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Abstract - We study new formulae based on Lya- 
punov exponents for entropy, mutual information, and 
capacity of finite state discrete time Markov chan- 
nels. We also develop a method for directly com- 
puting mutual information and entropy using contin- 
uous state space Markov chains. We show that the 
entropy rate for a symbol sequence is equal to the 
primary Lyapunov exponent for a product of random 
matrices. We then develop a continuous state space 
Markov chain formulation that allows us to directly 
compute entropy rates as expectations with respect to 
the Markov chain’s stationary distribution. We also 
show that the stationary distribution is a continuous 
function of the input symbol dynamics. This continu- 
ity allows the channel capacity to be written in terms 
of Lyapunov exponents. 

I. CHANNEL MODEL 
Let C = (C, : n 2 0) be a stationary finite-state irre- 
ducible Markov chain living on state space C. The random 
sequences of observed inputs and outputs will be denoted 
X = ( X ,  : n 2 0) and Y = (Yn : n 2 0), and take values in 
X and y,  respectively. For each pair of states (cn,cn+1) E C 
define a probability distribution on the input/output sym- 
bols p(zn,ynlcn, &+I). Further assume the input/output se- 
quences X and Y have a joint distribution specified by 

P((XO = 50, YO = yo), . . ., ( X n  = znr Yn = yn)/Cn+’) 

= fi P((Zz, YZ)lC, = cz, G+1 = Cz+l). 
Z=O 

This framework for the channel incorporates a substantial 
number of interesting channel models. Of particular inter- 
est are finite-state Markov channels with Markov inputs, the 
capacities of which are currently open problems. 

11. ENTROPIES AS LYAPUNOV EXPONENTS 
With the channel model described above, each of the entropies 
H ( X ) ,  H ( Y ) ,  and H ( X , Y )  turn out to be Lyapunov expo- 
nents for products of random matrices (up to a change in 
sign). 

Proposition 1: For z E X and y E y ,  let G$ = (G$(cO,cI) : 
co,cI E C), G,’ = (G,’(co,cI) : a , c l  E C), and G ( x ’ y )  ( X - Y )  = 

(G{:f)(a,cl) : co,c1 E C) be IC1 x IC1 matrices with entries 
given by 

G j C h ,  c1) = q c o ,  c1) 4 2 ,  YlCO, C l ) ,  

Y 

G,Y(co, ci)  = R(co, ci) 4(x,yICor ci) ,  
5 

G(x?y) 
(z,y) (CO, c1) = N C O ,  cl)q(z, YICO, C l ) .  

Then H ( X )  = - X ( X ) ,  H ( Y )  = -X(Y), and H ( X , Y )  = 
-X(X, Y ) ,  where X ( X ) ,  A(Y), and X ( X ,  Y )  are the Lyapunov 
exponents defined as the following a.s. limits: 

From this point onward, we will focus our attention on the 
Lyapunov exponent X ( X ) ,  since the conclusions for X(Y) and 
X ( X ,  Y )  are analogous. Define 

A w G $ ~ . . . G $ _  - - @n-lG$, 
Pn = I IwG$, . . .Ggn II I Ikjn-IG$,, II 

Proposition 2: Let w be the stationary distribution of the 
channel C. Then, for n 2 0 and c E C, 

@n(c) = P(Cn+1= clx;), 

That is, Zjn is the standard prediction filter from the theory of 
hidden Markov models (HMM). 

Proposition 3 The sequence k j  = ( f i n  : n 2 0) is a Markov 
chain taking values in the continuous state space P = {w : 
w 2 0, llwlll = 1). Furthermore, 

11kjnGZlll = P(Xn+1 = 21-G). 

Proposition 4: In [l] we present conditions under which 
f i n  posseses a unique stationary distribution T .  When those 
conditions hold we can state 

Proposition 5: In [l] we present conditions under which 
X ( X )  is a continuous function of the input symbol distribution 
and the transition probabilities for the channel. Hence we can 
write capacity in terms of Lyapunov exponents 

C = max [X(X) + X(Y) - X ( X ,  Y ) ]  
P ( X )  

The above propositions allow us to  directly compute mutual 
information and capacity for a new class of Markov channels 
with non-i.i.d. inputs. This is a significant advance over previ- 
ous results that required asymptotics or simulation. Detailed 
proofs and computational examples are available in [l]. 
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