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Abstract

This chapter is concerned with reviewing the basic ideas and concepts underlying the
use of regenerative structure in the development of efficient simulation algorithms.
While it has long been known that discrete state space Markov chains exhibit regen-
erative structure, we argue that well-behaved discrete-event simulations typically also
contain an embedded sequence of regeneration times. However, algorithmic identifi-
cation of the corresponding regeneration times turns out to be a nontrivial problem.
We discuss the theoretical and implementation issues involved in identifying the cor-
responding regeneration times, and describe how regenerative methodology supplies
effective solutions to several difficult simulation problems. In particular, we discuss
the use of regeneration in the context of steady-state simulation as a means of effi-
ciently computing confidence intervals and correcting for initial bias. We also point
out that regeneration has the potential to offer significant algorithmic efficiency im-
provements to the simulationist, and illustrate this idea via discussion of steady-state
gradient estimation and computation of infinite horizon expected discounted reward.

1 Introduction

Let V= (V(¢): t > 0) be a real-valued stochastic process in which V' (¢)
represents the simulation output collected at time ¢. Roughly speaking, the
process V' is said to be (classically) regenerative if there exist random times
T0) < T(1) < --- at which the process “regenerates” (in the sense that
V probabilistically starts afresh at each time 7°(i), i > 0, and evolves indepen-
dently of the process prior to time 7°(i)). Such regenerative structure implies
that V' can be viewed conceptually as a sequence of independent “cycles”
(V(s): T(i —1) < s < T(i)) that are “pasted together” (where we adopt the
convention that 7(—1) = 0). Thus, the infinite time behavior of I over [0, c0)
is implicitly captured in the behavior of V' over a cycle. Hence, in principle,
virtually any expectation of V' over [0, co) can be alternatively described as
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an expectation involving cycle-related quantities. This observation is the key
insight that underlies regenerative simulation.

The use of regenerative structure as an algorithmic tool in the simulation
setting has primarily focused on its use in the context of steady-state simula-
tion. The first suggestion that regenerative cycles could play a useful role in
steady-state simulation output analysis came from Cox and Smith (1961), and
the idea was further developed in Kabak (1968). However, the first compre-
hensive development of the regenerative method for steady-state simulation
output analysis came in a series of papers of Crane and Iglehart (1974a, 1974b,
1975), as well as concurrent work by Fishman (1973, 1974). The great majority
of subsequent work on algorithmic exploitation of regeneration has followed
the historic tradition of focusing on its application to steady-state simulation
output analysis.

In this chapter we focus our discussion on the key theoretical and algorith-
mic issues underlying the use of regeneration in the steady-state simulation
context. We start, in Section 2, by describing the key challenges that confront
a simulationist in analyzing steady-state simulation output, while Section 3
discusses the basic regenerative approach to forming an estimator for the so-
called “time-average variance constant”. Section 4 offers some discussion of
how the particular choice of regenerative structure influences the efficiency
of the method, and Section 5 describes the regenerative solution to the initial
transient problem and the construction of low-bias steady-state estimators. In
Sections 6-8 we discuss the theoretical issue of when a simulation is regen-
erative, with a particular focus on when a discrete-event simulation contains
algorithmically identifiable regenerative structure. Section 9 then discusses
steady-state regenerative analysis from the perspective of martingale theory.

The last two sections of the chapter are intended to give the reader a hint of
the role that regeneration can play in the development of computationally ef-
ficient algorithms for other simulation problems. In particular, we show that
in computing either steady-state gradients or infinite-horizon expected dis-
counted reward that regeneration offers the simulationist the opportunity to
not only construct asymptotically valid confidence statements but to also im-
prove computational efficiency. While regeneration is primarily understood
within the simulation community as offering a vehicle for analysis of simula-
tion output, our two examples are intended to argue that regeneration has the
potential to also play a significant role in the variance reduction context.

2 The steady-state simulation problem

Let V = (V(¢): t > 0) be a real-valued stochastic process in which V' (¢)
represents the value of the simulation output process at (simulated) time ¢.
For example, V' (¢) could represent the total work-in-process at time # in a pro-
duction context or the inventory position at time ¢ in a supply chain setting.
Throughout this chapter, we use a continuous time formulation to describe
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the relevant theory. (Note that any discrete-time sequence (V},: n > 0) can be
embedded into continuous time via the definition V' (¢) = V|, for ¢t > 0, where
| x| is the greatest integer less than or equal to x.)

Many simulation applications demand that the simulationist compute a
steady-state performance measure. To be specific, suppose that I satisfies a law
of large numbers (LLN), so that there exists a (deterministic) constant « for
which

t
1/ V(s)ds = «a €))
rJo

as t — oo, where “=" denotes weak convergence. The constant « appearing
in (1) is known as the steady-state mean of V. Computing « is the central
problem in steady-state simulation.

Given the LLN (1), the time-average V' () N fot V' (s) ds is the natural es-
timator for «. However, in view of the fact that the simulation of I will usually
be initialized in a state that is atypical of equilibrium behavior, the process I/
will at best exhibit the stationarity associated with steady-state dynamics only
in an approximate sense. As a consequence, such a simulation of V" over [0, ¢]
will necessarily include some “initial transient period” over which the simula-
tion outputs will be biased as estimators of steady-state performance. This, in
turn, induces bias in the estimator V' (¢) (known as “initial bias”). While the
effect of the initial transient can be expected to dissipate as t — oo, it can have
a significant “small sample” impact on the quality of the estimator V' (¢).

To reduce the effect of the initial transient on the steady-state estimation
algorithm, it is commonly recommended that the simulationist expend his com-
puter budget on one (long) replication of I (for which the time horizon ¢ can
be made large), rather than multiple short replications. Because of the fact that
only one realization of the process } is then simulated, estimating the variance
of the associated estimator can then be challenging.

In particular, it is usually the case that a process V' satistying the LLN (1)
will also satisfy a central limit theorem (CLT). Specifically, there exists a (de-
terministic) constant o € (0, oco) for which

A2V (1) —a) = aN(, 1) (2)

as t — oo, where N(0, 1) denotes a normal random variable (r.v.) having mean
zero and unit variance. The constant ¢ is called the time-average variance
constant (TAVC) of V. In view of (2), it is easily verified that

— zo — zo
[V(t) 7 V(t)+ \/J 3)
is an (asymptotic) 100(1 — )% confidence interval for «, provided that z is
chosen so that P(—z < N(0, 1) < z) = 1 — 8. Of course, (3) can be computed
at a practical level only if the TAVC o is known.

Since knowledge of o is virtually never available, the simulationist must in-

stead estimate o from the observed simulation up to time ¢. If I is stationary,
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o? can (in great generality) be represented in terms of the spectral density f ).
Specifically, ol =2x f(0), where

foy = %/oocos(/\u) cov(V(0), ¥ (u)) du. (4)
0

Spectral density estimation for stationary processes has been well studied in
the literature; see, for example, Chapter 9 of Anderson (1971). Such estimators
converge at a rate of ¢~ /3 or t=2/°, with the specific rate depending on the de-
gree of differentiability of f. While virtually all steady-state simulations involve
simulating nonstationary stochastic processes that contain an initial transient
period, one would expect that the best possible convergence rate for an esti-
mator of the TAVC o2 will be no faster than that which is achievable in the
stationary setting. Hence, more problem structure must be assumed in order
to obtain a TAVC that converges (for example) at rate ¢~ 1/2.

In the next section, we show how regenerative structure can be exploited to
obtain an estimator for the TAVC ¢ that converges at rate ¢~ /2 in the simula-
tion time horizon ¢. Given the substantial body of theory establishing that ~1/2
is typically an optimal rate of convergence for statistical estimators (see, for
example, Chapter 2 of Ibragimov and Has’minskii, 1981), this suggests that re-
generative structure permits the simulationist to obtain TAVC estimators that
converge at the best possible rate.

3 The regenerative estimator for the TAVC

To obtain a TAVC estimator that converges to o> at rate t~/2, one needs
to assume additional structure about the process V. To illustrate this idea,
suppose that the simulation output process V' is a (continuous-time) autore-
gressive process satisfying

dV(s) = —yV(s) ds 4+ dW (s), )

where y > 0O and W = (W (s): s > 0) is a square integrable process with
stationary independent increments for which EW (s) = ws and var W (s) = nzs
for s > 0. It is easily verified that

t
V(t) =e "V (0) +/ e Y= dW (s)
0

and that I satisfies (2) with « = u/y and o> = n?/7. Hence, if the simulation
output process can be assumed to evolve according to (5), we can estimate o
via 92/%, where 72 and ¥ are appropriately chosen estimators for the para-
meters n°> and y underlying (5). If V' satisfies (5), it can be shown (in great

generality) that the resulting TAVC estimator converges at a rate ¢~ /2. The
problem, of course, is that it is rarely (if ever) the case that the simulation out-
put process V' evolves precisely according to (5). As a consequence, a TAVC
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estimation algorithm based on assuming that }”’s dynamics are governed by (5)
can, at best, provide only an approximation to the true 2. Nevertheless, this
autoregressive approach to estimating o can, when appropriately applied, of-
fer an effective means of estimating o2

The key idea exploited above is the fact that the TAVC o can be easily
and exactly computed for the class of processes described by (5). One then
uses a “plug-in” estimator to estimate the unknown quantities appearing in
the corresponding expression for the TAVC.

The importance of the regenerative method lies in the fact that a large
class of interesting and useful steady-state simulations fall into the class of
regenerative processes, and that a simple expression for the TAVC of such
processes can be derived. For example, suppose that V' (¢) = g(X(¢)), where
X = (X(@): t > 0) is an irreducible positive recurrent continuous-time
Markov chain (CTMC) living on discrete state space S, and where g: § — Ris
a given performance measure. Fix a state z € S. Then, V' is regenerative with
cycles defined by the consecutive times (7'(n): n > 0) at which X enters z. The
class of CTMC:s (and its discrete-time cousin, the class of discrete-time Markov
chains (DTMCs)) form an important class of models that are commonly simu-
lated and that enjoy regenerative structure.

Simple expressions for the steady-state mean a and TAVC % can be derived
in the regenerative setting. For «, note that (1) suggests that

1
T (n)
as n — oo. But the left-hand side of (6) equals
Y Y
n-1 Z?ﬂ U

T(n)
/ V(s)ds = «a (6)
0

where
T(i)
Y; & f V(s)ds and
T(i—1)
2T —T3G—-1).
Since (Y;: i > 1) is a sequence of independent and identically distributed
(iid) rv’s, Y, £ n! Y ,Y; = EYjas n — oo (provided E|Y;| < o0).
Similarly, we expect that 7, = n-! Y 1 = Erpasn — oo, so that the
identity
EY;
o= —
Emy
must hold.

To heuristically derive a corresponding expression for o2, note that a regen-
erative process is (in great generality) asymptotically stationary. Given (4), we

(7)
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expect to be able to represent o as
oo
ol =2 / cov(V*(0), V*(r)) dr, (8)
0

where V* = (V*(r): r > 0) is a stationary version of V. Put V*(r) = V*(r) —«
and rewrite (8) as

o0
o’ =2 / EVX(0)V(r)dr. 9)
0
The stationary version V'* is itself regenerative, with regeneration times 0 <

T*(0) < T*(1) < ---. In view of the independence across cycles and the fact
that EV*(r) = 0, we might hope that the right-hand side of (9) simplifies to

T*(0)
2E / VEO)WVE(r) dr. (10)
0

Given the approximate stationarity of V7, (10) should be approximately
equal to

T(N(s)+1)
ZE/ Ve(s)Ve(r)dr
S

when s is large, where N(s) = max{n > —1: T(n) < s}. Averaging over
s € [0, T'(n)], this suggests that

2 [T pT(N($)+D)
E / / Ve(s)V.(r)drds
0 s

T(n)

should be close to o> when ¢ is large. But

T(n) pT(N(s)+1)
2/ / Ve(s)V.(r)drds
0 s

:220/

T(i-1)
n

=> 7
i=0

where Z; £ Y;—ar;. The i.i.d. cycle structure implies that n! Z?:l Zi2 = EZ12
as n — oo. Equation (10) therefore suggests that the equality

T(i)
Ve(s) / Ve(r)drds
S

EZ2
o = E—Tll (11)

should hold.
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Given the equality (11), the obvious “plug-in” estimator for the TAVC
o2 based on simulating V" over [0, ¢] is

YNy —V(yr)? /N (1)
Y NG /N (1)

or its asymptotically equivalent variant

N(t) ,
&Z(t) = ; ;(Yl — V(I)Tl') .
1=
The following theorem makes rigorous the validity of the regenerative TAVC

estimator &-2(¢). For the proof, see Glynn and Whitt (1993, 2002) and Glynn
and Iglehart (1993).

Theorem 1. Suppose that V is regenerative with respect to the regeneration time
sequence (T (n): n > 0). Assume that ETy < oo. Then, there exist (deterministic)
constants o and o such that

2V (t) — a) = oN(0, 1) (12)
as t — oolifand only if E|Y1| < oo and EZ% < 00, in which case

_EY; , EZ}
~ Er’ 7= Er
Furthermore, if (12) holds, then

o

62 (1) = o?

ast — oQ.

Theorem 1 shows that 62(¢) is consistent as an estimator for o precisely
when the CLT (12) holds. When (12) holds with o> > 0, then

[ a2 [~2
|:I7(t) -z g t(t), V(t)+z g t(t):|

is an approximate 100(1 — 8)% confidence interval for «.

4 Choice of the optimal regeneration state

Given a simulation of V' over the time interval [0, ¢], the natural point esti-
mator for the steady-state mean « is, of course, the time-average V(). While it
may be desirable to modify 1/ (¢) to deal with initial transient or initial bias ef-
fects, one would expect such modifications to be of small order asymptotically.
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Hence, any reasonable point estimator for a will either be exactly equal to V()
or asymptotically equivalent to I (¢). Of course, the r.v. V() is not influenced
in any way by the choice of the regeneration or return state z.

On the other hand, the TAVC estimator ¢-2(¢) is defined relative to a specific
choice of the regeneration or return state z € S. A natural question that then
arises is the determination of the state z* that is the “best” choice of return
state for estimating o2. This question can be resolved by studying the rate of

convergence of v/ 62(¢) to v/ o2.

Theorem 2. Suppose that E[Yf + 7‘1‘] < oo. Then
2V (t) — a, 6(t) — o) = N(0, D)

as t — oo, where N(0, D) is a bivariate normal r.v. with mean 0 and covariance
matrix D given by

2
5 EAZ|—\EZ?
D 1 EZ; ———+
Er, EAZ|—AEZ} EA}-20EAZ;+\EZ? |’
20 452

where A; = Zl.2 —o%riand A = 2EZ; 71/ET1.

See Glynn and Iglehart (1987) for the proof. Theorem 2 establishes that the
TAVC estimator does indeed converge at rate t~1/2. It further describes the
asymptotic variance of 6%(¢) in terms of the given regenerative cycle structure.
The asymptotic variance can be explicitly computed for certain CTMC mod-
els; see Glynn and Iglehart (1986). These examples make clear that there is,
unfortunately, no simple guidance available for how to choose the best pos-
sible regeneration state. In particular, the examples make clear that choosing
the regeneration state z that minimizes the mean return time is not necessarily
the choice that minimizes the asymptotic variance of 6-2(t).

One odd characteristic of Theorem 2 is that the covariance entry Dip
(= D71) of the matrix D appearing there turns out to be independent of the
choice of regeneration state. This result, due to Calvin (1994), has no obvious
and apparent simple explanation, and is a consequence of a direct computa-
tion. By contrast, the entry Dj; must clearly be independent of the choice of
the regeneration state z, since it is the asymptotic variance of the r.v. I/ (¢) that
is defined independently of z.

5 The regenerative approach to the initial transient and initial
bias problems

As discussed in Section 2, one of the major challenges in steady-state simu-
lation is the mitigation of effects due to the initial transient and initial bias. We
deal first with the better understood issue of how to reduce biasing effects due
to a nonstationary initialization.
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It is usual, in the presence of (1), that there exists v > 0 such that
EV(t) = a+O(e™) (13)

as t — oo, where O(h(t)) represents a function that is bounded by a constant
multiple of |A(¢)| as t — oo. For example, (13) is known to typically hold
for geometrically ergodic Markov processes; see Meyn and Tweedie (1993).
Given (13),

t
/ E(V(s) —a)ds=b+ O(e™)
0
as t — 0o, so that

EV()=a+t"'b+0(e™) (14)

as t — oo, where

b= /OO E(V(s) — a) ds.
0

An estimator with lower initialization bias can therefore be constructed if
one can find an asymptotically unbiased estimator for b. Deriving such an es-
timator without imposing additional structure is an impossibility in the single
replication context, because only one realization of the process from which to
estimate b is available. On the other hand, if the process V' is assumed to be
regenerative, estimating b should (in principle) be possible, because the i.i.d.
cycle structure suggests that the effect of initialization is now implicitly repli-
cated (for example, by permuting the simulated cycles).

Appealing to renewal theory yields the following expression for b; for the
proof see Glynn (1994).

Proposition 1. Suppose that V' is regenerative with respect to the regeneration
times 0 = T(0) < T(1) < ---. If 71 has a density and satisfies

E71(1+/ 1]V(s)|ds) < 00,
0

then (14) holds with

pe— (6 " sds— BT
__E—T1< /0 sV (s)ds — « 7)

In view of Proposition 1, it is now clear how one can potentially reduce
the effects of initial bias. In particular, consider the “plug-in” estimator for b
defined by

L N[ ; _
WZ(/O SV(T(Z_1)+S)dS—V(t)7)'

i=1

b(t) = —
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We expect that

EV(t) - h(t) = a + 0<%) (15)

as t — oo, where o(4(t)) denotes a function that, when divided by |A(¢)|, tends
to zero as t — oo. Given that aq(¢) 2 V(t) — t~1b(¢) generally satisfies

var a1 (t)

— 1 16
var V' (¢t) ” (16)

as t — 00, (15) establishes that «(¢) has lower asymptotic bias while suffer-
ing no increase in asymptotic variance. For additional discussion, see Glynn
(1994).

Consider the estimators:

ax(t) =V(T(N(t) + 1)),
_ | No B
az(t) = V(T(N(t))) + t_2 Z(Yl _ V(t)Tl')T,',
i=1

N(t) -1 P Zj;éi Y;

Each of the above estimators duplicates the performance of «aq(¢), in the
sense that each satisfies both (15) and (16); see Meketon and Heidelberger
(1982) and Glynn and Heidelberger (1990, 1992).

Turning next to the question of identifying the duration of the initial tran-
sient period, recall that the sequence of cycle variables ((Y;, 7;): i > 1) isi.i.d.
Hence, on the time-scale of regenerative cycles, the initial transient disappears
entirely. Furthermore, recall that the steady-state mean « can be expressed
as the ratio of expectations (7) defined in terms of cycle-related quantities
Y; and 7;. Hence, if one simulates }” over n regenerative cycles (to time 7'(n)),
the natural estimator for « is the ratio estimator I7(T(n))_: Y, /Tn. The bias
of this estimator arises as a consequence of the fact that Y, /7, = h(Y,, ),
where / is the nonlinear function defined by A(xq, x;) = x1/x,. Thus, on
the time-scale of regenerative cycles, initialization bias manifests itself as es-
timator bias due to nonlinearity. Such nonlinearity bias has long been studied
within the statistical literature, and a large number of remedies for dealing
with bias of this kind have been developed over the years: Taylor expansion
methods (Cramér, 1946), the jack-knife (Miller, 1974), the bootstrap (Efron
and Tibshirani, 1993), and sectioning (Lewis and Orav, 1989).

Thus, regenerative structure suggests a variety of different mechanisms for
dealing with initial bias (and, on the regenerative cycle time scale, the initial
transient).

as(t) = N(OV(T(N(1))) —
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6 When is a simulation regenerative?

As has been seen in preceding sections, regenerative structure turns out
to be algorithmically useful in developing solutions to various aspects of the
steady-state simulation problem. Furthermore, regenerative structure can be
easily identified in the setting of discrete state space Markov chains, in either
discrete or continuous time.

Of course, most real-world discrete-event simulations do not involve simu-
lating a discrete state space Markov processes. Much more complicated models
are typically simulated. However, one can persuasively argue that the great
majority of discrete event simulations can, from a mathematical standpoint, be
viewed as simulations of Markov processes (living on a continuous state space
rather than a discrete state space). In particular, by adding supplementary vari-
ables to the “physical state” (e.g., the location of each customer in a network)
of the system, one typically ends up with a state descriptor that evolves accord-
ing to a Markov process. For example, one can supplement the physical state
by adding the remaining time to completion of each currently scheduled event
associated with the currently occupied physical state. Thus, one may abstractly
view the typical discrete-event simulation as corresponding to the simulation
of a Markov process X = (X (¢): t > 0) living on a continuous state space S,
where the continuous component of the state records the remaining time to
event completion for each of the active event “clocks”.

We assume throughout the reminder of the paper that the state space S is
a separable metric space (so that, for example, open and closed subsets of R?
are covered by our theory).

Now that we have established that the typical discrete-event simulation can
be viewed as a Markov process, we next argue that any Markov process for
which the steady-state simulation problem is well defined necessarily exhibits
regenerative structure. This, in turn, will show that any discrete-event simula-
tion for which the steady-state simulation problem makes sense must contain
regenerative structure.

We start with a precise definition of “well-posedness” for the steady-state
simulation problem. For x € S, let P,(-) and E,(-) be the probability and ex-
pectation operator, respectively, under which X (0) = x.

Definition 1. We say that the steady-state simulation problem is well-posed for
the S-valued Markov process X = (X (¢): ¢t > 0) if for each bounded function
g:S — R, there exists a(g) such that for x € §,

1 t
p [0 E.g(X(s))ds > a(g)
ast — oo.
According to the definition, the expectation of V' (s) = g(X(s)) must con-

verge (at least in an average sense) to a number « = «(g) that is independent
of the initial state x. This seems a reasonable definition of well-posedness, for
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otherwise, there exists a bounded function g for which 1 fot E,g(X(s))ds
either does not converge or converges to a limit that depends on the initial
state x. In either case, this precludes what is normally understood by the no-
tion of steady-state.

Recall that a sequence (W;: i > 0) is said to be one-dependent if (W): j < i)
is independent of Wi j>1 foreachi > 1.

Theorem 3. Let X = (X (¢): t > 0) be an S-valued Markov process for which
the steady-state simulation problem is well-posed. Then, there exist random times
0<TO)<T@) < ---such that:

(i) The probability distribution Py(X(T(i —1)+s): 0 < s < 7)) € ) is
independent of both x € Sand i > 1;
(ii) The sequence of cycles (X(T(i—1)+s): 0 < s < 7;): 1 = 0) is one-
dependent;
(ili) Ey7my < oo

For the proof, see Glynn (1994).

This theorem asserts that any simulation for which the steady-state simula-
tion problem is well-posed necessarily possesses regenerative structure. How-
ever, the regenerative structure identified by this result only guarantees the
existence of one-dependent identically distributed cycles. Fortunately, much
of the theory developed in Sections 3-5 generalizes from the classical regen-
erative structure (of i.i.d. cycles) to the setting of one-dependent regenera-
tive processes. For example, the one-dependent analog to 62(f) continues
to converge to the TAVC ¢ at rate t~/2 in the one-dependent setting; see
Henderson and Glynn (2001).

However, an alternative approach exists that permits one to use conven-
tional regenerative methodology based on i.i.d. cycle structure. For one-
dependent regenerative processes, the ratio formula for the steady-state
mean «(g) continues to hold:

4!
Efo g(X(T(0) +s))ds' (17)
Em

To estimate «(g), we simulate X over the cycle corresponding to the inter-
val [T(0), T(1)]. At time T (1), rather than continuing the simulation of X,
one now terminates the simulation. One then independently draws a new
initial condition from P(X (7 (0)) € -) and simulates a second independent
trajectory of X up to completion of its corresponding first cycle. By repeat-
ing this process, we are simulating independent realizations of X over its first
cycle. By “pasting” these i.i.d. cycles back to back, one is generating a new
process X that is regenerative in the classical sense (with i.i.d. cycles). Given
the ratio formula (17), the steady-state of X exactly coincides with that of the
one-dependent process X. Hence, if one simulates X rather than X, all the
methods of Sections 3-5 apply without change.

a(g) =
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7 When is a GSMP regenerative?

Section 6 makes clear that regeneration is the rule rather than the excep-
tion for well-behaved steady-state simulations. This, however, leaves open the
question of when a specific simulation model has the structure necessary to
guarantee that the associated steady-state simulation is well behaved.

We shall focus exclusively, in this section, on conditions under which
discrete-event simulations possess the required structure. We take the point
of view here that a discrete-event simulation is tantamount to simulation of a
class of processes known as generalized semi-Markov processes (GSMPs). To
describe a GSMP, we make concrete our discussion of Section 6, in which we
argued that a discrete-event simulation can be viewed as a Markov process. Let
‘P be a finite or countably infinite set of physical states and let £ be a finite set
corresponding to those events that can trigger physical state transitions. For
each of the events e € £ that are active in a physical state s € P, we can con-
ceptually imagine that there is an associated clock. When a clock e* runs down
to zero in state s, it triggers a physical state transition to s’ with probability
p(s’s s, e*). The clocks e’ active in s’ correspond to events that were already
scheduled in the previous state s (but had not yet run down to zero), in which
case the clocks continue running down to zero in s at rate r(s’, ¢’), or corre-
spond to new events that must be scheduled in s’. The clocks associated with
such new events in ¢’ are independently scheduled according to distributions
F(;é,s, e*, s), where e* is the trigger event that initiated the transition. Ex-
perienced simulationists will recognize that the state of the clocks effectively
describes the “future event schedule” of the associated discrete-event simula-
tion.

Given that the physical state and future event schedule is precisely the in-
formation necessary to evolve a discrete-event simulation forward in time, it
is clear that X (¢) = (S(¢), C(¢)) is Markov, where S(¢) is the physical state
occupied at time ¢ (known as the GSMP corresponding to X'), and C(¢) is the
vector of clock readings corresponding to active events.

To develop a sufficient condition under which the steady-state simulation
problem for the Markov process X = (X (¢): ¢t > 0) is well posed, one clearly
needs to invoke an assumption that ensures that there is a unique stationary
distribution for X . This, of course, requires an irreducibility hypothesis of some
kind.

Definition 2. The GSMP corresponding to X is said to be irreducible if for each
pair (s, s') € P x P, there exists a finite sequence of states sy, ..., s, and events
e1, ..., e, such that for 0 < i < n, e; is active in s; (59 £ s, 5,41 = 5') and

n
[ [ pCsizi: si enr(si, er) > 0.
i=0
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The above assumption induces irreducibility over the physical states of
the GSMP. For irreducibility over the clock readings of X, consider the fol-
lowing definition.

Definition 3. The GSMP corresponding to X satisfies the positive density as-
sumption if each distribution F(-; ¢/, s', e, s) has a density component that is
strictly bounded away from zero on an interval [0, ] with ¢ > 0.

We are now ready to state our main result for GSMPs.

Theorem 4. Suppose that:

(i) The GSMP corresponding to X is irreducible and satisfies the positive den-
sity assumption;
(i) |P| < oo
(iii) f[o’oo) tF(dt; e, s',e,s) < ooforall (¢,5,e,s).

Then, the steady-state simulation problem for the Markov process X is well-posed.

For a proof, see Glynn and Haas (2006). The above conditions are necessary,
in the sense that if any of the three conditions above is violated, then there exist
counterexamples.

8 Algorithmic identification of regenerative structure

Our discussion of Sections 6 and 7 makes clear that regenerative structure
exists within the typical discrete-event steady-sate simulation. On the other
hand, the TAVC estimator of Section 3, as well as the low bias estimators of
Section 5, all depend upon the ability of the simulationist to identify the asso-
ciated regeneration times. Of course, this identification is trivial in the setting
of discrete state space Markov chains, where the regeneration times can be
chosen to be those times at which the chain enters a fixed state. Unfortunately,
identification of the regenerative structure guaranteed by Theorem 3 is not
algorithmically trivial in general.

The main difficulty is that the regenerative structure of Theorem 3 involves
the use of randomized regeneration. This means that the regeneration times
cannot be identified purely on the basis of simulating X alone. Some addi-
tional random variables (i.e., the “randomization”) must also be generated.
This means, for example, that a “randomization post-processor” must be added
to the typical discrete-event simulation in order to be able to exploit the regen-
erative structure that is theoretically guaranteed to exist.

We now proceed to describe the randomized regeneration structure that
arises in the setting of discrete time Markov chains X = (X,: n > 0). The re-
generative structure that can be required in continuous time is generally more
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complicated to describe; see Sigman (1990) for details. Fortunately, the dis-
crete time theory covers discrete-event simulations. In that setting, the key
discrete-time process is the sequence (X (I,): n > 0), where 0 = Iy < [7 <
-« - are the epochs at which physical state transitions occur and (X (¢): ¢ > 0) is
the continuous-time Markov process (associated with GSMPs) described ear-
lier.

Let (X,: n > 0) be an S-valued discrete-time Markov chain satisfying the
conditions of Theorem 3. Then, there exists a function A:S — [0, 1], a subset
A C S, an integer m > 1 and a probability distribution ¢ such that:

(i) Px(Xm €)= AMx)p(-), x €S
(ii) Py(X, € A infinitely often) = 1, x € §;
(iii) inf{A(x): x € A} > 0.

To see how this gives rise to randomized regenerative structure, note that
condition (i) guarantees that we can write

Pi(Xm € ) = MX)e() + (1 = A(x))Q(x, ), (18)

where Q(x, -) is a probability distribution on S for each x. Hence, conditional
on X,, = x, we can generate X4, by generating a Bernoulli r.v. having para-
meter A(X,). If the Bernoulli r.v. takes on value 1, then we distribute X;,,,
according to ¢; otherwise, we distribute X4, according to Q(X,, -). The
segment (X411, ..., Xp+m—1) is then generated from the conditional distri-
bution, given the starting state X, and ending state X, for the full segment
(Xn, - -+ Xntm). Whenever we distribute X4, according to ¢, X1, is in-
dependent of the history of the chain up to and including step n. Conditions
(ii) and (iii) guarantee that there exist infinitely many times 7(0) < T (0)+m <
T(1) <T(H)+m < T(2) < --- (separated by gaps of at least m steps) at which
the chain is distributed according to ¢.

The random times (7' (n): n > 0) form cycle boundaries that correspond to
aregenerative process with one-dependent identically distributed cycles. In the
special case that m = 1, the cycles are i.i.d. and the process X is regenerative
in the classical sense. One difficulty with this means of identifying regener-
ative times is that the algorithm is invasive. By invasive, we mean that the
algorithm impacts the way we generate sample replications of the process X.
In particular, were we to straightforwardly adapt the above mechanism for
constructing regeneration times, the basic algorithms used to simulate (for ex-
ample) discrete-event systems would need to be modified.

In view of this, it is clearly desirable to develop an alternative implementa-
tion of the algorithm. Under the conditions above, it can be shown that there
exists a function w: S x § — [0, 1] for which

Ax)e(dy) = w(x, y) Px(X,, € dy),
(1 —A(x))0(x,dy) = (1 — w(x, y)) Px(X,n € dy).

Suppose that one simulates a realization of the process X (using one’s algo-
rithm of choice). To identify the regeneration time, we apply the following
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“post-processor” to the sampled realization. If X,, = x and X4+, = y, gener-
ate a Bernoulli r.v. having probability w(X}, Xn+m). If the Bernoulli r.v. is 1,
then the process has distribution ¢ at time n + m; otherwise, it does not. This
algorithm is probabilistically equivalent to the method described earlier, but it
is noninvasive and requires only the post-processing step.

This idea can be applied even to discrete state space Markov chains in which
consecutive entry times to a fixed state z constitute easily identified regenera-
tions. To illustrate, suppose that (P(x, y): x,y € S) is the one-step transition
matrix of a discrete-time Markov chain to be simulated. Put ¢(y) = P(z, y)
and

L Px,y)
A =y

so that P(x,y) > AMx)P(z,y) for x,y € S. Clearly, A(z) = 1. However,
A(x) typically will be positive for some states x # z. Hence, our random-
ized (classical) regenerations occur every time the chain leaves z, but generally
occur more frequently. For this special case in which one sequence of regener-
ations is a superset of another sequence of regenerations, one can prove that
the superset provides a statistically more efficient estimator of the TAVC (i.e.,
the Dj; term in Theorem 2 is reduced); see Andradottir et al. (1995) for de-
tails.

Returning to the discrete-event context, the key to practical implementation
is computing the function w. This, in turn, involves computing P, (X, € -).
This can easily be done for m = 1, but is nontrivial for values of m > 2.
Henderson and Glynn (2001) argue that for a discrete-event simulation in
which no “event cancellation” is possible, the minimal value of m compati-
ble with conditions (i)—(iii) is m*, where m™* is the minimal number of events
that are ever simultaneously scheduled by the simulation. Hence, any discrete-
event simulation possessing a so-called “single state” (i.e., a state in which only
one event is scheduled) is easily amenable to regenerative methodology.

When m* > 1, algorithmic identification of regeneration times is substan-
tially more complicated. Suppose, however, that there is no event cancellation
in the GSMP and that each “speed” r(s, e) equals one. Assume the GSMP
is initially in a state x = (s, ¢) in which m clocks are active and in which
event ¢ = é(x) is the one that has the most remaining time until its clock
runs down to zero. Then, the m-step transition probability for (X (I;): i > 0)
can be easily computed on that part of the sample space on which the (ran-
dom) trigger event e}, corresponding to transition m equals é. In other words,
Py (X (L) € -, e, = é(x)) can be written down explicitly, because the event
{ey, = e(Xy)} is precisely the event that all of the clocks scheduled prior to
time m were set at values greater than that associated with é(X(). Thus, if we
find a function A and a probability ¢ for which

Px(Xm €, e:(n = é(XO)) 2 )\(X)QD(),
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we can implement the same approach as desired above, by letting w be chosen
so that

w(x, y) Px(Xm € dy, €, = &(Xo)) = A(x)e(dy).

The only significant change is that we generate the Bernoulli r.v. having
parameter w(Xy, X, 1) only when ey, = e(X,); see Henderson and Glynn
(1999) for a related idea.

This method (and analogous ideas for dealing with nonunit speeds and
event cancellation) can be used to construct regenerations for a large class
of GSMPs. Practically speaking, however, the method is difficult to apply for
GSMPs for which m* is large. The difficulty is that condition (i) becomes more
demanding when m* is large, because one must lower bound a joint density
on a “clock space” having dimension at least m™*. Such lower bounds typically
degenerate badly in high-dimensional contexts, leading to implementations in
which regeneration occurs (very) infrequently.

Thus, the question of developing easily implemented and practically useful
methods for algorithmic identification of regeneration times remains largely
open at this point.

9 A martingale perspective on regeneration

To illustrate the connection between martingales and regeneration, we focus
here on the case in which V' (¢) = g(X(¢)), where X = (X (¢): t > 0) is an
irreducible finite state continuous time Markov chain with rate matrix Q =
(Q(x,y): x,y € S). Given the performance measure g:S — R (where we
choose to encode g = (g(x): x € ) as a column vector), the linear system

Oh=—(g —ae) 19)

has a solution 4. Here, e is the column vector in which all entries equal 1,
and (19) is called Poisson’s equation.
It is a standard fact in the theory of Markov processes that

t
(X (1) - /0 (Oh)(X (5)) ds

is then a martingale; see, for example, Karlin and Taylor (1981). In other words,

t
h(X(t))—i—/ g(X(s))ds —at
0

enjoys the martingale property. Suppose that T is a stopping time adapted to X
(so that I(T < t) is a deterministic function of the path (X (s): 0 < s < 1))
having finite expectation. Then, the optional sampling theorem for martingales
(Breiman, 1968) can be applied, yielding

T
Eh(X(T)) + E/ g(X(s))ds — « ET = Eh(X(0)). (20)
0



494 PW, Glynn

The identity (20) holds in great generality for Markov processes in discrete and
continuous time, provided that one suitably generalizes the rate matrix Q in an
appropriate way; see Ethier and Kurtz (1986).

Note that if the stopping time 7 can be chosen so that EA(X(T)) =
EA(X (0)), then « can be viewed as the ratio of expectations

. EJy §(X(s)ds , EY
Bl ET - Er’

Hence, by simulating independent copies of the process X over the time in-
terval [0, T], « can be computed via a ratio estimator that enjoys precisely the
same central limit and bias properties as the conventional regenerative estima-
tor described earlier in this chapter. In particular, if (Y1, 71), ..., (Y, 7,) are
nii.d. copies of (Y, 7),then ), = (Y1 +--- + Y,) /(71 + - - - + 75, satisfies the
CLT

(21)

n'*(a, — @) = oN(0, 1)

2

as n — oo, where o2 = var(Y — ar)/(E7)2, and the bias expansion

1E(Y —ar)T 1
Eop=a0———————+0( -
n (Er)? n
holds (thereby providing a straightforward construction of a “low bias” estima-
tor having bias o(1/n)).

Of course, the key is to find a distribution for X (0) and a random time 7" so
that EA(X(T)) = ER(X (0)).

Since the simulationist does not know the solution to Poisson’s equation,
one simply chooses X (0) and 7 so that X (0) and X (7T") have the same distri-
bution. Of course, the easiest way to guarantee this is to let 7" be the first time
that X returns to the state occupied at time ¢ = 0. In this case, the above esti-
mation procedure just reduces to the conventional regenerative method based
on successive returns to a single state. Thus, the martingale perspective offers
a complementary viewpoint regarding the regenerative method for computing
steady-state expectations.

However, the optional sampling formula (20) offers the potential for de-
veloping new steady-state estimation algorithms. As an example, consider the
successive times B1, B2, ... at which X enters some fixed nonempty subset
A C S.To be precise, let By = 0 and put

Bi =inf{t > Bi1: X (1) € A, X(t—) ¢ A}.

Then, (X(B;): i > 1) is an irreducible A-valued discrete time Markov chain
with stationary distribution v 4. If E, ,(-) is the expectation operator under
which X (0) has distribution v 4, then (20) yields the equality

B1
E, h(X(T))+E,, /0 g(X(s))ds — aE,,B1 = E, k(X (0)).
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Because E, ,h(X(T)) = E, ,h(X (0)), we obtain the identity

E,, [ g(X(s))ds
EVAﬁl ’

Hence, the regenerative ratio formula (7) generalizes beyond the conventional
setting in which cycles are defined in terms of i.i.d. cycles. (Note that the ;s
split the sample path for X into identically distributed cycles having a complex
dependency structure.)

One might hope to algorithmically exploit (22) in the same way as for (21).
If we could generate variates from v 4, the algorithm would be clear. Just gen-
erate X (0) from v 4, simulate to time 81, and compute (Y, 7), where

B1

Y=/ g(X(s))ds
0

T=B.

By simulating i.i.d. copies of (Y, 7), we can estimate « via @, = (Y7 + --- +
Yn) /(14 -+ 7). Precisely the same CLT and low bias estimation procedure
as before can thus be utilized. Because a “multi-state” A is hit more frequently
than any single state, we can expect this estimation procedure to be more effi-
cient than the conventional regenerative method based on returns to a single
fixed state.

The difficulty, of course, is that we typically are unable to generate vari-
ates from v 4. However, by conditioning on X (0) and X (B1) in (22), we can
rewrite (22) as

Y EYOwa) |, Y, Exulx, )
Y BetOwax) X, ek, y)

(22)

(23)
where

B1
Y(y) = fo g(X(9) ds (X (B1) = y),
T(y) = Bl (X (B1) = y).

Each term in the numerator and denominator can be estimated via simulation
of X over [0, ¢], namely

J(1)

at, x, m)Z/ (X () dsI(X(Bi1) = x, X(B) = y),

J(t)

0, x,y) = Z(ﬁl Bi-DI(X (Bi—1) = x, X(B) =),

J(t) 4
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where J(¢) is the number of times the process X enters A over [0, ¢]. The
representation (23) leads to a point estimator

2oy U, x,y)

Yoy bt x, y)

for a. A corresponding “plug-in” TAVC estimator can be implemented in a
straightforward fashion when | A| < co. The plug-in estimator takes advantage
of the fact that the TAVC estimator for the A-valued discrete-time Markov
chain (X (B;): i > 1) can be computed easily (by solving a linear system of | A|
equations in | 4| unknowns). This new estimator for the TAVC associated with
simulation of X over [0, ¢] is essentially the semi-regenerative TAVC estimator
proposed by Calvin et al. (2006).

10 Efficiency improvement via regeneration: Computing steady
state gradients

In many applications settings, it is of interest to compute the sensitivity of
the system’s performance to perturbations in an underlying parameter. For
example, it may be that the arrival rate to a queue is only approximately known,
so that computing the change in performance that corresponds to changing
the arrival rate is relevant. In particular, computing the derivative (or, more
generally, the gradient) of a steady-state performance measure with respect
to the arrival rate is a computational problem of significant importance. Of
course, such derivatives also play a key role in both simulation-based stochastic
optimization and statistical analysis of complex stochastic systems; see Glynn
(1990).

To be more precise, suppose that the probability distribution underlying the
simulation of I/ depends on a parameter # € R<. Let Py be the distribution
corresponding to 6. Then, the steady-state mean of 1V depends on 6, so that
a = a(0). As noted earlier, the time average 1/ (¢) satisfies

V(t) = a(0)
under Py, suggesting that
EoV (1) — a(6). (24)

In significant generality, there exists a random process L(#0, t) (typically,
a martingale), known as the “likelihood ratio process”, such that

Egl/ (t) = Eg,V (¢)L(6, 1) (25)

for t > 0, where Eg,(-) is the expectation operator corresponding to Py,.
Assuming that the gradient can be interchanged with the expectation opera-
tor Eg,(-), we find that

VEoV (t)l9=6, = Eg,V (1) VL(0, )] o=0, -
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In view of (24), it seems reasonable to expect that
VEoV (1)]9=g, = Va(6p)
as t — 0o, so that
Eg,V (1)VL (80, t) — Va(bp)

as t — oo. In particular, assume that a bias expansion similar to that derived
in Section 5 holds, so that
_ 1 1
Eg )V ()VL(0p, t) = Va(by) + ?Vb(eo) + 0(;) (26)
as t — oo. On the other hand, (L(9, ¢): ¢t > 0) is typically a martingale process
for each 6. Given that (A=Y (L(6y+ he;, t) — L(6p, 1)): t > 0) is then a martin-
gale for each unit vector e;, one expects (VL(6y, t)e;: t > 0) to be a martingale

as well. The martingale CLT (see, for example, p. 476 of Billingsley, 1995) then
suggests that there exists a (deterministic) constant y € (0, co) such that

712V L(6g, t)e; = yN(0, 1)

as t — oo. Slutsky’s lemma then implies the weak convergence statement

V2V (H)VL(6y, e = ayN(0, 1)

as t — oo, so that we expect

t~Yvar V(t)VL(0y, H)e; — a?y*varN(0, 1) (27)

as t — oo.

For a given computer budget ¢, how many independent replications m of
length ¢/m should one simulate to minimize the mean square error of the re-
sulting estimator? Note that the bias of each replication is then of order m/c
(in view of (26)). The variance of a replication of length c¢/m is of order ¢/m
(see (27)). So, the sample mean over m such replications has a variance of
order ¢/m?. The value of m that minimizes the mean square error of the cor-
responding gradient estimator is then of order ¢3/4, yielding an estimator with
a root mean square error of order ¢~ /4.

However, if regenerative structure can be identified algorithmically, then
a different means of estimating Va(6y) is available to simulationist. If the
process V' is regenerative under Py, the ratio formula

Eg [y V(s)ds

) =
a(h) Epry

(28)
holds (provided that the process is initiated with a regeneration at t = 0,
so that 7(0) = 0). Assuming the existence of a likelihood ratio process
(L(6,1): t > 0), we expect to be able to extend the identity (25) separately
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to the numerator and denominator of (28) to

Eg, [y V(s)dsL(8, )

a(f) =
Eg,m1L(6, 1)

(29)

Assuming that the gradient operator can be interchanged with the expecta-
tion operator Eg,(-) (as above), we find that

T1 _
Va(by) = Eal[Jg' () ge(iol))dsww’ ] (30)
0

Consequently, Va(6y) can be expressed as Va(60y) = k(E¢), where

£ = (/ V(s)ds, 71, f V(s)ds VL (60, 71), 1 VL (6, m)
0 0

and

X3 — (X1/x2)x4
X2 ’

k(x1,x2, X3, X4) =

Suppose that one simulates 7 i.i.d. cycles of v under the probability Py, thereby
obtaining n independent copies &1, &3, ..., &, of the random vector &. The
estimator Ve, (6p) = k(n~! Yi 4 &) can then be analyzed via “delta-method”
type arguments (see, for example, Serfling, 1980) to establish that the estimator
converges at rate n~ /2 (and hence, in units of computer time, at rate ¢~1/?)
to the gradient V(). This ¢~!/2 convergence rate is to be contrasted with
the ¢~1/# rate observed earlier, and shows clearly that regenerative structure
can be usefully exploited in obtaining substantial efficiency improvements.

11 Efficiency improvement via regeneration: Computing infinite horizon
discounted reward

We now offer a second illustration of the principle that the presence of
regenerative structure can be usefully exploited to obtain efficiency improve-
ments. Consider the infinite horizon expected discounted reward @« = ED,
where

[0 0]
D=/ e "V (t)dt
0

for some r > 0. From a computational standpoint, an algorithm based on sim-
ulating i.i.d. copies of the r.v. D cannot be operationalized, because it takes
infinite time to generate the above r.v. As a consequence, one needs to con-
sider computationally feasible alternatives.

One such approach is to exploit regeneration. In particular, suppose that
V is regenerative with regeneration times 0 = T7T(0) < T(1) < --- (so that



Ch. 16. Simulation Algorithms for Regenerative Processes 499

V regenerates at T = 0) that split the sample path of ' into i.i.d. cycles. Then,

o0
a= E/ e "V (¢) dt
0
T1 o
=E/ e "'V (1) dt+Ee‘”1/ e "V (r +t)dt
0 0

T1
= E/ e "'V (t)dt + Ee "Ma
0

so that o = k(E¢), where

&= (fﬁ e "V (t)dt, e_m)
0

and k(xl, XQ) = xl/(l — Xz).

As in Section 10, the corresponding regenerative estimator for « is a, =
k(n~! Yo &), where &1, &, ..., &, are ii.d. copies of ¢ obtained by simu-
lating » independent cycles of V. Note that the estimator for a can be com-
puted in finite time and is computationally feasible. Furthermore, the delta
method again applies, yielding the conclusion that «,, typically converges to «
at rate ¢~/2 in the computer budget c. Thus, use of regeneration in this setting
makes feasible and practical a computation that is problematic in its original
form.
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