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Abstract—We present an optimal power and rate control policy for delay con-
strained traffic in next generation TDMA wireless systems. Our solution min-
imizes average transmit power while satisfying a constraint on the distribution
of packets lost to deadline expiration. We also provide a means to account for
erroneous and delayed channel estimates. Our results show the optimal power
and rate adaption may change dramatically as mobile speed and channel es-
timate delay increase. Finally, we present results from a simulation of a GSM
EDGE mobile. This simulation incorporates industry standard wireless channels
and performance data available from the Third Generation Partnership Project.
When compared to the standard Fixed-SIR power control policy, our algorithm
provides a significant reduction in power consumption and mitigates some of the
negative effects of delayed channel estimates.

I. INTRODUCTION

The introduction of third generation (3G) wireless systems
provides the opportunity to develop a wide range of new mobile
data services. Many of the proposed services (e.g. Voice over
IP, streaming audio, and other multimedia) include data that re-
quire guarantees on throughput, delay, and probability of data
loss. However, wireless links are inherently unreliable since the
channel is subject to time-varying interference, fading, and other
effects. In order to combat adverse link conditions mobile radios
can adapt system parameters (e.g. transmitter power, code rate,
modulation, etc.) to the wireless channel and quality of service
(QoS) requirements.

In this paper we present several contributions to the field of
adaptive power and rate control. First, we present a general
dynamic programming framework for the creation of optimal
power and rate control policies that satisfy deadline based QoS
constraints. Second, we develop within this framework a means
to explicitly account for delayed and inaccurate channel esti-
mates. Many link adaptation solutions do not account for erro-
neous channel estimates. Rather, the link layer control is cho-
sen assuming the channel estimate is correct, and the impact
on system performance is determined via calculation or simula-
tion [9]. In our formulation, effective use of information about
the wireless channel can greatly improve the value of erroneous
estimates. Third, we show significant performance gains over
traditional fixed rate algorithms in both power consumption and
the tolerable amount of channel estimation error.

In recent years a large body of research has focused on QoS
constrained link adaptation algorithms. In [11] the authors for-
mulate a stochastic optimization problem for throughput and
backlog sensitive power management. Several authors [1,4,6]
have also proposed dynamic programming solutions. In these
formulations a reward or penalty function is created for the suc-
cessful transmission of data at different power levels. This func-
tion is then optimized over a finite horizon and the performance
of the resulting policies is evaluated via simulation.

As noted in [11], throughput constrained QoS algorithms can
add significant delay to data in the presence of slow fading chan-
nels, bursty traffic, or inaccurate channel estimation – rendering
the algorithm ineffective for delay sensitive data. For voice and
multimedia, many delay constrained QoS algorithms attempt to
guarantee a Signal to Interference Ratio (SIR) or fixed bit rate
over the wireless channel, even though multimedia traffic is not
necessarily a fixed rate source. While this type of fixed rate
guarantee provides the required QoS, it does not provide the best
performance [1] in terms of power consumption. Since mobile
wireless systems are generally interference limited, this also im-

plies fixed SIR algorithms may use more system capacity than
necessary.

This paper presents an example of an uplink link adaptation
algorithm for delay sensitive traffic over TDMA systems. We as-
sume that the network level QoS constraint translates to a dead-
line requirement for each packet. If a packet is not successfully
transmitted by its deadline, it is dropped from the transmitter’s
buffer. Our link adaptation algorithm produces a power, coding,
modulation, and scheduling policy via a dynamic programming
recursion adapted to the wireless channel and traffic character-
istics. The goal of the dynamic program is to minimize trans-
mitter power while providing a guarantee on the probability of
dropping a packet or consecutive packets.

The rest of this paper is organized as follows. First, we
present the basic problem formulation and system model for a
TDMA uplink channel. Second, we develop an infinite horizon
dynamic programming algorithm for computing optimal link
adaptation policies. Third, we present empirical results that ex-
amine the impact of channel characteristics and estimate delay
on control policies and power consumption. Finally, we discuss
future research directions and extensions of this model.

II. PROBLEM FORMULATION AND SYSTEM MODEL

The mathematical notation in this paper will adhere to the
following convention: scalar variables will be Latin characters
(e.g. s), random variables will be bold lower case Latin charac-
ters (e.g. x), sets will be bold upper case Latin letters (e.g. A),
and vector quantities will have a right arrow superscript over the
letter (e.g. �a).

Consider a single wireless mobile transmitting deadline sen-
sitive data to a base station. The base station is responsible
for time/frequency slot allocation. Hence the mobile does not
see interference from other mobiles within the same cell. As-
sume that time is slotted and divided into frames. Each frame
consists of N time slots, which are of equal length and can be
used to transmit one fixed-length packet per slot. When packet
i is generated at time ti it announces a deadline di (in units
of frames), so that if it is not successfully transmitted by time
ei = ti + di (the extinction time), the packet is considered lost
and is dropped. We assume that all errors can be detected and
the mobile receives an acknowledgement (ACK/NACK) imme-
diately after the transmission of a packet. (The overhead for the
acknowledgement transmission is ignored.) Any packet trans-
mitted in error will be retransmitted until its deadline expires.

A. The Wireless Channel Model

We assume the variations in the wireless channel gain can be
described by a finite-state discrete-time Markov chain (DTMC).
Several authors have proposed Markov models for many differ-
ent types of wireless channels [8,10,12]. The construction of
these models follows a common procedure. The range of path
gains are divided into a finite number of sections and each sec-
tion becomes a state in the Markov chain. Then a transition
matrix, which determines the probability of jumping from one
state to another, is constructed in order to accurately model the
channel characteristics (e.g. log-normal shadowing or Rayleigh
fading). While we do not require any particular set of channel
characteristics, we do require that the jumps of the DTMC occur
at the time slot boundaries.



Let i represent one of the possible states in I, where I is the
set of states in the DTMC. The probability of jumping from state
i ∈ I at time n to another state i ′ ∈ I at time n + 1 is defined
by the transition matrix Q(i, i ′).

B. The Data Traffic Model

The traffic generated by the mobiles is also described by a
DTMC. Each state in the traffic Markov Chain corresponds to
a deadline and a number of packets. At the end of a frame a
mobile will generate the number of packets and deadline cor-
responding to its state. A simple example of such a model is
the popular ON/OFF two-state Markov Chain for voice traffic.
In each time slot the chain can move from the OFF (resp. ON)
state to the ON (resp. OFF) state with probability p (resp. q). If
the chain is in the ON state at the end of a frame it will generate
a packet with deadline d frames in the future. If it is in the OFF
state it will generate nothing.

C. Implementation Specifics

Our proposed QoS algorithm is composed of two phases, a
setup phase and an execution phase. During the setup phase we
follow the method in the next section to solve the appropriate
dynamic program. The solution of this dynamic program pro-
vides an optimal link adaptation policy for the power, coding,
and modulation choices available to a mobile device. The re-
sulting policy is optimal in that it minimizes the average trans-
mission power subject to constraints on the probability of los-
ing a packet and delay. The optimal control policy is stored in
a look-up table, which is loaded onto the mobile. In the execu-
tion phase the mobile receives information from the base-station
about the channel and combines this with its own information on
traffic waiting for transmission. These pieces of information are
then used to find the correct link adaptation policy in the look-up
table.

III. SOLUTION METHOD

The following section contains the dynamic programming
formulation of our QoS algorithm. The first section develops
a simple finite-horizon dynamic program. The ensuing sections
develop extensions to this formulation in order to account for
multiple traffic deadlines, Markov modulated traffic, and imper-
fect channel estimates.

A. Simple Dynamic Program Recursion

We begin with a simple finite-horizon dynamic program and
two critical assumptions. First, assume packets arriving at the
start of a frame have a transmission deadline at the end of the
frame. Further assume the traffic Markov chain consists of only
one state. The second assumption simplifies our initial notation.
The first assumption ensures the link adaptation policy chosen
in each frame is independent of the policy used in other frames.
Since all data is flushed from the queue at the end of each frame
(i.e. when the deadline expires), the link control in a frame will
not affect the amount of data awaiting transmission in a follow-
ing frame. Hence we can view each frame as an independent
stochastic control problem. Although this assumption is com-
mon in the literature [1,3,6], it limits the data traffic to a very
small class of models. We will relax both of these assumptions
in the following sub-sections.

At the start of each frame the mobile generates a fixed num-
ber of bytes K that announce a common extinction time of
ei = ti + 1, the end of the frame. In each time slot the mobile
may choose an action �a ∈ A, where A is the set of available
transmitter power, coding, and modulation choices. The com-
ponents of �a = (ap, ab) are the selected transmitter power and
the effective amount of data (in bytes) transmitted in one time
slot when using coding and modulation choice a b.

We shall consider a process observed at discrete time points
n = 0, 1, 2, 3, . . . , N , where n = 0 is the start of a frame and
n = N is the end. At each time point the state of the process
�s ∈ S is a vector with components �s = (sd, i), the number
of bytes waiting for transmission and the state of the wireless
channel.

For any given channel state we assume the bit error proba-
bility (Berr) is known for a given modulation (GMSK, QPSK,
etc.) and coding choice. In our case the quantity of inter-
est is the packet error probability (Perr), which is a function
of Berr, equalization, interleaving, error correcting codes, and
other system-specific parameters. We assume Perr is known for
a given action �a and channel state i.

Let F be the set of all control policies. For any vector �f ∈ F,
let f(�s,�a, n) denote the probability of choosing action �a in state
�s at time n. For each action �a the transmitter pays a penalty
r(�a), the power used for transmission. Furthermore, if the mo-
bile reaches time n = N with s > 0 packets left in the queue,
it pays a penalty g(�s). The purpose of the penalty g(�s) is to
enforce some form of QoS in the mathematical formulation, the
mobile does not actually pay the penalty in the execution phase.
A common choice for this penalty is g(�s) = λsd, a linearly
increasing function of the amount of data lost to deadline expi-
ration. Several authors [5,6] have explored more complicated
penalty functions (sometimes called utility functions) for vari-
ous types of QoS constraints. We do not explore these functions
here since, as we will show later, the penalty function can ulti-
mately be replaced by an explicit performance constraint.

Define V nsd,i as the expected value of the total power con-
sumed and penalty paid starting from time n in state �s = (sd, i).
Our goal is to find a policy �f ∈ F that minimizes V 0K,i, call

this policy �f∗. It is easy to show there exists an optimal Markov
policy [2], f ∗(n,�s,�a), that depends only on the current system
state. This policy is created by choosing the optimal action �a,
for each state �s at every step of the following recursion:

V nsd,i = min
�a∈A
[r(�a) (1)

+
∑
i ′∈I

Q(i, i ′)(1− Perr(�a, i
′))V n+1sd−ab,i ′

+ Q(i, i ′)Perr(�a, i ′)V n+1sd,i ′ ] ,

with a terminal penalty vector

V Nsd,i = λsd. (2)

B. Multiple Deadlines

We now relax the first assumption from the previous section
and allow arriving data to have deadlines later than the current
frame. We will model the data component of our state space as a
vector �sd. Each component of �sd represents the number of bytes
awaiting transmission with different deadlines. For example,
the first element of �sd is the number of bytes with a deadline
of one frame in the future, the second element represents the
number of bytes with a deadline of two frames in the future, and
so forth. At the end of each frame all data with expired deadlines
(i.e. the first element of �sd) will be discarded. All other data
will be moved up one element in �sd to denote that they are one
frame closer to expiration. We keep the second assumption from
the previous section and assume the mobile generates K bytes
of data at the end of a frame, now with fixed deadline d > 1.
Finally, we assume data with a deadline of k frames in the future
will receive priority over data with a deadline of k+1 frames in
the future (i.e. earliest deadline first queueing).

The addition of multiple deadlines to this formulation creates
a significant problem. The link adaptation policy in one frame
will now affect the state space of future frames. For example,



suppose we choose a very low transmission power in the cur-
rent frame and are unable to successfully transmit any bytes of
data. If these bytes are then held over to the next frame, they
will increase the delay of new arriving data. Therefore our fi-
nite horizon dynamic program, which assumes each frame is an
independent problem, is no longer sufficient.

In order to correctly model the system we must convert our
finite horizon model into an infinite horizon dynamic program.
However, any infinite horizon control policy must be station-
ary [2]. Through a common trick in Markov chain analysis
we can augment the problem state space with the time indices
n ∈ [0, 1, . . .N ]. Therefore elements of the state space �s will
have components (�sd, i, n), the state of the data buffer, the state
of the channel, and the current time slot. The component n will
increment by one until it reaches N (i.e. the end of a frame),
at which point n will jump back to zero (i.e. the start of a
new frame). This state space augmentation will convert a non-
stationary decision process into a stationary, periodic Markov
decision process.

For �s ∈ S and �f ∈ F define the limiting average value of the
stationary policy �f as

V (�f) = lim sup
m→∞

[(
1

m+ 1

) m∑
k=0

E�s�f

[
r(�s, �f , k)

]]
, (3)

where r(�s, �f , k) is the reward at time k resulting from the policy
�f in state �s.

Our goal is to find an �f ∈ F that minimizes V (�f). From
[2] we know this problem can be solved through the following
linear program.

min
x

∑
�s∈S

∑
�a∈A

r(�s,�a)x�s�a (4)

subject to:∑
�s∈S

∑
�a∈A
(δ(�s,�s ′)− p(�s ′|�s,�a)) x�s�a = 0, �s ′ ∈ S (5)

∑
�s∈S

∑
�a∈A

x�s�a = 1, (6)

x�s�a ≥ 0; �a ∈ A, �s ∈ S,

where δ(�s,�s ′) is the Kronecker delta, x�s�a is the probability of
taking action �a in state �s, and p(�s ′|s,�a) is the probability of
jumping to state �s ′ given action �a in state �s. The state-action
frequenciesx�s�a provide a unique mapping to an optimal strategy
�f∗.

Recall that packets with expired deadlines are dropped from
the data buffer at the end of each frame. Therefore there ex-
ists a subset of the state space, S̃ ⊂ S, corresponding to the set
of states where a packet is dropped due to deadline expiration.
In order to constrain the probability of packet loss we add the
following constraint to (4),∑

�a∈A

∑
�s∈S̃

x�s�a ≤ α. (7)

We can further define sets of states corresponding to the loss
of any number of consecutive packets. In some cases an ex-
pansion of the state space may be required in order to track the
recent packet loss history. Each additional constraint on the dis-
tribution of packet loss requires an extra linear constraint in (4).
Also notice that we no longer require the penalty function for
dropping a packet since the probability of packet loss is explic-
itly constrained.

C. Markov Modulated Traffic

Until now we have assumed a fixed amount of data, K , ar-
rives at the transmitter at the end of each frame with a fixed
deadline of d > 1 frames in the future. Though convenient, this
assumption is only appropriate for a very small class of traffic
models. As we mentioned earlier, the statistics of a much more
general class of traffic can be described by a finite state Markov
chain. Each state in the traffic Markov chain corresponds to a
number of bytes and a deadline. At the end of each frame, the
number of bytes corresponding to the traffic state are added to
the buffer with a transmission deadline also determined by the
state. There will be a matrix describing the transition probabili-
ties for the traffic chain, and this matrix is incorporated into the
dynamic program recursion (or into the linear program) in ex-
actly the same fashion as the matrix that describes the transitions
for the wireless channel.

D. Imperfect Channel Estimates

We now relax our assumption of perfect channel estimates.
In mobile wireless systems, channel estimates are computed at
the base station and forwarded to the mobile on a regular basis.
This process will introduce both error and delay in the estimates.
We first consider the estimation error. Due to the random nature
of the channel, it is impossible for the base station to precisely
determine the state of the channel. The best estimate a base
station can provide is a probability distribution over the possi-
ble channel states. Consider our original Markov model for the
wireless channel where we assume the channel parameters can
only take values from a finite set I. More accurately, the chan-
nel estimation algorithm discretizes the channel into a finite set.
Furthermore, suppose the base station transmits an index j from
the set of possible estimates J, where each j ∈ J now corre-
sponds to a discrete probability distribution over the set I. This
change does not add any computational complexity to the dy-
namic program; we are simply exchanging one set of indices for
another. However, we must account for this change when com-
puting the probability of packet error. We defined the packet
error probability as Perr(�a, i), a function of the action choice
�a, and channel state i. Since we now only have a distribution
of the channel state, i is a random variable; hence Perr(�a, i) is
also random. The probability of packet error as a function of a
channel estimate j ∈ J is the expectation of the random vari-
able Perr(�a, i) with respect to the distribution defined by j. If
we define Perr(�a, j) as the probability of packet error for an ac-
tion choice �a and a channel estimate j, we can compute its value
as

Perr(�a, j) =
∑
k∈I

P (i = k|j) Perr(�a, k), (8)

where P (i = k|j) is the probability the channel is in a particular
state k ∈ I given a received estimate j.

We also account for the delay in channel estimates. Assume
the base station only transmits channel estimates once every m
frames. The accuracy of the estimate will degrade over time. If
we know the statistics describing the channel evolution (e.g. the
transition matrix of the channel Markov chain), we can deter-
mine the distribution of the channel state at any time using only
an initial distribution and the number of time slots since that
distribution was received. For example, suppose we receive the
estimate j from the base station at time n = 0 that corresponds
to a discrete distribution �λ0 (a row vector of probabilities). At
time n ≤ m our best estimate of the distribution of the channel
state is

�λn = �λ0Q
n, (9)

where Q is the transition matrix for the channel. Therefore at
any time we can compute the probability of packet error using
the formula in (8), with a base station estimate j and the time
since that estimate was received.
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Fig. 1. Packet Error Probabilities for MCS-6 and MCS-9 in TU3 and TU50

IV. NUMERICAL EVALUATION

In this section we will present the results of a simple sys-
tem level simulation of the GSM EDGE Radio Access Network
(GERAN).

A. Simulation Setup

A standard EDGE frame consists of eight time slots lasting a
total of 20 milliseconds. We consider a one slot EDGE mobile
transmitting deadline sensitive data. We would like to guarantee
99% of the packets will meet their transmission deadlines. For
each packet the mobile may select a transmitter power between
0.02 and 0.8 Watts, in increments of 2dB. The mobile may also
choose either the MCS-6 or MCS-9 coding scheme. These mod-
ulation and coding schemes are two of the five enhanced 8PSK
data rates for EDGE. MCS-6 is rate 12 convolutionally encoded
8PSK and can transmit 74 bytes per 20ms block (i.e. 29.6 Kbps).
MCS-9 is full rate 8PSK and can transmit 148 bytes per 20ms
block (i.e. 59.2 Kbps).

We assume the data traffic arriving at the mobile follows the
ON/OFF DTMC described in Section 2. If the chain is in the
ON state at the end of a frame the mobile will generate one 74
byte packet with a deadline of 3 frames (i.e. 60 ms) in the future.

B. The Wireless Channel

We used data available at the 3GPP website (www.3GPP.org)
for the packet error performance of EDGE [5] in a typical ur-
ban multipath environment, a channel model in the ETSI COST
207 specification [3]. The 3km/h and 50km/h versions of this
channel model (TU3 and TU50 respectively) are often used to
evaluate the performance of GSM and EDGE. The packet error
probabilities for the MCS-6 and MCS-9 coding schemes as a
function of received Signal to Interference Ratio are plotted in
figure 1.

We model the free space path loss and shadowing as a DTMC.
As suggested by Gudmundson [8], we model the log-normal
shadowing as a Gaussian process in dB units. In order to fully
describe the shadowing model we must specify a mean path loss,
standard deviation, and a correlation coefficient. Once these pa-
rameters are determined we split the range of channel gains into
a finite number of bins and construct a Discrete Time Markov
Chain that approximates the Gaussian process using the method
suggested in [12]. The following table contains the channel gain
regions for the DTMC and other channel parameters.

Path Loss (−∞,112.5),(112.5,117.5)
Ranges in dB (117.5,122.5),(122.5,127.5)

(132.5,∞)
Mean Path Loss 120dB
Shadowing Std. Dev σ = 7dB macrocell model

σ = 4.3dB microcell model
Macrocell Shadowing ζD = .82
Correlation for D = 100m
Microcell Shadowing ζD = .3
Correlation for D = 20m
Noise Threshold N0 -150dBW
Carrier Frequency 900MHz

We consider two shadowing models [8], one for typical
macrocells, and one for typical microcells. In the macrocell
model, the log-normal shadowing is highly correlated over fairly
large distances (100 meters), whereas the microcell shadowing
de-correlates over relatively short distances (20 meters). There-
fore, if a channel estimate is delayed, we expect the accuracy of
that estimate to degrade more quickly in the microcell channel,
especially if the mobile is moving at the higher speed of 50km/h.

C. Channel Estimates

In a standard EDGE mobile network, the base station passes
power control commands to the mobile once every 480ms. In
our formulation the base station passes the channel measure-
ments rather than the power control commands, thereby allow-
ing the mobile to perform its own link adaptation.

A recent study [5] considered the impact of shortening the
power control interval on system performance. In particular, in-
tervals of 20ms, 40ms, 60ms, 120ms, 240ms, and 480ms were
considered. The study concluded there was no improvement
in system performance by decreasing the update interval below
480ms for a 3km/h mobile or 120ms for a 50km/h mobile. How-
ever, this study only considered a macrocell shadowing environ-
ment. In a microcell, where the shadowing changes much more
quickly, these update intervals may not be sufficient. We con-
sidered all 6 of the above update intervals as well as the two
shadowing models in order to answer this question.

D. An Algorithm for Comparison

As a comparison for our dynamic program we will consider
the standard Fixed-SIR power control algorithm. For this exam-
ple our goal is to keep the probability of packet loss below 0.01.
In order to meet this QoS constraint, the appropriate SIRs for
each mobile speed, shadowing model, and estimate delay were
determined by simulation. The graph in Figure 4 shows the av-
erage power consumed per transmitted packet versus estimate
delay for the Fixed-SIR policies. Clearly the delay in channel
estimates will have a significant impact on power consumption
when the channel is changing rapidly (e.g. high speed mobiles
and microcells). In fact, with the standard estimate delay of
480ms, a high speed mobile in a microcell will consume almost
twice the power of a slow moving mobile in a macrocell in order
to satisfy the same QoS constraint.

E. Performance Evaluation

We now consider the performance of the proposed Dynamic
Programming algorithm. Figures 2 and 3 plot several power
control policies generated by our algorithm. The curves in Fig-
ure 2 show the optimal power choice as a function of channel
and buffer state for a 50km/h mobile in a microcell shadowing
environment. Figure 3 shows the same plots for a 3km/h mobile.
The shaded region in each plot represents the states where the
MCS-9 code scheme (i.e. uncoded 8PSK) is used. In all other
states MCS-6 (i.e. rate 12 coded 8psk) is used. The six graphs
in each figure represent one of the possible estimate delays (i.e.
20ms, 40ms, 60ms, 120ms, 240ms, and 480ms). The channel



states are ordered from best to worst quality, and the buffer states
are ordered first by the number of packets queued and then by
packet urgency. For example, buffer state 1 corresponds to one
queued packet with 3 frames left before expiration, buffer state
2 represents 1 packet queued with 2 frames before expiration,
etc.

First, consider the plot for 20ms of estimate delay (the top-left
plot) in each figure. In this case the mobile receives estimates
quite frequently and has accurate information about the state of
the channel. When the channel quality is poor the mobile will
decrease transmit power if its buffer does not contain a packet
that is about to expire. If the mobile does have a packet that will
expire at the end of the current frame it raises its transmit power
to overcome the poor channel. For example, buffer state 4 (2
packets with deadlines of 2 and 3 frames in the future) requires
a lower transmit power than state 3 (only one packet, but with
a deadline of 1 frame in the future). Notice that the MCS-9
code is only used in the best channel states and when there is a
large backlog of data. Recall that MCS-9 can transmit twice as
much data as MCS-6, but it requires an extremely high signal-
to-interference ratio for succesful transmission.

Now consider the remaining plots with estimate delay in-
creasing to 480ms at the bottom-right corner of each figure. For
a 50km/h mobile in a microcell, the probability the channel re-
mains in the same state over large time intervals is quite low.
Therefore the mobile will attempt to take advantage of a good
channel by using the MCS-9 code. Notice that a large update de-
lay renders the channel estimate virtually useless. Furthermore,
as estimate delay increases the mobile must raise its transmit
power substantially for the MCS-9 code. Indeed, MCS-9 be-
comes too expensive in terms of power when the estimate delay
reaches 480ms.

In the plots for the 3km/h mobile we see that the control pol-
icy is relatively insensitive to delay. Once again this is due to the
nature of the shadowing process. Even the large update interval
of 480ms is sufficient to accurately track the channel state. No-
tice the MCS-9 code is used less often than in the 50km/h case.
Since the channel is likely to remain in a high quality state for a
long period of time, there is less incentive for the mobile to take
advantage of a good channel state and waste large amounts of
power on a MCS-9 packet.

If we examine the plot of average power consumption in Fig-
ure 5 our Dynamic Programming algorithm appears to overcome
the shortfalls of the Fixed-BER algorithm. In fact, our Dynamic
Programming algorithm does not appear to incur a penalty as es-
timate delay increases. Obviously this can not be the case since
it implies the channel updates are not useful. As it turns out, our
Dynamic Programming formulation with only a single proba-
bility constraint will perform progressively worse, in terms of
consecutive packet loss, as estimate delay increases. In order to
correct this problem we add a second constraint, which forces
the probability of losing 2 consecutive packets to be less than
.0001.

Figure 6 plots the average power per packet for a 50km/h mo-
bile in a microcell shadowing environment using the Fixed-SIR
policy and both Dynamic Programming formulations. Notice
the power consumption for the Dynamic Program with the ex-
tra constraint increases as estimate delay increases. Average
power plots for the other channels (3km/h microcell/macrocell
and 50km/h macrocell) with the new constraint also have a sim-
ilar shape, though the penalty for estimate delay in these cases
is not as high. After adding the extra constraint on consecutive
packet loss, our algorithm still consumes less power than the
Fixed-SIR policy. Though important, this gain in power con-
sumption is not necessarily the most significant feature of Fig-
ure 6. The power consumption of the Fixed-SIR policy (Figure
4) for a 50km/h mobile in a Microcell increases sharply for es-
timate delays greater than 40ms. In our proposed algorithm, the
average transmit power does not increase markedly until the es-

timate delay exceeds 120ms. From the perspective of system
design and implementation, this “gain” in estimate delay could
greatly simplify command and control protocols as well as the
channel update algorithm.

V. CONCLUSION

The need for deadline based QoS in wireless channels is clear:
the increasing demand for multimedia traffic over packet data
networks and the future growth of wireless network access re-
quire this form of QoS. We have demonstrated that it is pos-
sible to provide robust QoS schemes for delay sensitive data
in erratic transmission environments using appropriate power,
coding, and scheduling policies. Our control algorithm allows
for complex QoS constraints, such as a constraint on probabil-
ities of consecutive packet loss. Furthermore, we provide the
means to explicitly account for channel estimation error and es-
timate delay. In contrast, the conventional Fixed-SIR scheme
does not take advantage of fluctuations in the channel or traffic
to save energy, nor does it account for inaccurate channel es-
timates. The method of power control introduced here adapts
to the erratic behavior of the communication channel and ac-
counts for the uncertainty in the system in order to meet QoS
goals and minimize power consumption. The next step in the
development of this QoS algorithm is a much larger scale so-
lution for GSM EDGE. In particular, we plan to implement the
full set of coding schemes, Incremental Redundancy, Adaptive
Multi-Rate voice coders, and allow for more complex models of
user mobility. This formulation can also be extended to inter-
ference based systems (e.g. CDMA) using multiple controller
dynamic programming [13]. The increased complexity result-
ing from multiple controllers requires us to reserve this topic for
a journal paper.

Though our results indicate the promising possibility of QoS
guarantees for delay constrained communication in an unreli-
able environment, there are additional issues. For example, it
is clear that the channel model needs additional refinement. As
we demonstrated earlier, the optimal control policy is heavily
dependent on both the speed of the mobile and the nature of the
shadowing environment. In cellular systems we can expect mo-
biles to attain speeds higher than 50km/h and there are many
other shadowing models worthy of investigation. Further re-
search examining the impact of high speed mobiles and alternate
channel models is necessary.
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Fig. 2. Power vs. Buffer State and Estimate Delay for the TU50 Microcell. The
MCS-9 code is used in the shaded region, otherwise MCS-6 is used.
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Fig. 3. Power vs. Buffer State and Estimate Delay for the TU3 Microcell The
MCS-9 code is used in the shaded region, otherwise MCS-6 is used.
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Fig. 4. Average Power per Packet vs. Estimate Delay for the Fixed-SIR Control
Scheme
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Fig. 5. Average Transmit Power vs. Estimate Delay for the Dynamic Program-
ming Algorithm
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Fig. 6. Average Transmit Power vs. Estimate Delay for the TU50 Microcell:
DP Algorithm, Modified DP algorithm, and Fixed-BER policy


