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ABSTRACT

The semi-Markov process (smp) has long been used as a model for the
underlying process of a discrete-event stochastic system. Important
refinements of this model include the continuous-time Markov chain
(ctmc) and important extensions include the generalized semi-
Markov process (gsmp). Functional central limit theorems (fclts) give
basic conditions under which these various processes exhibit stable
long-run behavior, as well as providing approximations for cumula-
tive-reward distributions and confidence intervals for statistical
estimators.We give fclts for finite-state ctmcs, smps, and gsmps under
minimal conditions that involve irreducibility and finite second
moments on the ‘‘holding time’’ distributions. We consider both
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continuous and lump-sum rewards; our emphasis is on the use of
martingale theory and on the explicit computation, when possible, of
the variance constant in the fclt.

Key Words: Semi-Markov processes; Markov chains; Central limit
theorem; Martingales; Discrete-event systems.

I. INTRODUCTION

This paper concerns the long-run behavior of complex discrete-event
stochastic systems. Such systems evolve over continuous time and make
stochastic state transitions when events associated with the occupied state
occur; the state transitions occur only at an increasing sequence of
random times.

The underlying stochastic process of a discrete-event system records
the state as it evolves over continuous time and has piecewise-constant
sample paths. One model for this underlying process is the semi-Markov
process (smp); see, for example, Çinlar (1975). In a smp, the sequence of
states evolves according to a discrete-time Markov chain. Conditional
on this sequence, the holding times in the successive states are mutually
independent, and each holding time has a distribution function that
depends only on the current state. The continuous-time Markov chain
(ctmc) is an important refinement of the smp in which the holding times
are exponentially distributed; the intensity is a function of the current
state (Asmussen, 1987; Çinlar, 1975; Karlin and Taylor, 1975; Ross,
1983). Each of these models can be viewed as associating exactly one
event with each state.

The generalized semi-Markov process (gsmp) extends the smpmodel to
capture more complicated system behavior by associating a set of events
with each state. The events compete to trigger the next state transition
and each set of trigger events has its own probability distribution for
determining the new state; see Glynn (1989), Glynn and Haas (2004),
Haas and Shedler (1987), Konig et al. (1974), Schassberger (1978),
Shedler (1993), and Whitt (1980). At each state transition, new events
may be scheduled. For each of these new events, a clock indicating the
time until the event is scheduled to occur is set according to an arbitrary
distribution function that depends on the current state, previous
state, and set of events that trigger the state transition. These clocks
determine when the next state transition occurs and which of the sched-
uled events actually trigger this state transition. A gsmp is formally
defined in terms of a general state space Markov chain that records the
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state of the system, together with the clock readings, at successive state
transitions.

In applications, a reward structure is often associated with the
underlying process fXðtÞ: t � 0g of the discrete-event system under study.
Specifically, denote by S the state space of the underlying process, by
NðtÞ the number of state transitions of the process during the interval
ð0; t�, and by Sn the state just after the nth state transition. [Set S0 ¼
Xð0Þ.] Then a general model for the reward earned over the interval ½0; t� is

RðtÞ ¼
XNðtÞ

n¼1

rðSn�1;SnÞ þ
Z t

0

f ðXðuÞÞdu; ð1Þ

where r:S�S 7!R and f :S 7!R are specified functions. Under this
model, the system accrues a continuous reward at rate f ðsÞ whenever
the system is in state s 2 S, as well as a lump-sum reward of rðs; s0Þ
whenever the system makes a transition from s to s0.

One way to characterize the long-run stability of the underlying
stochastic process fX ðtÞ: t � 0g is to determine whether or not time-
average limits of the form a ¼ limt!1 RðtÞ=t exist, that is, whether or not
the reward process RðtÞ: t � 0f g obeys a strong law of large numbers (slln).
If such a slln holds and we can compute the value of the limit a, then we
can estimate RðtÞ simply as RðtÞ � at whenever t is ‘‘large.’’ Note that, in
general, the distribution and moments of RðtÞ are difficult to compute
exactly, even when X ðtÞ: t � 0f g is a ctmc. When X ðtÞ: t � 0f g is a gsmp,
the limit a often cannot be computed analytically or numerically, and is
typically estimated using simulation; if a slln holds, then the estimator
âaðtÞ ¼ RðtÞ=t is strongly consistent for a.

Central limit theorems (clts) illuminate the rate of convergence in
the slln. Moreover, if we can compute both a and the variance constant
s2 that appears in the clt, then we can approximately compute various
probabilities concerning the quantity RðtÞ; for example, fRðtÞ� xg can be
approximated by Pfatþst1=2Nð0;1Þ� xg, where Nð0;1Þ is a standard
normal random variable. The ordinary form of the clt asserts that
under appropriate regularity conditions, the quantity âaðtÞ—suitably normal-
ized—converges in distribution to a standard normal random variable.
An ordinary clt can often be strengthened to a functional central limit
theorem (fclt); see, for example, Billingsley (1999) and Ethier and Kurtz
(1986). Roughly speaking, a stochastic process with time-average limit a
obeys a fclt if the associated cumulative (i.e., time-integrated)
process—centered about the deterministic function gðtÞ¼ at and suitably
compressed in space and time—converges in distribution to a standard
Brownian motion as the degree of compression increases. fclts can be
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used to approximate pathwise properties of the reward process over finite
time intervals via those of Brownian motion (Billingsley, 1999; Ethier and
Kurtz, 1986). As mentioned previously, a is typically estimated using
simulation when the underlying process is a gsmp. In this setting, a variety
of estimation methods such as the method of batch means (with a fixed
number of batches) are known to yield asymptotically valid confidence
intervals for a provided that a fclt holds (Glynn and Iglehart, 1990).

In this paper, we provide fclts for finite-state ctmcs, smps, and gsmps
under the general reward structure in (1). In the case of smps and ctmcs,
our emphasis is on the use of martingale theory to obtain the desired limit
theorems, both because this approach appears to be somewhat less well
known than the classical approach based on regenerative structure, and
because use of martingale techniques often leads to algorithms for explicit
computation of the variance constant in the fclt. A major contribution
of this paper is the development of minimal (and easily checkable) condi-
tions under which fclts for general rewards are valid. In particular, we
show that fclts typically hold for both smps and their gsmp generaliza-
tions when the ‘‘holding time’’ distributions have finite second moment.

II. PRELIMINARIES

Before stating the main results, we briefly review some pertinent
aspects of martingale theory—see Ethier and Kurtz (1986), Bremaud
(1981) and Hall and Heyde (1980) for detailed discussions—as well as a
result concerning random changes of time.

Definition 1. Let Fn: n � 0f g be an increasing sequence of s-fields. The
discrete-time process Mn: n � 0f g is a martingale adapted to Fn: n � 0f g
if eachMn isFn-measurable withE½jMnj�<1 andE Mnþ1 j Fn½ � ¼ Mn a:s.

The fclt for both ctmcs and smps can be established using the
following fclt for discrete-time martingales. Denote by C½0;1Þ the space
of continuous real-valued functions on ½0;1Þ, by W ¼ fWðtÞ: t � 0g a
standard Brownian motion, and by ‘‘)’’ weak convergence; see
Billingsley (1999), and Ethier and Kurtz (1986) for definitions. Given a
martingale Mn: n � 0f g, define a collection fUZ: Z � 0g of C½0;1Þ-valued
stochastic processes by setting

UZðtÞ ¼ Z�1=2ðMbZtc þ ðZt� bZtcÞðMbZtcþ1 �MbZtcÞÞ

for Z; t � 0.
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Proposition 1. Let Mn: n � 0f g be a martingale adapted to an increasing
sequence of s-fields Fn: n � 0f g. Let Dk ¼ Mkþ1 �Mk for k � 0 and
suppose that

(i) E½M2
n � < 1 for n � 0;

(ii) limn!1ð1=nÞPn�1
k¼0 E½D2

k j Fk� ¼ s2 a.s. for some constant
s2 � 0; and

(iii) limn!1ð1=nÞPn�1
k¼0 E½D2

kIðD2
k � EnÞ j Fk� ¼ 0 for all E > 0,

where IðAÞ is the indicator of event A. Then UZ ) sW on C½0;1Þ as
Z ! 1.

This result follows from Theorem 4.1 in Hall and Heyde (1980).
Our next result gives conditions under which a fclt in discrete time

implies a corresponding fclt in continuous time; see Serfozo (1975) for a
general discussion of results of this type. Consider a reward process
RðtÞ: t � 0f g defined as in (1) in terms of the underlying process
XðtÞ: t � 0f g of a discrete-event stochastic system with state space S.

As before, denote by Sn (n � 0) the nth state visited by the latter process.
Also denote by zn the time of the nth state transition and by Dn ¼
znþ1 � zn the holding time in state Sn. Suppose that limt!1 RðtÞ=t ¼ a
a.s. for some real-valued constant a, and set faðsÞ ¼ f ðsÞ � a for s 2 S.
Also set Rn ¼ RðznÞ � azn for n � 0. Finally, set

eUUZðtÞ ¼ Z�1=2ðRbZtc þ ðZt� bZtcÞðRbZtcþ1 � RbZtcÞÞ

and

UZðtÞ ¼ Z�1=2ðRðZtÞ � aZtÞ

for Z; t � 0. Observe that the sample paths of UZ are elements of D½0;1Þ,
the space of functions on ½0;1Þ that are right continuous and have limits
from the left (Billingsley, 1999; Ethier and Kurtz, 1986).

Proposition 2. Suppose that

(i) eUUZ ) ~ssW as Z ! 1 on C½0;1Þ for some ~ss2 � 0.
(ii) limn!1ð1=nÞPn�1

k¼0 Dk ¼ d a.s. for some d > 0.
(iii) limn!1max0�k�njfaðSkÞjDk=

ffiffiffi
n

p ¼ 0 a.s.

Then UZ ) sW on D½0;1Þ as Z ! 1, where s2 ¼ ~ss2=d.
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The idea behind the proof of the proposition is to fix T > 0 and set
LZðtÞ ¼ NðZtÞ=Z andLðtÞ ¼ t=d for t � 0,whereNðtÞ is the number of state
transitions in ð0; t�. As discussed, for example, in Haas (1999, p. 78), it
follows from the assumption in (ii) that limZ!1sup0�t�T jLZðtÞ�LðtÞj¼0
a.s., that is, LZ!L a.s. on C½0;T �. Arguing as in Sec. 14 in
Billingsley (1999), we then have eUUZ�LZ)~ssW �L¼sW as Z!1, where
ðf �gÞðtÞ¼f

�
gðtÞ�. (The equality follows from standard properties of

Brownian motion.) Moreover, it is not hard to show that

sup
0�t�T

jUZðtÞ� eUUZ �LZðtÞj�
 
NðZTÞ

Z

!1=2

sup
0�t�T

jfaðSNðZtÞÞjDNðZtÞ
N1=2ðZTÞ

¼
 
NðZTÞ

Z

!1=2

max
0�k�NðZTÞ

jfaðSkÞjDk

N1=2ðZTÞ :

The conclusion of the proposition now follows by standard converging-
together arguments (Billingsley, 1999), provided that the rightmost term
converges to 0 in probability as Z!1. We can in fact establish a.s.
convergence to 0 by noting that the assumption in (ii) implies that
NðZTÞ!1 a.s. and NðZTÞ=Z!T=d a.s. as Z!1 (see Haas, 2002,
p. 79), so that the desired result follows from the assumption in (iii).

III. THE FCLT FOR SMPs AND CTMCs

For a smp X ðtÞ: t � 0f g with finite state space S and initial distri-
bution m, denote by zn the time of the nth state transition (n � 0), by
Sn ¼ XðznÞ the state of the process just after this state transition, and
by Dn ¼ znþ1 � zn the holding time in state Sn. As is well known, the
sequence of successive states Sn: n � 0f g is a discrete-time Markov chain
(dtmc) and, given Sn: n � 0f g, the random variables Dn: n � 0f g are
mutually independent. We denote by R the Markov transition matrix
of the dtmc. The distribution function of each holding time Dn depends
only on the current state Sn, and we write Fðt; sÞ ¼ PfDn � t j Sn ¼ sg.
We formally define a smp by first defining the Markov renewal process
ðSn; znÞ: n � 0f g as the unique stochastic process such that fS0 ¼ sg ¼

mðsÞ and

PfSnþ1 ¼ s0; znþ1 � zn � t
�� Sn; zn; . . . ;S0; z0g

¼ RðSn; s
0ÞFðt;SnÞ a:s:
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for n � 0, s0 2 S, and t � 0. The smp XðtÞ: t � 0f g is then defined by
setting

XðtÞ ¼ SNðtÞ; ð2Þ

where NðtÞ ¼ sup n � 0: zn � tf g. By construction, the smp has piecewise
constant, right-continuous sample paths. When specifying probabilities
and expectations, we often use the notation Pm (Ps) and Em (Es) to empha-
size dependence on the initial distribution m (or initial state s 2 S).

As usual, the embedded jump chain Sn: n � 0f g is called irreducible if
for each s; s0 2 S there exists a finite positive integer n ¼ nðs; s0Þ such that
Rnðs; s0Þ > 0, where Rn is the nth power of the transition matrix R. It is
well known that a finite-state irreducible embedded jump chain admits
a unique invariant distribution p, that is, a probability distribution on
S that satisfies the system of linear equations

ptR ¼ p: ð3Þ

Moreover,

lim
n!1

1

n

Xn�1

k¼0

f ðSnÞ ¼ pð f Þ a.s. ð4Þ

for any real-valued function f defined on S, where pðf Þ ¼ Ep½f ðS0Þ� ¼P
s2S pðsÞf ðsÞ. We call a smp irreducible if the embedded jump chain is

irreducible.
Theorem 1 below gives a fclt for irreducible finite-state smps. To

prepare for this result, define a reward function RðtÞ as in (1). Whenever
the embedded chain Sn: n � 0f g admits an invariant distribution p, set

d ¼
X
s2S

pðsÞmðsÞ ð5Þ

and

a ¼ d�1
X
s;s02S

pðsÞRðs; s0Þðrðs; s0Þ þ f ðsÞmðsÞÞ; ð6Þ

where mðsÞ ¼ R½0;1Þ tFðdt; sÞ. Using classical regenerative arguments

(Asmussen, 1987; Shedler, 1993), it can be shown that an irreducible
finite-state smp satisfying maxs2S mðsÞ<1 obeys a slln with limiting
constant a: RðtÞ=t ! a a.s. Set bðsÞ ¼ ~rrðsÞ þ faðsÞmðsÞ for s 2 S, where
~rrðsÞ ¼Ps02S Rðs; s0Þrðs; s0Þ and faðsÞ ¼ f ðsÞ � a, and let g be a solution
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of the linear system of equations

ðI � RÞg ¼ b: ð7Þ
In the literature, (7) is known as Poisson’s equation. If the smp is
irreducible with finite state space, then it is not hard to see that one
solution of (7) is given by g ¼ ðI � RþPÞ�1b, where the matrix P is
defined by Pðs; s0Þ ¼ pðs0Þ for s; s0 2 S; this solution is unique up to an
additive constant. Indeed, it follows from Theorem 4.3.1 in Kemeny
and Snell (1960) that the ‘‘fundamental matrix’’ A ¼ ðI � RþPÞ�1

exists and has the representation A¼ IþP1
n¼1ðRn�PÞ. Since (3) and

(7) imply that ptb¼ 0, it can be seen that Ab¼P1
n¼0R

nb, and hence
ðI�RÞAb ¼P1

n¼0R
nb�P1

n¼1R
nb¼ b. Next, set m2ðsÞ¼

R
½0;1Þ t

2Fðdt;sÞ
and Hðs;s0Þ¼ rðs;s0Þþgðs0Þ�gðsÞ for s;s0 2S, and set

s2 ¼ ~ss2=d; ð8Þ

where

~ss2 ¼
X
s;s02S

pðsÞRðs;s0Þ½H2ðs;s0Þþ2Hðs;s0ÞfaðsÞmðsÞþ f 2a ðsÞm2ðsÞ�:

ð9Þ
Finally, set

UZðtÞ¼ Z�1=2ðRðZtÞ�aZtÞ ð10Þ

for Z; t� 0.

Theorem 1. Suppose that S is finite, XðtÞ: t � 0f g is irreducible, and
maxs2SmðsÞ < 1, so that limt!1RðtÞ=t ¼ a a.s.. Then UZ ) sW on
D½0;1Þ as Z ! 1 for any initial distribution m if and only if m2ðsÞ < 1
for each s 2 S such that f ðsÞ 6¼ a.

Theorem 1 asserts that a fclt holds for a finite-state smp essentially
under the assumptions of irreducibility and finite second moments on
the holding-time distributions. To compute the variance constant s2 in
Theorem 1, first determine p and g by solving (3) and (7). Next, determine
d, a, and ~ss2 from (5), (6), and (9), and set s2 ¼ ~ss2=d.

Proof. To prove the ‘‘if ’’ result, suppose that m2ðsÞ < 1 for s 2 S such
that f ðsÞ 6¼ a. The basic idea is to first establish a fclt for the sequence
Rn: n � 0f g, where Rn ¼ RðznÞ � azn, and then apply a random time
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change as in Proposition 2. We establish the discrete-time fclt by
showing that for large n, the process Rn: n � 0f g is equal to a martingale
plus a bounded stochastic process. To this end, set

M1ðnÞ ¼
Xn�1

k¼0

faðSkÞðDk �mðSkÞÞ;

M2ðnÞ ¼
Xn�1

k¼0

ðrðSk;Skþ1Þ � ~rrðSkÞÞ;

and

M3ðnÞ ¼
Xn�1

k¼0

bðSkÞ þ gðSnÞ � gðS0Þ

for n � 0. [Take M1ð0Þ ¼ M2ð0Þ ¼ M3ð0Þ ¼ 0.] We claim that
MiðnÞ: n � 0f g is a martingale adapted to Fn: n � 0f g for i ¼ 1; 2; 3,

where F0 ¼ sðS0Þ and Fn ¼ sðS0; . . . ;Sn;D0; . . . ;Dn�1Þ for n � 1. To
see this for the case i ¼ 1, set Yk ¼ faðSkÞ

�
Dk �mðSkÞ

�
for k � 0,

observe that

E Yk j Fk½ � ¼ E Yk j Sk½ � ¼ faðSkÞðE Dk j Sk½ � �mðSkÞÞ
¼ faðSkÞ � 0 ¼ 0

for each k, which immediately implies that E M1ðnþ 1Þ j Fn½ � ¼ M1ðnÞ
a.s. for each n � 0. The remaining conditions in Definition 1 are easy
to verify. The argument for the case i ¼ 2 is similar. For the case i ¼ 3,
the relation in (7) implies that we can write

M3ðnÞ ¼
Xn�1

k¼0

ðgðSkþ1Þ � E gðSkþ1Þ j Fk½ �Þ;

from which the relation E M3ðnþ 1Þ j Fn½ � ¼ M3ðnÞ a.s. follows
immediately.

Now observe that Rn ¼ MðnÞ þ gðS0Þ � gðSnÞ for n � 0, where
MðnÞ ¼ M1ðnÞ þM2ðnÞ þM3ðnÞ. Set

eVV ZðtÞ ¼ Z�1=2ðMðbZtcÞ þ ðZt� bZtcÞðMðbZtc þ 1Þ �MðbZtcÞÞ

and eUUZðtÞ ¼ Z�1=2ðRbZtc þ ðZt� bZtcÞðRbZtcþ1 � RbZtcÞÞ
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for Z; t � 0. We claim that eVV Z ) ~ssW on C½0;1Þ as Z ! 1 by the fclt

for martingales. Since, for T > 0,

sup
0�t�T

jeUUZðtÞ � ~VVZðtÞj � 2max
s2S

jgðsÞj=Z1=2 ! 0

as Z ! 1, a converging-together argument will then imply thateUUZ ) ~ssW . To establish the fclt for feVV Z: Z � 0g we need to show that
the conditions of Proposition 1 hold. The first condition of the proposi-
tion follows easily from the finiteness assumption on S and the moment
condition on the holding-time distributions. To verify the second condi-
tion, set Dk ¼ Mðk þ 1Þ �MðkÞ for k � 0 and observe that, using (7),
we can write Dk ¼ faðSkÞDk þ rðSk;Skþ1Þ þ gðSkþ1Þ � gðSkÞ. Define a
bounded real-valued function h on S by setting hðsÞ ¼ E½D2

0 j S0 ¼ s�.
Appealing to (4), we have

lim
n!1

1

n

Xn�1

k¼0

E½D2
k j Fk� ¼ lim

n!1
1

n

Xn�1

k¼0

hðSkÞ ¼ Ep hðS0Þ½ � ¼ ~ss2;

and the second condition of Proposition 1 holds. To establish the final
condition of Proposition 1, fix E > 0 and set pmin ¼ mins2S pðsÞ; observe
that pmin > 0 since the embedded dtmc Sn: n � 0f g is irreducible with
finite state space. Also set hnðsÞ ¼ E½D2

kIðD2
k � EnÞ j Sk ¼ s� for n � 0

and s 2 S. Observe that, since each hn is nonnegative,

hnðsÞ �
X
s02S

pðs0Þ
pðsÞ hnðs

0Þ � 1

pmin
Ep hnðS0Þ½ � ¼def gn;

so that

lim
n!1

1

n

Xn�1

k¼0

E½D2
kIðD2

k � EnÞjFk� ¼ lim
n!1

1

n

Xn�1

k¼0

hnðSkÞ

� lim
n!1 gn ¼ 0;

where the last equality follows from the monotone convergence
theorem.

We now complete the first part of the proof by applying Proposition
2. To this end, fix a state �ss 2 S and define a sequence of random indices
yðkÞ: k � 0f g by setting yð�1Þ ¼ �1 and yðkÞ ¼ inf n > yðk � 1Þ:f

Sn ¼ �ssg for k � 0. Observe that the sequence yðkÞ: k � 0f g decomposes
the process Dn: n � 0f g into i.i.d. cycles. It follows from standard results
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ORDER                        REPRINTS

for dtmcs that each yðkÞ is a.s. finite and the cycle length t1 ¼ yð1Þ � yð0Þ
has finite moments of all orders. Moreover, we have

E
Xyð1Þ�1

n¼yð0Þ
Dk

24 35 ¼ E E
Xyð1Þ�1

n¼yð0Þ
Dk

���� S0;S1; . . .

24 3524 35
¼ E

Xyð1Þ�1

n¼yð0Þ
mðSkÞ

24 35 � E½t1�max
s2S

mðsÞ < 1:

It then follows from the slln for regenerative processes (Asmussen,
1987) that limn!1ð1=nÞPn�1

k¼0 Dk ¼ d a.s. A similar argument shows that

limn!1ð1=nÞPn�1
k¼0 f

2
a ðSkÞD2

k ¼ b a.s. for some constant b < 1, which
in turn implies (Haas, 2002, p. 79) that limn!1 j faðSnÞjDn=n

1=2 ¼ 0 a.s.
A simple argument as on p. 78 of Haas (1999) now shows that

lim
n!1 max

0�k�n
j faðSkÞjDk=n

1=2 ¼ 0 a.s.;

so that the conditions of Proposition 2 hold and the desired result follows.
It remains to prove the ‘‘only if ’’ result. Suppose therefore that

UZ ) sW as Z ! 1. It follows from a minor generalization of the results
in Glynn and Whitt (1987) that the quantity E Z2

1

� �
must be finite, where

Z1 ¼
Pyð1Þ�1

n¼yð0Þ
�
faðSnÞDn þ rðSn;Snþ1Þ

�
and the sequence of regeneration

points yðkÞ: k � 0f g is defined as before. Since each mðsÞ is finite, it
follows that E½ f 2a ðSyð0ÞÞD2

yð0Þ� < 1, so that m2ð�ssÞ must be finite if
fað�ssÞ 6¼ 0. Since �ss is arbitrary, the desired result follows. &

Remark. With minor changes to the proof, we can extend Theorem 1
to the general case in which the holding time in a state s can depend on
both s and the next state s0. Set Fðt; s; s0Þ ¼ PfDn � t j Sn ¼ s;Snþ1 ¼ s0g,
mðs; s0Þ ¼ R½0;1Þ tFðdt; s; s0Þ, and m2ðs; s0Þ ¼

R
½0;1Þ t

2Fðdt; s; s0Þ. Then we

take d ¼Ps;s02S pðsÞRðs; s0Þmðs; s0Þ.

a ¼ d�1
X
s;s02S

pðsÞRðs; s0Þðrðs; s0Þ þ f ðsÞmðs; s0ÞÞ;

and

~ss2 ¼
X
s;s02S

pðsÞRðs; s0Þ

� �H2ðs; s0Þ þ 2Hðs; s0ÞfaðsÞmðs; s0Þ þ f 2a ðsÞm2ðs; s0Þ
�
;
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ORDER                        REPRINTS

where, as before, Hðs; s0Þ ¼ rðs; s0Þ þ gðs0Þ � gðsÞ and g solves (7). Now,
however, the function b that appears in (7) is given by

bðsÞ ¼ ~rrðsÞ þ faðsÞ
X
s02S

Rðs; s0Þmðs; s0Þ

for s 2 S. The necessary and sufficient condition becomes: m2ðs; s0Þ < 1
for all s; s0 2 S such that f ðsÞ 6¼ a and Rðs; s0Þ > 0.

Remark. The martingale-based approach has been used to obtain fclts
in the context of discrete-time Markov chains on a general state space
(Duflo 1990; Glynn and Meyn, 1996; Maigret, 1978; Meyn and
Tweedie, 1993) as well as continuous time Markov processes on a general
state space (Glynn and Meyn, 1996; Bhattacharya, 1982). In related
work, martingale methods have been used to obtain clts and fclts for
the process Dn: n � 0f g; see Durrett and Resnick (1978) and references
therein. For examples of the classical regenerative approach to obtaining
clts and fclts for Markov chains and smps, see, for example, Asmussen
(1987), Chung (1967), Glynn and Whitt (1987, 2002), Haas (2002), Meyn
and Tweedie (1993), Pyke and Schaufele (1964) and Shedler (1993). To
our knowledge, the current paper contains the first presentation of a
martingale-based fclt for smps with a general reward structure as in (1).

The foregoing fclt for smps immediately leads to a fclt for finite
state irreducible ctmcs. As is well known, a (time homogeneous) ctmc
XðtÞ: t � 0f g with state space S, initial distribution m, and infinitesimal

generator matrix (or rate matrix) Q can be treated as a special case of
a smp. In particular, Fðt; sÞ ¼ 1� exp

��qðsÞt� and Rðs; s0Þ ¼ Iðs 6¼ s0Þ
Qðs; s0Þ=qðsÞ, where qðsÞ ¼ �Qðs; sÞ ¼Ps0 6¼s Qðs; s0Þ. Since each Fð�; sÞ
has finite moments of all orders, we obtain Theorem 2 below. In the the-
orem, RðtÞ is a reward function defined as in (1); we take rðs; sÞ ¼ 0 for
s 2 S since a ctmc never makes a transition from a state s back to itself.

Theorem 2. Suppose that S is finite and XðtÞ: t � 0f g is irreducible, so
that limt!1RðtÞ=t ¼ a a.s. with a defined by (6). Let UZ: Z � 0

� �
be a

collection of random functions defined as in (10). Then UZ ) sW on
D½0;1Þ as Z ! 1 for any initial distribution m, where s2 is defined as in (8).

Remark. The parameters a and s2 in Theorem 2 can be expressed in
terms of the infinitesimal generator matrix Q and the invariant distribu-
tion n of the ctmc. (The latter distribution always exists for an irreducible
ctmc with finite state space). The idea is to use the well known fact that
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ORDER                        REPRINTS

mðsÞ ¼ q�1ðsÞ and

nðsÞ ¼ pðsÞq�1ðsÞP
s02Spðs0Þq�1ðs0Þ ¼ pðsÞq�1ðsÞ=d ð11Þ

for s 2 S; here p is, as before, the invariant distribution of the embedded
chain X ðznÞ: n � 0f g. Specifically, set �rrðsÞ ¼Ps02S Qðs; s0Þrðs; s0Þ and
�bbðsÞ ¼ �rrðsÞ þ f ðsÞ for s 2 S. Then (11) implies that a ¼ nð�bbÞ, where we
use the notation nðhÞ ¼Ps2S nðsÞhðsÞ. Moreover, it follows from (7)
and (11) that

s2 ¼
X
s;s02S

nðsÞQðs; s0ÞH2ðs; s0Þ;

where, as before, Hðs; s0Þ ¼ rðs; s0Þ þ gðs0Þ � gðsÞ and g solves (7). At first
sight this reformulation may appear incomplete because the definition of
the function g involves R rather than Q. Using (11), however, it can be
shown that (7) is equivalent to the linear system

�Qg ¼ �bb� nð�bbÞ: ð12Þ

Remark. Theorem 2 can also be established by directly exploiting
the theory of martingales in continuous time. The idea is to write
RðtÞ � nð�bbÞt ¼ MðtÞ � g

�
X ðtÞ�, where MðtÞ ¼ M1ðtÞ þM2ðtÞ with

M1ðtÞ ¼
XNðtÞ

n¼1

rðSn�1;SnÞ �
Z t

0

�rrðXðuÞÞdu

and

M2ðtÞ ¼ gðXðtÞÞ þ
Z t

0

�bbðX ðuÞÞdu� nð�bbÞt:

It follows from Lévy’s formula (Bremaud, 1981, p. 294) that M1ðtÞ: t� 0f g
is a martingale. Moreover, using (12) (which is the continuous-time
version of Poisson’s equation), we have

M2ðtÞ¼ gðX ðtÞÞ�
Z t

0

QgðXðuÞÞdu;

where QgðsÞ¼Ps02SQðs;s0Þgðs0Þ for s2S. Lévy’s formula then implies
that M2ðtÞ: t� 0f g, and hence MðtÞ:t� 0f g is a martingale. The proof
now proceeds analogously to the proof of Theorem 1.
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ORDER                        REPRINTS

IV. THE FCLT FOR GSMPs

As discussed previously, a generalized semi-Markov process (gsmp)
is a continuous time stochastic process that makes a state transition when
one or more ‘‘events’’ associated with the occupied state occur. In general,
more than one event can occur simultaneously; see Chapter 6 in Shedler
(1993). A gsmp is defined in terms of a general state space Markov
chain that describes the process at successive state-transition times.
After recalling the definition of a gsmp, we give a fclt. Unlike in the
ctmc or smp setting, it is usually not possible to compute either a or
s2 explicitly; these quantities are typically estimated using simulation.
Also, as one might expect, the fclt for gsmps entails more complicated
conditions than the fclt for either ctmcs or smps.

A. Definition

Following (Shedler, 1993), let E ¼ fe1; e2; . . . ; eMg be a finite set of
events and S be a finite set of states. For s 2 S, let s 7!EðsÞ be a map-
ping from S to the nonempty subsets of E; here EðsÞ denotes the set
of all events that can occur when the process is in state s. An event
e 2 EðsÞ is said to be active in state s. When the process is in state s,
the occurrence of one or more active events triggers a state transition.
Denote by pðs0; s;E	Þ the probability that the new state is s0 given that
the events in the set E	 [
 EðsÞ] occur simultaneously in state s. A
‘‘clock’’ is associated with each event. The clock reading for an active
event indicates the remaining time until the event is scheduled to occur.
These clocks, along with the speeds at which the clocks run down, deter-
mine which of the active events actually trigger the next state transition.
Denote by rðs; eÞ (� 0) the speed (finite, deterministic rate) at which the
clock associated with event e runs down when the state is s; we assume
that, for each s 2 S, we have rðs; eÞ>0 for some e 2 EðsÞ. Typically in
applications, all speeds for active events are equal to 1; zero speeds can
be used to model ‘‘preemptive-resume’’ behavior. Let CðsÞ be the set of
possible clock-reading vectors when the state is s:

CðsÞ ¼ fc ¼ ðc1; . . . ; cMÞ: ci 2 ½0;1Þ
and ci > 0 if and only if ei 2 EðsÞg:

[The ith component of a clock-reading vector c ¼ ðc1; . . . ; cMÞ is the clock
reading associated with event ei.] Beginning in state s with clock-reading
vector c ¼ ðc1; . . . ; cMÞ 2 CðsÞ, the time t	ðs; cÞ to the next state transition
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ORDER                        REPRINTS

is given by

t	ðs; cÞ ¼ min
i:ei2EðsÞf g

ci=rðs; eiÞ; ð13Þ

where ci=rðs; eiÞ is taken to be þ1 when rðs; eiÞ ¼ 0. The set of events
E	ðs; cÞ that trigger the next state transition is given by

E	ðs; cÞ ¼ ei 2 EðsÞ: ci � t	ðs; cÞrðs; eiÞ ¼ 0f g: ð14Þ
At a transition from state s to state s0 triggered by the simultaneous
occurrence of the events in the set E	, a finite clock reading is generated
for each new event e0 2 Nðs0; s;E	Þ ¼ Eðs0Þ � ðEðsÞ � E	Þ. Denote the
clock-setting distribution function (that is, the distribution function of
such a new clock reading) by Fð�; s0; e0; s;E	Þ. We assume that
Fð0; s0; e0; s;E	Þ ¼ 0, so that new clock readings are a.s. positive, and that
limx!1 Fðx; s0; e0; s;E	Þ ¼ 1, so that each new clock reading is a.s. finite.
For each old event e0 2 Oðs0; s;E	Þ ¼ Eðs0Þ \ �EðsÞ � E	�, the old clock
reading is kept after the state transition. For e0 2 ðEðsÞ � E	Þ � Eðs0Þ,
event e0 is cancelled and the clock reading is discarded. When E	 is a
singleton set of the form E	 ¼ e	f g, we write pðs0; s; e	Þ ¼ pðs0; s; e	f gÞ,
Oðs0; s; e	Þ ¼ Oðs0; s; e	f gÞ, and so forth. The gsmp is a continuous-time
stochastic process XðtÞ: t � 0f g that records the state of the system at
time t.

Formal definition of the process X ðtÞ: t � 0f g is in terms of a general
state space Markov chain ðSn;CnÞ: n � 0f g that describes the process at
successive state-transition times. Heuristically, Sn represents the state
and Cn ¼ ðCn;1; . . . ;Cn;MÞ represents the clock-reading vector just after
the nth state transition; see (Shedler, 1993) for a formal definition of
the chain. The chain takes values in the set S ¼ Ss2S

�
sf g � CðsÞ�.

Denote by m the initial distribution of the chain. As with smps and ctmcs,
we use the notations Pm, Pðs;cÞ, Em, and Eðs;cÞ when specifying probabilities
and expected values associated with the chain in order to emphasize the
dependence on the initial distribution m or the initial state ðs; cÞ 2 S.

We construct the continuous time process fXðtÞ: t � 0g from the
chain fðSn;CnÞ: n � 0g in a manner almost identical to the construction
of a smp. Let zn (n � 0) be the (nonnegative, real-valued) time of the
nth state transition: z0 ¼ 0 and

zn ¼
Xn�1

j¼0

t	ðSj;CjÞ

for n � 1. The gsmp XðtÞ: t � 0f g is now defined exactly as in (2). As with a
smp or ctmc, the gsmp has piecewise constant, right-continuous sample paths.
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ORDER                        REPRINTS

B. The Limit Theorem

For a gsmp with state space S and event set E and for s; s0 2 S and
e 2 E, write s!e s0 if pðs0; s; eÞrðs; eÞ>0 and write s ! s0 if s!e s0 for
some e 2 EðsÞ. Also write sff s0 if either s ! s0 or there exist states
s1; s2; . . . ; sn 2 S (n � 1) such that s ! s1 ! � � � ! sn ! s0.

Definition 2. A gsmp is irreducible if sffs0 for each s; s0 2 S.

Recall that a nonnegative function G is a component of a distribution
function F if G is not identically equal to 0 and G � F . If G is a compo-
nent of F and G is absolutely continuous, so that G has a density function
g, then we say that g is a density component of F .

Assumption PDðqÞ, defined below, encapsulates the key conditions
that we impose on the building blocks of a gsmp to obtain limit theorems.
Denote by H the subset of the clock-setting distribution functions such
that Fð�; s0; e0; s;E	Þ 2 H if and only if Eðs0Þ ¼ e0f g. (Observe that every
clock-setting distribution function is an element ofH if the gsmp is in fact
a smp.)

Definition 3. Assumption PDðqÞ holds for a specified gsmp and real
number q � 0 if

(i) the state space S of the gsmp is finite;
(ii) the gsmp is irreducible;
(iii) all speeds of the gsmp are positive;
(iv) each clock-setting distribution function Fð�; s0; e0; s;E	Þ has finite

qth moment; and
(v) there exists �xx 2 ð0;1Þ such that each clock-setting distribution

function Fð�; s0; e0; s;E	Þ 62 H has a density component that is
positive and continuous on ð0; �xxÞ.

If Assumption PDðqÞ holds for some q � 0, then obviously
Assumption PDðrÞ holds for 0 � r � q. Also observe that, whenever
Assumption PDðqÞ holds, there can be at most a finite number of state
transitions at which two or more events occur simultaneously.

Recall that a probability distribution p is invariant with respect
to a Markov chain Zn: n � 0f g with transition kernel P and (possibly
uncountable) state space G if and only if

R
Pðz;AÞpðdzÞ ¼ pðAÞ for

each measurable set A 
 G. The following result is a consequence of
Proposition 3.13 and Theorem 4.5 in Haas (1999).
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ORDER                        REPRINTS

Proposition 3. If Assumption PDð1Þ holds, then there exists a unique
invariant distribution p for the underlying chain ðSn;CnÞ: n � 0f g.

We often write pð ~ff Þ ¼ Ep½ ~ff ðS0;C0Þ� for a function ~ff :S 7!R. In
contrast to ctmcs and smps, the invariant distribution p typically
cannot be computed simply by solving a system of linear equations—
one generally resorts to computer simulation.

Define a reward function RðtÞ as in (1). Recall the definition of the
functions t	 and E	 from (13) and (14), and set

~hhðs; cÞ ¼ f ðsÞt	ðs; cÞ þ
X
s02S

rðs; s0Þpðs0; s;E	ðs; cÞÞ

for ðs; cÞ 2 S. Also set a ¼ pð~hhÞ=pðt	Þ, and observe that a is well defined

and finite if and only if pðj~hhjÞ < 1. Straightforward modifications of
results in Glynn and Haas (2004) establish the following slln.

Proposition 4. If Assumption PDð1Þ holds, then pðj~hhjÞ < 1 and
limt!1 RðtÞ=t ¼ a a.s. for any initial distribution m.

Other direct modifications of the results in Glynn and Haas (2004)
yield an fclt. As before, assuming that limt!1 RðtÞ=t ¼ a a.s., set
UZðtÞ ¼ Z�1=2

�
RðZtÞ � aZt

�
for Z; t � 0.

Theorem 3. If Assumption PDð2Þ holds, then there exists a finite
deterministic constant s2 � 0 such that UZ ) sW on D½0;1Þ as Z ! 1
for any initial distribution m.

The moment condition in Theorem 3 is natural in light of the
previously discussed conditions for smps and ctmcs. Indeed, the necessity
of the second moment condition appearing in Theorem 1 proves that the
moment condition in Theorem 3 is the weakest general condition possible.
In the gsmp setting, we also impose a positive-density condition on the
clock-setting distributions. Although this particular condition is by
no means necessary, some such condition is needed in the face of the
additional complexity caused by the presence of multiple clocks. Indeed,
the following example shows that even the slln can fail in the absence of
any such structural assumption; this example is taken from Glynn and
Haas (2004).

Example 1 (An irreducible gsmp with no unique time-average
limit). Consider a gsmp with unit speeds, state space S ¼ 1; 2; 3; 4f g,
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ORDER                        REPRINTS

event set E ¼ e1; e2f g and active event sets given by Eð1Þ ¼ Eð3Þ ¼
e1; e2f g and Eð2Þ ¼ Eð4Þ ¼ e2f g. The state-transition probabilities are

pð1; 3; e1Þ ¼ pð3; 1; e1Þ ¼ 1 and pð1; 2; e2Þ ¼ pð2; 1; e2Þ ¼ pð3; 4; e2Þ ¼
pð4; 3; e2Þ ¼ 1; see Fig. 1. Observe that this gsmp is irreducible in the
sense of Definition 2. Suppose that each successive new clock reading
for event ei (i ¼ 1; 2) is uniformly distributed on a specified interval
½ai; bi�, and that 0 � a2< b2< a1<b1. Then with probability 1 event
e2 always occurs before event e1 whenever both events simultaneously
become active. It follows that if the initial state is equal to 1 or 2, then
the gsmp never visits state 3 or 4; if the initial state is equal to 3 or 4,
then the gsmp never visits state 1 or 2. Thus, in general, the value of a
limit of the form limt!1ð1=tÞ R t0 f �X ðuÞ�du depends on the initial distri-
bution. Similar observations hold for the underlying chain. Of course,
this gsmp does not satisfy Assumption PDðqÞ for any q � 0 since the
clock-setting distribution function for event e1 does not have a density
component that is positive on an interval of the form ð0; �xxÞ.

In general, obtaining structural conditions that are weaker than those
used in Theorem 3 would involve analysis of the detailed structure of the
gsmp under consideration.
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Brémaud, P. (1981). Point Processes and Queues. New York: Springer-
Verlag.

Chung, K. L. (1967). Markov Chains with Stationary Transition Prob-
abilities. 2nd ed. Berlin: Springer-Verlag.
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