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Abstract. The method of control variates is one of the most widely used variance
reduction techniques associated with Monte Carlo simulation. This paper studies
the method of control variates from several different viewpoints, and establishes
new connections between the method of control variates and: conditional Monte
Carlo, antithetics, rotation sampling, stratification, and nonparametric maximum
likelihood. We also develop limit theory for the method of control variates under
weak assumptions on the estimator of the optimal control coefficient.

1 Introduction

Suppose that a simulation analyst wishes to compute a quantity α that can
be expressed as the expectation of a real-valued random variable (rv) X, so
that α = EX. The conventional sampling-based algorithm for computing α
involves simulating n independent and identically distributed (iid) copies of
the rv X, denoted X1, · · · , Xn. The corresponding estimator for α is then
just the sample mean X̄n = n−1

∑n
i=1 Xi.

However, in many situations, the analyst can take advantage of exist-
ing problem structure so as to create a more efficient means of computing
α. One powerful approach to exploiting problem structure is the method of
control variates. Specifically, suppose that there exists a random variable Y ,
jointly distributed with X, for which EY is known. Then, the control variate
C = Y − EY is guaranteed to be a “mean zero” random variable, so that
X(λ) = X−λC is an estimator for α. Consequently, this creates the possibil-
ity of computing α by generating iid copies (X1, C1), · · · , (Xn, Cn) of the pair
(X, C) and estimating α via X̄n(λ) = X̄n − λC̄n, where C̄n = n−1

∑n
i=1 Ci

and λ ∈ R is an arbitrary scalar. By choosing the “control coefficient” λ
judiciously, one can therefore obtain a variance reduction relative to the con-
ventional estimator X̄n.

In particular, it is natural to choose λ so as to minimize the variance of
X(λ). The variance-minimizing choice is just

λ∗ = cov(X,C)/ var C.



Since λ∗ involves moment quantities that are generally unknown to the ana-
lyst, it must be estimated somehow. Fortunately, one of the great strengths
of Monte Carlo sampling-based methodology is its ability to internally esti-
mate such problem-dependent parameters by using the sample moments of
the (Xi, Ci)’s to compute the population moments of (X, C). In particular,
λ∗ can be estimated via

λ1(n) =
∑n

i=1(Xi − X̄n)(Ci − C̄n)∑n
i=1(Ci − C̄n)2

,

thereby suggesting the estimator α1(n) = X̄n−λ1(n)C̄n. This estimator for α
can easily be implemented in many practical problem settings. In particular,
relative to the conventional estimator X̄n, the estimator α1(n) requires only
that the simulation code collect the control variate outcomes C1, · · · , Cn,
compute λ1(n), and form α1(n).

Note that this variance-reduction method is “non-invasive”, in the sense
that it requires only that additional statistics be collected during the sim-
ulation run, and it does not require that the simulation analyst modify the
code that is used to generate the Xi’s themselves. Thus, control variates can
be implemented (for example) in the background, while some visualization
involving the Xi’s proceeds in the foreground.

Because of the relative ease with which control variates can be imple-
mented, it is perhaps the most widely applied of all variance reduction tech-
niques. It is therefore of some interest and importance to understand this
method in greater depth. This paper is intended to provide new insights into
the foundations of the method of control variates, and to describe certain con-
nections between the method of control variates and some other widely used
variance reduction techniques. The following results are among the major
contributions of this paper:

1. a complete discussion, in Section 2, of the method of control variates
from the Hilbert space viewpoint (associated with the L2 space of square-
integrable random variables);

2. limit theory (see Theorem 1) that establishes that any consistent estima-
tor of λ∗ yields “first order” asymptotic optimality;

3. a discussion, in Section 3, of how to construct control variates in the
setting of terminating simulations that involve a random number of input
random variables;

4. an argument, in Section 5, that proves that control variates reduces vari-
ance “cooperatively” with the method of conditional Monte Carlo;

5. a discussion, in Sections 4, 6, and 7, of the relationships between control
variates and numerical integration, antithetics, stratification, and rota-
tion sampling;



6. an introduction to “constrained Monte Carlo”, as well as a proof that
constrained Monte Carlo coincides asymptotically with control variates
in the equality-constrained context.

For additional discussion of the basic ideas underlying the method of control
variates (as well as a range of different applications in which the idea is
relevant), see, for example, [12], [4], [11], or [6].

2 Multiple Control Variates

The method of control variates easily generalizes to the setting in which there
is a collection of random variables Y1, · · · , Yd (jointly distributed with X) for
which EYi is known for 1 ≤ i ≤ d. Set

C = (Y1 − EY1, · · · , Yd − EYd)T .

Let (X, C1), · · · , (Xn, Cn) be n iid replicates of the random variable (X, C).
For λ ∈ Rd (with λ encoded as a column vector), let X(λ) = X − λT C and
put

X̄n(λ) = X̄n − λT C̄n.

As in the scalar setting, the goal is to now choose λ so as to minimize the
variance of X(λ). Assume that E(X2 + CT C) < ∞. Then,

varX(λ) = var X − 2λT EXC + λT ECCT λ.

To compute the minimizing λ∗, there are several equivalent approaches one
can follow, each of which offers insight into the general principles underlying
the method of control variates.

Approach 1. Use calculus to minimize varX(λ) over λ ∈ Rd. Assuming
the covariance matrix ECCT is non-singular, the “first-order optimality”
conditions yield

λ∗ = (ECCT )−1EXC. (1)

It is easily shown, via the “second-order optimality conditions”, that λ∗ is
indeed the variance-minimizing choice of λ.

Approach 2. Let L2 be the space of all square-integrable random variables
that are defined on the same probability space as X, equipped with inner
product 〈Z1, Z2〉 = EZ1Z2 and norm ‖Z‖ = (EZ2)1/2 for Z, Z1, Z2 ∈ L2.
Also, let G be the linear subspace of all random variables W ∈ L2 such that
W = λT C for some λ ∈ Rd. It is easily seen that G is a closed linear subspace
of L2. Observe that

min
λ∈Rd

varX(λ) = min
W∈G

‖X − α−W‖,



so that minimizing variance is equivalent to finding the closest point W ∈ G to
X−α. The Hilbert space projection theorem ( [9]) asserts that the minimizing
W ∗ = λ∗T C ∈ G is characterized via the relation

〈X −W ∗,W 〉 = 0

for W ∈ G. In other words,

EWW ∗ = E(X − α)W = EXW

for W ∈ G. Hence,
λT ECCT λ∗ = λT EXC

for all λ ∈ Rd. This implies that λ∗ must satisfy the equations

ECCT λ∗ = EXC.

We will exploit this Hilbert space viewpoint in Section 5’s discussion of the
relationship of control variates with conditional Monte Carlo.

Approach 3. By applying Gram-Schmidt orthogonalization ( [9]), we may
assume that the d components of the control variate vector are orthogonal
in our L2 inner product. Equivalently, since ECCT is symmetric and non-
negative definite, one can express ECCT as RDRT , where D is a diagonal
matrix with non-negative diagonal entries and RRT = I. Set B = RC. Then
EBBT = D, so that the components of B are orthogonal in our inner prod-
uct, and the variance of the i’th component of B is Dii (for 1 ≤ i ≤ n).

We may now choose to view B as our vector of controls (rather that C).
This suggests finding β∗ ∈ Rd so as to minimize var(X −βT B) over β ∈ Rd.
Our discussion above establishes that

β∗i =
〈X, Bi〉
〈Bi, Bi〉

(provided 〈Bi, Bi〉 6= 0), so that

β∗B =
d∑

i=1

〈X,Bi〉
〈Bi, Bi〉Bi.

The right hand side of this expression is precisely what is obtained when one
attempts to express X via an “orthogonal expansion” in terms of the rv’s
B1, · · · , Bd. Thus, the optimal linear combination of control variates can be
viewed in terms of an orthogonal expansion. If X is in the “span” of the “ba-
sis vectors” B1, · · · , Bd, the variance of X(λ∗) is reduced to zero. In general,
X(λ∗) has variability in proportion to that component of X that can not
be explained in terms of the basis B1, · · · , Bd (i.e. lies in the “orthogonal



complement” to B1, · · · , Bd).

The above analysis provides several different theoretical justifications for
the formula (1) for λ∗. As in the case of a scalar control, λ∗ must typically be
estimated from the sample data (X1, C1), · · · , (Xn,Cn). The vector analog
of λ1(n) is, of course,

λ1(n) = (
n∑

i=1

(Ci − C̄n)(Ci − C̄n)T )−1
n∑

i=1

(Xi − X̄n)(Ci − C̄n).

It should be noted, however, that because it is known that EC = 0, we can
alternatively estimate λ∗ via any of the following estimators:

λ2(n) = (
n∑

i=1

CiC
T
i )−1

n∑

i=1

(Xi − X̄n)(Ci − C̄n),

λ3(n) = (
n∑

i=1

(Ci − C̄n)(Ci − C̄n)T )−1
n∑

i=1

XiCi,

λ4(n) = (
n∑

i=1

CiC
T
i )−1

n∑

i=1

XiCi.

In addition, one can apply the above idea component-wise, choosing to center
some components of Ci by their corresponding sample means and leaving the
other components uncentered.

But other estimators for λ∗ may also be available. In many applications
settings, the entire joint distribution of C may be known in closed form, so
that the simulation analyst may know ECCT . This suggests the estimators

λ5(n) = (ECCT )−1
n∑

i=1

(Xi − X̄n)(Ci − C̄n),

λ6(n) = (ECCT )−1
n∑

i=1

XiCi

for λ∗. Furthermore, it may be that only part of the covariance structure of
C is known to the analyst. Among the possibilities that exist are:

1. the joint distribution of only a subset of the control vector components
is known, so that the elements of a principal submatrix of ECCT are
known, with the other elements unknown. (By re-labeling the components
of C if necessary, this is equivalent to assume that some “northwest”
square sub-block of ECCT is known, with the rest of ECCT unknown.)

2. Some of the control variate components are known to be orthogonal with
respect to one another, so that the off-diagonal entries corresponding to



pairs of such orthogonal random variables are guaranteed to be zero. This
can arise if some subset of controls forms a collection of mutually inde-
pendent random variables. It may also occur in some settings in which X
arises from the output of a stochastic process which is correlated with an
associated martingale; the martingale differences can then be used as in-
dividual control variates, and such martingale differences are guaranteed
to be orthogonal with respect to one another.

In both of the above circumstances, one may choose to substitute the known
covariances for the corresponding covariance estimator, with or without “cen-
tering by the sample mean”. Thus, in the context of a vector-valued control
C, an enormous number of different estimators for λ∗ suggest themselves.
The following result shows that regardless of the choice of estimator for λ∗,
the resulting estimator for α achieves the maximal degree of variance reduc-
tion possible (subject only to the stipulation that the estimator for λ∗ be
consistent).

Let ⇒ denote weak convergence and suppose that N(µ, σ2) is a normally
distributed random variable with mean µ and variance σ2.

Theorem 1. Assume that ECCT is non-singular and that E(X2 +CT C) <
∞. Suppose that EC = 0 and that λ(n) ⇒ λ∗ as n → ∞. Set αc(n) =
X̄n − λ(n)T C̄n. Then,

n1/2(X̄n(λ∗)− αc(n)) ⇒ 0

as n →∞, so that

n1/2(αc(n)− α) ⇒
√

var X(λ∗)N(0, 1)

as n →∞. In addition,

1
n

n∑

i=1

(Xi − λ(n)T Ci)2 ⇒ EX(λ∗)2

as n →∞.

Proof. Note that X̄n(λ∗) − αc(n) = (λ(n) − λ∗)T C̄n. Furthermore, the
multivariate central limit theorem (CLT) ensures that

n−1/2C̄n ⇒ N(0, ECCT )

as n → ∞, where N(0, ECCT ) is a d-dimensional multivariate normal
random vector with mean vector 0 and covariance matrix ECCT . Since
λ(n) ⇒ λ∗, it follows from a “converging together” argument (see [2], p. 27)
that

n1/2(X̄n(λ∗)− αc(n)) = (λ(n)− λ∗)T · n1/2C̄n ⇒ 0 ·N(0, ECCT ) = 0



as n →∞, proving the first assertion. For the second result, observe that

(Xi−λ∗T Ci)2−(Xi−λ(n)T Ci)2 = (2Xi−(λ(n)+λ∗)T Ci)(CT
i (λ(n)−λ∗)),

so

1
n− 1

n∑

i=1

Xi(λ∗)2 − 1
n− 1

n∑

i=1

(Xi − λ(n)T Ci)2

=
2

n− 1

n∑

i=1

XiC
T
i (λ(n)− λ∗)− (λ(n) + λ∗)T 1

n− 1

n∑

i=1

CiC
T
i (λ(n)− λ∗)

⇒ 2EXCT · 0− 2λ∗T · ECCT · 0 = 0

as n → ∞. Since n−1
∑n

i=1 Xi(λ∗)2 → EX(λ∗)2 a.s. as n → ∞, this estab-
lishes the second assertion

Theorem 1 asserts that all estimators of α in which λ(n) is chosen to be
consistent for λ∗ are within op(n−1/2) of one another (where op(an) denotes
a sequence of rv’s (ξn : n ≥ 1) such that a−1

n ξn ⇒ 0 as n →∞). Thus, at the
level of “first-order” central limit theory, the choice of λ(n) is irrelevant. The
specific choice of the estimator λ(n) can therefore only make a difference at
the “second-order” level.

Of course, it should be noted that knowledge of all or part of the covari-
ance structure of C permits one to potentially use the corresponding sample
covariances (centered by their known population values) as control variates.
By adding such additional control variates, one can obtain further (asymp-
totic) variance reduction that would reflect itself at a “first order” level by
reducing the magnitude of the variance associated with X(λ∗).

The second assertion of Theorem 1 is important in that it offers theoretical
support for the variance estimation needed to construct confidence intervals
for α. Specifically, let v(n) = (n−1

∑n
i=1(Xi − λ(n)T Ci))2 − αc(n)2. Under

the conditions of Theorem 1 (and assuming that varX(λ∗) > 0), Theorem 1
permits us to assert that

P (α ∈ [Ln, Rn]) → 1− δ

as n →∞, where
Ln = αc(n)− z

√
v(n)/n,

Rn = αc(n) + z
√

v(n)/n,

and z is selected so that P (−z ≤ N(0, 1) ≤ z) = 1 − δ. Hence the interval
[Ln, Rn] is guaranteed to be an asymptotic 100(1 − δ)% confidence interval
for α (with asymptotic half-width n−1/2 · z

√
varX(λ∗)).



3 Construction of Control Variates for Terminating
Simulations

Suppose that generation of the rv X involves simulating an associated stochas-
tic process over some finite time horizon. In many applications, the stochastic
process is itself driven by an associated iid “noise” sequence of random input
vectors. The number τ of such input vectors needed to simulate the process
over the given time horizon is generally random. For example, in simulating
a continuous-time Markov chain to a deterministic time t, the number of ex-
ponential random variables required is random.

To make our idea more concrete, suppose that V 1, V 2, · · · , V τ is the
sequence of iid random (column) vectors required to generate X. Typically
EV j is known in closed form. It is therefore tempting to use

1
τ

τ∑

i=1

V i − EV i

as a control variate. While this centered sample mean is indeed a control
(with mean zero) when τ is deterministic, it generally is not a control when
τ is random, for in that case

E(τ−1
τ∑

i=1

V i) 6= EV i

usually holds. (However, if τ is large, the difference between the left-hand
side and right-hand side is generally small.)

Fortunately, there is typically an easy way to remedy the situation. In
general, the rv τ will be a stopping time that is adapted to a filtration to
which the V j ’s are also adapted. If Eτ < ∞ and E(

∑τ
i=1 |V j |) < ∞, Wald’s

first moment identity asserts ( [3]) that

E

(
τ∑

i=1

V i

)
= EV i · Eτ,

so that C =
∑τ

i=1(V i − EV i) is a control variate satisfying EC = 0. Note
that C is a legitimate mean-zero control even if the V i’s are non-identically
distributed in i (provided that they are independent in i); this follows from
the generalized Wald’s first moment identity.

Furthermore, if the V i’s are iid with finite second moments and Eτ2 < ∞,
then Wald’s second moment identity ensures that

ECCT = EV 1V
T
1 · Eτ.



Consequently, if the covariance structure of V 1 is known, the covariance
structure of C is known up to the scalar Eτ . This offers the opportunity, as
discussed in Section 2, to develop estimators of the optimal control coefficient
λ∗ that can take advantage of the known covariance structure of the V i’s.

For additional discussion of the subtleties that can arise in constructing
control variates in the terminating simulating setting, see [10].

4 Connections to Numerical Integration

The method of control variates has a counterpart that arises in the theory
of numerical integration. Consider, for example, the problem of numerically
computing the integral

α =
∫ 1

0

f(x)dx,

where f(x) ∼ x−1/2 as x ↓ 0. A standard “trick” in numerical integration is
to “subtract out the singularity” (namely, the singularity in f at x = 0), so
that we write

α =
∫ 1

0

[f(x)− x−1/2]dx +
∫ 1

0

x−1/2 =
∫ 1

0

g(x)dx + 2,

where g(x) = f(x) − x−1/2 is then free of the singularity at zero (and con-
sequently easier to numerically integrate via, for example, a quadratic rule).
The key to the idea is to take advantage of the fact that a closely related
integrand can be analytically integrated; see [5], p. 470, for further details on
this technique. Clearly, the philosophy underlying this approach is essentially
identical to that associated with the method of control variates.

However, control variates and conventional numerical integration can in-
teract in other ways, as well. For example, in certain contexts, it may be that
the distribution of the rv Y (jointly distributed with X) is known, and yet
no analytic closed-form for EY may be available. Typically, computing EY
will then involve a one-dimensional integration with respect to the proba-
bility density of Y . This integration can be implemented numerically via an
integration scheme that is not sampling-based, such as a quadrature scheme
(or even an approach base on quasi-random sequences). Suppose that µ(n)
is the resulting numerical approximation to EY obtained after expending a
computational effort of n floating-point operations. Typically, such numerical
integration schemes enjoy a rate of convergence of the form

µ(n) = EY + O(n−1/2−p)

as n →∞, for some p > 0 (where O(an) represents a deterministic sequence
having an absolute value that can be bounded by some finite multiple of an).



Given a computer budget of c floating point operations, suppose that
we then allocate bcδc operations to the numerical computation of EY and
the remainder of the budget allocated to sampling of the pair (X, Y ), with
δ = (1 + p)/(1 + 2p). We estimate α = EX via a sample mean of the rv
X−λ(Y −µ(bcδc)). But c1/2(µ(bcδc)−EY ) → 0, as c →∞ and the fraction
of the budget allocated to computing µ(bcδc) is converging to zero as c →∞.
It follows easily that the sample mean has precisely the same “first-order”
central limit behavior as that obtained by replicating the rv X−λ(Y −EY ). In
other words, at the level of such a “first-order” analysis, our need to compute
EY numerically via such an integration scheme has no impact whatsoever on
the asymptotic convergence rate of our control variates methodology.

5 Connections to Conditional Monte Carlo

One powerful variance reduction technique that is often available in the pres-
ence of suitable problem structure is “conditional Monte Carlo”. Suppose
that the probability space supporting the rv X is the triplet (Ω,F , P ). It
is often possible to explicitly compute Z = E(X|H) for some sub-σ-field
H ⊆ F , at the same time as one generates X. This provides us with two
unbiased estimators of α, namely X and Z. As a consequence, C = X − Z
can be used as a control variate.

In this special setting, λ∗ can be explicitly computed without a need to
resort to estimation via sample covariances and sample variances.

Theorem 2. Suppose that EX2 < ∞ and set X(λ) = X −λ(X −E(X|H)).
Then varX(λ) is minimized over λ at λ∗ = 1.

Proof. Suppose that W ∈ L2 is H-measurable. Then, the Cauchy-Schwarz
inequality implies that XW and ZW are integrable rv’s. Furthermore, the
conditional expectation Z satisfies

EXW = EZW

for all such W . In particular,

EXZ = EZ2,

so that EZ(X − Z) = 0. It follows that EXC = EX(X − Z) = E(X − Z +
Z)(X−Z) = E(X−Z)2 +EZ(X−Z) = EC2, so that λ∗ = EXC/EC2 = 1.

Thus, the best possible linear combination of X and Z is just Z = E(X|H)
itself. In other words, the conditional Monte Carlo estimator for α, based on
a sample mean of iid copies of Z, is also optimal when viewed from a control



variates perspective.

Recall that for X ∈ L2, the variance decomposition formula

varX = E var(X|H) + varE(X|H)

holds; see, for example, [4]. Use of conditional Monte Carlo reduces variance
from varX (the variance associated with the conventional Monte Carlo esti-
mator for α, based on replicating X itself) to varE(X|H). Thus, conditional
Monte Carlo eliminates the contribution to varX from E var(X|H).

We will now discuss how the method of control variates can frequently be
used to reduce the contribution to varX that is contributed by varE(X|H).
In particular, suppose that H is the σ-algebra that is generated by a scalar
rv Γ , and that the distribution of Γ is known. More precisely, suppose that
the simulation analyst knows the entire moment sequence (EΓ k : k ≥ 1) for
the rv Γ . As a consequence, Yi = Γ i has known mean for i ≥ 1, so that for
each d ≥ 1,

C(d) = (Γ − EΓ, Γ 2 − EΓ 2, · · · , Γ d − EΓ d)T

is a d-dimensional control variate with mean 0. We will now analyze the be-
havior of C(d) as d →∞.

Let W ∗(d) = λ∗(d)T C(d) be the associated linear combination of the
components of C(d) that minimizes var(X − λT C(d)) over λ ∈ Rd.

Theorem 3. Suppose that E|Γ |i < ∞ for i ≥ 1, and that EX2 < ∞.
Then,

‖W ∗(d)− E(X − α|Γ )‖ → 0

as d →∞, and var(X −W ∗(d)) → E var(X|Γ ) as d →∞.

Proof. Let Gd be the linear subspace of all random variables W ∈ L2 such
that W = λT C(d) for some λ ∈ Rd. Then, as discussed in Section 2,

〈X −W ∗(d),W 〉 = 0 (2)

for W ∈ Gd. Note that for d1 ≤ d2, it follows that

EXW ∗(d1) = EW ∗(d1)W ∗(d2). (3)

In addition,

EX2 = E(X −W ∗(d) + W ∗(d))2

= E(X −W ∗(d))2 + 2EW ∗(d)(X −W ∗(d)) + EW ∗(d)2

= E(X −W ∗(d))2 + EW ∗(d)2.

(4)



Hence

‖W ∗(d2)−W ∗(d1)‖2
= EW ∗(d2)2 + EW ∗(d1)2 − 2EW ∗(d1)W ∗(d2)
= EW ∗(d2)2 + EW ∗(d1)2 − 2EXW ∗(d1) ( using (3))
= EW ∗(d2)2 + EW ∗(d1)2 − 2EXW ∗(d1) + EX2 − EX2

= E(W ∗(d1)−X)2 + EW ∗(d2)2 − EX2

= EX2 − EW ∗(d1)2 + EW ∗(d2)2 − EX2 ( using (4))
= ‖W ∗(d2)‖2 − ‖W ∗(d1)‖2,

so (‖W ∗(d)‖2 : d ≥ 1) is a non-decreasing sequence. Furthermore, it is
bounded above by ‖X‖2.

Clearly, for ε > 0, there exists d = d(ε) such that ‖W ∗(d2)−W ∗(d1)‖2 < ε
for d1, d2 ≥ d. In other words, (W ∗(d) : d ≥ 1) is a Cauchy sequence (in L2) of
H-measurable random variables. It follows that there exists a H-measurable
rv W ∗(∞) ∈ L2 such that

‖W ∗(d)−W ∗(∞)‖ → 0 (5)

as d →∞.

Note that (2) implies that

EXΓ i = EW ∗(d)Γ i

for d ≥ i. But the Cauchy-Schwarz inequality and (5) together establish that

E(W ∗(∞)−W ∗(d))Γ i → 0

as d →∞. We conclude that

EXΓ i = EW ∗(∞)Γ i

for i ≥ 1. Consequently, the collection of all H-measurable rv’s W ∈ L2 for
which

E(α + W ∗(∞))W = EXW (6)

contains the collection {Γ i : i ≥ 0}. Evidently, (6) therefore holds for all H-
measurable W ∈ L2 ( [3]). Since W ∗(∞) is itself H-measurable, we conclude
that W ∗(∞) = E(X|Γ )− α, proving the first assertion of the theorem.

For the second assertion,

‖X −W ∗(∞)‖ − ‖W ∗(∞)−W ∗(d)‖
≤ ‖X −W ∗(d)‖ ≤ ‖X −W ∗(∞)‖+ ‖W ∗(∞)−W ∗(d)‖,



so ‖X −W ∗(d)‖2 → ‖X −W ∗(∞)‖2 as d → ∞. Hence, var(X −W ∗(d)) →
var(X − W ∗(∞)) as d → ∞. But var(X − W ∗(∞)) = E(X − Z)2, where
Z = E(X|Γ ). Since 〈X − Z, Z〉 = 0, evidently

EX2 = E(X − Z + Z)2

= E(X − Z)2 + EZ2,

so E(X − Z)2 = EX2 − EZ2 = E(E(X2|Γ )) − (E(X|Γ ))2 = E var(X|Γ ),
proving the second assertion.

Theorem 3 proves that control variates eliminates that variability in X
that is “orthogonal” to the variability eliminated by conditional Monte Carlo,
in that control variates (based on powers of Γ ) and conditional Monte Carlo
(based on conditioning on Γ ) are guaranteed to work cooperatively with one
another in reducing variance. We note, in passing, that a weaker version of
Theorem 3, with stronger hypotheses, appears in [10].

The principles that Theorem 3 illustrates hold much more generally. If
conditional Monte Carlo is based on conditioning on a sub-σ-field H, then
H-measurable control variates always reduce variance cooperatively. Further-
more, if a sequence of control variates is selected that ultimately spans (in
L2) the space of H-measurable random variables, then the combination of
conditional Monte Carlo and control variates can asymptotically reduce the
variance to zero.

6 Connections to Antithetics

The method of antithetic variates is a sampling-based means of computing
α = EX that attempts to induce an advantageous correlation between the
copies of the rv X that are simulated. In particular, the idea is to generate
a pair of copies of the rv X, say X(0) and X(1), that are correlated more
advantageously than would be the case if the X(i)’s had been generated via
iid sampling. Given that

var(
1
2
(X(0) + X(1))) =

1
2
(varX + cov(X(0), X(1))),

it follows that a necessary and sufficient condition for such a variance reduc-
tion (relative to iid sampling) is that cov(X(0), X(1)) ≤ 0. See, for example,
[12] for one means of inducing such a correlation. In the presence of such
negative correlation, an estimator based on n iid samples of (X(0)+X(1))/2
has lower variance than one based on 2n iid samples of X.

However, a “control variates” possibility also presents itself. In particular,
note that C = X(0) − X(1) is a control variate having mean zero. Conse-
quently,

X(λ) = X(0)− λ(X(0)−X(1))



is a rv, having mean α, that can be replicated to produce an estimator for
α = EX. The method of antithetics is recovered when λ = 1/2. We now prove
that λ = 1/2 is indeed the universally optimal choice of the control coefficient.

Theorem 4. Suppose that X(0) D= X(1) D= X (where D= denotes “equal-
ity in distribution”). If EX2 < ∞, then varX(λ) is minimized over λ at
λ∗ = 1/2.

Proof. Note that

var X(λ) = [(1− λ)2 + λ2 + 2λ(1− λ)ρ] var X,

where ρ is the coefficient of correlation between X(0) and X(1). At a mini-
mizer λ∗, the derivative of varX(λ) must vanish, so that

2(λ∗ − 1) + 2λ∗ + (2− 4λ∗)ρ = 0,

which has solution λ∗ = 1/2. Since the second derivative is positive at λ∗ if
ρ < 1 (and non-negative if ρ = 1), it follows that λ∗ = 1/2 is the minimizer.

Thus, regardless of the covariance (or the sign of the covariance), λ∗ = 1/2
is the optimal control coefficient (so that “equal weighting” of X(0) and X(1)
minimizes variance).

A related concept is that of “rotation sampling”; see [7] and [8]. Here,
the idea is to generate d + 1 correlated copies of X at a time, call them
X(0), · · · , X(d), and to then replicate iid copies of the random vector (X(0),
· · · , X(d))T , from which an estimator of α can then be constructed. The
term “rotation sampling” arises from the fact that the X(i)’s are gener-
ated, via inversion, by adding i(d + 1)−1 to each of the uniform rv’s as-
sociated with X(0), where addition is performed in “modulo one” arith-
metic. Thus, the uniforms for the X(i)’s can be viewed as the uniforms for
X(0), suitably “rotated” around a circle of unit circumference. Note that
we can embed (X(i) : 0 ≤ i ≤ d) in a doubly infinite stationary sequence
X = (X(i) : −∞ < i < ∞), in which X(i) = X(i + d + 1) for all i.

As in the antithetic setting, a “control variates” possibility presents itself.
In particular, let Ci = X(0)−X(i) for 1 ≤ i ≤ d, and put C = (C1, · · · , Cd).
Then

X(λ) = X(0)− λT C

is an unbiased estimator for α = EX. An important issue is the choice of λ
that minimizes the variance of X(λ).

Theorem 5. Suppose that X = (X(i) : −∞ < i < ∞) is a station-
ary process for which X(i) = X(i + d + 1) for all i. If EX2(0) < ∞, then



varX(λ) is minimized over λ by λi = 1/(d + 1) for 1 ≤ i ≤ d.

Proof. Let U be a rv, independent of X, that is uniformly distributed on
the integers 0, 1, · · · , d. Note that by stationarity of X,

X(0)−λT C = (1−
d∑

i=1

λi)X(0)+
d∑

i=1

λiX(i) D= (1−
d∑

i=1

λi)X(U)+
d∑

i=1

λiX(U+i).

Hence, by the Cauchy-Schwarz inequality,

EX(λ)2 = E

(
E

[
((1−

d∑

i=1

λi)X(U) +
d∑

i=1

λiX(U + i))2|X
])

≥ E


E

[
(1−

d∑

i=1

λi)X(U) +
d∑

i=1

λiX(U + i)|X
]2


 .

But

E[X(U + i)|X] =
1

d + 1

d∑

j=0

X(j).

So,

E

[
(1−

d∑

i=1

λi)X(U) +
d∑

i=1

λiX(U + i)|X
]

=
1

d + 1

d∑

j=0

X(j),

and consequently

EX(λ)2 ≥ E

(
1

d + 1

d∑

i=0

X(j)

)2

= EX(λ∗)2,

proving the result.

This theorem proves that the choice of “uniform weighting” on the X(i)’s
is the variance-minimizing choice for the control coefficients.

7 Connections to Stratification

Suppose that α = EX, where X is jointly distributed with some rv Γ . Assume
that the range of Γ can be partitioned into a collection of sets A1, A2, · · · , Ad

for which pi = P (Γ ∈ Ai) is known for 1 ≤ i ≤ d and for which it is possible
to generate variates from each of the d conditional distributions

Pi(·) = P (X ∈ ·|Γ ∈ Ai).



For 1 ≤ i ≤ d, let X̄n(i) be an independently generated sample mean based
on n iid replications of the rv X(i). For a given total sample size n, we can
then estimate α via

d∑

i=1

piX̄bcinc(i),

where (ci : 1 ≤ i ≤ d) is a probability mass function that distributes the
total sampling budget among the d “strata”. Proportional stratification is
the special case where ci = pi for 1 ≤ i ≤ d. If EX2 < ∞, then it is well
known that

n1/2

(
d∑

i=1

piX̄bpinc(i)− α

)
⇒ ηN(0, 1)

as n → ∞, where η2 ≤ var X; see, for example, [12]. Thus, proportional
stratification is always more efficient that iid sampling. Of course, one (ma-
jor) disadvantage of stratification is its need to explicitly generate random
variates from each of the distributions pi(·), 1 ≤ i ≤ d.

A more easily implemented alternative is post-stratification. Let (X1, Γ1),
· · · , (Xn, Γn) be n iid replications of the random vector (X, Γ ) and put

X̄(n, i) =
n∑

j=1

XjI(Γj ∈ Ai)/
n∑

j=1

I(Γj ∈ Ai)

for 1 ≤ i ≤ d. Note that conditional on
∑n

j=1 I(Γj ∈ Ai) = k, X̄(n, i) D=
X̄k(i). This suggests the estimator

d∑

i=1

piX̄(n, i).

If EX2 < ∞, the post-stratified estimator satisfies the CLT

n1/2

(
d∑

i=1

piX̄(n, i)− α

)
⇒ ηN(0, 1)

as n →∞, so that the “first order” central limit theory allows us to conclude
that the post-stratified estimator is as efficient as a stratified estimator with
proportional stratification.

However, an obvious control variates possibility also presents itself. In
particular, the assumption that the pi’s are known opens the possibility of
using

C = (I(Γ ∈ A1)− p1, · · · , I(Γ ∈ Ad)− pd)



as a d-dimensional control variate (having mean 0). Consequently,

X(λ) = X − λT C

is a control variates estimand from which α can be estimated. A natural
question here is the relationship between the variance minimizing X(λ∗) and
the estimator obtained through post-stratification.

Theorem 6. Suppose that EX2 < ∞. Then, var(λ) is minimized over λ
by the choice λ∗, where λ∗i = E(X|Γ ∈ Ai) for 1 ≤ i ≤ d. Furthermore,

n1/2(
d∑

i=1

piX̄(n, i)− X̄n(λ∗)) ⇒ 0

as n →∞, where X̄n(λ∗) is the sample mean based on X1−λ∗T C1, · · · , Xn−
λ∗T Cn.

Proof. Put µi = E(X|Γ ∈ Ai) for 1 ≤ i ≤ d. It is easily seen that the i’th
diagonal entry of ECCT is pi(1−pi), whereas the (i, j)’th entry (for i 6= j) is
−pipj . Furthermore, the i’th entry of EXC is (µi−α)pi. A simple computa-
tion establishes that the vector µ = (µ1, · · · , µd) satisfies ECCT µ = EXC.
Consequently, our discussion of Section 2 proves that λ∗ = µ.

For the second assertion, note that if p̂i(n) = n−1
∑n

j=1 I(Γj ∈ Ai), then

d∑

i=1

piX̄(n, i) =
d∑

i=1

p̂i(n)X̄(n, i)−
d∑

i=1

(p̂i(n)− pi)X̄(n, i)

= X̄n −
d∑

i=1

(p̂i(n)− pi)X̄(n, i)

= X̄n −
d∑

i=1

(p̂i(n)− pi)µi + op(n−1/2)

= X̄n(λ∗) + op(n−1/2),

as required.

Thus, we may conclude that the post-stratified estimator is actually op-
timal from a control variates standpoint.

It is interesting to note that the control variates “correction” to X̄n is
just

d∑

i=1

(p̂i(n)− pi)µi =
1
n

n∑

j=1

(g∗(Rj)− α),



where Rj =
∑d

i=1 iI(Γj ∈ Ai) and g∗(Rj) = E(Xj |Rj). So, the optimal con-
trol variates estimator is a sample mean of iid replicates of X1−(E(X1|R1)−
α). Hence, post-stratification effectively involves using the control variate
E(X1|R1)−α, leading to a variance (per replication) of var(X1−E(X1|R1)).
Thus, post-stratification eliminates exactly the same variance component as
does the control variate scheme described in Section 5.

8 Connection to Nonparametric Maximum Likelihood
Estimation

We conclude this paper with a discussion of the connection between the
method of control variates and the method of nonparametric maximum likeli-
hood estimation (MLE). Nonparametric maximum likelihood arises naturally
in the setting of “constrained Monte Carlo”.

Monte Carlo computation, in the presence of constraints, has recently
been investigated by [13]; see also [14]. The general statement of the prob-
lem involves the computation of α = EX, where X is the first component of
a simulatable random vector X = (X(0), X(1), · · · , X(d)). In other words,
we wish to compute α = EX, where X

D= X(0). Constrained Monte Carlo
deals with the situation in which there exists a given set B ⊆ Rd+1 for which
it is known that EX ∈ B. Computation, in the presence of such constraints,
arises in many different problem settings; see [13] for details.

Pure equality constraints arise when it is known that Y , (X(1), · · · , X(2))
satisfies the constraint EY = y for some known y. Thus, if we set C = Y −y,
we can view C as a d-dimensional vector of control variates having mean 0.

One approach to the problem of constrained Monte Carlo is nonparamet-
ric MLE. Specifically, suppose that we have generated n iid copies X1, · · · , Xn

of the random vector X. Nonparametric MLE involves finding a probability
distribution of the form

n∑

i=1

piδXi(·)

that explains the simulated data set best, subject to the constraint that the
probability distribution must satisfy the known constraints on EX. (Here,
δXi(·) is a unit point mass on Xi and the collection (pi : 1 ≤ i ≤ n) is a
probability mass function on {1, · · · , n}.) Set p = (p1, · · · , pn). The “highest
likelihood” solution for the weights p involves maximizing the likelihood

L(p) =
n∏

i=1

pi (7)



subject to pi ≥ 0, 1 ≤ i ≤ n, and
n∑

i=1

pi = 1 (8)

n∑

i=1

piXi ∈ B. (9)

Assuming that p∗n = (p∗1n, · · · , p∗nn) is the maximizer of the above optimiza-
tion problem, the estimator for α is then

α̃(n) =
∫

Rd+1
x0

n∑

i=1

p∗inδXi
(dx)

=
n∑

i=1

p∗inXi(0),

(10)

where Xi(0) is the zero’th component of Xi. As indicated above, there is a
clear connection between constrained Monte Carlo and the method of control
variates when the constraint takes the form EY = y. The remainder of this
section is devoted to exploring this connection in greater detail.

In the setting of such an equality constraint, the simulated data can be
represented as n iid copies (X1,C1), · · · , (Xn,Cn) of a random vector (X, C),
in which it is known that EC = 0. The optimization problem (7)-(10) then
becomes:

MaximizeL(p) =
n∏

i=1

pi (11)

subject to pi ≥ 0, 1 ≤ i ≤ n, and
n∑

i=1

pi = 1 (12)

n∑

i=1

piCi = 0. (13)

If p∗ is the maximizer of (11)-(13), the “constrained Monte Carlo” estimator
for α then takes the form

α̃(n) =
n∑

i=1

p∗inXi. (14)

Of course, maximizing (11) is equivalent to maximizing the log-likelihood,
namely

L(p) =
n∑

i=1

log pi.



Note that the feasible region described by (12), (13), and the non-negativity
constraints is non-empty for n sufficiently large, since 0 must lie in the convex
hull of the Ci’s for n large enough (on account of the fact that EC = 0).
Furthermore, the feasible region is clearly convex. Because L is strictly con-
cave, it follows that the above optimization problem can have at most one
global maximizer, namely p∗n.

The standard means of solving such an optimization problem it to tem-
porarily ignore the non-negativity constraints and to introduce Kuhn-Tucker
multipliers γn ∈ R for (12) and νn ∈ Rd for (13). As usual, we choose to
encode p∗n and νn as column vectors. At the maximizer p∗n, the multipliers
should satisfy

(1/p∗in)Ci − νT
nCi − γn = 0 (15)

for 1 ≤ i ≤ n. Multiplying through (15) by p∗in and summing over i, we get

n− νT
n

n∑

i=1

p∗inCi − γn

n∑

i=1

p∗in = 0.

Hence, γn = n and (15) implies that

p∗in = (n + νT
nCi)−1 (16)

for 1 ≤ i ≤ n. Multiplying through (16) by Ci and summing over i, we arrive
at the equation

n∑

i=1

Ci(n + νT
nCi)−1 = 0.

In other words, the multiplier νn that characterizes p∗n via relation (16) is a
root of the equation fn(νn) = 0, where fn : Rd → Rd is given by

fn(ν) =
n∑

i=1

Ci(n + νT
nCi)−1.

Given the root νn ∈ Rd, α̂n is then defined by

α̂(n) =
n∑

i=1

Xi(n + νT
nCi)−1.

If the root νn yields p∗in’s that are all positive, then the relaxation obtained
by ignoring the non-negativity constraints yields a solution to the fully con-
strained problem. The proof of Theorem 7 will confirm that the above ap-
proach is asymptotically valid (so that the p∗in’s defining α̂(n) can be obtained
from the root νn of fn(ν) = 0). More importantly, Theorem 7 shows that
the constrained Monte Carlo estimator α̂(n) is asymptotically identical to
the optimal control variates estimator X̄n(λ∗) = X̄n − λ∗

T

C̄n. This result



extends, to d ≥ 2, an identical conclusion reached by [13] in the setting of
scalar control variates.

For a vector x ∈ Rd, let ‖x‖∞ , max{|xi| : 1 ≤ i ≤ d}, where the xi’s
are the components of x.

Theorem 7. Suppose that ECCT is non-singular and that E|X|2 < ∞
and E‖C‖4∞ < ∞. Then,

α̂(n) = X̄n(λ∗) + op(n−1/2)

as n →∞.

Proof. We will start by establishing that for n sufficiently large, the equation
fn(ν) = 0 has a root νn for which all the quantities p∗in, 1 ≤ i ≤ n, defined by
(16) are positive. It will then follow by convexity and from Theorem 4.38 of
[1] that p∗n = (p∗1n, · · · , p∗nn)T is the global solution of the fully constrained
problem.

Note that fn(ν) = 0 if and only if Tn(ν) = ν, where Tn(ν) = ν +
n(ECCT )−1fn(ν). We shall shortly see that ν̃n = (ECCT )−1

∑n
i=1 Ci is

an approximate “fixed point” of Tn, so that νn is close to ν̃n . In fact, for
0 < δ < 1/2, we will show that νn is, for n large, in the set Bn , {x ∈ Rd :
‖x − ν̃n‖∞ ≤ nδ}. (Given that the Law of the Iterated Logarithm ensures
that ν̃n = O((n log log n)1/2) a.s. as n → ∞ and δ < 1/2, νn ∈ Bn is there-
fore indeed a statement of “closeness”.)

Observe that for |x| < 1/2, |(1+x)−1− (1−x)| ≤ 2x2. Also, the moment
condition E‖C‖4∞ < ∞, in conjunction with the Borel-Cantelli lemma, im-
plies that ‖Cn‖∞ = O(n1/4) a.s., from which it follows that sup{|νT Ci|/n :
ν ∈ Bn} → 0 a.s. as n →∞. Thus, for n sufficiently large,

sup
ν∈Bn

|(1 + νCT
i /n)−1 − (1− νCT

i /n)| ≤ 3.(‖ν̃n‖∞/n)2‖Ci‖2∞. (17)



So,

Tn(ν) = ν + (ECCT )−1
n∑

i=1

Ci(1 + νT Ci/n)−1

= ν + (ECCT )−1

[
n∑

i=1

Ci − 1
n

n∑

i=1

CiC
T
i ν

]

+ O

((‖ν̃n‖∞
n

)2 n∑

i=1

‖Ci‖3∞
n

)

= ν − ν̃n − (ECCT )−1 1
n

n∑

i=1

CiC
T
i ν + O

(
log log n

n

)
a.s.

= ν̃n + O(log log n) a.s.

(18)

uniformly in ν ∈ Bn. Consequently, Tn maps Bn into itself for n sufficiently
large.

Furthermore, for x, y ∈ Bn,

‖Tn(x)− Tn(y)‖∞

= ‖(x− y) + (ECCT )−1 1
n

n∑

i=1

Ci[(1 + xCi/n)−1 − (1 + yCi/n)−1]‖∞

≤ ‖I − (ECCT )−1 1
n

n∑

i=1

CiC
T
i (1 + xCi/n)−1(1 + yCi/n)‖∞ · ‖x− y‖∞

= ‖I − (ECCT )−1 1
n

n∑

i=1

CiC
T
i (1 + O(n−1/8))2‖∞ · ‖x− y‖∞

= O

((
log log n

n

)1/2
)
‖x− y‖∞

uniformly in x, y ∈ Bn. It follows that for n sufficiently large, Tn is a strict
contraction on the closed ball Bn. The Banach Fixed Point Theorem (see,
for example, [9]) therefore guarantees the existence of a unique fixed point
νn ∈ Bn for the mapping Tn. Furthermore, because νn ∈ Bn, it is easily
seen that the resulting p∗in’s are uniformly positive for n large. As argued
earlier, we may therefore conclude that νn is the multiplier associated with
the desired global maximizer to the fully constrained problem.

Substituting ν = νn in (18), we find that

νn = ν̃n + O(log log n) a.s.



So, (17) shows that

ν̃n =
1
n

n∑

i=1

Xi(1 + νT
nCi/n)−1

=
1
n

n∑

i=1

Xi(1− νT
nCi/n) + O

((‖ν̃n‖∞
n

)2 1
n

n∑

i=1

|Xi|‖Ci‖2∞
)

=
1
n

n∑

i=1

Xi(1− ν̃T
nCi/n) + O

(
log log n

n

)
a.s.

=
1
n

n∑

i=1

Xi(λ∗) + O

(
log log n

n

)
a.s.,

proving the theorem.
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