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Kernel-Based Reinforcement Learning in
Average—Cost Problems

Dirk Ormoneit and Peter Glynn

Abstract—Reinforcement learning (RL) is concerned with the “reinforcement learning” in the machine learning literature.
identification of optimal controls in Markov decision processes The potential benefits of reinforcement learning are several.
(MDPs) where no explicit model of the transition probabili- * pirst the value function may be better suited for estimation than
ties is available. Many existing approaches to RL, including . . .
“temporal-difference learing”, employ simulation-based approx- the transition kernel. Sec_ond, even if the t_ransmon p_robablll'qes
imations of the value function for this purpose. This procedure are known, the computational effort to derive the optimal policy
frequently leads to numerical instabilities of the resulting learning  from it via dynamic programming may become prohibitive
algorithm, especially if the function approximators used are jn continuous state-spaces. An approximation of the value

parametric, such as linear combinations of basis functions or function. on the other hand. can sometimes be estimated much
neural networks. In this paper, we propose an alternative class . :

of RL algorithms which always produces stable estimates of the more_ efficiently from the training data. This apprqugte value
value function. In detail, we use “local averaging” methods to function may then serve to construct an approximation of the
construct an approximate dynamic programming (ADP) algo- optimal strategy.

rithm. Nearest-neighbor regression, grid-based approximations, A standard approach to reinforcement learning is “temporal-

and trees can all be used as the basis of this approximation. We ; PR : : :
provide a thorough theoretical analysis of this approach and we difference learning” [1], [2]. This method has been applied suc

demonstrate that ADP converges to a unique approximation in cessfully to many discrete state-sp_ace problems using an explicit
continuous-state average—cost MDPs. In addition, we prove that representation of the value function as a lookup table. How-
our method is consistent in the sense that an optimal approximate ever, a lookup table representation may be unsatisfactory in con-
strategy is identified asymptotically. With regard to a practical  tinuous or very large discrete state-spaces because of its poor
implementation, we suggest a reduction of ADP to standard gpjity to “generalize” to previously unseen data. To improve
dynamic programming in an artificial finite-state MDP. o
the generalization performance, neural networks have been sug-
Index Terms—Average—cost problem, dynamic programming, gested as approximators of the value function. A serious draw-
kernel ‘smoothing, local averaging, Markov decision process 5.k of this approach is that stability and convergence properties
(MDP), perturbation theory, policy iteration, reinforcement f imate t \-diiff thod ilabl |
learning, temporal-difference learning. of approximate temporal-difference methods are available only
in special cases and examples are known where temporal-differ-
ence learning fails to converge [3]. To circumvent these short-
. INTRODUCTION comings, a nonparametric approach to reinforcement learning

E CONSIDER optimal control in Markov decisionhas been recently proposed by Ormoneit and Sen [4]. Specifi-
Wprocesses (MDPs) with continuous state-spaces &ajly, they suggest the use of kernel smoothers, a form of local
unknown transition probabilities. To approach this problerdVeraging, to approximate the value function in finite-horizon
one typically estimates the parameters of an explicit transitigfd infinite-horizon discounted-cost problems. In this work, we
model from sample trajectories. The feasibility of this approa@ﬁtablish stability and convergence results for a general class
depends on the complexity of the system and on the amo@hfeinforcement learning algorithms based on local averaging.
of available training data. For continuous state-spaces, con/efiphasis is on the application to average—cost MDPs.
gence may be very slow unless prior information is available The mathematical analysis of average—cost problems is typ-
to restrict the number of model parameters. An interestingflly more involved than the analysis of discounted problems,
alternative is to approximate the value functidinectly from both in the case of known transition probabilities and for rein-
the data, without explicitly modeling the transition probabilforcement learning [5]. For known transition probabilities, the
ities. Instead, this approach relies on mnplicit transition ©OPtimal policy,.* can be derived from solutiong® and2* to
model in the form of simulated data, and it is referred to 4§€averagecost optimality equation (ACOE)

+ h*(z) = min{c(z, a) + (T h™)(x 1
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estimated from a set of. sample transitionsS, using local This paper builds on the idea of using of a weighting kernel
averaging. Special cases of local averaging include methddsapproximate the value function in a continuous state space.
based on kernel-smoothers, nearest neighbor regression, gddwever, by contrast to Rust we consider this problem in a re-
based approximations, and trees. Repladiggwith fm,a in inforcement rather than in an optimal control setting which is
(1), we obtain theapproximate awage cost optimality equa- considerably more complicated because the unknown transition
tion (AACOE) information must be determined implicitly during learning. This
R R R algorithm is fundamentally different from those proposed by
fim + D () = min {C(at, a)+ (Fm,ahm) (37)} - (2) Baker and Borkar because it is based on ADP rather than on
) ] o stochastic approximation. In particular, we present the first con-
A straightforward approach to reinforcement learning is, thugnyous state reinforcement learning algorithm which exploits
to compute solutiong,,, andh,,, of (2) using the familiar policy he penefits of statistical kernel smoothers to identify a unique
iteration algorithm and to derive an approximate polity  and provably statistically accurate approximation of the value
based on these estimates. The convergence of policy iteraligRction for finite sample sizes and based on finite computa-
or alternative dynamic programming rules is a consequenggna resources. By iterating until convergence for each finite
of the special properties of local averaging. Moreover, dugmple, ADP uses data more efficiently than stochastic approx-
to the “self-approximating property” of the proposed methogation. In addition, the solution of the stochastic programming
this_ computatior_l car_1_be carried ogt in a finite-state_framewo‘%proach is only asymptotically unique. We also present a new
which greatly simplifies the practical implementation. methodology to prove the convergence of our algorithm in rig-
Besides algorithmic considerations, the proposed methggh,s mathematical detail for a broad variety of local averaging
raises interesting questions from a statistical perspective. In @@erators. For example, the variable resolution discretization
tail, it seems desirable to characterize the approximation erf@Ehniques of Munos and Moore can be viewed as one appli-
of the quantities),, /.., andji,,,. For this purpose, we interpretcation of the ADP methodology where the weighting function
the approximate operatdr., , as the true expectation operatofenresents a dynamic grid. Hence, our results could be used
in a “perturbed” Markov chain, and we relate differences in thg extend the theoretical evidence these authors put forward in
average—costs to the perturbatibp, , — I',. This argument support of their methodology.
reduces the approximation gf and /™ essentially to a non-  The remainder of this paper is organized as follows. In
linear regression problem so that we can generalize existiggction Ill, we state our assumptions and we characterize
asymptotic theory for local averaging. As a result, we obtajfje ayerage—cost reinforcement learning problem formally. In
consistency of local averaging under general assumptions.  gection IV, we introduce the local averaging operator. Sections V
and VI describe the main theoretical results of this paper,
Il. PREVIOUS WORK including theorems establishing the admissibility of the policy

Existing literature on approximate dynamic programmintjeration algorithm to compute solutions to the AACOE (2) and
(ADP) can be divided broadly into work in the areas of opasymptotic bounds on the approximation error, respectively.
timal control and reinforcement learning. @ptimal contro] In Section VII, we present conclusions.
where the transition probabilities are known, ADP serves as a
computational tool that makes large-scale problems admissible
for an approximate solution. One influential paper by Rust [7]
describes an ADP algorithm that uses the transition density toConsider an MDP defined by a sequence of staietaking
weigh the samples generated from a simulator. Rust concludesues inR¢ and a sequence of actiomstaking values in the ac-
that under suitable conditions it is possible to “break” the cursien spaced = {1, 2, ..., M }. The transition probabilities of
of dimensionality in the sense that the number of observatiotiee MDP are described by a family of kerne{d,(x, B)|a €
needed to achieve a prespecified accuracy depends sub&k: characterizing the (time-homogeneous) conditional prob-
ponentially on the problem dimension. Gordon [8] follows ability of the eventX, € B givenX;,_; = z anda,_; =
closely related approach, summarizing methods that leaddoHere, B is a set inB(R%), the class of Borel sets on the
numerically stable approximations of the value function. state-spac®¢, and the sequence¥ = {Xj, ..., X} and

In reinforcement learningwhere the transition probabilities A = {ao, ..., as} are stochastic processes on a probability
are unknown, attention has focused on the asymptotic propspace(€?, F, P). For reinforcement learning, it is convenient
ties of theZ’D- and@Q-learning algorithms. For example, in [9],to define the strategy spacde! as the set of all stationary ran-
Gordon notes tha) learning can be shown to be convergerdomized policies of the form: R — A(A), whereA(A4) is
to a unique fixed point under suitable conditions on the updatee set of all probability distributions over the elementsdof
operator. Baker [10] and Borkar [11] both employ a weightin@bviously, M contains all stationary deterministic policies as a
function to identify the value function asymptotically based onsubset. We also defingd1, C A as the set of all (stationary)
stochastic approximation approach. Munos and Moore [12] em+perturbed strategieg; R — A,(A), whereu(z) € A,(A)
phasize the continuous time and space aspects of solving MDAplies that eachu € A is chosen with a probability of at
and propose convergent numerical schemes based on varigddste by ;.(«). Note that the application of a fixed € M
resolution discretization. With regard to the mathematical tectransforms the proces& into a Markov chain governed by
niques used in the proofs, the regeneration based on a pdae-transition kernel, . (x, B). Frequently, we will be in-
doatom was previously used in reinforcement learning in [13}erested in the long-run behavior of this chain starting from a

I1l. PRELIMINARIES AND PROBLEM FORMULATION
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given initial conditionX, = =, and we letF, ,, denote the “in-  Meyn [6] provides a detailed account of the applicability
duced” probability measure. Similarly;, , denotes the con- of the policy iteration algorithm to compute solutions to (1).
ditional expectation operator associated with ,,, and P, ,  Specifically, he relies on an alternative interpretation of (1) as a
and £, , denote the corresponding measure and expectat&pecial case dPoisson’s equation

under a trivial strategy that always applies actignrespec-

tively. Finally, each state—action pair has associated with it a M+ Dy = ¢ +Lphy, (6)

cost, c(z, q), represent_ing an _immediate penalty_ for visiti:mg_ wherey, = 11, and he demonstrates that the sequengeand

and apply'ng%\'fwe define an induced cost function accordlngm generated by policy iteration are convergent under the cir-

tocu(x) =3 0y oz, a)ulz, a), forall p e M. cumstances of Section IlI-A. Furthermore, the limiting values

of these sequences are solutions to the ACOE (1) and hence
the algorithm produces an optimal strategy. Heygis the av-

A1) Foreach: € A, » € RY, P,(x, -) possesses a strictly erage—cost defined in (4) ang is the so-calledelative value
positive Radon—Nikodym derivativen, (z, ¥), with function or differential cost functiorassociated with.. Intu-
respect to the Lebesgue measiren R¢. itively, h,, is the relative disadvantage of starting the chain in

A.2) For eacha € A, the conditional probability density the stater as opposed to drawing a random initial state from the
pa(z, y) is uniformly continuous irfx, y) € R x R%.  stationary distributionr,, .

A.3) The cost function:(-, a) is continuous and “norm-  Both Meyn’s and our results hinge on the existence of regen-
like,” i.e., the sublevel setbz: ¢(z, a) < ~} are pre- erative eventsR, that can be used to “split” the Markov chath
compact. There exists a norm-like functionR* —  Roughly, R decouples the trajectory after its occurrence from
[1, o0) such thate(z, a) > (). the previous history of the chain. Because the differential cost

A.4) There exists a probability measureon R%, ¢ > 0, after the first hitting time of®, 7 = inf{t € {1, 2, ..., oo}|R
and an integeg > 1 such that for alt: € R, . € M: occurg, is independent of the initial position, the splitting

construction gives an alternative expression for the relative
P, u(Xq € ) 2 ov(4). (3) value functionh,, in terms of the history oft’ up to 7

A. Assumptions

Additional assumptions regarding details of the learning algo-

rithm are listed throughout the paper. For more details, see [14]. hy(2) = B,

T—1
> (eu(Xe) - m] : (7)
t=0

B. The Average—Cost Optimality Equation Then, (7) together with the average—cost (4) define a solution
hgquoisson’s equation. Details of the formal construction of the

We focus on MDPs where policies are assessed via thelr ° . :
&gljttlng procedure are discussed in [14].

long-run average costs and refer the reader interested in
counted-costs to [4]. The average—cost of a palidg defined

formally according to IV. AVERAGING OPERATORS
= In this section, we discuss several approaches to local
N = lim B, T Z C;L(Xt)] (4) averaging and we draw a connection between regression and
Tmeo =0 approximate dynamic programming. Consider first a typical

n, is defined uniquely and independently of the starting péggreSS|on task where we wish to approximate the conditional

o . X . expectation f(z) = E = z| based on realizations of
sition 2o under the assumptions in Section IlI-A (see, for e b /(%) [¥|2 ]

. . . . Xhe continuous random variables and z. Then, we can
ample,_ [.14.])' We will be interested n tho_se po_Iu_npe’S € M . alternatively interpret the conditional expectation operation
that minimize the average—cost (4), i.e., in policies that sati

1. < 1, for all i € M. A standard approach to determine ai .l defined in the previous section, as aregression by choosing
e < My .

. O L Ty = h(X;1) andz = Xj. That is, given realizations df(X7)
gp;lrr:alxpollcty tlis :10 so';/ett?? dAC;(r? E d(l). H(:Orli”' I]ts‘qa;z con(i- and X, any regression method is transformed easily into an
onal expectation opérator, - delined accor gig ?(3.7)._ approximate expectation operaldy, , in principle. However,
E, .[h(X1)].r Under the assumptions of this paper, if finite so- : . ; :
g i ) : O many parametric or semiparametric regression approaches such
lutions#* andh™* to (1) exist, a policy* is optimal if and only

i as linear estimators or neural networks fail to generate stable
learning algorithms in practice (for a discussion, see [3]).
* _ o By a stablealgorithm, we mean a procedure based on finite
p(z, a) =1(a =da) . . : -
, . . computational resources, in particular, a finite set of sample data
for somea” € argmin{c(z, a) + (Tah™)(2)}.  and a finite representation of the value function, that converges
(5) to a unique solution independently of any starting conditions.
A class of regression methods particularly suited for stable
For a detailed discussion of this relationship, see [5], [14], [2ADP are methods based on “local averaging.” These models
and [6]. have been studied extensively in the statistics literature both
N o _ from a practical and a theoretical viewpoint (e.g., [15]-[18]).
Because the transition probabilitieB,(z, -) are time-homogeneous,

(T'.h)(x) may be thought of alternatively as the conditional expectation of \_Ne assume that a training_data gﬁ,t,is_g_e_nerat(_ed by simu-
h(X,) givenX,_, = x for arbitrary?. lating the MDP form steps using a fixed initial policy;, and a
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fixed initial state,zo € R¢. Here, it is important thgt chooses That is, we assign uniform weights to the observations within
each action with positive probability to guarantee sufficient “exthe neighborhood aof, and we also assign some small weight to
ploration” of the state-space, i.gi, € M5 for a fixedg > the remaining observations satisfying= «. The “perturbation
0. Formally, we let{ Zy, ..., Z,,} be a collection of random constant™} in (9) satisfiesd < ¢ < 1.
variables distributed according 1., :(Xo, ..., X,,), andlet  2) Averaging Using TreesAnother possibility to partition
S = {20, ..., 2n} be them-step sample trajectory of thethe state-space is by recursive splitting. For examipig;trees
MDP:2 Besides the state variables, we also have the actiquetition the state-space into rectangles in such a way that
{ao0, ..., am—1las ~ [(zs, -)} and the costgc(z,, a5)|0 <  each rectangle contains an approximately equal numbers of
s < m} generated during the simulation, and we define a pasbservations. Hence, &-d-tree implies a partition function
tition of S into subsets according 18, = {Z, € S|a, = a}. U by analogy to the grid-based approach and its weighting
The cardinality of each of these subsetsis, i.e.,m, = #S..  function, k,, .(zs, ), can be defined formally as in (9). Note,
Furthermore, let#,(D) be the number of samples # that however, thatl/ is dependent on the training data s&tin
are located within a generic sBt, #4(D) = 3.2 1(ay = this case so that/ is random andk,, .(z,, =) is adaptive
a, Zs € D). with respect to the local data design. In what follows, we
We consider nonparametric regression operators that cang@gume that a separate tree is available for each acton
written as local averages in terms of the dat& iaf the form and that the leaves of these trees contain exdcﬂymp|es
mei for simplicity. The main advantages of tree-based averaging
(Am " ) Z Ko, (255 ©)h(Zs41)- (8) are cor_nputatio_nal spt_eed, i_nterpr_etability, and the capability to
deal with relatively high-dimensional data [20].
3) Nearest Neighbor Weightswhile approaches 1) and
) o HATEY 2) are computationally very efficient, they can sometimes be
>y 1, @)k, a(7, 7) is @ so-called “weighting func- suboptimal because the weights implied by (9) are based on

Y « : : ” d d :
tion” or weighting kernel .onR X R. As previously _ «w o4 decision boundary between the neighborhod)
mentioned, the fundamental idea underlying approximation (§ dits ¢

is simple. In order to estimate the conditional expectation
h(X;) given Xy = z, it suffices to consider a large number o
sample transitions starting from a statein the neighborhood
of z to some successor statge;;. Then the average of the.
function values at the successdr§z;.1) is a natural esti-
mate of the conditional expectation. The weighting function
km, o(zs, @), Serves to assess the vicinity af to z. That is,
h(zs+1) obtains a substantial weight only if is close toz. (1— )
. . .. . .. . UL, 45
The weighting function is constrained to be positive, decreasing )
with ||z, — |, and to satishy5""" " k. o(zs, z) = 1. These Fm,a(2s: ) = § 9/ (mu) = 1), i a; =a, 5= (), 7> 1,
properties ensure proper averaging of the successor values 0, if a, # a.
h(z.41) in (8). Also, notice that the transition from to z,,, (10)
only reveals information about that actian used during sim- Here,u; ; is a decreasmg sequence of scalars satisfyjfig>
ulation at times. Hence, only those transitions should be used,; > v/l > 0 andZ w ,; = 1. For exampley; ; can
for averaging that were generated using the proper action; tbatdeflned as a functlon qf using a uniform, a triangular, a
iS, km, a(2s, ) = 0if a5 # a. Otherwise, we assigndrictly —quadratic, or a Gaussian kernel (for details, see [21]). Intuitively,
positive weight toz,. Next, we discuss various possibilities tdhel nearest neighbors are weighted according to their distance
define k., .(zs, «) in practice. For further reference on thesérom z by (10), while the remaining observations again obtain
weighting kernels, see [18]. a small uniform weight. We assume for simplicity thag > [
1) Grid-Based MethodsAn intuitive way to approximate for this approach, i.e., at leakbbservations must be available
an MDP is to partition the state-spaRé into a collection of in each of the set§, (see also Proof of Theorem 1).
mutually exclusive subsets. These sets may be simple rectariNote that the list of averaging approaches 1)-3) is intended
gles as in the case of a regular grid, or they may be polytopss a set of illustrative examples rather than an exhaustive
resulting from a Voronoi tessellation based on a lattice rule (e.gnumeration of viable approaches. Specifically, below we aim
[19]). We formally characterize this partition using a mappingt presenting our theoretical results in a general framework that
U: R* — P(R?) that assigns each € R to a subset oR?, covers 1)-3) as special cases. Alternative averaging methods of
and define a corresponding weighting function according to practical interest that could be described in this formal frame-

Here, h is a generic function andk,, ,(z, z) =

more gradually decaylng function of the distafiee — z||,
corresponding to “soft” neighborhood boundaries. Formally,
we let(z(y, - - -, 2(m,)) denote a permutation of the elements
in S,, ordered accordlng to increasing valued|ef — x|, and
we assign fixed weights to these samples according to their
posmon in the ordered sequence:

ifa, =a,s=(j),j<I

(1= 0)/#U) i ay=a, 7 € U(z), WOrK include weighting using a Gaussian ‘mother kernel” [4],
. _ . locally weighted regression, discrete kernel-based averaging

km,a(zs, ©) = § O/#aU"(2) if o, = a, z, € U2),  geross multiple cells of a partition, as well as combinations of
0 if as # a. the ideas above. With regard to our theoretical analysis, the

(9)  main difference between these various approaches is the choice
2For simplicity, we sometimes ignore the difference betwegp, ..., Z,..} of the neighborhOOd used for averaging- |n_p_artiCU|§ry the neigh-
and{zo, ..., zm} below. boring regionl/,,, () can be defined explicitly as in 1) or 2)
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or implicitly as in 3). (We give details of the implicit definition In this section, we derive numerical methods for the solution
in the proof of Theorem 2). Alsd/,,, ,(z) can be either a fixed of (2). In more detail, to derive an algorithm for the solution
subset of the state-space as in 1) or it can be data-dependén®) we reinterpret the approximate conditional expectation
as in 2) or 3), which requires a separate mathematiaajeratorfm,a as thetrue conditional expectation operator in a
treatment. We denote these distinct approachdixed neigh- new, artificial Markov chain in Section V-A and we introduce an
borhood and adaptive neighborhoodnethods, respectively. additional condition for the solubility of this artificial MDP in
For notational convenience, we will also introduce a form&ection V-B. In Section V-C, we suggest an implementation of
representation of the samples in the neighborhbid,(x) kernel-based reinforcement learning using finite-state dynamic
using the symbolV,, .(z) = {7, € S.|2. € U, o(z)}. Programming. Note that we describe our algorithm using math-
That is, Ny, o(x) is the subset of samples if, that are ematical notation rather than pseudocode for brevity and con-
the nearest neighbors af. For the nearest neighbor apsistency with the rest of this paper. A treatment providing even
proach, we adopt the conventi¥,, ,(z) = {z, € S, more algorithmic detail can be found in [4] and [22]. Moreover,
lzs — #l| < |lzqy — «||}, and we definel,, o(z) via in [22],_ we Qescribe the pracFicaI applicgtion Qf the algorit.hm
the relationshipl;, o(z) = {y € R%3z, € Ny, o(z): tothefinancial problem of optimal portfolio choice and provide
ly — || < ||z, — z||}. To prove the consistency of the averdetailed experimental results.

aging approaches 1)-3), it is important that the siz€,0f, () o

[and, hence, also aV,,, ,(x)] shrinks to zero with increasing A. An “Artificial” MDP

sample size at a rate that warrants a suitable bias-variancés previosuly shown, we defined the weighting function
tradeoff. Depending on the chosen method, this condition must (%5, ) So as to satisfy the conditiors,, o(zs, ) > 0

be expressed as an assumptiorlfn . (z) or Ny, o(x). and ZZ’:_OI km, a(zs, ) = 1. Hence, we can think of these
A.5) The neighborhood size in the grid-based averagi¥eights as conditional probabilities and define an artificial
approach 1) satisfies for all € R%, o € A transition kernel according to
oo m—1 M
AU, a(2)) =0 (1) Koy, A) = Z Z pwla, )k o(zs, )W(2s41 € A).
MANUpn, o(2))? = log(m + 1) "7 o0, (12) 5=0 a=l (16)

) ) Let E, , be the expectation operator associated with
The number of neighbotg V,,, () in the tree-based Ko u(x, A), s0 that(f“m JB)(@) = B Jh(X0)| X0 = .

approach 2) and in (Ehe nearest neighbor approach-g{en we can interpret the AACOE (2) as the true ACOE of
satisfies for ale € R®, a € 4 the artificial MDP implied by (16) and we can apply dynamic
programming for its solution. Note that this is a major simpli-

# N, o(x) — 00 (13) fication of the estimation problem because it allows us to treat
# N (@) /m =30, (14) equation (2) in the familiar MDP framework. Specifically, the

ability to analyze approximate dynamic programming using
Conditions similar to (11)-(14) are standard in the theory 81!1 artnjual MDP is one of the main reasons for using local
- N . veraging to approximate the conditional expectation operator
pattern_ _recognmon an_d are easy to Sat'Sfy. In practice [1| ' the first place: For most alternative approaches, including
In addmo_n, the magnitude of the perturbations must dec‘m‘ear or nonlinear least-squares regression, locally weighted
asymptotically. regression, smoothing splines, wavelets, etc., a probabilistic
A.6) The perturbation constatitapproaches zero asgoes  interpretation of (16) is generally not applicable and, therefore,
to infinity. some of these methods fail to convefge.
Next, we consider the implications of applying approaches Given our new interpretation of“m7 « as the conditional
1)-3) for approximate dynamic programming. We first investexpectation undek,,_ ,.(x, A), it will be convenient to define
gate the solubility of (2) as a means to compute an approximateerage—costs and relative value functions of the artificial MDP
strategy /i,, in Section V, and then we derive theoreticaby analogy to (4) and (7)
properties of this approximation in Section VI.

Xo = $0‘| (17)

Mm, p = lim Ep,
T—oo

1 T—1

- C Xt
V. APPROXIMATE DYNAMIC PROGRAMMING T ; M( )
T—1

S (60(X0) = )

t=

As previously shown, we suggested substituting the unknown
L'y in (1) with one of the approximate expectation operators P, 1 (%) = B,
I',, ., defined in the previous section. The approximate av-

erage—cost optimality equation takes the form of (2), and & particular, an approximately optimal strategy, achieves
approximately optimal strategy can be found by analogy to ($e minimum Ofrm, . Over all », and the magnitudes,, and

/lm(x, a) = ]l(a — a’) for somed’ € arg min 3The majority of th_e men'tioned approximation_s can be interpreted as a special
a case of local averaging using the notion of “equivalent kernels” [23]. However,
the equivalent kernel typically violates the positivity and normalization con-

. {c(az, a)+ (fnl,ailnl) (37)} - (19 straints onk,, (2, ).
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B in (2) are the optimal average—cost and the optimal relatiVée will show that the AACOE can be solved exactly using
value function associated with,,. Hence, it is straightforward the so-called “self-approximating property” of local averaging
to computes,,, and ,,, by applying standard algorithms suctthat will be described next. The relevance of this concept for
as policy iteration or value iteration to the artificial MDP. Foapproximate dynamic programming has been emphasized in
(17) and (18) to be well defined, however, we must first shov].

that the artificial kerneli,,, ,.(x, A) inherits some regularity ~ To illustrate the concept of self approximation, note first that
conditions from the original transition kerné},(z, A). Next, the only information needed to apply the approximate expecta-
we introduce an additional condition that will be needed for thigon operatofmy « defined in (8) to a generic functidnare the

purpose. values ofh at the states in the training same With regard
to the solution of the AACOE (2), this insight suggests the fol-
B. “Trembling Hand Policies” lowing procedure. In a first step, we compute the values,of

In this section, we consider the stability of the artificial MDPF"t the locationg;, that are consistent with (2)

implied by the transition kernel (16). Our goal is to recover the . > . A
same regeneration structure that was established for the originapm thm(z0) = e {C(ZS’ o+ (Pm’ “hm) (ZS)} (19)
MDP in Section IlI-B. In particular, we would like to use the]c
same stopping time;, in the definitions of:,, andh,,_, in (7) new locationse usin

and (18). This important connection between the original ahd 9

the artificial MDP is sufficient to guarantee the convergence of fu() = min {c(x a) + (f i ) (x)} —hm. (20)
policy and value iteration for the artificial MDP [6]. ’ e "

~ Asin Assumption A.4 of Section III-A, focus is on the ex-The reader may wish to verify that the magnitudes determined
istence of a suitable minorizing measursuitable for spitting i this manner constitute solutions to (2). The advantage of this
the artificial chain by analogy to Section IlI-B. A simple way totwo—step procedure is that equation (19) can be thought of al-
define this measure is by requiring thafa, ) > ¢ for some teratively as the AACOE of yet another artificial MDP with a
positive constang (for details, see [24]). A game-theoretic inipjte state-space consisting of the elementssoTo make this
terpretation of this condition is that of a player with a“tremblin%recise, we identify the samples dhwith the elements of the

ors =0,...,m— 1. Second, we derive the valueszL at

hand” that causes him to commit errors sporadically. Mathemakt.y = {1, ..., m}, and we define the vectors and matrices

ically, trembling hand policies simply correspond to elements of . .

the perturbed action spagd, defined in Section Ill. Thatis, we P, 1 (8) = P, (i) fori=1,...,m,

approximate the optimal policy,™ € M, by using the policy S, u(8) = cu(zi) fori=1,...,m,

within M, C M that is optimal with respect to the artificial N — o L

MDP, ji,.. This proceeding introduces an additional approxi- P, pi ) = Ko, pzj; 2:) Tor i o 1’1' -y m and
7=1,...,m.

mation error which needs to decay asymptotically to achieve

consistency. A necessary condition is that the magnitude of thge », vectors?,,, . andc,,, , summarize the values éf,, ,,
perturbation itself vanishes at an appropriate rate with growi@g,dcu at the sample states, and thex m matrix ®,, , con-

sample size tains the weight assigned to the sampleat statez; in loca-
A.7) The perturbation constaptpproaches zero asgoes tion (¢, j). Note that®,, , is strictly positive and stochastic
to infinity. given the conventions of Sections IV and V-B; that is, it sat-

The following policies are meant to be elementsidf, where isfies @, ,.(i, j) > 0 and3>7., ., (i, j) = 1. Hence, we

o is contingent onm in accordance with Assumption A.7). Itinterpret®,, , as a transition matrix that defines a new MDP

remains to define the minorizing measwf&(B) by analogy to With the state spac#, andc,,, ,, and?,,, , are the cost and the

(3). For this purpose, note that every stateSinan be reached relative value function of the new MDP, respectively. Due to the

from any other state with a probability of at least > 0 under Strict positivity of®,, ,,, the transition structure of the discrete

Ko o(z, A) and letv®(B) = (1/m) .7 1(Z,41 € A). MDP is unichain for ally € M, and its ACOE is a discrete
m, p\Ls s=0 s+1 . . .

v (B) has the property thak,,,, ,(x, B) > g9v*(B) for all ~Version of the first step for the solution of the AACOE (19)

r € S, B € B(R%), and € M,. Hence, it can be used for . N , )

regeneration and we interpretas the corresponding renewal fim =+ B (1) = Hgn{cm’“(L) + (Dmofin ) (D)} (1)

time. fori = 1, ..., m. The correspondence between (21) and (19)

is extremely helpful to determing,, and4,,, in practice, be-
cause it reduces the solution of (19) to a dynamic programming
We saw that the artificial MDP defined in Section V-Aproblem in a unichain finite-state MDP. This dynamic program-
reduces the solution of the AACOE (2) to the solution of aming problem can then be attacked using standard algorithms
ordinary dynamic programming problem in the new MDPsuch as policy iteration, value iteration, or linear programming
Computationally, a severe problem for dynamic programmir({fpr example, see [5], [25], and [2]). Specifically, it can be shown
in both the original and the artificial chain is the representatidghat all of these algorithms converge to the optimal solution if
of the continuous value function: It must be approximated fohe MDP is unichain as in the case of (21). For example, in [22],
practical implementation. On the other hand, in kernel-baseg use value iteration in combination with a Gaussian weighting
reinforcement learning the AACOE is itself an approximatiorkernel to solve a real-world optimal portfolio choice problem.

C. “Self-Approximating Property”
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One of the findings of this experiment is that the number of itewherer,,, ,, is the unique invariant measure associated with the
ations until convergence depends onkkenel bandwidthin an  artificial transition kernel<,,, ,.(x, -) and where?), is a scalar
interesting manner. In [4], we highlight further algorithmic dedepending onn, ¢, and?.
tails including the optimal choice of the bandwidth parameter. For brevity, we provide short versions of proofs in the Ap-
We shall not repeat these details here because they are nopdindix, and refer the reader interested in details to a longer
rectly relevant to the theoretical results presented in this wotkchnical report [24]. Equation (22) relates the approxima-
Instead we assume simply that an efficient algorithm for th®n error £, ,.|7m. . — 77,| to the expected integral over an
solution of (21) is available in the following. expression of the forn(fm, why — k) (z). Recollecting
As previously indicated, we obtain the approximate averager discussion at the beginning of Section 1V, this expression
costi), and the value,, (z) = k., (i) at the locations i as  can be interpreted as the residual of a nonlinear regression of
the output of our algorithm. The values &f, () at new loca- h,(X;) onto Xo = . Roughly,7,, , is a consistent estimate
tions is then computed using (20) so that andh,,, (x) consti-  of 5, whenever the regression method underlﬁmg u IS con-
tute solutions to (2). Statistical properties of these solutions aigtent in an appropriate sense. Conditions for the consistency
topic of Section VI. of local averaging have been studied extensively in the Sta-
tistics literature (e.g., [15]-[18]). Our next result summarizes
these conditions in a form that is suitable for the weighting
VI. CONSISTENCY functions described in Section IV. For its proof, we need a

In Section V, we outlined an iterative algorithm for thélarkov chain version of Hoeffding’s inequality described in
solution of the AACOE (8) and for the determination of27] as well as an additional “approximatibility” assumption.

an approximate optimal strategy,,. A crucial issue is the A.8) The sequence of balls; , = {z € R%: [|z—7|| < u}

asymptotic behavior of this approximation. As a minimum satisfies the condition

statistical requirement, we demand thigt should converge T-1 ,

to thetrue optimal policy, «*, in an appropriate sense as the ~ lim E; T Z (X, ¢ Bz, u)eu(Xe)| =0

sample sizen grows to infinity. In other words, the algorithm t=0

should produce a consistent estimate 6t uniformly for all z € R, . € M and for some
The derivation of this consistency result is complicated by the z € R

fact that we consider average—cost problems in this work. CoA‘ésumption A.8) affirms that any Markov chain that is in-
vergence results for discounted-cost problems can be deriyggeq by a strategy can be approximated by considering the
using the contraction property of the approximate Bellman opgss incurred within finite distance from the “center” of the
erator [4]. For average—cost problems, we demonstrate firstidfye_spacez. This assumption is necessary to restrict the re-
Proposition 1 that, given arfixedstrategy.:, the approximation gion of the state-space on whith, ., needs to approximate
error ofr,,,, . with respect to the true cosf,, can be related to b, because the training sémpﬁe cannot cover every
the approximation error of the approximate expectation opgfaighborhood inR? simultaneously. Intuitively, Assumption
atorl’y,, , with respect td',,. Second, we use the result of théy gy precludes from our investigation cases in which a substan-
first step to demonstrate also thaf,, , converges toy, under 5| contribution to the average cogy,. . “escapes to infinity”
suitable conditions in Proposition 2 and Theorem 1. Here, it jsh growing sample size for some sequence of strategies.

crucial that the convergence occursiformlyfor all strategies. ynder this additional assumption we obtain the key result of
Finally, we argue that, becaug andn™* constitute the minima ihis section:

of 7, . andry, with respect tqu, this convergence property also  pygposition 2: Assume there exists two constadts C, <
carries over to the approximate optimal costs in Theorem 2. O such thatforalb > 0, 0> 0,u > 0,y > 0, Cs ~ 0 and
As a minimum prerequisite to obtain the first result, i.e., thaj| closed ballsB C R the weighting functionk,, ,.(Z,, =)
Tm, x CONVErges te,,, it seems intuitively clear that the approXi-g5tisfies the foIIOV\ﬁng conditions for all € B: ’
mate expectation operatby, ,, should converge to the trug, . o
We summarize this result in the following proposition, which =k
can be interpreted as a continuous-state version of a result in #Nom, () -
[26]. Cy

< km,u(Zsa J})

L I <—
Proposition 1: For anyu € M,, the approximation errors = #N,, () Zs € Nom, () (24)
of the magnitudes,,,, , andh,,,, , can be written as oo _
Z Em, u(Zs, 2) =" 0 uniformly. (25)
77771, w nu Zscj\r-:n, u (W)
. o B Assume also that the set of neighboring samp¥gs . (z) has
B / (Fm’“h“ F“h“) (@), () (22) the properties
hnz,ﬂ(-’f) - hu(.’L’) U(g, m) sup Pxo,ﬁ(#aB%ru/Q < Cl#an7a(-’L')) n:ooo
= _(hm,u(x) + Ch)(nm,u - 77#) a€A,xeB
7—1 (26)
+ B, s Z (Pm,uhu - Fuhu) (X5) (23) v(E,m)Ey, 7| sup e~ Co#Nm o (2) | M0 (27)
= acA,z€EB
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uniformly for all zo € R*, 7 € M,. Then, we have VII. CONCLUSION
Eoo 7ltm, = "0 (28) We presc_anted a new Ie:?\rning a!g_orithm to app_roximate the
_ y value function and the optimal policies of an continuous-state
uniformly for all zo € R, € M. average—cost MDPs using simulation. This approximation

Remember from Section IV tha, and: are a fixed initial  ses finite-state dynamic programming, where we replace the
state and a fixed exploration strategy, respectively. Assumptighygitional expectation operator in the average—cost optimality
(24) guarantees t.hat the weights are essentially umform in t@&uation with an approximate operator. The approximate
interior of the neighborhood,,,, . (x), and Assumption (25) gperator is based on one of various forms of local averaging
confirms that any weight outsids’,, . () becomes unimpor- 0y a5 grids, nearest-neighbor regression, and trees. In
tant asymptotically. Assumptions (26) and (27) concern the, ion VI, we proved the consistency of this approach by
growth rate of the f‘“mber (.)f. samplesﬁﬁma(‘x)..They are relating reinforcement learning to nonlinear regression. In
based on thehattenng goeﬁ|C|eq@(8, m), which is implied principle, the average—cost of the approximate strategy is hence
by the weighting functl_on. Intuitivelyu (€, m) _denotes_the arbitrarily close to the average—cost of the optimal control for a
maximum number of different subsets of arbitrary points ?ufﬁciently large sample.

0

in R¢ that can be “picked out” by a collection of subsets . oo
. . Practically, the performance of our approximation (and of any
d
R, . Depending on the type of local averaging used, theg er method) is dictated by the amount of available computa-
sets may be spheres, rectangles, or polygons of a specliic

form. Shattering coefficients are a standard tool to establi |Rnal resources. In particular, the_computat|20 nal complexity of
: . - : ernel-based reinforcement learning@$Mm=) for each ap-
uniform convergence in statistical learning theory and pa

tern recognition. For example, Vapnik [28] and Devroge proximate value iteration step and the storage requirements are

al. [18] provide excellent surveys of this method and theOf the complexityO(rm) due to the self-approximating prop-

also discuss the important connection between the shatterﬁgrﬁﬁ'}' .rljence tr;e com;t)utell.t lonal eﬁc;rtgrons with th(:f.sgmr)le ?|ze
coefficient and the VC-dimensionjvc. For the averaging which prevents exact online operation. However, efficient online

methods suggested in Section IV, the shattering Coeﬁicieﬂgproximations can be constructed easily based on discarding
are bounded bym + 1) which éimplifies the application old observations or summarizing them by “sufficient statistics.”
of Proposition 2 For details on the approximation issue and on the computational

Theorem 1: The local averaging approaches 1)-3) are urffomMPlexity of our algorithm, see [24]. _
formly consistent. The fact that the amount of training data needed to achieve a

Hence, by gathering sufficient information from the trajecdiven accuracy depends exponentially on the dimensionality of
tory of a single policy7s, it is possible to infer the value of any the State-space, can be interpreted as evidence of the “curse
other policy arbitrarily well using local averaging. We havelf dimensionality” in r_elnf(_)rcement Iearnmg._ In particular,
thus proven that local averaging is suitable to approximate tR8Y method for approximating the value function of an MDP
average—costs of a wide class of MDPs for any fixed strate§¢m data is subject to this curse. Otherwise, an approximation
1. From here it is a relatively easy step to demonstrate aldgthod that “breaks” the curse of dimensionality could be used
that local averaging can be used in combination with approglfernatively as a nonlinear regression method with the same
imate dynamic programming in order to approximate dpe property by Constructing a triVial One-Step MDP. Th|S iS Clearly
timal strategyy.*. In detail, because the approximation error oficonsistent with theoretical lower complexity bounds for
Tm, » AN be made arbitrarily small for alle M, according to nonlinear regression derived in [1%The fact that the curse of
Proposition 2, it must be small specifically for the choiggs dimensionality cannot be broken implies that the computational
andy*. We use this fact to prove our next theorem: effort necessary to obtain a statistically satisfactory approxima-

Theorem 2:Under the conditions of Proposition 2, the aption of the value function must eventually become prohibitive
proximate optimal cosj,, converges to the true optimal cost inin high dimensions. In many real-world situations this problem
the sense that is alleviated by prior knowledge which may be used to define

_ a low-dimensional approximation of the original state space.
By alfim — 1" =r0. For example, Tsitsiklis and Van Roy select special “features”
summarizing the dynamics of an MDP [3], and Ormoneit and
Hastie describe an approach designed for local averaging where
an optimal linear projection of the system state onto a low-di-
E.y alnp., —n'] =30 0. mensional subspace is learned automatically from training data
[29]. Nonetheless, the statistical and computational problems
In other words, the approximate optimal strat¢gy performs of reinforcement learning in high-dimensional spaces remain a
as well as;™ asymptotically and we can predict the optimagerious obstacle in many applications and should be addressed
costsn*, using the estimatg,,. In principle, we can thus solve in more detail in future work.
any average—cost MDP satisfying our assumptions using the ap-
proximate dynamic programming algorithm of Section V. From

a practical standpoint, Theorem 2 asserts that the performanc“ [7] it is shown that the curse-of-dimensionality can indeed be broken
er special circumstances if the transition dynamics of the MDP are known.

. . . . un
of a.pprox.lmate ‘?'y“am'c programmm_g .Can be improved arpte that this is different from breaking the curse of dimensionality in reinforce-
trarily by increasing the amount of training data. ment learning.

Furthermore, the cost ¢f,, converges to the optimal cost in th
sense that

Authorized licensed use limited to: Stanford University. Downloaded on July 20,2010 at 05:45:17 UTC from IEEE Xplore. Restrictions apply.



1632 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 10, OCTOBER 2002

APPENDIX | Next, we define the “error terme, , = BH(ZS“) —
PROOF OFPROPOSITION1 (T'uhyu)(Zs). Note thate, ,, has zero mean and it is inde-
pendent of any othee, , unlesss’ = s. Because', is a

Consider Poisson’s equation (6) for a fixed polieye M,
and leté,,, () = (I'y,, uhy — T'phy)(2). We can rewrite (6) in
terms of the “drift equation”

conditional expectation operator and becaiug’s bounded in
absolute value by’g, ¢, , is bounded in absolute value by
2C5. ,
(fm’”h» () = hp(2) + 10 — cu(x) + Em(z).  (29)  Finally, we observe thatfor all € M, the functionl” .72, is
uniformly continuous o3 in the sense that for arzy> 0 there
Using (29), it is straightforward to construct the martingalexists a5 > 0 such thaf|z — || < ¢ for all =, = € B implies
(under K, ,.): My = hu(Xi) — S50, — cu( X)) +  |[(Tuh)(z) — (Duhy) ()] < e. To see this, note that

=0

En(X;)). Using E,, .[My] = My, we obtain . .

1 ’ 1 ‘(Fuhu) () — (Fuhu) (x)‘

=1 = 7 Ern T ~

T 7’H(x) T , < / hu(y)‘ |Pu(a;) (]}, y) — Pu(z) (Z, y)|)‘(dy) (33)
T—1

A (Xr) — Z(W_CM(X].)JF%(XJ)) . (30) v_vherepa(a:, y) is unifor_mly c_ontinuous according to As_sump—
5=0 tion A.2) and |k,(y)| is uniformly bounded as previously
shown.

Equation (22) follows upon observing that all terms on the prgof of Proposition 2: We assume that a fixed bail  R¢
right-hand side of (30) are convergentiagoes to infinity and s given in (31) and (32), and that kernel-based reinforcement
th.at.thehu'terms vanish in the limit (for more deFaHs, see [2‘."])rearning approximates the unknown MDP Bn That is, by a
Similarly, in order to derive (23), we apply optional sampling|ight abuse of notation, we redefine the approximate average

with regard to the stopping timeto M, costn.,,, . and the approximate relative value functibg_,, in
Enm, o[My] = Em o[hu(X,)] terms of the modified cost functiol(z € B)c,(z). Then, we

o consider the decomposition

- Em,,m Z(W - cu(Xj) + Sm(XJ)) Emg,ﬁh]rn, w 77;L| S Eacg,ﬁ|777n, w ﬁu| + |77];L - 77H|- (34)
/=0 Because of Assumption A.8), it is always possible to chadgse

=0+ Em, -73_[7](77”’: = M) & e, () so that the second term on the right-hand side of (34) is smaller

71 than a givere. The first term in (34) can be rewritten using

— Bz Em(X5) ] - Proposition 1 as
=0

| Eoy, gl o = ]
Using E,,, . [M;] = My andE,, »[7] < hp, u(z) + C), (see

[14]) we obtain (23). n S Eeom

APPENDIX I + Eazg,ﬁ|:/ (
PROOF OFPROPOSITION2 B

We describe a proof extending results of [21], [30], and [18]. = £, sup (Fm,uhu - Fuhu) (2)
We begin by defining several auxiliary magnitudes. First, con- I ZCBJE o w(B)]-

sider a fixed ballB = Bz 5 centered at with radiusz and let oy LTI

a modified average cost function?, and a modified relative Without loss of generality, we chooseB such that

value function,2, be defined according to 2CpEy, m[mm, n(B)] < e. With regard to the first term
of the last inequality, we consider yet another decomposition

T—1
N . 1 L -
775 = Tlgr;o E, . T Z 1(X; € B)CM(Xt)] (31) E. 5 sgg (Fm,uhu — Fuhﬂ) (z)
t=0 x
—1 m—1
hE (@) =Ea | (M(Xy € Beu(Xy) — ﬁf)] . (32 < Bz sup Z km, u(Zs, @)
t=0 TR =0
Thatis,;Z andh? are the average—cost and to the relative value : ((W%) (Z) — (U%) (x)) (35)
of an MDP that only incurs costs in the interior Bf Both of
these terms can be shown to be uniformly bounded using the m—1
compactness abB and Assumption A.4) (for details, see [24]). + £, 7z [sup Z E, u(Zs, x)es, ul - (36)
Hence,h}(x) is bounded in absolute value by a constaft *€B 2o

Below we assume tha® is fixed and we Write’EM (z) for the First, we investigate the “bias term” (35). We derived previ-
modified relative value functioh? () for simplicity; similarly, ously that/,(z)| < Cp so that|(T',.1,)(Z,) — (Uh) ()| <
we letsj, = 75, 2Cg. Next, because of the uniform continuity Bf,2,,, we can
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always guarantee thit",, 2, )(Z,) — (I',h, ) (x)] < e within a
sufficiently small neighborhood af, say, for all| Z, — z|| < .
Then

m—1
B 50 ; b, (o, @) (Db ) (Z)=(Tuy ) (a:))‘
m—1
<E,u sug Z B, u(Zs, 2)(2CB1(|| Zs — z|| > w)
z€ s=0
+ e1([|Zs — 2| S w))
m—1
< 2CBEg, 7 |sup Z ki, (Zo, )| Zo— ]| > u)|+e.
acCB
(37)

The term in the expectation operator is bounded by one so that
we can split the left term in (37) another time with respect to the

conditionsup,c g 70" ki, 1 (Zs, 2)1(||Zs — 2| > u) > 6.
Hence, it suffices to show that there exists 0 such that

m—1

2Cg| 6+ P, | su k. (24, x
B< mu(weg; u( )

1(1Zs — || > w) > 6)) <e (38)

for all € M, to obtain that (37) is bounded by 2Using
again thaf~""; 1 km, u(Zs, ) = 1 and thatB, , C N, (),
without loss of generality

m—1
Py, M(sup Z B, u(Zs, )| Zs — || > uw) > 6)

xcB

m—1
. < B
<11€1}f3 z_% E y(Zs, 2)A(|| Zy— || < u) < 1 5)

(o
P, gl inf ———
’ < €B #Np, u()

< xo#(flaEA 1<:<C,,

=P

To, [t

IA

#M(,;)B w<1-— (5)

(1 o)#D
rna #a uz,u/2< Qk
1—8)#D
> acg,p {#ani,'u/Q < %}
~k
a€A, 1<Z<C ,DED., o
< MCu(€, sup
a&A rcB

Pxo,ﬁ<#a5’m7u/2 < (1— 6)#Nm,a(x)> '

Cy

We used the value > 0 to bound the probability in (24) which
appears also as the second term of the first inequality. Note that

¢ is arbitrary and it is different from the bourdn (38). Here,
B, . is a ball centered at with radius« as previously de-
scribed. We also used a covering Bfin terms ofC,, spheres
of the form B, /> with the property that any3,. .., z € B

contains som@ .,u/2 @s a subse®,, , is the set of all sets
N, () for somex € B. Clearly, #D,,, . is smaller than

1633

the mth shattering coefficienty(£, m). The last term in this
derivation can be chosen so as to satisfy (38) by choasiag
¢/(4Cp) and using Assumption (26). Hence, altogether (35) is
bounded by 2.

With respect to the “variance term” (36), because, is
bounded in absolute value B, it suffices to demonstrate
that for anye > 0 there exists @ > 0 such that

> 26) <e

This is by analogy to (38). The probability term can be bounded
as follows:

m—1

Z km, M(Zsa .’17)657 m

s=0

20 +2CpP,, & <sup
xcB

m—1
P, 5| sup Z E, u(Zs, x)es, u| > 26
rz€EB 5—=0
< Py | sup ko, u(Zs, x)es, u| > 6
*CB| 7 e N ()
6
+ P| sup Z b, u(Zs, ) > 0
xEBZCan“() B
e 6
< Pz | sup — %k s — | 4e
0sk zCB Z.eN,, () #an,u(x) Ck
(39)

We used (24) to derive the last inequality. In detail, the second
probability term equals zero by (25) for a sufficiently lange

In our next step, we apply the law of iterated expectations in
order to condition on the samplesdh

e 6
Pz sup Z S [
€ ZENm*(a:)# m, () &
s
=Bug|Plomp) DL g
Z cN,. H(m) m,
1)
= Z07 7Zrn
Ck
<eaalr| U X Gl 2]
= Hzo, 1t -
a€A, DED, . ZSGD# Ch

s Zm

< M€, m)E,, u

€
2o

sup P
aCA, DCD,, o Z

- ZO,...,Zm>

]

k

< Mu(E, m)Eg, u

204N G _ 4 )
. |: sup eXp<— ¥ (# nl,a(-’f)é/ck CB/(P)
acA,zEB

8H# N, o()C3

)
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for sufficiently largem. Here, we applied [27, Th. 2] using, .| We analyze the first of these two terms by using the large devi-

as a cost function; in particular, note thgt7,) takes on values ation result of [27, Th. 2]. This gives

inthe domair{0, 2Cg]. In addition, we used again the g, ,,

of neighborhoods of points iB. Furthermore, we bounded (39) #aBo uo 7By uy2)

by 3¢ using (27), and we sét= ¢/4 ande = ¢/(8C}5). sup Py <T — T7(Ba, uy2) < —f)
Collecting terms, we find thak’,,, 7|7, . — 7,| iS bounded “

a€A,z€B
2 2
by 3e for sufficiently largem. Because the size of this bound ~ 1 sup {exp<_¢ (Mam(Br,u/2)/2 = 2/¢) )} )

for m is independent of, and7z, the convergence occurs fur- ~ 2 ac4, 2cB 2mq
thermore uniformly which completes the proof. [ | (44)
APPENDIX Il Note that we applied the Markov chain version of Hoeffding’s
PROOF OFTHEOREM 1 inequality to the subchain associated with theSgetBecause

Prior to the proof of the theorem we establish two auxiliary is fixed and 7z (B, ./2) is uniformly bounded by (42),
conditions. First, we investigate the limiting behavior of théxpression (44) converges to zero #as, goes to infinity
number of samples in each of the subs8is defined asn, Uusing (40).
in Section 1V, asm goes to infinity. The following properties In order to deal with the second term in (43), we
are proven in [24] using the splitting idea together with a law dfeat separately adaptive neighborhood approaches, where

large numbers [ = #N,, .(z) is a fixed function ofm,, and fixed neighbor-
hood approaches, wher€,, .(z) contains all samples in the
me = Qp(m) (40) fixed regionU,, ,(z) and is therefore random: For adaptive

I/m, "=° 0 as. (41) neighborhoods, condition (41) ensures thas eventually true

for sufficiently largem,,, so that the second term in (43) equals
Hence,m, grows at least proportionally tov and, for adap- zero. For fixed neighborhoods, we reformulate the second
tive neighborhoods, the proportion of the, samples located term in (43) using the neighboring regiéf,, ,(x) instead of
iN Ny, o(x) goes to zerl = #Ny, o(2)). N, o(2). As previously shown, we consider the limiting value

Second, note that, becauseis compact and the transitionas;,, goes to infinity, applying [27, Th. 2]:

densityp, (z, y) is continuous (A.1)p,(z, y) is bounded away
from zergby a constard ,, apq itis bounde(_j qbove by anqther <Cl#aUm, o(2) WE(B%VU/2)>
constantC,,. Thus, the transition kernel satisfies the conditions sup Py,
C,\D) < Pz, D) < C,\D)forall D C B,y € M, *“H*EP
This condition is furthermore inherited by the invariant measure, - 1 sup
Ty T 2 4cAx€eB

Mg 2

(PQ(ma’]rﬁ(Bm,'u,/Q)/Zl_201/¢)2
expl| — .
2m,C?
(45)
D) < 7(D) = [ 7 () Puly, D) S TND). (42
_ ) . We used the fact that;(Up,, o(2)) < (7a(Bs,w/2))/4 for large
Proof pf Theorem 1:We verify the cond|t|0ns- (24)—.(27) of m by (42) and (11). As previously shown, (45) and, hence, also
Proposition 2. For approaches 1) and 2), (24) is obvious usi ) converge to zero by (40).
Oy = Cix = 1 — 9. For the nearest neighbor approach 3), we deal with (27) by analogy to (26). In detail, we use a

we choos&'y, = (1 —J)v andCx = (1 — 9)v, respectively. yecomposition of the exponential term in (27) based on the
Condition (25) is obvious given Assumption A.6). scalar w

With regard to (26), we distinguish two cases depending on

the event o~ Cote N, a(2)
C Nrn a n Ba; U .
E= { l#m o(2) < il 2’ r2) } . < e‘cZw]l(#Nm,,,(a:) > w) + #N,,, o(z) < w).
Conditioning onZ, we obtain that Using this decomposition, the left-hand side of (27) can be
Sup Py 71(#0Bu. uj2 < 1Ny o(z)) bounded by the term
a€A,z€B
#aBac u/2
< Py, | B2 (B, —Cow
- 0,631}563 sor < Mg Wﬁb(Bx, U/2) U(87 m) <a€jl,l£)€B ¢
WTL(BJJ, u/2)
< - + sup P, a(#Nm o(z) <w)]. (46)
2 a€A, z€EB
" Bac w
S NG L -
a€A, xR Mg 2 As in the case of (26), we choose = [ for adaptive neigh-

(43) borhoods so thak,,, 7:(#Nm, «(x) < w) equals zero for suffi-
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ciently largem using (41). For fixed neighborhoods, we choose
w = mema(Unm, o(x)) — ¢. Then, by analogy to (44)
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sup 2
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2 a€A,ze€B

(- 16520}

1
Note that in order for (46) to converge to zero we require both

w — oo and¢? /m, — oo quickly by comparison to the growth  [2]
of the shattering coefficient(£, m). For example, consider the 3]
definition ¢ = mawﬁ(Um’a(x))ﬁ. In this case we haver =

MaTr (U, o(2)) — ma7rﬁ(Um7a(a:))\/§ which goes to infinity 4]
provided condition (11) anth, 7z (U, o(x)) — o0 as desired. 5]

On the other hand, we havg/m, = mmz(U,,, «(z))?. We
mentioned that, for the averaging approaches 1)-3) proposed

in Section 1V, the shattering coefficient€, m) is bounded by  [6]
(m+1)%ve. We obtain the following sufficient condition for the
convergence of (46): 7]
) (8]
E., almemiz(Un, o(x))] —log(m + 1) — oo. (47)
(9]

Using (40) and (42), (12) is sufficient to guarantee that (47)
holds. Altogether, (24)—(27) hold for approaches 1)-3) fromuo]
which we conclude that these approaches are consistent by
Proposition 2. Again, for a more detailed derivation, see [24]. [11]

[
[12]
APPENDIX IV

PROOF OFTHEOREM 2

[13]

An important aspect of this proof is that the perturbation con{14]
stantp is decreasing in Theorem 2 according to Assumptioqls]
A.7); in contrastg was fixed above.

First, consider the casg, < 7n*. Because convergence is [16]
uniform for all;. € M, in Theorem 1, the result of the theorem 17
holds specifically for the choice = /i,. That is, we have
E., 7lfim — np,,,| < e for arbitrarye > 0 and sufficiently large
m. However, we also havigy,,, — n*| < |/, — 7, | because
7* attains the minimum costs and hengg, > #»*. Taking
expectations on both sides givES, 7|7, — 7*| < e. [20]

In the case wherg,,, > n*, letu;, denote the “projection” of  [21]
w* onto M,, that is, the strategy obtained by setting the min-
imal probability of each action tg and by renormalizing the [22
remaining probabilities appropriately. Also, g} denote the
average—costs associated Wﬂlp so thatiy,, — n* = (Hm —
;) + (n; —n*). Using Lemma 1, the last term can be written

(18]

[19]

(23]

asiy — " = [(Lu; ™ = Ly ) (@) (d). [24]
This expression is made small by choosingmall or, equiv-
alently, choosingn sufficiently large. Becausg,, —n* > 0 |5

and|nj — n*| is small, it is without loss of generality to assume
also thaty,,, > 75+ Next, recall that),,, andfzm achieve the min-
imum and the pointwise minimum of,, ,, andh,, ., respec-
tively. Therefore, we have,,, ... > im and thusii, — 7| < [27]
|77"WZ — n,|, where the last term can again be bounded usingZS]
Theorem 1.

[26]
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