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In this paper, we develop approximations that yield insight into the joint optimization
of capacity and inventory, and how the optimal inventory policy varies with capacity

investment in a single-product, single-station, make-to-stock manufacturing system in which
inventory is managed through a base-stock policy. We allow for a correlated demand stream
as we analyze our models in an asymptotic regime, in which the penalty and holding costs
are small relative to the cost of capacity. Although our approximations are asymptotically
correct, our Brownian approximation is accurate even under moderate traffic intensity.
(Capacity Decisions; Inventory Management; Inventory-Production Policies; Stochastic Modeling;
Approximations; Diffusion Processes)

1. Introduction
Managers are generally aware that capacity and
inventory policies must simultaneously be deter-
mined for a firm to be optimally managed. How-
ever, capacity and inventory decisions are often made
separately in organizations either because consider-
ing both factors simultaneously is too complex, or
because it is assumed that the effect of the interaction
between capacity and inventory is small. For exam-
ple, the hierarchical planning literature suggests that
strategic and operational decisions should be made
separately: Capacity investment is a strategic deci-
sion that should be made by high-level managers;
inventory management should be the responsibility of
lower-level managers subject to the capacity decisions
made by their superiors (Bitran et al. 1981, 1982, Meal
1984).

We consider models with limited capacity, so that
we are able to show how the resulting inflexibil-
ity affects inventory cost. In this capacitated context,
Federgruen and Zipkin (1986a, b) show that a base-
stock policy, which we use in all of our analysis,
is optimal. Tayur (1993) shows the correspondence
between the finite dam problem and capacitated

systems, and computes the optimal base-stock pol-
icy. Glasserman (1997) develops an expression for
the optimal safety stock in a capacitated system as
the optimal service level asymptotically approaches
100%. Williams (1984), Zipkin (1986), Buzacott and
Shanthikumar (1994), Lambrecht et al. (1984), and
Karmarkar and Kekre (1989) also analyze inventory
in capacitated production systems. This research how-
ever treats the capacity level as fixed, which precludes
the optimization of capacity and an analysis of how
the optimal inventory policy should change as the
capacity level varies.

In this paper, we treat capacity and inventory as
joint decision variables, and analyze the interaction
of these variables from the perspective of cost. We
compute the optimal operating cost as a function of
capacity, and also the optimal capacity and inven-
tory policies that minimize long-run average oper-
ating cost. By viewing capacity as a decision vari-
able, we extend the work of Federgruen and Zipkin
(1986a, b), Glasserman (1997), and Tayur (1993), in
which optimal inventory policies are found for capac-
itated systems with fixed capacities. Our analysis pro-
vides for an explicit expression that describes how
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inventory should optimally be substituted for capac-
ity (to minimize cost) as the capacity level varies.
Thus, we provide the first method for scientifically
addressing these joint decisions.

We first consider a model in which the order
arrivals are governed by a general renewal process,
whereas the order processing times are exponentially
distributed. We compute the optimal capacity and
base-stock levels as the solutions to a pair of nonlinear
equations for this model. To obtain analytic insight
into the optimal solutions, we consider an asymptotic
regime in which the penalty and holding costs are
small relative to the capacity cost. Many real-world
systems possess this characteristic, for which we are
able to develop closed-form approximations to the
optimal capacity and base-stock levels (see §2).

In this asymptotic setting, the high cost of capacity
forces the firm to set capacity at a level that leads to
high utilization at the production facility. This forces
the production facility into what is known in queue-
ing theory as a “heavy-traffic” regime, in which the
system can be approximated with a Brownian motion
model. In §3, we use such Brownian approximations
to develop formulae for the optimal decision vari-
ables under very weak distributional restrictions on
the model inputs (these restrictions allow, for exam-
ple, correlated arrival processes). In §4, we explore
numerically the quality of the approximations devel-
oped in this paper and find that the Brownian approx-
imation is accurate even under moderate capacity
utilization. We provide some extensions to our basic
model in §5 for the circumstances in which delivery
times are nonzero, and forecast data guides produc-
tion decisions. We conclude in §6.

2. The GI/M/1 Manufacturing
Model

We consider the joint optimization of the capacity and
inventory investment decisions in a manufacturing
model with an integrated manufacturing facility and
inventory. We assume that demand is stochastic. The
objective is to minimize the long-run average operat-
ing cost of the manufacturing system.

We use a single-stage, single-server, produce-to-
stock manufacturing model in which a single product

is produced. Orders are fulfilled from a finished-
goods inventory, if the product is available. All
unsatisfied demand is backlogged and subsequently
fulfilled on a first-come, first-served basis, when the
product becomes available. We assume that finished-
goods inventory is managed using a base-stock pol-
icy, which Federgruen and Zipkin (1986a, b) have
shown is optimal for single-stage production systems
with limited capacity. The shortfall process, as used
by Tayur (1993) and Glasserman (1997), is used to
develop the cost function.

We now describe the dynamics of the model. For
n ≥ 1, let An be the time at which the nth order is
placed so that Un = An−An−1 is the interarrival time
of the nth order. Let Vn represent the amount of time
required to process the nth order in a unit-rate facility.
Thus, in a manufacturing facility having a processing
rate �, the time required to process the nth order is
Vn/�. The counting process NA�t
=max�n≥ 0 � An ≤ t


counts the number of orders placed by time t (where
we have adopted the convention that A0 = 0). Also,
let NV �t
 = max�n ≥ 0 �

∑n
i=1 Vi ≤ t
 be the number of

units of production completed by a unit-rate facility
in its first t units of operational time, so that NV ��t


is the number of units produced in a �-rate facility in
its first t units of operational time.
Remark 1. We have explicitly represented the man-

ufacturing capacity in a deterministic fashion: The
manufacturing server works at a constant, uninter-
rupted pace. The rate at which capacity realistically
operates, however, is generally stochastic. Such vari-
ability can be included in the Vn terms, which could
also include work-load variability because of different
types of orders.

For a production facility having processing rate �,
let Y��t
 be the inventory shortfall process at time t,
so that Y��·
 is a nonnegative process that describes
the number of units by which the inventory is short
of the base-stock level s (Y��·
 is independent of s).
By definition of the base-stock policy, the production
facility operates if and only if the shortfall is positive.
It follows that Y� = �Y��t
 � t≥ 0
 satisfies the equation,

Y��t
= Y��0
+NA�t
−NV

(
�
∫ t

0
1�Y��u
 > 0
 du

)
� (1)
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where 1�x
 = 1 if x is true, and zero otherwise. The
inventory level process associated with a �-rate pro-
duction facility is therefore given by

I��s� t
= �s−Y��t
�
+� (2)

where �x�+ = x if x > 0, and zero otherwise. The num-
ber of units backordered at time t in a �-rate facility
is just

���s� t
= �Y��t
− s�+� (3)

Remark 2. Note from Equation (1) that the dynam-
ics of Y� are identical to the number-in-system pro-
cess Q� = �Q��t
 � t≥ 0
 associated with a single-server
queue with infinite capacity buffer and first-come,
first-served queue discipline. In the queueing context,
An is interpreted as the arrival time of the nth cus-
tomer and Vn/� is the service time of the nth cus-
tomer. Because Y� and Q� are identical processes, we
may apply known results from queueing theory to
analyze our system.

As mentioned in the introduction, our analysis of
the relationship between capacity and inventory is
cost-based. For a time horizon of length t, we will
assume that the cost associated with the �-rate system
is given by∫ t

0
�hI��s�u
+p���s�u
+ c��
� du� (4)

where h and p are positive constants and c � �0��
→
�0��
 is a three-times continuously differentiable
strictly increasing function. As is usual in inventory
theory modeling, h is the unit holding cost per unit
time for inventory and p is the unit backorder penalty
cost per unit time. For each choice of �≥ 0, c��
 is the
cost per unit time associated with running a facility
having such a capacity. Such costs that vary with the
capacity level might include amortization costs, cer-
tain maintenance costs, and some direct labor costs.
Remark 3. One reasonable “first-cut” choice of c�·


is

c��
= c01�� > 0
+ c�� (5)

where c0 and c are positive constants. The first term
represents fixed costs of capacity that are incurred
regardless of the capacity level selected. The second

term represents costs that are incurred proportionally
with the capacity level, and regardless of whether the
facility is operating or idle. Such costs include the
amortization of acquisition cost, certain maintenance
costs, and direct labor costs that are often incurred
regardless of whether the facility is operating or
idle. (For example, some labor contracts require that
employees be compensated independently of whether
the facility is operating or idle.) Besides providing for
a realistic cost structure, the form of this capacity cost
function also exhibits a substantial degree of tractabil-
ity, and so we use (5) in our analysis while omitting
the fixed cost given rise to by c0, which does not influ-
ence the optimal capacity and inventory decisions.
Remark 4. Although a capacity function in the

form of (5) is appropriate in some industries, such as
in the fabrication of integrated circuits (Angelus et al.
1997), one might argue that a concave function c��
,
which demonstrates economies of scale, is often more
realistic. While a capacity function of the form (5)
effectively gives significant insight into the capacity-
inventory relationship, it also allows for the straight-
forward analysis for such a concave capacity cost,
provided that capacity cost is piecewise linear.

Under very mild assumptions on �An � n ≥ 0
 and
�Vn � n≥ 1
, it follows that the law of large numbers,

1
t

∫ t

0
�hI��s�u
+p���s�u
+ c��
� du

→ hE�s−Y���
�++pE�Y���
− s�++ c��
� (6)

holds as t→� with probability one (Asmussen 1987),
where E denotes expectation. Here, Y���
 is a random
variable to which we will refer as the steady-state
shortfall random variable associated with a �-rate
production facility. As a consequence of the law of
large numbers, we find that∫ t

0
�hI��s�u
+p���s�u
+ c��
� du

≈ t�hE�s−Y���
�++pE�Y���
− s�++ c��

 (7)

for t large. Thus, to minimize (4), we will instead min-
imize the right-hand side of (6), which we denote by
r��� s
.

We first analyze a special case of our model that
provides the flavor of our results. We assume that
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orders arrive according to a renewal process, so
that U = �Un � n≥ 1
 is a sequence of independent and
identically distributed (i.i.d.) random variables with
mean  −1. We further require that the manufacturing
times V = �Vn � n ≥ 1
 are an i.i.d. sequence of expo-
nentially distributed random variables with mean v,
and independent of U . Here, Y� is identical to the
number-in-system process for the GI/M/1 queueing
system with arrival rate  and service rate �/v. It is
well known that if  <�/v, then Y� has a steady-state
distribution given by

P�Y���
= 0
 = 1−$�

P�Y���
= k
 = $�1−&
&k−1�

for k ≥ 1 where $ =  v/�, & = 1−'v/�, and ' is the
positive root of the equation 1−'v/� = Ee−'U1 (see,
for example, Asmussen 1987, p. 209). Here, r��� s
 =
+� if  ≥ �/v and

r��� s
 = h

{
s−  v

�
�1−&��
s��1−&��
�−1

}
+ p

 v

�
&��
s�1−&��
�−1 + c��


for  < �/v. (Here, we write & = &��
 to make clear
its dependence on �.) Let F��·
 = P�Y���
 ≤ ·
 be
the cumulative distribution function of the steady-
state random variable Y���
. Also, define F−1

� �·
 =
minz≥0�z � F��z
≥ ·
. Then, for  < �/v it is easily seen
that the increasing nature of r��� · +1
−r��� ·
 implies
that the optimal base-stock level s∗��
 is given by

s∗��
 = F−1
� �p/�p+h



= ��++ ln$
/ ln�1/&��
��� (8)

where + = ln��p+ h
/h�. Modulo the restriction on
integer values of s, this is a critical fractile solution
(as in the newsvendor solution, but with respect to
the steady-state shortfall distribution, rather than the
demand distribution that applies there). This type
of critical fractile solution has appeared in previous
shortfall analyses by Tayur (1993) and Wein (1992).
Given (8), the function r��� s∗��

 can be easily com-
puted numerically over the decision variable � using,
for example, easily available spreadsheet optimization
programs.

To obtain further insight into the dependence of the
optimal base-stock level s∗��
 on �, we consider the
behavior of the system as the utilization of the facility
goes to one (i.e., as � ↘  v). To develop a suitable
set of approximations, observe that the positive root
'↘ 0 as �↘  v. Expanding Ee−'Uj in a Taylor series
about the origin establishes that ' must satisfy the
quadratic approximation,

1− 'v

�
≈ E

(
1−'Uj +

'2

2
U 2
j

)
�

from which we can conclude that

' ∼ 2 
1+-2

(
1−  v

�

)
�

as �↘  v, where -2 = varUn/�EUn

2 (so that -2 is the

squared coefficient of variation of the Ujs). Here, we
use the notation f ��
∼ g��
 as �↘  v to denote that
f ��
/g��
→ 1 as �↘  v. Then, it is easily shown that

s∗��
 ∼ +

2
�1+-2


(
1−  v

�

)−1

�

EI���
 ∼ �1+-2


2
�+− �1− e−+
�

(
1−  v

�

)−1

� (9)

E����
 ∼ �1+-2


2
e−+

(
1−  v

�

)−1

�

as � ↘  v. Here, hEI���
 and pE����
 are, respec-
tively, the expected inventory holding and penalty
costs in steady state associated with using the opti-
mal base-stock level for a �-rate system. Thus from
(9), and consistent with Glasserman’s (1997) conjugate
analysis, a manager using the optimal management
policy should be prepared to substantially increase
the base stock and incur large holding and backorder
costs as � ↘  v. The optimal base stock increases
when capacity decreases to limit the number of back-
orders in the face of a stochastically greater shortfall
distribution. Stated from a sample-path perspective,
the base stock must increase as � decreases to limit
backorders, because the capacity is less capable of
quickly replenishing inventory when demand surges
occur.

We conclude the discussion of the GI/M/1 man-
ufacturing model by noting that when the cost
of capacity is large relative to the holding and
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penalty costs, the optimal capacity level �∗ is forced
to decrease. We introduce here the parameter 0 =
max �p�h
 to develop an approximation. (We would
normally expect p > h.)

We shall compute an approximation to our optimal
decision variables ��∗� s∗��∗

 that is valid as 0 ↓ 0. We
proceed via an informal argument that can be made
rigorous mathematically without great difficulty (but
with some loss in clarity of exposition).

Note that we must constrain �, � >  v, so that cost
is finite. As 0 ↓ 0, �∗ ↓  v so that the optimal capacity
cost, for small 0, is given approximately by c� v
+
c′� v
��∗ −  v
. Relation (9) shows that the sum of
expected holding and penalty costs increases in pro-
portion to 0��∗ −  v
−1 as 0 ↓ 0. In an optimal allo-
cation �∗ of capacity, the sum of the expected hold-
ing and backorder penalty costs should clearly be
of the same order of magnitude as the approximate
avoidable component of the capacity costs, namely
c′� v
��∗ − v
. If we further assume that c′� v
 > 0
(capacity cost increases in the capacity level), it
follows that �∗ = �∗�0
 takes the form �∗�0
 ≈
 v�1 − a∗0

1
2 
−1 for 0 small, where a∗ is a positive

constant to be determined. Let r�a
= r� v�1−a0
1
2 
−1�

s∗� v�1−a0
1
2 
−1

 be the steady-state expected cost per

unit time when the optimal base-stock level is used in
conjunction with a capacity of the form  v�1−a0

1
2 
−1.

Some routine computations prove that

r�a
− c� v
 ∼ 0
1
2

{
�1+-2


2a

{
h̃�+− �1− e−+
�+ p̃e−+

}
+ c′� v
a v

}
(10)

as 0 ↓ 0, where h̃ = h/0 and p̃ = p/0. By minimizing
the right-hand side of (10) over a, we may conclude
that

�∗�0
∼ v
(
1−a∗0

1
2
)−1

�

s∗��∗�0

∼ +

2a∗
0−

1
2 �1+-2


(11)

as 0 ↓ 0, where

a∗ =
√

�1+-2


2 vc′� v

�h̃�+− �1− e−+
�+ p̃e−+
� (12)

The expression above assumes that p and h are
small, relative to the capacity cost. We can, in fact,

define a regime of parameter values for which (11)
and (12) provide an appropriate approximation. We,
of course, desire that �∗�0
 > 0. Thus, we require that
a∗01/2 < 1. This requires, for example, that c′� v
 be
sufficiently large relative to inventory costs, which
is the precise circumstance for which we expect this
approximation to be valid. From a practical stand-
point, such a combination of parameters is often quite
reasonable. As we shall see later, the analytic tractabil-
ity that is associated with this “asymptotic regime”
has to do with the fact that a single-server queue in
“heavy traffic” can be approximated by an analyti-
cally tractable reflected Brownian motion process.
Example 1. One important special case of the

above GI/M/1 model is that in which the arrival pro-
cess is Poisson with rate  > 0. In this case, -2 = 1 and
(11) provides an approximation to the optimal deci-
sion variables for the M/M/1 version of our manu-
facturing model when 0 is small. Also, &��
 =  v/�,
which used in (8) gives the optimal base stock.
Example 2. Suppose that the orders arrive at

equally spaced time intervals, each of length  −1.
Again, (11) provides an approximation to the optimal
decision variables that are valid for 0 small. Here, -2 =
0, and so the approximation of the optimal base-stock
level is smaller than in the M/M/1 setting by a factor
of

√
2. The positive root ' can be found by solving

1 − 'v/� = e−'/ . Thus, &��
 is determined and the
optimal base stock can be found via (8).

3. A Brownian Motion Model
In §2, we were able to make a number of explicit
computations for the GI/M/1 model, in which we
assumed that the order placement process was i.i.d.,
and the processing times were exponential. Such
assumptions are, of course, unreasonable in many set-
tings. In this section, we provide a Brownian model
that offers convenient approximations to the optimal
capacity and base-stock levels for the more complex
systems that often arise in practice.

Such Brownian approximations are widely used
within the queueing community as a means of assess-
ing the performance of complex queueing systems.
These queueing approximations typically have prov-
ably good performance when the system is in “heavy-
traffic” (i.e., when the utilization is close to 1). In our
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setting, this corresponds to problems in which the
holding cost and penalty cost are small as compared
to the cost of capacity. As discussed in §2, this param-
eter regime forces the optimal decision variables to
satisfy �/v ≈  , so that utilization is high. We will
see however that the Brownian model provides good
guidance for capacity and inventory decisions even
when �/v is much greater than  so that the capacity
utilization is much less than one.

To obtain a Brownian approximation to Y�, we pro-
ceed by assuming that Y� is positive for a large frac-
tion of the time. In view of (1), this suggests that we
consider the process

2��t
= NA�t
−NV ��t
�

Our derivation of the Brownian approximation is
particularly transparent if we assume that ��Un�Vn
 �
n ≥ 1
 is a stationary sequence of random variables.
This encompasses the case in which �Un � n ≥ 1
 and
�Vn � n ≥ 1
 are i.i.d and independent, but also allows
highly complex dependencies among the interarrival
and/or processing times. With this assumption in
hand, the natural Brownian approximation to 2� =
�2��t
 � t ≥ 0
 is

2��t

�≈ � −�/v
t+3�B�t
�

where
�≈ denotes “has approximately the same distri-

bution as” (and is intended to be purely a heuristic
statement without rigorous mathematical meaning)
and B = �B�t
 � t ≥ 0
 is a standard Brownian motion
(with EB�t
= 0 and varB�t
= t). Here, we choose 32

�

to match the time average variance of 2�:

32
� = lim

t→�
1
t

var 2��t
�

But,

2��t
−
(
 − �

v

)
t

= NA�t
− t−
(
NV ��t
−

�

v
t

)

≈  

(
NA�t
∑
n=1

� −1 −Un


)
− 1
v

(
NV ��t
∑
n=1

�v−Vn


)

≈  

(� t�∑
n=1

� −1 −Un


)
− 1
v

(��t/v�∑
n=1

�v−Vn


)
� (13)

Using the stationarity of ��Un�Vn
 � n≥ 1
, the variance
of (13) can be easily computed. We find that

32
� =  3

(
var�Un
+2

�∑
j=1

cov�U1�Uj+1


)

− 2 2

v

(
cov�U1�V1
+

�∑
j=1

cov�U1�Vj+1


+
�∑
j=1

cov�V1�Uj+1


)

+ �

v3

(
var�V1
+2

�∑
j=1

cov�V1�Vj+1


)
�

With the Brownian approximation to 2� now com-
puted, we can approximate Y� by imposing a reflect-
ing barrier in the Brownian motion at the origin. Let
Z� = �Z��t
 � t ≥ 0
 be the corresponding reflecting
Brownian motion (RBM) process, so that Z� is the
RBM with drift  −�/v and infinitesimal variance 32

�,
starting at Y��0
. We then approximate the shortfall
process Y� via

Y��·

�≈ Z��·
�

Because  < �/v, Z� has a steady-state Z���
. We
therefore approximate r��� s
 by

r���� s
= hE�s−Z���
�++pE�Z���
− s�++ c��
�

which can be expressed in closed form as

r���� s
 = hs− h32
�

2� �
v
− 


(
1− e−2��/v− 
s/32

�

)
+ p32

�

2� �
v
− 


e−2��/v− 
s/32
� + c��
�

For a given capacity �, the optimal base-stock level
s∗B��
 is given by

s∗B��
=
32
�

2
(
�
v
− 

) ln
(
p+h

h

)
� (14)

which we round to the nearest integer in approximat-
ing the GI/M/1 and D/G/1 base stock. The function
r���� s

∗
B��

, given by

r���� s
∗
B��

=

h32
�

2
(
�
v
− 

) ln
(
p+h

h

)
+ c��
� (15)
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can then be optimized numerically (closed-form
expressions for the optimal capacity level can some-
times be obtained, as is the case with our M/M/1,
D/M/1, and D/G/1 models).

For h small, the optimal capacity �∗ is forced down
to �0

�=  v. If we approximate 32
� by 32

�0
in (15), which

simplifies the capacity optimization, then we obtain

r���
=
h32

�0

2
(
�
v
− 

) ln
(
p+h

h

)
+ c��
� (16)

If we take c�·
 of the form c��
 = c��0
+ d� �
v
− 
q

with d > 0 and q > 0, then we find that the optimal
Brownian capacity �∗

B of r��·
 is

�∗
B =  v+v

(
h32

�0

2dq
ln
(
p+h

h

)) 1
q+1

� (17)

We found that using (16) rather than (15) to deter-
mine the Brownian capacity did not affect the approx-
imation accuracy; the approximations of the optimal
M/M/1, D/M/1, and D/G/1 capacity levels were,
in fact, the same for 32

� or 32
�0

. One may alternately
use 32

�0
in (14) rather than 32

� to approximate the
base stock. This substitution changes the base-stock
approximation, but the quality of the two approaches
are comparable. We found that the Brownian base-
stock approximation accuracy depends as much on
the method one uses to transform the continuous
Brownian base-stock parameter into an integer quan-
tity as it does on whether 32

� or 32
�0

is used in (14).
We approximated the optimal capacity with (17), and
the optimal base stock with (14), using 32

�.
Example 1 (Continued). Recall that here the ar-

rival process is Poisson with rate  > 0, and that the
processing times are i.i.d. exponential with mean v >

0. Here, 32
� =  +�/v and 32

�0
= 2 , and so we obtain

the approximations

�∗
B =  v+v

(
h 

dq
ln
(
p+h

h

)) 1
q+1

�

s∗B��
∗
B
 =

32
�

2��∗/v− 

ln
(
p+h

h

)
�

Example 2 (Continued). If the arrivals occur at
equally spaced intervals with exponential processing

times, then 32
� = �/v and 32

�0
=  , so

�∗
B =  v+v

(
h 

2dq
ln
(
p+h

h

)) 1
q+1

�

s∗B��
∗
B
 =

32
�

2��∗/v− 

ln
(
p+h

h

)
�

Example 3. Suppose that corr�U1�Uj+1
 = 7j with
�7�< 1, so that the order times are correlated. Assume
that �Vn � n ≥ 1
 is i.i.d. and independent of the order
arrival process. In this case,

32
� =

 3�varU1


1−7
+ �

v3
�varV1
�

Thus the optimal capacity level increases relative to
the i.i.d. interarrival case when the correlations are
positive and decreases when the correlations are neg-
ative.

Wein (1992) has discussed the effect of p and h
on the optimal base-stock policy. Another interpreta-
tion regarding the optimal base stock can be made
from Equation (14), which is its equivalence with the
mean shortfall, 32

�∗/�2��/v−  
�, multiplied by + =
ln��p+h
/h�, a factor that is a function of inventory
holding and penalty costs. The “safety” factor + scales
the optimal Brownian, and also the optimal GI/M/1
base stock in accordance with the inventory costs.
This observation might allow a simple rule for setting
the base stock in practice without complex computa-
tions: Simply observe the mean shortfall, and set +
according to the inventory cost parameters. Equation
(17) shows that the optimal capacity is equal to the
mean demand rate  v plus a capacity safety factor
that is increasing in h, p, and 32

�0
, and decreasing in d

and q.
The structure of the optimal long-run average cost

as a function of capacity for the Brownian model
is r��
 = hs∗��
+ c��
. Ignoring the effect of integer
demand, this structure also applies to the M/M/1 and
D/M/1 models. Inventory costs are simply hs∗��
.
Wein (1992) found inventory costs to be of this form
for an exponential shortfall model (as is the shortfall
of our Brownian model) as did Robinson (1993) for a
broad class of (Q�r) inventory models.

In the next section, we evaluate the accuracy of the
asymptotic closed-form expressions that we devel-
oped in §2, and the Brownian approximation that we
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developed in this section for the optimal GI/M/1
capacity and base stock. Before doing so however,
we note that the Brownian model is applicable to
a broader class of models than is the asymptotic
approximation, which makes a Brownian approxima-
tion of a wide variety of manufacturing systems pos-
sible, including a D/G/1 model, which we evaluate
in the next section also.

4. Approximating the Optimal
Capacity and Base Stock

In this section, we analyze the accuracy with which
the Brownian model and the GI/M/1 asymptotic
expressions approximate the optimal solutions of
the M/M/1 and D/M/1 models. We also analyze
the Brownian approximation for a D/G/1 model in
which interarrival times between orders are constant,
An = n/ for n ≥ 1, and the manufacturing times
are distributed according to a lognormal distribution.
That is, V = �Vn � n≥ 1
 are i.i.d. lognormal distributed
random variables with mean v. As usual, we require
�>  v. We chose the lognormal distribution for man-
ufacturing times in this model because the indepen-
dence of the variance and mean allows us to analyze
manufacturing times over a range of coefficients of
variation, and it is skewed.

We assume that the capacity cost is of the form
c��
= c� v
+d��/v− 
q for �≥  v, and we set q = 1
and c� v
 = d so that c��
 = d�/v is of the form (5)
with c= d/v. Throughout this section, and in Tables 3
and 4, we use r�·
 to denote the cost function for
any system under consideration: either the M/M/1,
D/M/1, or D/G/1 models. We denote the optimal
solution to r�·
 as �∗ and s∗��∗
. Consistent with
previous notation, r��∗�0
� s∗��∗�0


 and r��∗

B� s
∗
B��

∗
B



denote the cost of operating a particular system using
the asymptotic and Brownian approximations for the
optimal capacity and base stock, respectively.

Fifty-four combinations of h, p, and d were ana-
lyzed as shown in Table 1. Only these three param-
eters need be varied, because varying  and v does
not yield any additional information. The ratio of
the optimal capacity level and mean unit workload,
�∗/v, remains constant for the M/M/1, D/M/1, and
D/G/1 models as v varies, while the optimal cost,

Table 1 Simulation Cost Parameters

Parameter Values

h 1
p 2�5�10�15�25�50
d 0�5�1�5�10�25�50�100�250�500

r��∗
, remains unchanged. The same effect holds for
the asymptotic and Brownian approximations as v

changes, and so we do not need to vary v because
the approximation error will remain unchanged. The
GI/M/1 models, the D/G/1 model, and the approx-
imations all exhibit similar behavior when  d is held
constant. In this case, the ratios of the optimal capac-
ity and the approximated optimal capacities to the
arrival rate, �∗/ , �∗�0
/ , and �∗

B/ , remain con-
stant. Simultaneously, the optimal base-stock param-
eters and the approximations of the optimal base
stock remain constant. Thus, varying both  and d can
result in repetition of equivalent scenarios. Because
we can gather an equivalent amount of data by vary-
ing just d rather than  and d, we do so with  = 1 and
v= 1. The values of the D/G/1 model manufacturing
time variance that we used are shown in Table 2.

The optimal solutions and performance measures
for the M/M/1 and D/M/1 models, as noted ear-
lier, can be found numerically using spreadsheet opti-
mization programs and the analysis in §2. The corres-
ponding queueing model is no longer of the GI/M/1
type when the manufacturing time distribution is log-
normal, and so we used simulation to approximate
the optimal D/G/1 solutions to assess the accuracy
of the Brownian approximation for that model.

A comprehensive description of the simulation pro-
gram, written in C++ to search for the optimal
D/G/1 solution, can be found in an expanded version

Table 2 D/G/1 Manufacturing Time Distribution Parameters

Scenario v var V1 SCV � 2
	0

1 1 0�5 0�5 0�5
2 1 1 1 1
3 1 5 5 5

Note. SCV denotes squared coefficient of variance.
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of this paper at the first author’s website.1 In short,
the simulation performed a one-dimensional safe-
guarded Newton search. The operating cost function,
r��� s��

, in general does not satisfy convexity con-
ditions that guarantee the global optimality of any
solution to which the optimization algorithm might
converge. Thus, the optimization was written so each
local minima would be found if evidence gathered
during the search suggested the existence of multiple
minima.

Data that compares the Brownian and asymp-
totic approximation to the optimal solutions for the
M/M/1 and D/M/1 models are shown in Table 3
and data documenting the accuracy of the Brownian
approximation for the D/G/1 model are shown in
Table 4. These tables show only partial results of the
simulation study. A complete summary of results can
be found in the extended version of this paper.

Our numerical analysis showed, as we would sus-
pect, that the accuracy of both the asymptotic and
Brownian approximations increased as d increased
and drove the optimal solution toward heavy traf-
fic. For no parameter combination was the asymptotic
approximation superior to the Brownian approxima-
tion of the M/M/1 and D/M/1 models. The relative
error of the Brownian approximation for the M/M/1
and D/M/1 systems was less than 0.13% and 0.64%
of the optimal cost, respectively, in cases when the
Brownian capacity approximation represented a uti-
lization greater than 80%, and less than 0.81% and
4.96% when the Brownian model suggested an opti-
mal capacity utilization 60% or greater. The greatest
relative error of the asymptotic approximation when
it suggested capacity utilization greater than 80%
was 1.15% for the M/M/1 model, and 1.83% for the
D/M/1 model. In only one of the 162 parameter com-
binations for the D/G/1 model did the relative cost
error exceed 2% when the Brownian capacity approx-
imation represented capacity utilization greater than
80%. The efficacy of the Brownian approximation as
demonstrated by these results lies not in its capability
of predicting the operating cost accurately, but that
the optimal solution of the Brownian model is often
very close to that of the actual system.

1 �http://www.johnson.cornell.edu/facultybios��

Table 3 Approximations for GI/M/1 Model (
= 1� v = 1)

M/M/1 Model D/M/1 Model

p d �B % Err.1 % Err.2 �B % Err.1 % Err.2

2 0�5 0�40 0�138 N/A 0�49 1�321 N/A
2 1 0�49 8�223 N/A 0�57 0�051 75�079
2 5 0�68 0�629 10�540 0�75 0�031 5�298
2 10 0�75 0�305 3�642 0�81 0�110 0�895
2 25 0�83 0�126 0�988 0�87 0�002 0�496
2 100 0�91 0�003 0�113 0�93 0�004 0�031
2 500 0�96 0�000 0�011 0�97 0�000 0�007

10 0�5 0�31 1�550 N/A 0�39 24�497 N/A
10 1 0�39 6�812 N/A 0�48 4�580 N/A
10 5 0�59 1�617 46�370 0�67 4�335 11�942
10 10 0�67 0�125 14�682 0�74 1�965 3�909
10 25 0�76 0�101 3�960 0�82 0�637 0�986
10 100 0�87 0�037 0�420 0�90 0�032 0�183
10 500 0�94 0�003 0�057 0�95 0�011 0�012
25 0�5 0�28 10�249 N/A 0�36 50�245 N/A
25 1 0�36 0�078 N/A 0�44 20�217 N/A
25 5 0�55 1�753 105�329 0�64 1�521 26�821
25 10 0�64 0�033 25�309 0�71 2�890 8�289
25 25 0�73 0�280 5�867 0�80 0�646 1�824
25 100 0�85 0�044 0�801 0�89 0�044 0�362
25 500 0�93 0�001 0�070 0�95 0�008 0�042
50 0�5 0�26 4�171 N/A 0�34 39�896 N/A
50 1 0�34 5�670 N/A 0�42 16�226 N/A
50 5 0�53 0�075 208�506 0�61 4�959 35�221
50 10 0�61 0�097 32�875 0�69 1�559 10�110
50 25 0�72 0�178 8�060 0�78 0�966 3�086
50 100 0�83 0�034 1�149 0�88 0�165 0�426
50 500 0�92 0�000 0�098 0�94 0�011 0�034

Note. �B—
/	∗
B, capacity utilization of Brownian approximation.

N/A—Asymptotic approximation not appropriate for this parameter
combination. % Err.1—Approximation errors for Brownian approximation,
100× �r �	∗

B� s
∗
B�	

∗
B��− r �	∗� s∗�	∗���/r �	∗� s∗�	∗��. % Err.2—Approximation

errors for asymptotic approximation, 100 × �r �	∗���� s∗�	∗����� −
r �	∗� s∗�	∗���/r �	∗� s∗�	∗��.

Given the Brownian approximation performance
at 80% capacity utilization or greater, Equation (17)
implies an accurate Brownian approximation for the
models considered here with c��
= d�/v when

1
 

√
h32

�0

2d
ln
(
p+h

h

)
< 0�20� (18)

Equation (18) implies that the Brownian approxima-
tion is more accurate for h small, p small,  large, and
d large, which was verified by our numerical analy-
sis for all models (allowing for integer effects). In the
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Table 4 Brownian D/G/1 Approximation, Scenarios 1 to 3

Scenario

v = 1�SCV= 0�5 v = 1�SCV= 1 v = 1�SCV= 5

p d �B % Err. �B % Err. �B % Err.

2 0�5 0�574 50�357 0�488 0�996 0�299 3�947
2 1 0�656 0�037 0�574 0�019 0�376 14�671
2 5 0�810 1�425 0�751 0�009 0�574 7�679
2 25 0�905 0�004 0�871 0�000 0�751 1�791
2 100 0�950 0�042 0�931 0�009 0�858 0�566
2 500 0�977 0�000 0�968 0�000 0�931 0�065
10 0�5 0�477 0�414 0�392 0�709 0�224 13�268
10 1 0�564 3�349 0�477 3�758 0�290 5�232
10 5 0�743 0�803 0�671 3�096 0�477 3�853
10 25 0�866 0�352 0�820 0�791 0�671 1�635
10 100 0�928 0�046 0�901 0�077 0�803 0�426
10 500 0�967 0�021 0�953 0�026 0�901 0�035
25 0�5 0�439 4�581 0�357 5�832 0�199 4�974
25 1 0�526 12�126 0�439 14�175 0�260 6�474
25 5 0�712 6�512 0�637 2�319 0�439 5�670
25 25 0�847 0�226 0�797 1�768 0�637 3�411
25 100 0�917 0�236 0�887 0�217 0�778 1�282
25 500 0�961 0�028 0�946 0�022 0�887 0�354
50 0�5 0�416 12�557 0�335 7�847 0�184 1�704
50 1 0�502 32�799 0�416 35�981 0�242 7�195
50 5 0�693 16�204 0�615 8�056 0�416 9�284
50 25 0�835 1�848 0�781 2�245 0�615 6�684
50 100 0�910 0�318 0�877 0�613 0�761 3�797
50 500 0�958 0�041 0�941 0�096 0�877 1�171

Note. �B—
/	∗
B, capacity utilization of Brownian approximation. % Err.—

Percentage error of Brownian approximation from optimal D/G/1 cost, 100×
�r �	∗

B� s
∗
B�	

∗
B��− r �	∗� s∗�	∗���/r �	∗� s∗�	∗��. SCV—Squared coefficient of

variation.

D/G/1 approximation, we observed that an increase
in 32

�0
did not always cause the approximation accu-

racy to decrease. The most significant deterioration
in approximation accuracy as 32

�0
increased was for

small values of d, for which the approximation was
not accurate at any value of 32

�0
.

In summary, the asymptotic approximation is accu-
rate when capacity costs are large relative to inven-
tory costs, but the Brownian approximation is supe-
rior. The Brownian approximation, in fact, provides
an accurate approximation for the M/M/1 and
D/M/1 models when capacity utilization is as low
as 60%, and for the D/G/1 model with lognormal
processing times at 80% utilization. The Brownian
model also has the added advantage of tractability

and applicability to a wide variety of arrival and pro-
cessing time scenarios.

5. Extensions to the Basic Model
Although the capacity-inventory interaction is a crit-
ical kernel of a manufacturing system, other fac-
tors also affect performance and decision tradeoffs.
Toward a fuller understanding of a manufacturing
system, we extend our model in this section to incor-
porate two additional factors. In one extension, we
incorporate a transportation function between the
manufacturing facility and the inventory. In a sec-
ond extension, we develop a model that can be used
to assess how the joint capacity-inventory decision
is affected when production decisions are based on
a forecast rather than directly on the observation of
demand.

5.1. Incorporating Transportation Time
For this subsection, we assume that the delivery time
from the manufacturing facility to the inventory loca-
tion is nonzero and is exogenous to the manufactur-
ing and arrival processes. We use the Brownian model
to approximate the dynamics of the system in the
presence of such a transportation time, and begin the
development of the approximation by recalling that
the netput process without transportation, 2��t
, is
well approximated by a Brownian process:

2��t

�≈ � −�/v
t+3�B�t
�

Now consider the netput function when outstand-
ing orders are delivered to the inventory after some
exogenous lag,

2T
� �t
= NA�t
−ND��t
�

where the superscript T denotes netput process with
transportation lag, and ND��t
 denotes the number
of orders that are delivered by time t with a �-rate
manufacturing facility. Then,

ND��t
= NV ��t
−NP��t
�

where NP�t
 is the number of the orders in the deliv-
ery pipeline at time t, so that

2T
� �t
= NA�t
−NV ��t
+NP��t
�
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Let Tn be the transportation time required for the
nth order, which is independent of Un�Vn for all n.
Note that because the average number of orders in the
pipeline over the long term by Little’s Law is  ET1,
we can write

2T
� �t
− � −�/v
t− ET1

= �NA�t
− t
− �NV ��t
−�t/v
+NP��t
− ET1�

However, with very mild restrictions on the deliv-
ery lead times, we find that

lim
t→�

1
t

var�NP��t
− ET1
= 0�

because the variance in the number of orders in the
pipeline is finite and does not grow with time. Then,
using the time-average variance as we did in our pre-
vious Brownian approximation, we expect the follow-
ing to be true:

2T
� �t
− ET1

�≈ � −�/v
t+3�B�t
� (19)

That is, we could approximate the shortfall trajec-
tory as Brownian motion with a boundary at  ET1,
rather than the origin. The drift and variance param-
eters remain unchanged from the approximation for
the case without transportation time.

From (14), (15), and (19), we find that the opti-
mal Brownian capacity remains unchanged, and that
the optimal Brownian base stock with transportation
time is

s∗T = s∗B+ ET1�

While our experiments have shown that this
approximation is accurate in heavy traffic, we pro-
pose here an improved approximation that takes into
account the shortfall variance that is induced by the
delivery lag. The basis of our revised approximation
is the computation of a Brownian variance param-
eter that comprehends the effect of the delivery lag
as well as the manufacturing facility. Specifically, we
compute a Brownian variance parameter by adding
together two quantities: the variance parameter that is
appropriate in heavy-traffic without delivery lag, and
a variance parameter that compensates for the portion
of shortfall because of the delivery lag.

To compute a variance parameter for the delivery
pipeline, we first recall the well-known approxima-
tion of the variance of lead-time demand:

32
LTD = ;L3

2
D+;2

D3
2
L� (20)

where ;L is the mean lead time, and 32
D is the vari-

ance of demand, ;D is the mean demand, and 32
L is

the variance of lead time (the variance of demand
over any period is assumed to scale linearly with 32

D).
Next, assuming that we can model the pipeline inven-
tory process as a RBM, we compute an appropriate
Brownian variance parameter. We choose the Brow-
nian variance parameter so that the variance of the
stationary RBM distribution is equivalent to 32

LTD.
If 32 is the infinitesimal variance of a RBM with

drift � −�/v
, then the variance of the stationary dis-
tribution is �32
2/�4� −�/v
2�. Equating this quantity
with 32

LTD, we solve for 32
P , by which we denote the

Brownian variance parameter for the pipeline inven-
tory,(

32
P

)2/[4� −�/v
2
] = 32

LTD

32
P = 2��/v− 


√
;L3

2
D+;2

D3
2
L�

Given that the Brownian model of §3 is accurate in
heavy traffic with T = 0, we want to specify a Brow-
nian variance parameter 32 so that 32 = 32

�0
for ET1

small. Conversely, we want 32 = 32
�0
+32

P when ET1 is
large relative to the delay at the manufacturing server
to take into account the variance because of both the
manufacturing facility and the delivery pipeline. So,
we set 32 using a function <�·
,

32 = 32
�0
+<�ET1�$B
3

2
P�

which depends on the expected delivery lag ET1 and
the utilization of the manufacturing facility under the
Brownian approximation, $B = v/�B. (Note that more
complex forms of <�·
 are possible that depend on
higher moments of the delivery lag, manufacturing
time, and demand interarrival distributions.) We want
<�ET1�$B
 → 0 as ET1 → 0, and <�ET1�$B
 → 1 as
$B → 0. We investigate one possible alternative that
fits this criterion: <�ET1�$B
= ET1/�ET1 +ETS
, where
ETS is the expected delay in the manufacturing step
alone, which depends on $B.
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We investigated the accuracy of this approxi-
mation for both (constant) deterministic and uni-
formly distributed transportation times with expo-
nentially distributed interarrival and manufacturing
times. Specifically, we experimented with three cases
for deterministic delivery times, T = 1�2�5, and three
cases of delivery lags distributed according to the
uniform distribution with corresponding means, T =
U�0�2��U �0�4��U �0�10�.

We observe in Tables 5 and 6 how the percentage
error from optimal cost varies as ET1 increases as a
percentage of the total time in manufacture and trans-
portation, that is, as <�ET1�$B
 increases toward 1.
(We find that ETS = v/��− v
 with exponentially dis-
tributed interarrival and manufacturing times.) The
capacity-base stock approximation is accurate when a
substantial portion of the replenishment time is due
to transportation; the error is less than 3% of the opti-
mal cost whenever <�ET1�$B
≤ 50%. The approxima-
tion error is less than 3% for relatively low capacity
utilization, for example, when $B ≥ 50% for ET1 = 1,
$B ≥ 60% for ET1 = 2, and $B ≥ 75% for ET1 = 5.

5.2. The Capacity-Inventory Decision with
Forecast Updates

Heath and Jackson (1994) and Graves et al. (1986)
developed the Martingale Model of Forecast Evolu-
tion (MMFE), which characterizes the evolution of
forecasts over time. Toktay and Wein (1999) showed
how inventory cost in a production-inventory sys-
tem can be reduced when production decisions are
based on forecasts that evolve according to the MMFE
by using a base-stock policy that is based on the
“forecast-corrected” inventory level, which is the
inventory level minus the forecasted demand over a
finite horizon. This type of inventory-production pol-
icy results in a reduction in inventory cost, although
it has not been shown to be optimal in the case of
stochastic and limited capacity in the infinite-horizon
problem. Our goal in this section is to show how Tok-
tay and Wein’s (1999) model can be extended to the
problem of jointly optimizing capacity and inventory
decisions.

To develop our model, we review the relevant nota-
tion and details of the MMFE and Toktay-Wein mod-
els. For brevity, we do not review the complete details

Table 5 Capacity-Inventory Model with Deterministic Transportation
Time

Scenario

T1 = 1 T1 = 2 T1 = 5

p c �B ��·� % Err. �B ��·� % Err. �B ��·� % Err.

2 0�5 0�49 0�51 4�21 0�52 0�65 0�00 0�53 0�82 4�22
2 1 0�55 0�45 0�00 0�58 0�59 0�00 0�61 0�76 1�39
2 5 0�69 0�31 0�00 0�71 0�45 0�00 0�73 0�65 0�00
2 10 0�76 0�24 0�10 0�76 0�38 0�00 0�78 0�59 0�06
2 25 0�83 0�17 0�06 0�83 0�29 0�00 0�84 0�50 0�00
2 100 0�91 0�09 0�01 0�91 0�17 0�07 0�91 0�34 0�00
2 500 0�96 0�04 0�03 0�96 0�09 0�03 0�96 0�19 0�08
10 0�5 0�42 0�58 0�03 0�43 0�72 2�63 0�39 0�89 14�23
10 1 0�48 0�52 3�90 0�51 0�66 5�31 0�52 0�82 13�00
10 5 0�62 0�38 0�00 0�64 0�52 1�18 0�68 0�70 2�78
10 10 0�69 0�31 0�00 0�70 0�46 0�00 0�73 0�65 1�11
10 25 0�77 0�23 0�19 0�77 0�37 0�00 0�79 0�57 0�00
10 100 0�87 0�13 0�07 0�87 0�23 0�16 0�87 0�43 0�00
10 500 0�94 0�06 0�08 0�94 0�12 0�05 0�94 0�26 0�04
25 0�5 0�40 0�60 0�00 0�39 0�76 16�63 0�34 0�91 36�85
25 1 0�46 0�54 4�24 0�48 0�68 5�02 0�46 0�85 21�88
25 5 0�60 0�40 0�00 0�62 0�55 0�63 0�65 0�72 4�10
25 10 0�66 0�34 0�41 0�68 0�49 0�00 0�71 0�68 1�69
25 25 0�74 0�26 0�15 0�80 0�33 0�04 0�77 0�60 0�37
25 100 0�85 0�15 0�23 0�85 0�26 0�12 0�85 0�46 0�08
25 500 0�93 0�07 0�21 0�93 0�14 0�00 0�93 0�29 0�00
50 0�5 0�38 0�62 4�38 0�36 0�78 21�00 0�31 0�92 37�06
50 1 0�44 0�56 5�22 0�46 0�70 9�70 0�43 0�87 32�64
50 5 0�58 0�42 0�00 0�61 0�57 3�13 0�64 0�74 7�42
50 10 0�64 0�36 0�20 0�66 0�51 0�08 0�69 0�69 2�62
50 50 0�72 0�28 0�19 0�73 0�42 0�24 0�80 0�56 0�26
50 100 0�84 0�16 0�34 0�84 0�28 0�14 0�84 0�48 0�11
50 500 0�92 0�08 0�08 0�92 0�15 0�00 0�92 0�31 0�13

Note. �B—
/	∗
B, capacity utilization of Brownian approximation. % Err.—

Percentage cost error of Brownian capacity-inventory policy from optimal
cost as determined by simulation optimization. % Err. = 0.00 indicates no
statistically significant difference between the Brownian approximation and
the solution to which the simulation converged given the accuracy of the
simulation.

of these models, which can be found in the afore-
mentioned papers. Note that, for clarity, we do not
incorporate the corrected diffusion approximation of
Glasserman and Liu (1997) and Siegmund (1979) as
did Toktay and Wein (1999). Because the MMFE and
Toktay and Wein’s model make sense only if decisions
and forecasts are made periodically, we adopt a peri-
odic model structure in this section rather than the
continuous-time model used previously in this paper.

284 Management Science/Vol. 48, No. 2, February 2002



BRADLEY AND GLYNN
Managing Capacity and Inventory Jointly in Manufacturing Systems

Table 6 Capacity-Inventory Model with Uniform Transportation Time

Scenario

T1 = U �0�2� T1 = U �0�4� T1 = U �0�10�

p c �B ��·� % Err. �B ��·� % Err. �B ��·� % Err.

2 0�5 0�50 0�50 2�71 0�59 0�58 4�56 0�72 0�66 19�50
2 1 0�55 0�45 0�00 0�61 0�56 2�74 0�72 0�65 11�66
2 5 0�69 0�31 0�02 0�71 0�45 0�02 0�76 0�61 1�11
2 10 0�75 0�25 0�35 0�76 0�39 0�00 0�79 0�57 0�00
2 25 0�83 0�17 0�00 0�83 0�29 0�12 0�84 0�49 0�00
2 100 0�91 0�09 0�04 0�91 0�17 0�05 0�91 0�34 0�00
2 500 0�96 0�04 0�00 0�96 0�09 0�05 0�96 0�19 0�00
10 0�5 0�45 0�55 1�06 0�58 0�59 12�48 0�72 0�66 38�92
10 1 0�49 0�51 2�54 0�59 0�58 7�81 0�72 0�66 30�56
10 5 0�62 0�38 1�63 0�65 0�51 0�19 0�74 0�64 6�28
10 10 0�68 0�32 1�26 0�70 0�46 0�58 0�76 0�62 2�78
10 25 0�77 0�23 0�08 0�77 0�37 0�33 0�79 0�56 0�00
10 100 0�87 0�13 0�12 0�87 0�24 0�00 0�87 0�43 0�04
10 500 0�94 0�06 0�03 0�94 0�12 0�04 0�94 0�26 0�07
25 0�5 0�44 0�56 1�59 0�57 0�60 19�41 0�72 0�66 59�93
25 1 0�47 0�53 4�35 0�58 0�59 13�76 0�72 0�66 44�61
25 5 0�59 0�41 2�54 0�64 0�53 2�02 0�73 0�65 14�69
25 10 0�65 0�35 0�04 0�68 0�49 0�80 0�75 0�63 4�89
25 25 0�74 0�26 0�78 0�75 0�40 0�08 0�78 0�59 0�24
25 100 0�85 0�15 0�24 0�85 0�26 0�15 0�85 0�46 0�00
25 500 0�93 0�07 0�00 0�93 0�14 0�07 0�93 0�29 0�03
50 0�5 0�43 0�57 0�00 0�57 0�60 20�88 0�72 0�66 65�04
50 1 0�46 0�54 1�73 0�58 0�59 15�73 0�72 0�66 52�90
50 5 0�57 0�43 2�29 0�63 0�54 1�99 0�73 0�65 17�21
50 10 0�64 0�36 2�68 0�67 0�50 1�50 0�74 0�64 7�71
50 25 0�72 0�28 0�00 0�79 0�35 0�25 0�77 0�60 1�30
50 100 0�84 0�16 0�00 0�84 0�28 0�30 0�84 0�48 0�00
50 500 0�92 0�08 0�02 0�92 0�15 0�03 0�92 0�31 0�10

Note. �B—
/	∗
B, capacity utilization of Brownian approximation. % Err.—

Percentage cost error of Brownian capacity-inventory policy from optimal
cost as determined by simulation optimization. % Err. = 0.00 indicates no
statistically significant difference between the Brownian approximation and
the solution to which the simulation converged given the accuracy of the
simulation.

Consistent with the remainder of this paper, we con-
sider an integer-valued state space rather than a con-
tinuous state space as did Toktay and Wein (1999).

We assume the same sequence of events in each
period as did Toktay and Wein (1999). First, demand
is revealed, which drives the forecast update. Next,
“production authorization” for some number of
units is given to the manufacturing facility, after
which, production takes place, followed finally by an
accounting of inventory costs.

Let Dn be the demand in period n where the
demand process D = �Dn � n ≥ 0
 is stationary with
mean ED1 =  . Let Dn�n+i be the forecast of demand
in period n+ i made in period n. Given the sequence
of events, Dn = Dn�n. It is assumed that meaningful
forecasts are made only for H periods in advance,
so that Dn�n+i =  for i > H . The forecast update in
period n for demand in period n+ i is 0n�n+i =Dn�n+i−
Dn−1�n+i. Then define the vector of all nontrivial fore-
cast updates as 0n = �0n�n� 0n�n+1� � � � � 0n�n+H
. Given
Heath and Jackson’s (1994) assumptions, 0n for n≥ 0
is an i.i.d. multidimensional, normally, distributed
random vector with mean zero and covariance matrix
?. We will denote the elements of ? as 3ij for i� j =
0� � � � �H . Toktay and Wein (1999) point out that the
autocovariance can be computed from the elements
of ?:

+i = cov�Dn�Dn+i
=
H−i∑
j=0

3j� j+i for i = 0�1� � � � �H�

The production-inventory system is managed using
a “production authorization” system. (See Buzacott
and Shanthikumar 1993; using a traditional base-stock
or kanban system is such an authorization mechanism
with a constant number of “production authorization
cards.”) Let Qn be the number of units authorized
to be produced, but not yet produced, at the end of
period n, and let Rn be the additional number of units
that are authorized for production in period n.

Consistent with Toktay and Wein (1999), and in a
departure from our foregoing notation, let the pro-
duction capacity in period n be limited by a random
quantity Cn, with mean EC1 =� and variance 32

C . Then
the production quantity, Pn, is limited by the mini-
mum of the capacity or the authorized maximum pro-
duction:

Pn = min�Cn�Qn−1 +Rn
� (21)

and the remaining units authorized for production at
the end of the period is

Qn =Qn−1 +Rn−Pn� (22)

Thus, the inventory level at the end of period n
evolves according to

In = In−1 +Pn−Dn� (23)

Management Science/Vol. 48, No. 2, February 2002 285



BRADLEY AND GLYNN
Managing Capacity and Inventory Jointly in Manufacturing Systems

Toktay and Wein (1999) define the forecast-
corrected inventory level to be the inventory level
minus the total demand forecasted over the forecast
horizon, Ĩn = In −

∑H
i=1 Dn�n+i, and show that a base-

stock policy with respect to this forecast-corrected
inventory level minimizes cost over a finite horizon
when capacity is deterministic. The performance of
this policy structure in that setting and its simplicity
motivates its use in the case of stochastic and limited
capacity in the infinite-horizon problem. This policy
is implemented using the production authorization
quantities

Rn =  +
H∑
i=0

0n�n+i� (24)

so that the number of new units authorized for pro-
duction is equal to the demand in period n plus the
cumulative forecast update for the H -period forecast-
ing horizon. Under this policy, it can be shown that
the number of units authorized for production at the
end of each period plus the forecast-corrected inven-
tory is a constant quantity, which is referred to as the
forecast-corrected base-stock level sH :

Qn+ Ĩn = sH for n= 1�2� � � � �

Note that the sum of the inventory level In plus the
number of authorized production units is not constant
in this model as is the case with standard base-stock
policies. In that sense, guiding the production deci-
sion with a forecast causes the base stock, or number
of kanban, to be dynamically adjusted according to
the expectation of demand.

In a manner analogous with our continuous-time
model, let h and p denote the holding and backorder
penalty costs of inventory per unit, per period. If
I��sH�n
 and ���sH�n
 denote the on-hand inventory
and backorder levels for a capacity level � and base-
stock level sH when production is managed according
to (21), (22), (23), and (24), then Toktay and Wein’s
(1999) objective is to minimize inventory cost for a
specific capacity level: hI��sH�n
+p���sH�n
.

We also are interested in jointly optimizing over
the capacity level, and so we consider the following
objective, assuming that capacity cost is linear in the
capacity level:

r��� sH
= hI��sH�n
+p���sH�n
+ c��

Toktay and Wein (1999) develop solutions for the
optimal base stock in heavy-traffic, where

B = 2��− 


/(
+0 +2

H∑
i=1

+i+32
C

)
plays a central role as the parameter of the stationary
distribution of shortfall.

If H = 0 (no forecasts are made), then Rn = Dn, Qn

is the shortfall for the periodic model analogous to
the shortfall that we have defined for the continuous-
time model, and B is analogous with our exponential
parameter. In that case, the optimal base-stock level
for the Toktay and Wein (1999) model is also analo-
gous with our previous results:

s∗0 = F−1
Q��p/�p+h

�

where in heavy traffic s∗0 = ln��p+h
/h
/B.
If H > 0, then the optimal base-stock policy is s∗H =

F−1
W �p/�p+h

, where

W = max
{
Q�+X0�max1≤k≤H Xk

}
�

and

Xk = −k +
H∑

i=k+1

H∑
j=i

0n−H+i�n−H+j

−
k∑
i=1

H+i∑
j=H+1

0n−H+i�n−H+j −
H∑

i=k+1

Cn−H+i�

When p� h, Toktay and Wein (1999) show that s∗H ≈
s∗0 +EX0 + 1

2B varX0 and that

hI��sH�n
+p���sH�n
≈ h�s∗H +1/B−EW
� (25)

It is well known how the covariance of forecasts
affects the optimal base-stock level at a given capac-
ity level. Our primary goal upon embarking on this
analysis was to use (25) to approximate the opti-
mal (minimum) r��� s∗H
 over � so that we may gain
insight into how using an H -period forecast update to
guide production decisions affects the optimal capac-
ity level, which we denote by �∗

H . In particular, we are
interested in comparing �∗

H with the optimal capacity
when the forecast is ignored, in which case H = 0 and
the optimal capacity is approximated by our Brow-
nian model, �∗

B. We conducted an exhaustive search,

286 Management Science/Vol. 48, No. 2, February 2002



BRADLEY AND GLYNN
Managing Capacity and Inventory Jointly in Manufacturing Systems

in capacity increments of 0�01, using a spreadsheet to
find r��∗

H� s
∗
H
 and r��∗

B� s
∗
B
 because r��� s∗H
 is in gen-

eral not convex in �.
We considered the circumstance in which both the

number of units demanded and produced in a period
are Poisson distributed, with  = 1. We also assumed,
as did Toktay and Wein (1999) in an example, that
demand follows a moving average process with lag 1
such that Dn =  + et − &et−1, where the demand cor-
relation between demands with lag 1 is −&. Also, fol-
lowing Toktay and Wein (1999), set H = 1, Dn�n+1 =
 −&et , and Dn�n+i =  for i > 1.

Toktay and Wein (1999) found in a numerical exam-
ple (which used normal demand rather than our Pois-
son demand) that approximately 90% capacity utiliza-
tion was required for (25) to be a reasonably accurate
approximation of actual cost (accuracy also depended
on p). Thus, in using (25) to compare the optimal
capacity strategies for H = 0 and H = 1, a relatively
high capacity utilization is required to ensure that the
difference r��∗

B� s
∗
B
−r��∗

H� s
∗
H
 is because of a true dif-

ference in cost, rather than approximation error. We
performed some exploratory analysis, choosing our
parameters carefully to ensure that the points we ana-
lyzed fell within the regime where the approxima-
tions were accurate. While holding h = 1, we evalu-
ated this model for c = 1�5�25�100�500�1�000, and
& =−0�90�−0�70�−0�50�−0�30�−0�10�0�10�0�30�0�50,
0�70�0�90.

For each combination of h, c, and &, we then found
the smallest value of p such that  /�∗

H ≥ 0�90, if such a
value of p existed. We found such values of p for 35 of
the 60 parameter combinations. In only one of these
cases was �∗

H �= �∗
B, and in that case �∗

H −�∗
B = 0�01,

and �r��∗
B� s

∗
B
− r��∗

H� s
∗
H

/r��

∗
H� s

∗
H
 = 0�2%. We also

found in these circumstances that the base-stock poli-
cies were approximately the same, that is, s∗H + ≈ s∗B.
Thus, for relatively high capacity utilization, the opti-
mal base-stock and capacity decisions are equivalent
whether a naïve approach is taken or forecasts are
used. Further research, which requires more accurate
approximations or simulation, is needed to compare
�∗
H and �∗

B in circumstances where utilization rates
less than 0.90 are optimal.

6. Conclusions
Capacity and inventory decisions are often made sep-
arately in practice because either the joint decision is
complex or it is assumed that the interaction between
the two production factors is small. In the former case,
managers might employ a hierarchical decision pro-
cess, which separates the capacity and inventory deci-
sions, and use rules of thumb to set the capacity level.
These rules of thumb sometimes favor high capacity
utilization (one might even observe a goal of 100%
utilization, see Colgan 1995 and Bradley and Arntzen
1999). One often hears in practice that high capacity
utilization is justified because capacity is expensive.
Hayes and Wheelwright (1984) support this notion by
stating “Unused capacity generally is expensive.” We
must realize though that total cost of operation is the
cost that matters and the cost of capacity should be
judged relative to the alternatives. Additional inven-
tory, as we have shown, is required for minimum
cost operation when capacity levels are reduced, and
capacity may not always be so expensive that high
capacity utilization is warranted. In fact, it is obvious
from our models that overly restricting the capacity
level causes total cost to increase toward infinity as
�↘  v (see (14) and (15) for example).

Our models and approximations offer insight into
the capacity-inventory trade-off, and enable better
capacity and inventory decisions. The exact base-
stock solution, and asymptotic capacity and base-
stock approximations for the GI/M/1 model con-
tribute toward this insight. The Brownian model is
perhaps more useful though, because it yields closed-
form solutions and is applicable to a greater variety
of processing time distributions. Moreover, the Brow-
nian model was accurate for the models we tested
even when the capacity utilization was significantly
less than one. We extended the Brownian approxima-
tion to the case of nonzero transportation times, and
also performed a preliminary analysis of a manufac-
turing system in which production decisions are made
using forecast data rather than actual demand. Both
of these topics warrant further research. Another pos-
sible extension of the Brownian model is for the case
of nonstationary demand, for example, when demand
is seasonal and capacity is constrained below the peak
demand.
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