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Kernel-Based Reinforcement Learning in
Average–Cost Problems

Dirk Ormoneit and Peter Glynn

Abstract—Reinforcement learning (RL) is concerned with the
identification of optimal controls in Markov decision processes
(MDPs) where no explicit model of the transition probabili-
ties is available. Many existing approaches to RL, including
“temporal-difference learning”, employ simulation-based approx-
imations of the value function for this purpose. This procedure
frequently leads to numerical instabilities of the resulting learning
algorithm, especially if the function approximators used are
parametric, such as linear combinations of basis functions or
neural networks. In this paper, we propose an alternative class
of RL algorithms which always produces stable estimates of the
value function. In detail, we use “local averaging” methods to
construct an approximate dynamic programming (ADP) algo-
rithm. Nearest-neighbor regression, grid-based approximations,
and trees can all be used as the basis of this approximation. We
provide a thorough theoretical analysis of this approach and we
demonstrate that ADP converges to a unique approximation in
continuous-state average–cost MDPs. In addition, we prove that
our method is consistent in the sense that an optimal approximate
strategy is identified asymptotically. With regard to a practical
implementation, we suggest a reduction of ADP to standard
dynamic programming in an artificial finite-state MDP.

Index Terms—Average–cost problem, dynamic programming,
kernel smoothing, local averaging, Markov decision process
(MDP), perturbation theory, policy iteration, reinforcement
learning, temporal-difference learning.

I. INTRODUCTION

WE CONSIDER optimal control in Markov decision
processes (MDPs) with continuous state-spaces and

unknown transition probabilities. To approach this problem,
one typically estimates the parameters of an explicit transition
model from sample trajectories. The feasibility of this approach
depends on the complexity of the system and on the amount
of available training data. For continuous state-spaces, conver-
gence may be very slow unless prior information is available
to restrict the number of model parameters. An interesting
alternative is to approximate the value functiondirectly from
the data, without explicitly modeling the transition probabil-
ities. Instead, this approach relies on animplicit transition
model in the form of simulated data, and it is referred to as
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“reinforcement learning” in the machine learning literature.
The potential benefits of reinforcement learning are several.
First, the value function may be better suited for estimation than
the transition kernel. Second, even if the transition probabilities
are known, the computational effort to derive the optimal policy
from it via dynamic programming may become prohibitive
in continuous state-spaces. An approximation of the value
function, on the other hand, can sometimes be estimated much
more efficiently from the training data. This approximate value
function may then serve to construct an approximation of the
optimal strategy.

A standard approach to reinforcement learning is “temporal-
difference learning” [1], [2]. This method has been applied suc-
cessfully to many discrete state-space problems using an explicit
representation of the value function as a lookup table. How-
ever, a lookup table representation may be unsatisfactory in con-
tinuous or very large discrete state-spaces because of its poor
ability to “generalize” to previously unseen data. To improve
the generalization performance, neural networks have been sug-
gested as approximators of the value function. A serious draw-
back of this approach is that stability and convergence properties
of approximate temporal-difference methods are available only
in special cases and examples are known where temporal-differ-
ence learning fails to converge [3]. To circumvent these short-
comings, a nonparametric approach to reinforcement learning
has been recently proposed by Ormoneit and Sen [4]. Specifi-
cally, they suggest the use of kernel smoothers, a form of local
averaging, to approximate the value function in finite-horizon
and infinite-horizon discounted-cost problems. In this work, we
establish stability and convergence results for a general class
of reinforcement learning algorithms based on local averaging.
Emphasis is on the application to average–cost MDPs.

The mathematical analysis of average–cost problems is typ-
ically more involved than the analysis of discounted problems,
both in the case of known transition probabilities and for rein-
forcement learning [5]. For known transition probabilities, the
optimal policy can be derived from solutions and to
theaveragecost optimality equation (ACOE)

(1)

under rather weak conditions on the underlying MDP [6]. Here,
is the one-step cost using actionand is the condi-

tional expectation operator given. In reinforcement learning,
on the other hand, the transition probabilities are unknown so
that cannot be evaluated and consequently (1) cannot be
employed to determine . In this work, we suggest using in-
stead an approximate expectation operator that can be

0018-9286/02$17.00 © 2002 IEEE

Authorized licensed use limited to: Stanford University. Downloaded on July 20,2010 at 05:45:17 UTC from IEEE Xplore.  Restrictions apply. 



ORMONEIT AND GLYNN: KERNEL-BASED REINFORCEMENT LEARNING 1625

estimated from a set of sample transitions, , using local
averaging. Special cases of local averaging include methods
based on kernel-smoothers, nearest neighbor regression, grid-
based approximations, and trees. Replacingwith in
(1), we obtain theapproximate average cost optimality equa-
tion (AACOE)

(2)

A straightforward approach to reinforcement learning is, thus,
to compute solutions and of (2) using the familiar policy
iteration algorithm and to derive an approximate policy
based on these estimates. The convergence of policy iteration
or alternative dynamic programming rules is a consequence
of the special properties of local averaging. Moreover, due
to the “self-approximating property” of the proposed method,
this computation can be carried out in a finite-state framework
which greatly simplifies the practical implementation.

Besides algorithmic considerations, the proposed method
raises interesting questions from a statistical perspective. In de-
tail, it seems desirable to characterize the approximation error
of the quantities , , and . For this purpose, we interpret
the approximate operator as the true expectation operator
in a “perturbed” Markov chain, and we relate differences in the
average–costs to the perturbation . This argument
reduces the approximation of and essentially to a non-
linear regression problem so that we can generalize existing
asymptotic theory for local averaging. As a result, we obtain
consistency of local averaging under general assumptions.

II. PREVIOUS WORK

Existing literature on approximate dynamic programming
(ADP) can be divided broadly into work in the areas of op-
timal control and reinforcement learning. Inoptimal control,
where the transition probabilities are known, ADP serves as a
computational tool that makes large-scale problems admissible
for an approximate solution. One influential paper by Rust [7]
describes an ADP algorithm that uses the transition density to
weigh the samples generated from a simulator. Rust concludes
that under suitable conditions it is possible to “break” the curse
of dimensionality in the sense that the number of observations
needed to achieve a prespecified accuracy depends subex-
ponentially on the problem dimension. Gordon [8] follows a
closely related approach, summarizing methods that lead to
numerically stable approximations of the value function.

In reinforcement learning, where the transition probabilities
are unknown, attention has focused on the asymptotic proper-
ties of the - and -learning algorithms. For example, in [9],
Gordon notes that learning can be shown to be convergent
to a unique fixed point under suitable conditions on the update
operator. Baker [10] and Borkar [11] both employ a weighting
function to identify the value function asymptotically based on a
stochastic approximation approach. Munos and Moore [12] em-
phasize the continuous time and space aspects of solving MDPs
and propose convergent numerical schemes based on variable
resolution discretization. With regard to the mathematical tech-
niques used in the proofs, the regeneration based on a pseu-
doatom was previously used in reinforcement learning in [13].

This paper builds on the idea of using of a weighting kernel
to approximate the value function in a continuous state space.
However, by contrast to Rust we consider this problem in a re-
inforcement rather than in an optimal control setting which is
considerably more complicated because the unknown transition
information must be determined implicitly during learning. This
algorithm is fundamentally different from those proposed by
Baker and Borkar because it is based on ADP rather than on
stochastic approximation. In particular, we present the first con-
tinuous state reinforcement learning algorithm which exploits
the benefits of statistical kernel smoothers to identify a unique
and provably statistically accurate approximation of the value
function for finite sample sizes and based on finite computa-
tional resources. By iterating until convergence for each finite
sample, ADP uses data more efficiently than stochastic approx-
imation. In addition, the solution of the stochastic programming
approach is only asymptotically unique. We also present a new
methodology to prove the convergence of our algorithm in rig-
orous mathematical detail for a broad variety of local averaging
operators. For example, the variable resolution discretization
techniques of Munos and Moore can be viewed as one appli-
cation of the ADP methodology where the weighting function
represents a dynamic grid. Hence, our results could be used
to extend the theoretical evidence these authors put forward in
support of their methodology.

The remainder of this paper is organized as follows. In
Section III, we state our assumptions and we characterize
the average–cost reinforcement learning problem formally. In
Section IV, we introduce the local averaging operator. Sections V
and VI describe the main theoretical results of this paper,
including theorems establishing the admissibility of the policy
iteration algorithm to compute solutions to the AACOE (2) and
asymptotic bounds on the approximation error, respectively.
In Section VII, we present conclusions.

III. PRELIMINARIES AND PROBLEM FORMULATION

Consider an MDP defined by a sequence of statestaking
values in and a sequence of actionstaking values in the ac-
tion space . The transition probabilities of
the MDP are described by a family of kernels,

, characterizing the (time-homogeneous) conditional prob-
ability of the event given and
. Here, is a set in , the class of Borel sets on the

state-space , and the sequences and
are stochastic processes on a probability

space . For reinforcement learning, it is convenient
to define the strategy space as the set of all stationary ran-
domized policies of the form: , where is
the set of all probability distributions over the elements of.
Obviously, contains all stationary deterministic policies as a
subset. We also define as the set of all (stationary)
-perturbed strategies,: , where

implies that each is chosen with a probability of at
least by . Note that the application of a fixed
transforms the process into a Markov chain governed by
the transition kernel . Frequently, we will be in-
terested in the long-run behavior of this chain starting from a
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given initial condition , and we let denote the “in-
duced” probability measure. Similarly, denotes the con-
ditional expectation operator associated with , and
and denote the corresponding measure and expectation
under a trivial strategy that always applies action, respec-
tively. Finally, each state–action pair has associated with it a
cost, , representing an immediate penalty for visiting
and applying . We define an induced cost function according
to , for all .

A. Assumptions

A.1) For each , , possesses a strictly
positive Radon–Nikodym derivative, , with
respect to the Lebesgue measureon .

A.2) For each , the conditional probability density
is uniformly continuous in .

A.3) The cost function is continuous and “norm-
like,” i.e., the sublevel sets are pre-
compact. There exists a norm-like function

such that .
A.4) There exists a probability measureon , ,

and an integer such that for all , :

(3)

Additional assumptions regarding details of the learning algo-
rithm are listed throughout the paper. For more details, see [14].

B. The Average–Cost Optimality Equation

We focus on MDPs where policies are assessed via their
long-run average costs and refer the reader interested in dis-
counted-costs to [4]. The average–cost of a policyis defined
formally according to

(4)

is defined uniquely and independently of the starting po-
sition under the assumptions in Section III-A (see, for ex-
ample, [14]). We will be interested in those policies
that minimize the average–cost (4), i.e., in policies that satisfy

for all . A standard approach to determine an
optimal policy is to solve the ACOE (1). Here, is a “condi-
tional expectation operator,” defined according to

.1 Under the assumptions of this paper, if finite so-
lutions and to (1) exist, a policy is optimal if and only
if

for some

(5)

For a detailed discussion of this relationship, see [5], [14], [2],
and [6].

1Because the transition probabilitiesP (x; �) are time-homogeneous,
(� h)(x) may be thought of alternatively as the conditional expectation of
h(X ) givenX = x for arbitraryt.

Meyn [6] provides a detailed account of the applicability
of the policy iteration algorithm to compute solutions to (1).
Specifically, he relies on an alternative interpretation of (1) as a
special case ofPoisson’s equation

(6)

where , and he demonstrates that the sequencesand
generated by policy iteration are convergent under the cir-

cumstances of Section III-A. Furthermore, the limiting values
of these sequences are solutions to the ACOE (1) and hence
the algorithm produces an optimal strategy. Here,is the av-
erage–cost defined in (4) and is the so-calledrelative value
function or differential cost functionassociated with . Intu-
itively, is the relative disadvantage of starting the chain in
the state as opposed to drawing a random initial state from the
stationary distribution .

Both Meyn’s and our results hinge on the existence of regen-
erative events, , that can be used to “split” the Markov chain.
Roughly, decouples the trajectory after its occurrence from
the previous history of the chain. Because the differential cost
after the first hitting time of ,
occurs , is independent of the initial position, the splitting
construction gives an alternative expression for the relative
value function in terms of the history of up to

(7)

Then, (7) together with the average–cost (4) define a solution
to Poisson’s equation. Details of the formal construction of the
splitting procedure are discussed in [14].

IV. A VERAGING OPERATORS

In this section, we discuss several approaches to local
averaging and we draw a connection between regression and
approximate dynamic programming. Consider first a typical
regression task where we wish to approximate the conditional
expectation based on realizations of
the continuous random variables and . Then, we can
alternatively interpret the conditional expectation operation

, defined in the previous section, as a regression by choosing
and . That is, given realizations of

and , any regression method is transformed easily into an
approximate expectation operator in principle. However,
many parametric or semiparametric regression approaches such
as linear estimators or neural networks fail to generate stable
learning algorithms in practice (for a discussion, see [3]).
By a stablealgorithm, we mean a procedure based on finite
computational resources, in particular, a finite set of sample data
and a finite representation of the value function, that converges
to a unique solution independently of any starting conditions.
A class of regression methods particularly suited for stable
ADP are methods based on “local averaging.” These models
have been studied extensively in the statistics literature both
from a practical and a theoretical viewpoint (e.g., [15]–[18]).

We assume that a training data set,, is generated by simu-
lating the MDP for steps using a fixed initial policy,, and a
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fixed initial state, . Here, it is important that chooses
each action with positive probability to guarantee sufficient “ex-
ploration” of the state-space, i.e., for a fixed
. Formally, we let be a collection of random

variables distributed according to , and let
be the -step sample trajectory of the

MDP.2 Besides the state variables, we also have the actions
and the costs

generated during the simulation, and we define a par-
tition of into subsets according to .
The cardinality of each of these subsets is, i.e., .
Furthermore, let be the number of samples in that
are located within a generic set,

.
We consider nonparametric regression operators that can be

written as local averages in terms of the data inof the form

(8)

Here, is a generic function and
is a so-called “weighting func-

tion” or “weighting kernel” on . As previously
mentioned, the fundamental idea underlying approximation (8)
is simple. In order to estimate the conditional expectation of

given , it suffices to consider a large number of
sample transitions starting from a statein the neighborhood
of to some successor state . Then the average of the
function values at the successors is a natural esti-
mate of the conditional expectation. The weighting function,

, serves to assess the vicinity of to . That is,
obtains a substantial weight only if is close to .

The weighting function is constrained to be positive, decreasing
with , and to satisfy . These
properties ensure proper averaging of the successor values

in (8). Also, notice that the transition from to
only reveals information about that action used during sim-
ulation at time . Hence, only those transitions should be used
for averaging that were generated using the proper action; that
is, if . Otherwise, we assign astrictly
positive weight to . Next, we discuss various possibilities to
define in practice. For further reference on these
weighting kernels, see [18].

1) Grid-Based Methods:An intuitive way to approximate
an MDP is to partition the state-space into a collection of
mutually exclusive subsets. These sets may be simple rectan-
gles as in the case of a regular grid, or they may be polytopes
resulting from a Voronoi tessellation based on a lattice rule (e.g.,
[19]). We formally characterize this partition using a mapping

that assigns each to a subset of ,
and define a corresponding weighting function according to

if

if

if
(9)

2For simplicity, we sometimes ignore the difference betweenfZ ; . . . ; Z g
andfz ; . . . ; z g below.

That is, we assign uniform weights to the observations within
the neighborhood of, and we also assign some small weight to
the remaining observations satisfying . The “perturbation
constant” in (9) satisfies .

2) Averaging Using Trees:Another possibility to partition
the state-space is by recursive splitting. For example,– -trees
partition the state-space into rectangles in such a way that
each rectangle contains an approximately equal numbers of
observations. Hence, a– -tree implies a partition function

by analogy to the grid-based approach and its weighting
function, , can be defined formally as in (9). Note,
however, that is dependent on the training data setin
this case so that is random and is adaptive
with respect to the local data design. In what follows, we
assume that a separate tree is available for each action
and that the leaves of these trees contain exactlysamples
for simplicity. The main advantages of tree-based averaging
are computational speed, interpretability, and the capability to
deal with relatively high-dimensional data [20].

3) Nearest Neighbor Weights:While approaches 1) and
2) are computationally very efficient, they can sometimes be
suboptimal because the weights implied by (9) are based on
a “hard” decision boundary between the neighborhood
and its complement. A natural idea is to determine weights as
a more gradually decaying function of the distance ,
corresponding to “soft” neighborhood boundaries. Formally,
we let denote a permutation of the elements
in , ordered according to increasing values of , and
we assign fixed weights to these samples according to their
position in the ordered sequence:

if

if

if
(10)

Here, is a decreasing sequence of scalars satisfying
and . For example, can

be defined as a function of using a uniform, a triangular, a
quadratic, or a Gaussian kernel (for details, see [21]). Intuitively,
the nearest neighbors are weighted according to their distance
from by (10), while the remaining observations again obtain
a small uniform weight. We assume for simplicity that
for this approach, i.e., at leastobservations must be available
in each of the sets (see also Proof of Theorem 1).

Note that the list of averaging approaches 1)–3) is intended
as a set of illustrative examples rather than an exhaustive
enumeration of viable approaches. Specifically, below we aim
at presenting our theoretical results in a general framework that
covers 1)–3) as special cases. Alternative averaging methods of
practical interest that could be described in this formal frame-
work include weighting using a Gaussian “mother kernel” [4],
locally weighted regression, discrete kernel-based averaging
across multiple cells of a partition, as well as combinations of
the ideas above. With regard to our theoretical analysis, the
main difference between these various approaches is the choice
of the neighborhood used for averaging. In particular, the neigh-
boring region can be defined explicitly as in 1) or 2)

Authorized licensed use limited to: Stanford University. Downloaded on July 20,2010 at 05:45:17 UTC from IEEE Xplore.  Restrictions apply. 



1628 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 10, OCTOBER 2002

or implicitly as in 3). (We give details of the implicit definition
in the proof of Theorem 2). Also, can be either a fixed
subset of the state-space as in 1) or it can be data-dependent
as in 2) or 3), which requires a separate mathematical
treatment. We denote these distinct approaches asfixed neigh-
borhood and adaptive neighborhoodmethods, respectively.
For notational convenience, we will also introduce a formal
representation of the samples in the neighborhood
using the symbol .
That is, is the subset of samples in that are
the nearest neighbors of. For the nearest neighbor ap-
proach, we adopt the convention :

, and we define via
the relationship :

. To prove the consistency of the aver-
aging approaches 1)–3), it is important that the size of
[and, hence, also of ] shrinks to zero with increasing
sample size at a rate that warrants a suitable bias-variance
tradeoff. Depending on the chosen method, this condition must
be expressed as an assumption on or .

A.5) The neighborhood size in the grid-based averaging
approach 1) satisfies for all ,

(11)

(12)

The number of neighbors in the tree-based
approach 2) and in the nearest neighbor approach 3)
satisfies for all

(13)

(14)

Conditions similar to (11)–(14) are standard in the theory of
pattern recognition and are easy to satisfy in practice [18].
In addition, the magnitude of the perturbations must decay
asymptotically.

A.6) The perturbation constantapproaches zero asgoes
to infinity.

Next, we consider the implications of applying approaches
1)–3) for approximate dynamic programming. We first investi-
gate the solubility of (2) as a means to compute an approximate
strategy in Section V, and then we derive theoretical
properties of this approximation in Section VI.

V. APPROXIMATEDYNAMIC PROGRAMMING

As previously shown, we suggested substituting the unknown
in (1) with one of the approximate expectation operators

defined in the previous section. The approximate av-
erage–cost optimality equation takes the form of (2), and an
approximately optimal strategy can be found by analogy to (5)

for some

(15)

In this section, we derive numerical methods for the solution
of (2). In more detail, to derive an algorithm for the solution
of (2) we reinterpret the approximate conditional expectation
operator as thetrue conditional expectation operator in a
new, artificial Markov chain in Section V-A and we introduce an
additional condition for the solubility of this artificial MDP in
Section V-B. In Section V-C, we suggest an implementation of
kernel-based reinforcement learning using finite-state dynamic
programming. Note that we describe our algorithm using math-
ematical notation rather than pseudocode for brevity and con-
sistency with the rest of this paper. A treatment providing even
more algorithmic detail can be found in [4] and [22]. Moreover,
in [22], we describe the practical application of the algorithm
to the financial problem of optimal portfolio choice and provide
detailed experimental results.

A. An “Artificial” MDP

As previosuly shown, we defined the weighting function
so as to satisfy the conditions

and . Hence, we can think of these
weights as conditional probabilities and define an artificial
transition kernel according to

(16)
Let be the expectation operator associated with

, so that .
Then, we can interpret the AACOE (2) as the true ACOE of
the artificial MDP implied by (16) and we can apply dynamic
programming for its solution. Note that this is a major simpli-
fication of the estimation problem because it allows us to treat
equation (2) in the familiar MDP framework. Specifically, the
ability to analyze approximate dynamic programming using
an artificial MDP is one of the main reasons for using local
averaging to approximate the conditional expectation operator
in the first place: For most alternative approaches, including
linear or nonlinear least-squares regression, locally weighted
regression, smoothing splines, wavelets, etc., a probabilistic
interpretation of (16) is generally not applicable and, therefore,
some of these methods fail to converge.3

Given our new interpretation of as the conditional
expectation under , it will be convenient to define
average–costs and relative value functions of the artificial MDP
by analogy to (4) and (7)

(17)

(18)

In particular, an approximately optimal strategy achieves
the minimum of over all , and the magnitudes and

3The majority of the mentioned approximations can be interpreted as a special
case of local averaging using the notion of “equivalent kernels” [23]. However,
the equivalent kernel typically violates the positivity and normalization con-
straints onk (z ; x).
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in (2) are the optimal average–cost and the optimal relative
value function associated with . Hence, it is straightforward
to compute and by applying standard algorithms such
as policy iteration or value iteration to the artificial MDP. For
(17) and (18) to be well defined, however, we must first show
that the artificial kernel inherits some regularity
conditions from the original transition kernel . Next,
we introduce an additional condition that will be needed for this
purpose.

B. “Trembling Hand Policies”

In this section, we consider the stability of the artificial MDP
implied by the transition kernel (16). Our goal is to recover the
same regeneration structure that was established for the original
MDP in Section III-B. In particular, we would like to use the
same stopping time,, in the definitions of and in (7)
and (18). This important connection between the original and
the artificial MDP is sufficient to guarantee the convergence of
policy and value iteration for the artificial MDP [6].

As in Assumption A.4 of Section III-A, focus is on the ex-
istence of a suitable minorizing measuresuitable for spitting
the artificial chain by analogy to Section III-B. A simple way to
define this measure is by requiring that for some
positive constant (for details, see [24]). A game-theoretic in-
terpretation of this condition is that of a player with a “trembling
hand” that causes him to commit errors sporadically. Mathemat-
ically, trembling hand policies simply correspond to elements of
the perturbed action space defined in Section III. That is, we
approximate the optimal policy, , by using the policy
within that is optimal with respect to the artificial
MDP, . This proceeding introduces an additional approxi-
mation error which needs to decay asymptotically to achieve
consistency. A necessary condition is that the magnitude of the
perturbation itself vanishes at an appropriate rate with growing
sample size

A.7) The perturbation constantapproaches zero asgoes
to infinity.

The following policies are meant to be elements of where
is contingent on in accordance with Assumption A.7). It

remains to define the minorizing measure by analogy to
(3). For this purpose, note that every state incan be reached
from any other state with a probability of at least under

and let .
has the property that for all

, , and . Hence, it can be used for
regeneration and we interpretas the corresponding renewal
time.

C. “Self-Approximating Property”

We saw that the artificial MDP defined in Section V-A
reduces the solution of the AACOE (2) to the solution of an
ordinary dynamic programming problem in the new MDP.
Computationally, a severe problem for dynamic programming
in both the original and the artificial chain is the representation
of the continuous value function: It must be approximated for
practical implementation. On the other hand, in kernel-based
reinforcement learning the AACOE is itself an approximation.

We will show that the AACOE can be solved exactly using
the so-called “self-approximating property” of local averaging
that will be described next. The relevance of this concept for
approximate dynamic programming has been emphasized in
[7].

To illustrate the concept of self approximation, note first that
the only information needed to apply the approximate expecta-
tion operator defined in (8) to a generic functionare the
values of at the states in the training sample. With regard
to the solution of the AACOE (2), this insight suggests the fol-
lowing procedure. In a first step, we compute the values of
at the locations that are consistent with (2)

(19)

for . Second, we derive the values of at
new locations using

(20)

The reader may wish to verify that the magnitudes determined
in this manner constitute solutions to (2). The advantage of this
two-step procedure is that equation (19) can be thought of al-
ternatively as the AACOE of yet another artificial MDP with a
finite state-space consisting of the elements of. To make this
precise, we identify the samples inwith the elements of the
set , and we define the vectors and matrices

for

for

for and

The vectors and summarize the values of
and at the sample states, and the matrix con-
tains the weight assigned to the sampleat state in loca-
tion . Note that is strictly positive and stochastic
given the conventions of Sections IV and V-B; that is, it sat-
isfies and . Hence, we
interpret as a transition matrix that defines a new MDP
with the state space , and and are the cost and the
relative value function of the new MDP, respectively. Due to the
strict positivity of , the transition structure of the discrete
MDP is unichain for all , and its ACOE is a discrete
version of the first step for the solution of the AACOE (19)

(21)

for . The correspondence between (21) and (19)
is extremely helpful to determine and in practice, be-
cause it reduces the solution of (19) to a dynamic programming
problem in a unichain finite-state MDP. This dynamic program-
ming problem can then be attacked using standard algorithms
such as policy iteration, value iteration, or linear programming
(for example, see [5], [25], and [2]). Specifically, it can be shown
that all of these algorithms converge to the optimal solution if
the MDP is unichain as in the case of (21). For example, in [22],
we use value iteration in combination with a Gaussian weighting
kernel to solve a real-world optimal portfolio choice problem.
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One of the findings of this experiment is that the number of iter-
ations until convergence depends on thekernel bandwidthin an
interesting manner. In [4], we highlight further algorithmic de-
tails including the optimal choice of the bandwidth parameter.
We shall not repeat these details here because they are not di-
rectly relevant to the theoretical results presented in this work.
Instead we assume simply that an efficient algorithm for the
solution of (21) is available in the following.

As previously indicated, we obtain the approximate average
cost and the values at the locations in as
the output of our algorithm. The values of at new loca-
tions is then computed using (20) so that and consti-
tute solutions to (2). Statistical properties of these solutions are
topic of Section VI.

VI. CONSISTENCY

In Section V, we outlined an iterative algorithm for the
solution of the AACOE (8) and for the determination of
an approximate optimal strategy . A crucial issue is the
asymptotic behavior of this approximation. As a minimum
statistical requirement, we demand that should converge
to the true optimal policy, , in an appropriate sense as the
sample size grows to infinity. In other words, the algorithm
should produce a consistent estimate of.

The derivation of this consistency result is complicated by the
fact that we consider average–cost problems in this work. Con-
vergence results for discounted-cost problems can be derived
using the contraction property of the approximate Bellman op-
erator [4]. For average–cost problems, we demonstrate first in
Proposition 1 that, given anyfixedstrategy , the approximation
error of with respect to the true cost, , can be related to
the approximation error of the approximate expectation oper-
ator with respect to . Second, we use the result of the
first step to demonstrate also that converges to under
suitable conditions in Proposition 2 and Theorem 1. Here, it is
crucial that the convergence occursuniformly for all strategies.
Finally, we argue that, because and constitute the minima
of and with respect to , this convergence property also
carries over to the approximate optimal costs in Theorem 2.

As a minimum prerequisite to obtain the first result, i.e., that
converges to , it seems intuitively clear that the approxi-

mate expectation operator should converge to the true .
We summarize this result in the following proposition, which
can be interpreted as a continuous-state version of a result in
[26].

Proposition 1: For any , the approximation errors
of the magnitudes and can be written as

(22)

(23)

where is the unique invariant measure associated with the
artificial transition kernel and where is a scalar
depending on , , and .

For brevity, we provide short versions of proofs in the Ap-
pendix, and refer the reader interested in details to a longer
technical report [24]. Equation (22) relates the approxima-
tion error to the expected integral over an
expression of the form . Recollecting
our discussion at the beginning of Section IV, this expression
can be interpreted as the residual of a nonlinear regression of

onto . Roughly, is a consistent estimate
of whenever the regression method underlying is con-
sistent in an appropriate sense. Conditions for the consistency
of local averaging have been studied extensively in the Sta-
tistics literature (e.g., [15]–[18]). Our next result summarizes
these conditions in a form that is suitable for the weighting
functions described in Section IV. For its proof, we need a
Markov chain version of Hoeffding’s inequality described in
[27] as well as an additional “approximatibility” assumption.

A.8) The sequence of balls :
satisfies the condition

uniformly for all , and for some
.

Assumption A.8) affirms that any Markov chain that is in-
duced by a strategy can be approximated by considering the
costs incurred within finite distance from the “center” of the
state-space,. This assumption is necessary to restrict the re-
gion of the state-space on which needs to approximate

, because the training sample cannot cover every
neighborhood in simultaneously. Intuitively, Assumption
A.8) precludes from our investigation cases in which a substan-
tial contribution to the average cost “escapes to infinity”
with growing sample size for some sequence of strategies.
Under this additional assumption we obtain the key result of
this section:

Proposition 2: Assume there exists two constants
such that for all , , , , and

all closed balls the weighting function
satisfies the following conditions for all :

(24)

uniformly (25)

Assume also that the set of neighboring samples has
the properties

(26)

(27)
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uniformly for all , . Then, we have

(28)

uniformly for all , .
Remember from Section IV that and are a fixed initial

state and a fixed exploration strategy, respectively. Assumption
(24) guarantees that the weights are essentially uniform in the
interior of the neighborhood , and Assumption (25)
confirms that any weight outside becomes unimpor-
tant asymptotically. Assumptions (26) and (27) concern the
growth rate of the number of samples in . They are
based on theshattering coefficient, , which is implied
by the weighting function. Intuitively, denotes the
maximum number of different subsets of arbitrary points
in that can be “picked out” by a collection of subsets of

, . Depending on the type of local averaging used, these
sets may be spheres, rectangles, or polygons of a specific
form. Shattering coefficients are a standard tool to establish
uniform convergence in statistical learning theory and pat-
tern recognition. For example, Vapnik [28] and Devroyeet
al. [18] provide excellent surveys of this method and they
also discuss the important connection between the shattering
coefficient and the VC-dimension, . For the averaging
methods suggested in Section IV, the shattering coefficients
are bounded by which simplifies the application
of Proposition 2.

Theorem 1: The local averaging approaches 1)–3) are uni-
formly consistent.

Hence, by gathering sufficient information from the trajec-
tory of a single policy, , it is possible to infer the value of any
other policy arbitrarily well using local averaging. We have
thus proven that local averaging is suitable to approximate the
average–costs of a wide class of MDPs for any fixed strategy

. From here it is a relatively easy step to demonstrate also
that local averaging can be used in combination with approx-
imate dynamic programming in order to approximate theop-
timal strategy, . In detail, because the approximation error of

can be made arbitrarily small for all according to
Proposition 2, it must be small specifically for the choices
and . We use this fact to prove our next theorem:

Theorem 2: Under the conditions of Proposition 2, the ap-
proximate optimal cost converges to the true optimal cost in
the sense that

Furthermore, the cost of converges to the optimal cost in the
sense that

In other words, the approximate optimal strategy performs
as well as asymptotically and we can predict the optimal
costs, , using the estimate . In principle, we can thus solve
any average–cost MDP satisfying our assumptions using the ap-
proximate dynamic programming algorithm of Section V. From
a practical standpoint, Theorem 2 asserts that the performance
of approximate dynamic programming can be improved arbi-
trarily by increasing the amount of training data.

VII. CONCLUSION

We presented a new learning algorithm to approximate the
value function and the optimal policies of an continuous-state
average–cost MDPs using simulation. This approximation
uses finite-state dynamic programming, where we replace the
conditional expectation operator in the average–cost optimality
equation with an approximate operator. The approximate
operator is based on one of various forms of local averaging
such as grids, nearest-neighbor regression, and trees. In
Section VI, we proved the consistency of this approach by
relating reinforcement learning to nonlinear regression. In
principle, the average–cost of the approximate strategy is hence
arbitrarily close to the average–cost of the optimal control for a
sufficiently large sample.

Practically, the performance of our approximation (and of any
other method) is dictated by the amount of available computa-
tional resources. In particular, the computational complexity of
kernel-based reinforcement learning is for each ap-
proximate value iteration step and the storage requirements are
of the complexity due to the self-approximating prop-
erty. Hence the computational effort grows with the sample size
which prevents exact online operation. However, efficient online
approximations can be constructed easily based on discarding
old observations or summarizing them by “sufficient statistics.”
For details on the approximation issue and on the computational
complexity of our algorithm, see [24].

The fact that the amount of training data needed to achieve a
given accuracy depends exponentially on the dimensionality of
the state-space,, can be interpreted as evidence of the “curse
of dimensionality” in reinforcement learning. In particular,
any method for approximating the value function of an MDP
from data is subject to this curse. Otherwise, an approximation
method that “breaks” the curse of dimensionality could be used
alternatively as a nonlinear regression method with the same
property by constructing a trivial one-step MDP. This is clearly
inconsistent with theoretical lower complexity bounds for
nonlinear regression derived in [17].4 The fact that the curse of
dimensionality cannot be broken implies that the computational
effort necessary to obtain a statistically satisfactory approxima-
tion of the value function must eventually become prohibitive
in high dimensions. In many real-world situations this problem
is alleviated by prior knowledge which may be used to define
a low-dimensional approximation of the original state space.
For example, Tsitsiklis and Van Roy select special “features”
summarizing the dynamics of an MDP [3], and Ormoneit and
Hastie describe an approach designed for local averaging where
an optimal linear projection of the system state onto a low-di-
mensional subspace is learned automatically from training data
[29]. Nonetheless, the statistical and computational problems
of reinforcement learning in high-dimensional spaces remain a
serious obstacle in many applications and should be addressed
in more detail in future work.

4In [7] it is shown that the curse-of-dimensionality can indeed be broken
under special circumstances if the transition dynamics of the MDP are known.
Note that this is different from breaking the curse of dimensionality in reinforce-
ment learning.
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APPENDIX I
PROOF OFPROPOSITION1

Consider Poisson’s equation (6) for a fixed policy
and let . We can rewrite (6) in
terms of the “drift equation”

(29)

Using (29), it is straightforward to construct the martingale
(under ):

. Using , we obtain

(30)

Equation (22) follows upon observing that all terms on the
right-hand side of (30) are convergent asgoes to infinity and
that the terms vanish in the limit (for more details, see [24]).
Similarly, in order to derive (23), we apply optional sampling
with regard to the stopping timeto

Using and (see
[14]) we obtain (23).

APPENDIX II
PROOF OFPROPOSITION2

We describe a proof extending results of [21], [30], and [18].
We begin by defining several auxiliary magnitudes. First, con-
sider a fixed ball centered at with radius and let
a modified average cost function, , and a modified relative
value function, , be defined according to

(31)

(32)

That is, and are the average–cost and to the relative value
of an MDP that only incurs costs in the interior of. Both of
these terms can be shown to be uniformly bounded using the
compactness of and Assumption A.4) (for details, see [24]).
Hence, is bounded in absolute value by a constant.
Below we assume that is fixed and we write for the
modified relative value function for simplicity; similarly,
we let .

Next, we define the “error term”
. Note that has zero mean and it is inde-

pendent of any other unless . Because is a
conditional expectation operator and becauseis bounded in
absolute value by , is bounded in absolute value by

.
Finally, we observe that for all the function is

uniformly continuous on in the sense that for any there
exists a such that for all implies

. To see this, note that

(33)

where is uniformly continuous according to Assump-
tion A.2) and is uniformly bounded as previously
shown.

Proof of Proposition 2: We assume that a fixed ball
is given in (31) and (32), and that kernel-based reinforcement
learning approximates the unknown MDP on. That is, by a
slight abuse of notation, we redefine the approximate average
cost and the approximate relative value function in
terms of the modified cost function . Then, we
consider the decomposition

(34)

Because of Assumption A.8), it is always possible to choose
so that the second term on the right-hand side of (34) is smaller
than a given . The first term in (34) can be rewritten using
Proposition 1 as

Without loss of generality, we choose such that
. With regard to the first term

of the last inequality, we consider yet another decomposition

(35)

(36)

First, we investigate the “bias term” (35). We derived previ-
ously that so that

. Next, because of the uniform continuity of , we can
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always guarantee that within a
sufficiently small neighborhood of, say, for all .
Then

(37)

The term in the expectation operator is bounded by one so that
we can split the left term in (37) another time with respect to the
condition .
Hence, it suffices to show that there exists such that

(38)

for all to obtain that (37) is bounded by 2. Using
again that and that ,
without loss of generality

We used the value to bound the probability in (24) which
appears also as the second term of the first inequality. Note that

is arbitrary and it is different from the boundin (38). Here,
is a ball centered at with radius as previously de-

scribed. We also used a covering ofin terms of spheres
of the form with the property that any
contains some as a subset. is the set of all sets

for some . Clearly, is smaller than

the th shattering coefficient, . The last term in this
derivation can be chosen so as to satisfy (38) by choosing

and using Assumption (26). Hence, altogether (35) is
bounded by 2.

With respect to the “variance term” (36), because is
bounded in absolute value by , it suffices to demonstrate
that for any there exists a such that

This is by analogy to (38). The probability term can be bounded
as follows:

(39)

We used (24) to derive the last inequality. In detail, the second
probability term equals zero by (25) for a sufficiently large.
In our next step, we apply the law of iterated expectations in
order to condition on the samples in
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for sufficiently large . Here, we applied [27, Th. 2] using
as a cost function; in particular, note that takes on values
in the domain . In addition, we used again the set
of neighborhoods of points in . Furthermore, we bounded (39)
by using (27), and we set and .

Collecting terms, we find that is bounded
by for sufficiently large . Because the size of this bound
for is independent of and , the convergence occurs fur-
thermore uniformly which completes the proof.

APPENDIX III
PROOF OFTHEOREM 1

Prior to the proof of the theorem we establish two auxiliary
conditions. First, we investigate the limiting behavior of the
number of samples in each of the subsets, defined as
in Section IV, as goes to infinity. The following properties
are proven in [24] using the splitting idea together with a law of
large numbers

(40)

a.s. (41)

Hence, grows at least proportionally to and, for adap-
tive neighborhoods, the proportion of the samples located
in goes to zero .

Second, note that, becauseis compact and the transition
density is continuous (A.1), is bounded away
from zero by a constant and it is bounded above by another
constant . Thus, the transition kernel satisfies the conditions

for all , .
This condition is furthermore inherited by the invariant measure,

:

(42)

Proof of Theorem 1:We verify the conditions (24)–(27) of
Proposition 2. For approaches 1) and 2), (24) is obvious using

. For the nearest neighbor approach 3),
we choose and , respectively.
Condition (25) is obvious given Assumption A.6).

With regard to (26), we distinguish two cases depending on
the event

Conditioning on , we obtain that

(43)

We analyze the first of these two terms by using the large devi-
ation result of [27, Th. 2]. This gives

(44)

Note that we applied the Markov chain version of Hoeffding’s
inequality to the subchain associated with the set. Because

is fixed and is uniformly bounded by (42),
expression (44) converges to zero as goes to infinity
using (40).

In order to deal with the second term in (43), we
treat separately adaptive neighborhood approaches, where

is a fixed function of , and fixed neighbor-
hood approaches, where contains all samples in the
fixed region and is therefore random: For adaptive
neighborhoods, condition (41) ensures thatis eventually true
for sufficiently large , so that the second term in (43) equals
zero. For fixed neighborhoods, we reformulate the second
term in (43) using the neighboring region instead of

. As previously shown, we consider the limiting value
as goes to infinity, applying [27, Th. 2]:

(45)

We used the fact that for large
by (42) and (11). As previously shown, (45) and, hence, also

(43) converge to zero by (40).
We deal with (27) by analogy to (26). In detail, we use a

decomposition of the exponential term in (27) based on the
scalar

Using this decomposition, the left-hand side of (27) can be
bounded by the term

(46)

As in the case of (26), we choose for adaptive neigh-
borhoods so that equals zero for suffi-
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ciently large using (41). For fixed neighborhoods, we choose
. Then, by analogy to (44)

Note that in order for (46) to converge to zero we require both
and quickly by comparison to the growth

of the shattering coefficient . For example, consider the
definition . In this case we have

which goes to infinity
provided condition (11) and as desired.
On the other hand, we have . We
mentioned that, for the averaging approaches 1)–3) proposed
in Section IV, the shattering coefficient is bounded by

. We obtain the following sufficient condition for the
convergence of (46):

(47)

Using (40) and (42), (12) is sufficient to guarantee that (47)
holds. Altogether, (24)–(27) hold for approaches 1)–3) from
which we conclude that these approaches are consistent by
Proposition 2. Again, for a more detailed derivation, see [24].

APPENDIX IV
PROOF OFTHEOREM 2

An important aspect of this proof is that the perturbation con-
stant is decreasing in Theorem 2 according to Assumption
A.7); in contrast, was fixed above.

First, consider the case . Because convergence is
uniform for all in Theorem 1, the result of the theorem
holds specifically for the choice . That is, we have

for arbitrary and sufficiently large
. However, we also have because
attains the minimum costs and hence . Taking

expectations on both sides gives .
In the case where , let denote the “projection” of
onto , that is, the strategy obtained by setting the min-

imal probability of each action to and by renormalizing the
remaining probabilities appropriately. Also, let denote the
average–costs associated with so that

. Using Lemma 1, the last term can be written
as .

This expression is made small by choosingsmall or, equiv-
alently, choosing sufficiently large. Because
and is small, it is without loss of generality to assume
also that . Next, recall that and achieve the min-
imum and the pointwise minimum of and , respec-
tively. Therefore, we have and thus

, where the last term can again be bounded using
Theorem 1.
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