cov(F(XHO), FX*@)du  (3)
0

o2

5 4)

ast — oo. (We say that x; ~ y, ast - oo ifux;/y; —> 1 ast — 00.) This holds,
for example, under mixing assumptions on the process (f (X (¢)) : ¢ > 0) (see the
proof of Theorem 20.1, Billingsley [1968, p. 174]) and if the collection of random

variables
1 t N 2
(; (/ [f(X(u))—ot]du) it 20)
0

is uniformly integrable.

The quantity o2 is known as the time-average variance constant (TAVC), and
is somewhat difficult to estimate. Estimators for the TAVC based on spectral
density estimation methods typically have mean squared errors (MSEs) that
converge at rate t #(8 < 1), where ¢ is the simulation time horizon (Grenander
and Rosenblatt [1984, p. 129]). For nonoverlapping and overlapping batch
means estimators of o2, the results of Goldsman and Meketon [1986] and Song
and Schmeiser [1995] imply that the mean squared error converges to 0 at most
atratez—2/3. Sofor either of these classes of estimators, the MSE of the estimator
of o2 converges to 0 at an asymptotic rate that is of the order O (¢ #) where 8 < 1.

Estimators of 02 derived using the regenerative method provide an attractive
alternative because of their simplicity, and as we shall see, we can typically
expect their MSE to be O(t~1).

The regenerative point estimator of «, based on n regenerative cycles is given
by

1>

Qn = Yn/fm
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where Y, and 7, are the sample means of (Y1,Ys,...,Y,) and (11, 72, ..., T,)
respectively.

TaEOREM 3. Let X = (X, : n > 0) be a classically regenerative process and
let f : S — IR. Suppose that E,(t1 + |Y1]) < oo, and define Z; = Y; — at; for
1 > 1. Suppose that 0 < IE¢Z% < o0,

(1) The central limit theorem (CLT)
n%(a, — ) = 0y N(0,1)
holds, where = denotes weak convergence, N(0, 1) is a standard normal
random variable, and o2, = E,Z3/(E,11)%. (Here, the suffix cyc is meant to
be mnemonic for “cycle”).
(2) The estimator

o & YT (Y — oy1;)?

" (7,)?
of 02, is weakly consistent: v} = o2, asn — oo.

(3) If, in addition, E,(Y{ + 1) < oo, then n'/*(a, — o, Uy — 0cye) = N(O, A),
where

v

]E‘PZ% (2Ucyc ]E(p T1)71 El(pAlZl
(2005c Byt1) T By A1 Z1 (402 (B,t1)?) B, A%, |

cyc

and A; = Z2 —E,Z% - 2E,t)0l (1, — E,11) — 2B, Z 1711/ Byr1)Z;.

cyc

A = (]EW T1)72

Proor. The first two results are given in Glynn and Iglehart [1993]. The
proof of the last result is similar to that of part (iv) of Theorem 8, and so is
omitted. It may be regarded as the cycle-time version of Equation (3.3) in Glynn
and Iglehart [1987]. O

Remark 4. The weak consistency in Part 2 of Theorem 3 can be strength-
ened to strong consistency (almost sure convergence) under the stronger mo-
ment hypothesis that E,(Y2 + ) < oo.

Note that these central limit theorems are given in the time scale of regenera-
tive cycles, whereas the TAVC o2 (see (4)) arose on the natural (simulated) time

scale. When one adjusts the quantity oczyc to take account of the time-change

(see, for example, Wolff [1989, p. 124]), the new variance constant is afyc]Ewrl.
Under certain moment and regularity conditions (Glynn [1989a, Theorem 5.5]),
oczch(p 71 = o2,

We can typically expect the MSE of the estimator v of 62, to be O(n~1). To

cyc
see why, observe that under the conditions of Theorem 3 Part 3, we can assert

that n'/2(? —62.) = nN(0,1) as n — oo, for some appropriate constant 7.

Thus, n(; —o02.)? = n?N(0,1)* as n — oo. Assuming the family of ran-

dom variables {n(v} — 02.)* : n > 1} is uniformly integrable, it follows that

nE@? —o02.)* — n* as n — oo, that is, that the MSE of v is O(n™1).
Hence, we can typically expect the MSE of the regenerative variance esti-

mator to decrease linearly with the number of regenerative cycles. This is in
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contrast to the sublinear rate of convergence exhibited by the TAVC estimators
mentioned earlier.

In steady-state simulation, one must typically deal with the “initial tran-
sient” problem (see Bratley et al. [1987] and Law and Kelton [2000]). This
occurs when the initial conditions of the simulation are not representative of
steady-state conditions, so that point estimates are biased. The regenerative
method sidesteps this particular difficulty because all calculations performed
are based on cycle structure, irrespective of any initial transient period.
However, bias is still exhibited through the fact that the estimator «, is a
ratio of sample means. Several methods are available to combat this difficulty.
Iglehart [1975] discussed the relative merits of several estimators, concluding
that a jackknife estimator should be used. Another method is suggested by
Theorem 4. The proof of this result is similar to the proof of Theorem 7 in Glynn
and Heidelberger [1990], and a special case of Theorem 9, and so is omitted.

THEOREM 4. Let X = (X, : n > 0) be a classically regenerative GSMP, and
let (Y;:i>1),(x; :i > 1), and ay, be defined as above. If | f| is bounded and
E 1} < oo, then

+on™1).

Theorem 4 shows that the bias in the ratio estimator «,, decreases at rate n=!

as the number of cycles n — co. Under appropriate uniform integrability con-
ditions, the final result of Theorem 3 establishes that the MSE of «,, decreases
at rate n~!. Recall that MSE(«,) = Var(a,) + Bias(«,)?, so that for large n, the
dominant contribution to MSE is from the variance, which is O(n~!). Hence,
bias will only be a significant contributor to MSE in regenerative estimators
if the number of cycles simulated is small. In such cases, one could use the
estimator
, 1 130 (Y — apt)
o, = ap + n ()2 >

instead of «,. Glynn and Heidelberger [1990] give a similar bias-reducing es-
timator, and discuss when one might expect that bias is indeed reduced. We
do not give a proof that bias is reduced using this new estimator because the
proofis somewhat involved, and in any case, we believe that the following bias-
reduction technique is typically more effective, and more easily implemented.

The estimator «, is based on a fixed number of regenerative cycles n. One
can also base an estimator of « on the (random) number of regenerative cycles
completed by simulation time ¢. Define N(¢) = max{n > 0 : T(n) < t} to be
the number of identically distributed regenerative cycles completed by time ¢.
Then one may estimate o using

Y'Y

Y

Meketon and Heidelberger [1982] showed that this estimator typically exhibits
bias of the order ¢t 1. They also showed that by completing the cycle in progress

alt) =
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at time ¢, the bias properties of the estimator are improved. In particular, they
gave conditions under which the bias in the estimator

ZN ({)+1 Y;
1=
SNOHT

1=
is O(¢~2). Intuitively, the cycle in progress at time ¢ is longer than a typical cycle
because of length-biasing, and so completing the cycle has a large impact on
the bias properties of the estimator. Glynn and Heidelberger [1990] looked at
bias properties of such estimators, and carefully explain how this bias reduction

arises. In Theorem 9 we prove that the bias in /() is o(¢~!) in a more general
setting.

o' (t) =

2. HARRIS RECURRENCE OF GENERALIZED SEMI-MARKOV PROCESSES

In the previous section we saw how to define essentially any discrete-event
simulation as a GSSMC. It is known that the problem of steady-state simulation
of GSSMCs is well-posed (in a certain precise sense—see Theorem 5 below), if
and only if the chain is positive Harris recurrent [Glynn 1982; Glynn 1994].
In view of this result, we may restrict our attention to the analysis of positive
Harris recurrent Markov chains with essentially no loss of generality. Such
chains enjoy a number of attractive properties, which we will exploit in this
and later sections.

Recall that P,(-) = P(-| X = x), that is, the probability on the path space of a
chain (X, : n > 0) where Xy = x. Let E, denote the corresponding expectation
operator.

Definition 3. The steady-state simulation problem is said to be well-posed
for the Markov chain X = (X, : n > 0) on state space X if for every bounded
real-valued measurable function g, there exists a number c(g) such that for
everyx € ¥

1 n
= Ee g(Xp) > c(g)
nk:l

asn — oo.

Note that c(g) is required to be independent of the initial condition x. One

would hope that the initial conditions play no role in the long-term behaviour
of the system, so this definition seems reasonable.

Definition 4. Let X = (X, :n > 0) be a Markov chain on a complete, sepa-
rable, metric space ¥. The chain X is said to be Harris recurrent if there exists
a nonnegative function A : ¥ — [0, 1], a probability measure ¢, an ¢ > 0, and
an m > 1 such that

(1) P(X,, € 1X0=2x) > Mx)g(-),Vx € £; and
(2) P,(MX,) > € infinitely often) = 1,Vx € X.
Harris chains automatically possess a unique (up to a multiplicative con-

stant) stationary measure 7, and if 7(X) < oo, then 7 may be normalized to a
probability, and X is then said to be positive Harris recurrent.
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An intuitive discussion of Harris recurrence may be found in Henderson and
Glynn [1999b]. We content ourselves with the following example.

Example 2. Let X be the GSSMC associated with a GSMP with a recurrent
single state s* (cf. Proposition 1). Then X is easily seen to be Harris recurrent.
For if x = (s, ¢), where s is the GSMP state and c is a vector of clock readings,
then set A(x) = I(s = s*), ¢ to be the regeneration distribution, m = 1 and
e €(0,1).

As mentioned earlier, the steady-state simulation problem for a given Markov
chain is known to be well-posed if and only if the chain is positive Harris re-
current. The significance of this result is that we may, without loss of gener-
ality, restrict our attention to positive Harris recurrent Markov chains. For a
proof of the following result, see Glynn [1994]. Theorem 17.1.7 of Meyn and
Tweedie [1993] is similar, but assumes existence of a stationary probability
distribution.

THEOREM 5. The steady-state simulation problem is well-posed for the
Markov chain X if and only if the chain X is positive Harris recurrent.

When the number of states |S| in a GSMP is finite, X is known to be a
Harris chain under suitable conditions on the clock setting distributions. Before
stating such a result, we need some definitions. Suppose that the GSMP X and
its related GSSMC X are defined as above.

Definition 5. We say that s’ € S is directly reachable from s € S and write
s — s’ if p(s';s,e)rs, > 0 for some e € E(s). We say that s’ is reachable from s if
there exist s, 89, ... ,S, € S such thats - s; > --- > s, — §". The GSMP X
is said to be irreducible if s’ is reachable from s for every s,s’ € S.

TurEOREM 6. [Haas 1999] Suppose that the GSMP X is irreducible, the state
space S is finite, and all clock rates rs, are positive. Suppose further that there
exists u € (0, 00) such that each clock setting distribution F(-;s’,e’,s, E*) has
a density function that is positive and continuous on (0,u), and a finite first
moment. Then the GSSMC X corresponding to X is positive Harris recurrent.

Conditions guaranteeing the applicability of the regenerative method were
also given in Konig et al. [1967], Glynn [1989b], and Haas and Shedler [1987].
As discussed in Haas [1999], the sufficient conditions given in the above result
are less restrictive than those in Konig et al. [1967] and Glynn [1989b]. They
are more restrictive than those of Haas and Shedler [1987], but far easier to
verify.

Clearly, continuous-time Markov chains on a countably infinite state space
are a subclass of GSMPs. Since there is no general sharp result ensuring re-
currence of such chains, we cannot expect to provide general sharp conditions
under which countable-state GSMPs are recurrent. Any general recurrence
theory for such GSMPs must necessarily involve imposition of Foster-Lyapunov
hypotheses (see Meyn and Tweedie [1993]). In fact, even the finite-state space
proof of Theorem 6 employs a Foster-Lyapunov type argument (to control the
“continuous” clock readings of the related GSSMC).
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Definition 6. Let X be a Harris recurrent Markov chain as in Definition 4.
The smoothness index is the minimum value m such that Properties 1 and 2 of
Definition 4 hold.

3. REGENERATIVE SIMULATION WITH UNIT SMOOTHNESS INDEX

The significance of Harris chains with unit smoothness index is that one can
identify times (T'(k) : £ > 0) such that X is classically regenerative, that is,
the times (T'(k) : & > 0) yield independently identically distributed cycles.
Therefore, the full power of Theorems 2 and 3 and their implications for steady-
state estimation may be brought to bear on such chains once the regeneration
times are identified.

Identifying the regeneration times is more complicated than in the special
single-state case. There are basically two ways of doing this, both of which are
based on Definition 4. Let P(x, -) S P(X;, €1 Xy =x). We may write

P(x, ) = 2xx)p() + (1 — Mx)Q(x, -), (5)

where
P(x, ) — x(x)ep(-)
1—x)

if M(x) < 1, and (arbitrarily) a point mass at x, if not. The decomposition (5)
suggests that we might generate a transition from Xy = x by first generating
a Bernoulli random variable Z with P(Z = 1) = A(x). If Z = 1, then X is gen-
erated according to the distribution ¢, and otherwise it is generated according
to @(x, -). The point here is that if Z = 1, then X; has distribution ¢ indepen-
dently of X¢ = x, and so a regeneration occurs. Generating random variables
from the distributions ¢ and @(x,-) may prove somewhat difficult, and for-
tunately a second approach is possible that is based on acceptance/rejection
ideas.

Suppose that X; = y has already been generated from X, = x, and we
want to determine whether a regeneration occurred at time 1. We can now
generate a Bernoulli random variable Z which indicates whether X; “came
from ¢” or not. Intuitively speaking, from acceptance/rejection ideas, Z should
have success probability

Q(xa ) =

wix, y) = Mx)e(dy)
’ P(x,dy)’
that is, w(x, -) should be a density of A(x)¢(-) with respect to P(x, -). This expec-
tation is correct [Glynn and L'Ecuyer 1995]. These two methods for generating
regenerations are easily seen to be statistically equivalent.

These ideas were applied in the setting of positive recurrent discrete-time
Markov chains on a discrete state-space in Andradéttir et al. [1995]. For such
chains, it is well known that returns to a fixed state constitute regeneration
times. Andradottir et al. showed that with an appropriate choice of the func-
tion A and distribution ¢, regeneration times defined as above form a “super-
sequence” of those defined by returns to a fixed state, and variance reduction
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in the estimation of the time-average variance is therefore guaranteed. A nu-
merical example in Henderson and Glynn [1999b] shows that the reductions
can be quite substantial.

There is a partial converse to the result that chains with unit smoothness
index are classically regenerative. First we need a definition.

Definition 7. Let X = (X, :n > 0)be a GSSMC on state space ¥, equipped
with o-field S. Let ¢ : S — R, be a nontrivial measure on S. We say that X is
¢-irreducible [Meyn and Tweedie 1993] if for every A € S such that ¢(A) > 0,
and for every x € ¥, there is an n = n(A, x) > 1 such that P"(x, A) > 0.

ProrosiTioN 7. Suppose that the GSSMC X is classically regenerative and
¢-irreducible. Then the decomposition (5) holds, where ¢ is the distribution of
the chain at regeneration times.

For a proof, see Nummelin [1984, Theorem 4.3, p. 66].

In the next section, we will show how to obtain regeneration times for chains
with nonunit smoothness index. Unfortunately, the resulting regenerative cy-
cles are 1-dependent (non-adjacent cycles are independent, while adjacent cy-
cles may be dependent). Proposition 7 implies that for such chains, there is no
way to obtain independent and identically distributed cycles, since otherwise (5)
would hold and the chain would have unit smoothness index.

4. REGENERATIVE SIMULATION WITH NONUNIT SMOOTHNESS INDEX

When the smoothness index m > 1, it is still possible to define regeneration
times (T'(k) : £ > 0) for X, but the regenerative cycles are now 1-dependent.
(We explain below how this 1-dependence arises.) This weakened form of re-
generation still allows one to analyze steady-state simulations, but the details
are more complicated than in the unit smoothness case. Theorems 2 and 3
generalize to yield the following result.

THEOREM 8. LetX = (X, :n > 0)bearegenerative process with 1-dependent
cycles and regeneration times (T'(k) : k > 0). Let Y;, t; be defined as in (2) for
i > 1, let Y, and T, be sample means as defined earlier; and let o, = Y ,/%,.
Suppose that Eft1 + |Y1]) < oo.

(i) The strong law

E,Y;

ap —> o =
Egotl

holds almost surely.

Define Z; = Y; — at; for i > 1, and suppose that in addition to the above
conditions, 0 < E,Z? < cc.

(ii) The CLT
n1/2(an —a) = UcycN(O, 1
holds, where o2, = (E,Z% + 2E,Z1Z5) /(E,t1)%
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(1i1) The estimator
LY Zi ()P + 2Z () Z ()]

24
= (7,2
of ofyc is weakly consistent, that is, v = afyc as n — oo, where Z;(n) =
Yi — Oy T;.
(iv) If, in addition, E,(Y{ + t}) < oo, then n'/*(ay, — o, vy — Oeye) = N(0, A),
where
Eq, [Z% +2Z1Z2]
A = )
(]Ew":l)z
Ey[Z1D1+ Z1Dg + D1Z 3 + D1Z3]
A1 = 3 = Asgi,
2chc(]E<pfl)
E, [D% +2D1Dy + 2D1D3]
Ago =

402 (E,71)* ’

cyc

B = 2]E¢[T1Z1 + 1129+ Z2‘L'1]/ E(p‘l.'l, and
D = Z} B, Z? +2Z;Z;11 — 2B, Z1Z5 — 2B,11)02 (t; — Eyr1) — BZ;.

cyc

Glynn [1982] proves (i), and versions of results (ii) and (iii) on the natural
(simulated) time scale under stronger moment conditions than we require. The
proofs of (ii) and (iii) follow as in Glynn and Iglehart [1993] and are omitted.
The proof of result (iv) may be found in Section 6.

Our next result discusses the bias properties of the estimator «,,, generalizing
Theorem 4.

THEOREM 9. Suppose that X is a GSMP with nonunit smoothness index. Let
Y;:i>1),(t:i > 1), and a, be defined as in Section 1. If | | is bounded and
E,ti < oo, then

Eap, =a —bn ' +o(n™1),

where
. E(leTl + E(le‘L'g + E(ng‘L'l
(E(pfl)z .

As discussed in Section 1, bias will only be significant for simulation runs
containing few cycles. In such situations, one could use

, 1n Y Zis + Zi)ti + Zia (W)
o, =ap + — -
n (Tn)2

to estimate «, where Z;(n) = Y; — «,1;. As in the independent cycle case, we
believe that a different bias-reduction technique is typically more effective than
the use of «),, and so we do not offer (involved) conditions for when «;, provably
reduces bias. We refer the reader to Glynn and Heidelberger [1990] for further
discussion of this point.

As in the independent cycle case, one can use an estimator «(f) based on
the number of regenerative cycles completed by simulation time ¢. In particu-
lar, if N(¢) is defined as in Section 1 as the number of identically distributed

b
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regenerative cycles completed by simulation time ¢, then we may estimate « by

N(@)
Zi:l Y;
N@ _

i=1 U

alt) =

Since independence is a special case of 1-dependence, it follows that the bias
of this estimator is of the order ¢ 1. We now extend a result by Meketon and
Heidelberger [1982] to show that this bias can be reduced to o(¢~!). Because of
the 1-dependent structure, one must not only complete the cycle in progress at
time ¢, but also the following cycle. Define

N@#)+2
Zi:l Y;

N@)+2 _ -
i=1 2

a'(t) =

TueEoREM 10. Suppose that X is a GSMP with unit or nonunit smoothness
index, and let Y; and 1; be defined as in Section 1. If E¢(Y12 + t12) < 00, then the
bias of o/(t) is o(t~1).

Remark 5. An examination of the proof of Theorem 10 shows that under
stronger moment conditions on the cycle length distribution, the bias can be
shown to be O(¢~3/2). This follows by using renewal theory arguments to bound
the right-hand side of (26) by a constant that is independent of ¢.

The regeneration times (7T'(k) : £ > 0) may be determined using methods
analogous to those for chains with unit smoothness index [Glynn and L'Ecuyer
1993]. Defining P™(x,-) = P(X,, € -|X( = x), we have

P™(x, ) = Mx)p() + (1 — Mx))Q (x, -)

with a suitable definition of the (m-step) transition kernel @. Given X, one
can generate the following m transitions as follows. First generate a Bernoulli
random variable Z with P(Z = 1) = AMx). If Z = 1, then X, is generated from
@, otherwise it is generated from . The intermediate values X1,..., X,, 1
are then generated from the appropriate conditional distributions. Because of
the difficulty in generating random variables from these distributions, this
approach is rarely implementable.

A second approach parallels the acceptance/rejection method for the unit
smoothness index case. First Xy = x,..., X,, = y are generated in any con-
venient manner. Then one generates a Bernoulli random variable Z having
success probability w(x, y) = AMx)p(dy)/P™(x,dy). If Z = 1, then a regenera-
tion is recorded at time m, and X, is distributed according to ¢ independent
of the value of X (. However, there will almost certainly be correlation between
X, and (X4, ..., X,,_1). Therefore, the resulting cycles are no longer indepen-
dent, but are 1-dependent. One might then simulate a further m transitions
and repeat this process, or perhaps wait until the chain enters some favourable
region before repeating the test for regeneration (see Andradattir et al. [1995]
for more details).

Both methods outlined above require knowledge of the transition kernel P™
to identify cycle boundaries. This quantity is unlikely to be readily available
to the simulationist except in problems with very special structure. This is the
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essence of the difficulty in applying regenerative simulation to simulation of
chains with nonunit smoothness index.

Glynn [1994] suggests a slightly different approach to regenerative simula-
tion in the nonunit smoothness index context. After a regeneration is detected
at time n say, a new value of X, is independently sampled from ¢. The re-
sulting process X * say, has independent cycles, and identical marginals and
steady-state as X. However, one still needs to identify the cycle boundaries,
and so simulation of X * still requires explicit knowledge of P™. The principal
problem has not been avoided.

These negative comments should be set against a recent positive result of
Henderson and Glynn [1999a] that shows that it is possible to explicitly compute
P™(x,dy), for a restricted set of values x and y. Henderson and Glynn explain
how this observation can be used to identify regeneration times using the second
method described above. The approach is potentially useful for small systems,
but for models of even moderate complexity, it appears that the regenerative
cycles constructed using this method will be excessively long.

In view of these implementation difficulties, characterizing GSMPs with unit
smoothness index becomes of great interest. To the extent possible, we will treat
the case |S| = oo (a countably infinite state space) as well as the more tractable
case |S| < oc.

The next result gives conditions under which the GSSMC associated with
a GSMP is ¢-irreducible for a certain measure ¢. The proof of this result is
constructive, and borrows ideas from an analogous result for finite state spaces
due to Haas [1999]. Let ¢, be defined by

9o = [ ae ()
ecE(s)
where
A={s}x{ceR;:0<c, <a. VeecE(s)},

that is, ¢, is basically counting measure on the states together with Lebesgue
measure on the clocks. (Equation (6) defines the measure on a class of sets that
is a w-system. Theorem 3.3 of Billingsley [1986] allows us to conclude that this
is sufficient to define ¢, uniquely.) Similarly, for u > 0, define

¢u(A) = ][ min(a,,w),

ecE(s)

so that ¢, is the same measure confined to clock readings bounded by w.
TueOREM 11. Let X be a GSMP with related GSSMC X . Suppose that

(1) the GSMP X is irreducible (Definition 5),

(2) for some ¢ > 0 all clock setting distributions have density components that
are positive almost everywhere (a.e.) on [0, €), and

(3) all active clock speeds are 1.

Then X is ¢y-irreducible, for any u € (0, €), and therefore ¢.-irreducible.

ACM Transactions on Modeling and Computer Simulation, Vol. 11, No. 4, October 2001.



Regenerative Steady-State Simulation of Discrete-Event Systems . 331

The assumption that all active clock speeds equal 1 may appear somewhat
restrictive. However, we expect that a similar result also holds when active
clock speeds are restricted to lie in some interval [r,, 7*], where r, > 0.

Theorem 11 immediately gives the following corollary.

CoroLLaRY 12. If Condition 2 of Theorem 11 is strengthened to all clock set-
ting distributions have density components that are positive almost everywhere
on [0, 00), then X is ¢oo-irreducible.

Irreducibility implies what we believe is the first uniqueness result for
invariant measures of GSMPs with countably infinite state space. Meyn and
Tweedie [1993] define positive chains to be those chains that are ¢-irreducible
and that possess an invariant probability measure. By Proposition 10.1.1,
page 231, a positive chain is recurrent, and by Theorem 10.4.4, page 242,
recurrent chains possess a unique invariant measure. We have established the
following corollary.

CoroLLARY 13. Under the conditions of Theorem 11, if X has an invariant
probability measure, then it is unique.

The following definition will prove useful in characterising the value of the
smoothness index.

Definition 8. Let X be the GSSMC associated with a GSMP. Suppose
that X has a stationary probability distribution 7. We say that 7 satisfies
the clock smoothness condition if 7 is absolutely continuous with respect to
Poo(T K Poo)-

We now wish to establish simple sufficient conditions for the clock smooth-
ness condition to hold. Our proofis based on the following rather general result,
which is interesting in its own right.

THEOREM 14. Let X = (X, : n > 0) be a positive Harris recurrent Markov
chain on state space ¥ equipped with o—field S. Let 7 be the stationary proba-
bility distribution and P be the transition kernel of X. Let v be a given measure
on (X, S). Suppose that there is a stopping time T (with respect to the natural
filtration on X) such that

(i) T < oo P, almost surely, and
({1) P X7 e )<<y

Finally, suppose that P has the property that if a probability measure v <«
v, then vP < Y, where vP is the probability measure defined by vP(A) =
fz v(dx)P(x, A) for A € S, i.e., the distribution of X1 when X ( has distribution
v. Then m K .

This theorem basically states that if the transition kernel satisfies a certain
“smoothing property,” then once the distribution of the chain is “smooth,” it
will remain “smooth,” and so the stationary distribution of the chain will be
“smooth.” We will also need the following result, which gives conditions under
which a GSMP is nonexplosive.
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TuEOREM 15. Let X be the GSSMC associated with a GSMP X. Suppose
that all clock setting distributions are non-null, in the sense that no clock setting
distributions correspond to a point mass at 0. If X is Harris recurrent, then the
GSMP is nonexplosive.

We are now in a position to give sufficient conditions for the clock smoothness
condition to hold. Our conditions are far from being the “tightest” possible, but
they demonstrate the type of result one might expect to hold.

TaEOREM 16. Let X be the GSSMC associated with a GSMP where all clock-
setting distributions have densities (with respect to Lebesgue measure). If X
is positive Harris recurrent with stationary probability distribution w, then w
satisfies the clock smoothness condition.

We are now able to quantify the smoothness index.

TaEOREM 17. Let X = (X, : n > 0) be a positive Harris recurrent GSSMC
associated with a GSMP, and let  be the stationary distribution of X. Assume
that all clocks remain active until they trigger a state transition, and that the
triggering event set consists of a single event almost surely. Suppose that ©

satisfies the clock smoothness condition. Set

m*= min |E(s)|,
seS:rs>0

where s = P, (Sy = s). If m is the smoothness index for X, then m > m*.

Remark 6. The fundamental idea behind this theorem is that P™(x, -) is
singular with respect to = for m < m*.

Remark 7. The class of GSMPs satisfying the conditions of Theorem 17 is
very large. For example, insensitive GSMPs [Burman 1981] have this form.
These GSMPs are such that 7, depends on the clock random variable distribu-
tions only through their moments, so that they are, in some sense, insensitive
to the clock random variable distributions.

Theorem 17 basically establishes that the smoothness index m must be at
least as large as m*, the minimum number of active clocks at any time. The
following proposition provides a partial converse, establishing conditions under
which the GSSMC has an m*-minorization.

ProrosiTioN 18. Suppose that

(1) X is the GSSMC associated with an irreducible GSMP,

(2) all clock setting distributions have density components that are positive and
bounded away from 0 (by a common lower bound) on [0, €], for some € > 0,

(3) all active clock speeds are 1, and
(4) all clocks remain active until they trigger a state transition.

Then there exists a set A with ¢.(A) > 0, a . > 0, and a probability measure ¢
on (X, 8) such that

P™ (x,-) > rg()
for all x € A, where m* = mingg |E(s)|.
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5. CONCLUSIONS

Theorem 5 establishes that any “well-posed” simulation is necessarily positive
Harris recurrent, and therefore possesses regenerative structure. The question
then is whether the regenerative structure can be identified. When the chain
possesses a single state, this is easy, because the exit times from single states
are regeneration times. But such chains appear to form a very special class of
all discrete-event systems, so that a more general method for detecting regen-
erations is warranted.

We described methods based on minorizations of the n-step transition kernel,
and defined the smoothness index m to be the minimum value n such that an
appropriate minorization can be constructed. The special case of a unit smooth-
ness index (m = 1) is of great interest, because it is quite straightforward to
compute the 1-step transition kernel; see (1). In Theorem 17 and Proposition
18 we basically established that in the absence of event cancellation, the only
chains that have unit smoothness index are those with single states. Therefore,
if these minorization methods are to be used to detect regenerative structure
in chains without single states, then we have to deal with the m > 1 case.

The problem is that to detect regenerative structure in the nonunit smooth-
ness index (m > 1) case, the methods that we have outlined require explicit
knowledge of the m-step transition kernel. At least currently, it is unlikely that
such information will be available. Henderson and Glynn [1999a] describe an
exception that may prove useful in small systems, but the cycles that can be
constructed using their method are likely to be excessively long in models of
moderate complexity.

Indeed, it is well known that excessively long regenerative cycles are a prac-
tical barrier to implementation of the regenerative method. Long cycles can
result from the construction based on minorizations if the function A appearing
in Definition 4 is such that 71 = fz Mx)m(dx) is very small, where 7 is the sta-
tionary probability distribution corresponding to the positive Harris recurrent
Markov chain X. However, some hope comes from the observation that for a
positive Harris recurrent aperiodic Markov chain, P"(x, ) = n(-) as n — o0
for all x (Meyn and Tweedie [1993, Theorem 13.3.3]). Hence, for n sufficiently
large, it may be the case that P"(x, -) can be more strongly minorized, leading
to a larger function A and, in turn, shorter regenerative cycles.

Another interesting question is whether it is possible to identify regener-
ative structure in the GSMP X without having to compute P™(x,-). Such a
method would allow the very appealing statistical properties of the regener-
ative method to be brought to bear on the general problem of discrete-event
simulation.

We continue to work on these and other interesting possibilities with the
ultimate goal of obtaining a practical method for applying the regenerative
method to general steady-state discrete-event simulation.

6. PROOFS

Let 0,(g(n)) represent the nth term of a stochastic sequence ¢, say, with the
property that ¢,/g(n) = 0 as n — oo.
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We will need the following lemma in proving Theorem 8.
LemMa 19. Let (V, : n > 1) be a sequence of random variables.

(1) If V,, = v for some finite constant v, then V,, = v + 0,(1).

(2) If nY%(V,, — v) converges in distribution, then V, = v + 0,(n"1/2%) for all
€ > 0.

(3) Suppose that V,, — v almost surely as n — oo and n'/%(V,, — v) converges in
distribution. If g is a real-valued function that is continuously differentiable
in a neighbourhood, T say, of v, then

g(Vo) = gW) + ')V, —v) +0,(n"12).

Proor. The proofs of Parts 1 and 2 are straightforward and omitted. For
Part 3, note that

gWV) =g(V)I(V, e )+ g(V)I(V, ¢ T). (7)

The second term in (7) is o p(nfl/ 2) because I(V, ¢ I')is 0 for n sufficiently large
with probability 1. By Taylor’s theorem, there is some ¢, between v and V,, such
that

gWV)I(V, el) = [g) + g' )V, —v) +(g'(&) — &' NV, —0)I(V, €T)
= [8W)+ &)V, =) + 0p(n V*)II(V, €T)
= [gW) + &' W)V, —v)+0p(n VA1 - I(V, ¢ T)] 8

where (8) follows because g'(¢,) — g'(v) with probability 1. The result then
follows because I(V,, ¢ I') = 0,(n"1/2). O

Proof. (Theorem 8) We only need to prove part (iv). The proof basically
follows from certain Taylor expansions. For notational convenience we write
E(.) for E,(-) and 7, Y for Et; and EY;. Observe that

n—1
v = (nff)_l Z[Zi(n)2 +2Z;(n)Zit1(n)]

i=1

n—1
(n72) S UZ; — (@ — 1) + 2Z; — (@ — )T Zis1 — (@ — )Ti11)]
=1

n—1
= (nf,%)_l Z [Z,Q +2Z; 21— 2y —o)nZi + 4 Ziv1 + 141 Z3)
i—1
+ (o — )? (17 + 27iTi41) ] 9

From Part 2 of Lemma 19, o, — a = 0,(n"1/2+¢) for all € > 0. Hence, (o, — @)? =
0,(n~172) for all € > 0. Furthermore, the strong law of large numbers ensures
that

n—1
- Et?24+2E1t
(n?) ' Z 77+ 25T — 1f—212 almost surely.
i=1
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Hence,

n—-1

(nff)_l Z(an — (77 +25141) = 0, (n"1?). (10)
i—1

Now, fori > 1let R; =t Z; + 1;Z; 11 + 141 Z;. From Part 1 of Lemma 19

1 1n71
20, —a)— — R;
(a a)f,%n;

1
2(an — ) <f2 + op(1)>

1 n—1
x <; > (Ri —ER)+ER: + op(1)>

i=1
1
= 2(a, — @) <f—2 + op(1)> (ER1 +0,(1)

2ER,

== (an — @) +0,(n"?) (11)

where the second equality follows since n~! Z::ll (R; —ER;) — 0 almost surely
and (11) follows since (o, — )o,(1) = 0,(n~1/2).
If we define 8 = 2E R1/7 then, combining (9), (10) and (11), we find that
n—1
2= (n32) ' (22422, Z;14) - g(an —a)+o,(n13). (12)
i=1
Now, a,, —a =Y,/%, — Y /7. By Part 3 of Lemma 19 with g(x) = 1/x, 1/%, =
1/% — (£, — ©)/7% + 0, (n~1/2). Hence,

an—a = Y,/T Y5 —0)/7% +0,(n?) —«
=Y./t Y@ -0/t —a+o,(n ') (13)
= Yo/t —afy/T +0,(n ) (14)
= Z,/T +0,(n""?). (15)

The equality (13) follows since ¥, = Y + o(1) and n'/2(z, — T) converges in
distribution. Equations (14) and (15) hold because« =Y /T and Z, = Y, — af,.
Furthermore, by Part 3 of Lemma 19 with g(x) = x~2,

7,2 =722t %5 — D +o,(n1?),

so that (nt2)"! Y/ Z2 + 2Z;Z,1]is given by

2 1
— N (2} +2ZiZi) - S0 N (2} +2Z:iZia] +o0p(n1?)
i=1 i=1
1 — 2 2 = 2 -1/2
== (Z2+2Z,Z;1] - 5(rn ~DE(ZI+2Z1Z3) +0,(n" M%) (16)
i=1
1~ Z?+2Zl-Zl- —27_70'c2c(fi—1_7)
_ ﬁ +1f2 Y +0p <n71/2)’ (17)
i=1
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where (16) follows from Part 1 of Lemma 19 and the fact that (7, — T)o,(1) =
0p(n~1/?), and (17) holds since 02, = E(Z3 + 2Z,Z,)/7>.
Combining (12), (15) and (17), we obtain that

vi—og. = T[22+ 22,211 — 2T0l (1 — T) — BZ;i| — 05, +0p(n7?)
i=1

=n 'Y T2}~ EZ}+2ZiZiy1—2BZ1Zy —2T0L (v — 7) — BZ)
=1
+0,(n71?%)

1= D; _
- I;f_ﬁ%(n "), (18)

where D, = le —EZ% +2Z;Z;.1—2EZ1Zy — 2702 (t; —T)— BZ;.

cyc

Noting that v, = \/v2, Part 3 of Lemma 19 with g(x) = /x gives
Un — Oeye = (20eye) " (vp — 02) + 0p(n7?). (19)

From (15), (18) and (19), we then have that

on o t'Z, ~1/2
( Un — Ocyc ) o ( (2acycf2)—1Dn ) +0p (n )’ (20)
where D,, is the sample mean of D, ..., D,. Now, (Z; :i > 1) is a 1-dependent

sequence of identically distributed random variables and (D; : i > 1) is a
2-dependent sequence of identically distributed random variables. Hence, if
L; is the column vector (Z; /7, D; /(2ocycf2))/ and x’ denotes the transpose of the
vector x, then (L; : i > 1) is a 2-dependent sequence of identically distributed
random vectors whose components have finite second moment and zero mean.
Application of a central limit theorem for such sequences (see Billingsley [1968,
p. 177]) gives the result. The expressions for the covariance matrix may be ob-
tained by noting that A = E(L,L} + L1L{, + LyL} + L1L§ + L3L/) and using
the fact that EZ D3 = 0 to simplify the resulting expressions. [

Proof. (Theorem 9) We follow the proof of Theorem 7 of Glynn and
Heidelberger [1990] closely. Since | f| is bounded (by A say), a,,« < A almost
surely. Let X; = (Y;, ;), and X, = (Y ,, T,), where Y, and 7, are the sample
means of (Y1, ...,Y,)and (zy, ..., 7,) respectively. Define g(y, z) = y/z, so that
a, = g(X,) and a = g(u), where u = (EY,E ). (For notational convenience,
we write Y, t for Y1, 71). Observe that g is C* on [0, co) x (0, 00). Define T',, to
be the indicator of the event {|| X, — u| < €}, where |x| = max; |x;| and € is
positive but strictly smaller than the minimum of E r; and E |Y;|. Then

Eap = a 4+ E((a, — o)) + El(a, — a)(1 — Tp)).
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Now

E((et, —a)(1 —T%))
< 2AP(|X, —ull > €
< 2A(P(|Y,—EY|>¢e)+ P(t, —E1| > €)}

2A{P(Vn|Y , —EY| > ey/n) + P(Vn|t, —Et| > ey/n))

2A ~
= e BWRIY  —EY 2 4+ E(J/nlg, — ET)**) (21)

A

for any § > 0. Now, E[/n|Y, — EY|]* = n?2EY, — EY)*, which, by direct
calculation, is bounded in n. Similarly, n2 E(z, — Et)* is bounded in n. Hence,
for u € [0, 4), the sequences

(WVnY,-EY|[*:n>1) and (Vn|t,—Et|l“:n>1) (22)

are uniformly integrable. Therefore, the expectations in (21) are bounded in n
for small § and E(a,, — «)(1 — T',) = o(n1).
When I', = 1, a Taylor expansion shows that («,, — a)T',, is given by

_ 1 & _ _
where ¢, lies on the line segment joining X, and u. Now,
and by Holder’s inequality,
E(Y,-EY)1-T,) < (EY,-EY)HV4E[L - T,])**
2AE tHY4E[1 — T, %4
Bn*PE(/n|Y, —EY )* + E(V/nl%, — E<)*PP/*
o(n™),

A

=
=

for some constant B, where the second inequality follows from the bounded-

ness of | /|, and the final inequality follows as in (21). A similar calculation for

E(z, — E1)(1 —I',) shows that the expectation of the first term in (23) is o(n1).
Now, as n — 00,

nl,V2g (2, (X () — i) (X n(j) — ;) = GijN;N;, (24)

where G = V2g(u), and N;, N ; are correlated normal random variables
with mean zero and cov(N;, N;) = cov(X1(), X1(j)) + cov(X1(), X2(j)) +
cov(X1(j), X2()). Note that

where b was defined in the statement of the theorem, and so to complete the
proof, it remains to show that the left hand side of (24) is uniformly integrable
(as a sequence of random variables in n).
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When ', =1, |V2g(X,)| is bounded. Furthermore,

< ElVaX @) — )P IVX () = wp)I'?
< [EWnX,@) — )PP E W& () — wp)H 212
by the Cauchy-Schwarz inequality, and these expectations are bounded in n, as

before. This proves uniform integrability and completes the proof. O

ProoF. (Theorem 10) We may write

N(©)+2
) —a = Yl Yi—ay
= N@o)+2
-1 T
SN2
t(1+ Ry /t)’
where
n N(®)+2
S,=> Z; and Ry= > 71—t>0.
i=1 i=1

Now, forx > 0, (14+x)"! = 1—(1+4¢)2x for some ¢ € [0, x] by Taylor’s theorem.
Thus

1 R
") — o = ¢ 1 - u
o'(t) —a =t SN2 (1 W t)
for some ¢; € [0, R;/t]. Hence

R,
E__*
t2(1+ )2

An extension of Wald’s lemma to 1-dependent sequences [Janson 1983] shows
that E Sy¢)+2 = 0, since N(¢) + 1 is a stopping time relative to the filtration
F=(F,:n>1),where F,, =0 (Y1, 11,..., Y,, 7,). Hence

R ¢
7152(1 T Ct)Z N@#)+2
1 R 2
_ El/z t E1/2 S2
Rz <(1 + 5 N

1
=g EV2 R7EY? SR)42 (25)

Snwe+2] -

|Ea(t) — | = ‘tlEsN(tH-Z -

|IEa'(t) —a| = ‘E

where the first inequality follows by the Cauchy-Schwarz inequality, and the
second from the fact that ¢, > 0. We will show that E R? = o(¢), and ES%,, , =

O(t). This will then establish that the bias in o/(¢) is o(¢~1).
Observe that

ER} < E(tne+1 + tve+2)® < 2B (TR + These)- (26)
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Adapting a technique from the proof of Corollary 1.1 of Janson [1983], we have
that

N@)+2
Etdp <E Y 2 =EN@®) +2)E?.
i=1

For all e > 0, let A = A(e) be such that IE(rlz; 71 > A) < €. Define 1} = 5;I(7; > A)
and 7 = ;I(r; < A). Then

’ 2 " 2
Et¥pe = E(tvea)” +E (theer)
E(N(t) + 2) E(r;)* + A?
eEN(@)+ B(e)

IATA

for some constant B(e). Thus,

limsupt 'Etd,, 4 < elimsupt 'EN@¢) =¢/Eny

t—o00

where the equality follows from Theorem 3.1 of Janson [1983]. Since ¢ was
arbitrary, we have established that E t]%,(t) 41 = o(t). Exactly the same approach
may be applied to E 13, ,, so that from (26), we obtain E R = o(¢).

We turn now to the final term in (25), adapting techniques from Janson [1983]
and Chow et al. [1965]. Define

n+1 n
W, —E <s2 ~3" 22223 ZZi | a) ,
i=1 i=1

and observe that W = (W, : n > 1) is a martingale with respect to . Define
a Ab = min{a, b}. If T is any stopping time with respect to F, then E Wr,, =
E W; = 0. Hence,

1+(T'An) Thrn
EStqmm =E Y Z}+2) ZiZin
i=1 i1

1+(T An) Thrn
E Z Zi2+Z(Zi2+Zi2+l)
i=1 i=1
1+(T An)

3E Y Z}
i=1

Recalling that N(¢) + 1 is a stopping time, we obtain

IA

IA

ESXaye < Hminf E ST, jvi1m 27)
1+[(N@)+1D)An]
.. 2
< 8liminfE ) Z
=1
N(@)+2
=3E Y Z} (28)
i=1
= 3EZ2EN()+ 2),
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where (27) follows from Fatou’s lemma, and (28) follows from monotone conver-
gence. Theorem 3.1 of Janson [1983] gives EN(¢) + 2 = O(¢), so that the same
is true of E S%,,,,, and the proof is complete. [

Proor. (Theorem 11) Let u € (0, ¢), and let
A={s") x[a1,b1] x -+ x [@ge), bEe]»

where 0 < a;, < b, < u for all k. Let x € T be the initial state of the GSSMC.
We will describe how to set the clocks on successive transitions from x so that
after some number of state transitions, the final state of the GSSMC will lie in
the set A, proving ¢,-irreducibility.

Let v € (0, ¢ — u). Our first step is to reduce all active clock readings to lie
in (0, v) if this is not already the case. To do so, repeatedly set every new clock
reading to lie in (v/2, v). After at most | E| state transitions, the maximum clock
reading must have decreased by at least v/2. Repeating this process ensures
that all active clock readings will eventually lie in the interval (0, v) at a time
that we arbitrarily call the bounding instant. Let the active clock readings at
thistimebe 0 <c1 < --- < <.

Suppose that after the bounding instant, every new clock reading is set
after c,. Then, after at most % transitions, all of the clocks set in the pre-
vious step will either be inactive, or have been reset. Let sy be the state
of the GSMP after the last of the clocks is reset or made inactive. By the
GSMP irreducibility assumption, there exists eg, s1,e1,...,S,, e, such that
p(s1;80,€0)p(se;s1,e1) - p(s*;s,,e,) > 0. We will construct this path by care-
fully setting the new clocks, and also ensuring that the final clock readings lie
in the appropriate intervals of the set A.

Let ¢ denote the amount of simulated time that has elapsed after the bound-
ing instant. The idea is that the final event e, will occur at time ¢ = ¢ — u, and
at this time, all clocks will have their appropriate values, so that the GSSMC
lies in the set A. Suppose the ith event (0 < i < n) in the above path has just
occurred, and we are setting the clock for event e.

(1) If the event e will not be set again before the GSMP enters the set A, it
is not the final triggering event e,, and e € E(s*) and its clock reading is
required toliein [a;, b;], then set the clock to lie in the interval [a; +€ —u —
t,b; + € —u—t]. This will ensure that its reading will lie in the appropriate
interval when the GSMP enters the set A at time € — u.

(2) If the event e will not be set again before the GSMP enters A, and it is the
final triggering event ¢,, then set it equal to ¢ — u — ¢ (or at least in a very
small interval containing this time point).

(8) If the event e will not be set again before the GSMP enters A, it is not the
final triggering event ¢, and e ¢ E(s*), then set it in the interval (¢ — u, €).
It will then not affect the dynamics of the remaining state transitions and
will be rendered inactive by the time the GSMP enters A.

(4) Iftheevente appearsin{e; 1,...,e,_1},thensetitintheinterval [0, e —u—t]
in such a manner that the order of events required in the above path is
retained. This event will trigger a state transition before the GSMP enters
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the set A, and therefore must be carefully set to ensure the order of events
is appropriate.

At the time that the nth event e, occurs at time ¢ = ¢ — u, any newly active
clocks are set to lie in the appropriate interval, and the GSMP then lies in the
set A. O

Proor. (Theorem 14) Suppose that ¢(B) = 0. We will show that =(B) = 0.
Note that

V()2 PXre,T=j)<PXre)<yl),

sothat v; « ¢. Furthermore, we have that v; P « ¢ and by induction, v; Pt <y
for all £ > 0. Now

P.(X, eB)
= P.(X,eB,T<n+P,X,eB, T >n)

<) Pu(X,eB,T=j)+P(T >n)

Jj=0

= Z/ P.(X,eB,T=j,Xjedy)+P(T >n)
j=0"%

= Z/ P.(X,e€B|X; edy)P(T = j,X; €dy) + P.(T > n)
j=0"%

= Z/ P (y,Bw;(dy) + Py(T > n)
j=0"*

= Y v P"(B)+ PuT > n)
j=0
= 0+P(T >n) (29)

where (29) follows from the Markov property and the fact that 7 is a stopping
time. Thus

n—oo n 4

n—1
7(B) = lim 1 ZPx(X,- € B)
1=0

1 n—1
- lim 1 .
< lim > PuAT > i)
=0
=0
since T' < oo P, almost surely. Hence 7 « ¢. O

Proor. (Theorem 15) For ¢ > 0 and s € S, define the set As(e) = {s} x
[e, 00)EG) the set of Markov chain states in which the GSMP is in state s, and
all active clock readings are at least €. Define A(¢) = UscgAs(€) to be the set
where all active clock readings are at least €. Let 7 denote an invariant measure
for X, where 7 is not necessarily finite.

ACM Transactions on Modeling and Computer Simulation, Vol. 11, No. 4, October 2001.



342 . S. G. Henderson and P. W. Glynn

We will show that for some ¢ > 0, 7(A(¢)) > 0, which then implies that
7(As(e)) > 0 for some s € S. If so, then 7 is equivalent to a maximal irre-
ducibility (probability) measure u of X (see Meyn and Tweedie [1993, Theo-
rem 10.4.9]). Hence u(As(¢)) > 0, and from Theorem 9.1.4 of Meyn and Tweedie,
X, visits A,(e) infinitely often P, almost surely, for i almost all x. This then
ensures that X is nonexplosive, since X, € A,(¢) implies that the time spent
by X in state s on the nth transition A, is given by

A, =min{C,(e)/re : rse > 0} > ¢/ max{ry, : e € E(s)}.

The set of events is finite, so we have a lower bound on A,, and hence the
GSMP is nonexplosive P, almost surely, for © almost all x. Hence, it remains
to show that 7(A(¢)) > 0, or equivalently u(A(e)) > 0 for some ¢ > 0. But by
Proposition 4.2.2 part (iii) of Meyn and Tweedie, this will follow if X,, € A(e)
infinitely often P, almost surely, for © almost all x.

Suppose that X, ¢ A(e) eventually P, almost surely, for some y and all
€ > 0. Then, if ¢, = min{C,(e) : e € E(s)} is the minimum active clock reading
on transition n, we must have that ¢, — 0 as n — oo P, almost surely. Hence,
by Theorem 17.3.2 of Meyn and Tweedie [1993], ¥ must be concentrated on the
set where the minimum clock reading is O:

7(D)=0, where D = {x =(s,c), min{c, : e € E(s)} > 0}. (30)

But for any x = (s, ¢), our assumption of nonnull clock setting distributions
implies that P(x, D) > O for all x. And then

(D) = /rr(dx)P(x, D) >0,

contradicting (30). Hence X,, € A(¢) infinitely often P, almost surely for all y,
and the proof is complete. O

Proor. (Theorem 16) Suppose that Xg = x = (so,%1,...,%), where kB =
|E(sg)| and t; < tg < --- < t;. Define the stopping time T = inf{n : &, > £},
where, as before, &, is the time of the nth transition in the GSMP, so that T is
a time at which all of the original clocks have been reset or are inactive. We
will show that the conditions of Theorem 14 are satisfied with the chain X,
the measure ¢, and the stopping time T'. It will immediately follow that the
stationary distribution 7 is absolutely continuous with respect to ¢, estab-
lishing the result. First note that ' < co P, almost surely for = almost all x,
by Theorem 15.

Next, we need to show that P, (X7 € -) < ¢. We will show this by first
establishing the result for a closely related chain, and then showing that the
result is, in some sense, “inherited” by X. Let Y = ((SY,CY) : n > 0) be
the GSSMC associated with a GSMP that is identical to X, except that its
clock setting distributions are all exponential with mean 1. The chain Y is not
necessarily positive Harris recurrent, but we do not need this property.

The chain Y is non-explosive, because the time between events is stochasti-
cally bounded below by an exponential random variable with rate |E|. There-
fore, we may define the stopping time 7T'(Y ) for the chain Y analogously to T
above.
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Let P.( )2 P(. Yo =x), and let E, be the associated expectation. Let
ps = P (ST(Y) = s) be the probability that the GSMP assomated with Y is in
state s immediately after transition T'(Y ). Let the set A= {s} x[0,a(1)] x ---
[0, a(|E(s)])]. The memoryless property of the exponential distribution allows
us to conclude that

[E(s)|

P.(Yry)e A) =p, [ (1-e?),

=1

so that P.(Yr(y) € ) < ¢oo-

Our assumption that all clock setting distributions have densities, implies
that the transition probabilities P(v,-) of X are absolutely continuous with
respect to the transition probabilities P(v, -) of Y for each v € S. In particular,
there exists r(-, -) such that P(v, dw) = (v, w)P(v, dw). Hence, we can write

P Xre) = EUXre)

. T(Y)-1
= E, (I (YT(Y) € ) H r(Y;, Yi+1)>

1=0
< P (Yroy) €-),

and the absolute continuity of P,(Yry) € -) with respect to ¢, implies that
P(X1 €) < poo-

It remains to show that if a probability measure v is such that v « ¢, then
VP < ¢o. This property is straightforward, though cumbersome, to show, and
so we omit the proof. O

Proor. (Theorem 17) Suppose that X has smoothnessindexm < m*.Letx €
¥ be such that A(x) > 0. By definition of m*, the number of active events/clocks
in the state x must be at least m*. At each state transition, at most one of
the m* original clocks is deactivated or reset (after triggering the transition).
Therefore, after m < m* transitions, at least m* — m of the original clocks are
still active. Hence, P™(x, -) is concentrated on a set in which {c, = b}, for some
event e and some b > 0. But then, by the clock smoothness assumption, P™(x, -)
is concentrated on a set of 7 measure 0, and since P™(x, -) > A(x)¢(-), sois ¢. But
¢ is absolutely continuous with respect to 7 (as shown shortly). Hence 7 must
also be concentrated on the set {c. = b}, which is a contradiction. Therefore
m > m*.

To see that ¢ is absolutely continuous with respect to 7, note that the first
condition of the minorization implies that

()

/ P"(x, )n(dx)
by

v

/ Mo (dz)
X
= (7A)p(-),

where 7 = [; Mx)n(dx). But 7A > 0, since otherwise the second minorization
condition would be violated. O
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Proor. (Proposition 18) The proof is constructive. Let s* be such that
|E(s*)] = m* and suppose that E(s*) = {e1,eq,...,en:}. Define h = ¢/(2m*),
and set

A=1{s"} x(0,h) x (h,2h) x --- x (Mm* — Dh,m"h).

Suppose that X € A, sothat at time 0, the clock reading for evente; is contained
in the interval (i — 1)h, ih). Let ¢, be the clock reading for e,,:. Clearly, ¢.(A) =
A > 0.

Assume that all new clock readings are set in the interval [c),., c,,. + €/2)
where c;,.. is the clock reading for event e,,- at the time the new clock is being set.
Then the sequence of activating events will be ey, es, ..., e,+, and when event
e}, triggers a state change, all active clock readings will be bounded above by
€/2. Let s1, sg, ..., S« be such that

A *
p=p(s1;s*,e1)p(s2;51,€2) ... P(Sp+; Sme—1,€m+) > 0

and let § be a lower bound on the value of the clock setting density components
on [0, €]. The probability that a new clock reading will lie in the given interval
is at least ¢ el /2. At each state transition, at most |E'| new clocks are set, so
that after m* transitions, at most n =N |E|m* new clocks are set. Defining ¢ to
be the uniform probability distribution on

B = (s} x (0, ¢/2),
where k = |E(s;,+)|, we see that for x € A,
P™(x, B) > pq"¢(B).

Similarly, we can show that P™ (x, C) > pq"¢(C), for any C € S and any x € A.
Taking A = pq" yields the result. O
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