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                    Background:   We present a simulation model that predicts 
U.S. breast cancer mortality trends from 1975 to 2000 and 
quantifi es the impact of screening mammography and adju-
vant therapy on these trends. This model was developed 
within the Cancer Intervention and Surveillance Network 
(CISNET) consortium.   Method:   A Monte Carlo simulation is 
developed to generate the life history of individual breast 
cancer patients by using CISNET base case inputs that 
describe the secular trend in breast cancer risk, dissemina-
tion patterns for screening mammography and adjuvant 
treatment, and death from causes other than breast cancer. 
The model generates the patient’s age, tumor size and stage 
at detection, mode of detection, age at death, and cause of 
death (breast cancer versus other) based in part on assump-
tions on the natural history of breast cancer. Outcomes from 
multiple birth cohorts are summarized in terms of breast 
cancer mortality rates by calendar year.   Result:   Predicted 
breast cancer mortality rates follow the general shape of U.S. 
breast cancer mortality rates from 1975 to 1995 but level off 
after 1995 as opposed to following an observed decline. Sen-
sitivity analysis revealed that the impact adjuvant treatment 
may be underestimated given the lack of data on temporal 
variation in treatment effi cacy.   Conclusion:   We developed a 
simulation model that uses CISNET base case inputs and 
closely, but not exactly, reproduces U.S. breast cancer mor-
tality rates. Screening mammography and adjuvant therapy 
are shown to have both contributed to a decline in U.S. breast 
cancer mortality.   [J Natl Cancer Inst Monogr 2006;36: 86  –  95 ]     

 Age-adjusted breast cancer mortality rates in the United States 
have been decreasing from 1990 to 2001  ( 1 ) . Together with six 
other research teams, we participated in the Cancer Intervention 
and Surveillance Network (CISNET) consortium to answer the 
base case question:  “ What are the contributions of screening and 
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adjuvant therapy to the reduction of U.S. breast cancer mortal-
ity? ”   ( 2 ) . In this report, we describe the stochastic simulation 
model that we built to answer the CISNET base case question 
and related questions. 

  Model Purpose 

 Broadly stated, our CISNET model was developed for multi-
ple purposes: First, our model can generate a virtual comprehen-
sive tumor registry of breast cancer patients diagnosed in the 
United States since 1975 and, at the individual level, specifi es the 
patient’s screening history, mode of detection, adjuvant treat-
ment and survival; second, our model can quantify the impact of 
screening mammography and adjuvant therapy on breast cancer 
mortality trends from 1975 to 2000; third, our model can predict 
what the incidence and mortality trends would have been had 
alternative age groups been targeted for screening, had there been 
changes to the interval between screening examinations, and/or 
had there been changes to the subgroups targeted for adjuvant 
therapy; fourth, our model can predict how future trends in breast 
cancer mortality may be affected by new screening and treatment 
protocols shown to be benefi cial at the clinical trial level. This 
report is focused primarily on how well our model predicts the 
observed U.S. breast cancer mortality rates from 1975 to 2000 
and what our model predicts about the effects of screening mam-
mography and adjuvant therapy on these rates.  
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  Model Overview 

  Figure 1  presents a fl owchart of our simulation model. The 
model is a continuous-time Monte Carlo simulation that can gen-
erate the life histories of individual patients under various dis-
semination profi les of screening mammography and adjuvant 
treatment. Characteristics generated for a simulated individual 
breast cancer patient include the following: 1) the date of her 
birth; 2) the age of her death from causes other than breast can-
cer; 3) her primary tumor volume doubling time, tumor volume 
at clinical detection, and tumor volume at the transitions to re-
gional and distant stages; 4) the ages that she undergoes mam-
mographic screening examinations; 5) the ages that she is 
detected with invasive breast cancer in the absence and presence 
of screening; 6) her primary tumor volume, extent of nodal and 
distant involvement ER status at detection, in the presence and 
absence of screening; 7) the adjuvant treatment that she received, 
dependent on her tumor characteristics and disease stage at de-
tection; 8) her breast cancer survival time given her disease stage, 
size, and age at detection; and 9) her cause of death (i.e., breast 
cancer versus other causes).     

 In brief, to predict outcomes of breast cancer patients in the 
presence and the absence of screening, we start by reconstruct-
ing the natural history of the patient’s disease; next, we super-

impose a screening schedule onto the natural history model; and 
fi nally, we determine if and when the screening test interrupts 
the natural history. Our natural history model describes the 
tumor size and stage of invasive cancer during its preclinical 
course. The screening schedule specifi es the patient’s age at the 
time of screening mammography. A patient is screen detected 
only if the size of her tumor is at or above the tumor size detec-
tion threshold of mammography at the time of screening.  Fig. 2, 
A and 2, B  illustrate the interaction between the natural history 
model and the screening test for a patient whose tumor is de-
tected by mammography and whose tumor is detected because 
of symptoms, respectively. Once the patient is detected, she is 
assigned a breast cancer – specifi c survival time dependent on her 
age, tumor size, stage, mode of detection, and her use of adju-
vant treatment. Her age of death is the minimum age of breast 
cancer death and the age of other-cause death. Individual-level 
outcomes are summarized as population level outcomes in terms 
of age-adjusted breast cancer incidence and mortality rates by 
calendar year.     

  Table 1  provides the pseudocode for our simulation algorithm. 
The code was developed in C/C++. To generate individual-level 
outcomes for approximately 100 birth cohorts with 2 million in-
dividuals per birth cohort, the algorithm runs for approximately 
2.5 hours to run on a Sun Solaris machine.          

  Fig. 1.     Flowchart of Monte Carlo algorithm per simulated 
individual.  Parallelograms  represents inputs;  asterisks  
denote CISNET base case inputs.    
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  Model Building 

 We built our model by fi rst identifying clinically and biologi-
cally reasonable components that would infl uence breast cancer 
mortality. Two examples of such components include the natural 
history of the disease and the detection characteristics of the 
screening test; all model components are described in  “ Model 
Components. ”  Many of the components rely on the use of CIS-
NET base case inputs  ( 3 ) . To enable a direct comparison between 
our model and other models that were built in the CISNET Breast 
Cancer Consortium, we did not modify the CISNET base case in-
puts. Inputs unique to our model describe the natural history of 
breast cancer and the detection characteristics of screening. We 

formulated these model-specifi c inputs with a few parameters to 
ensure identifi ability. We merged all components into a Monte 
Carlo simulation algorithm that generates the breast cancer out-
comes for individuals across multiple birth cohorts. We evaluated 
our model by demonstrating how well it reproduces breast cancer 
mortality trends. Because all factors infl uencing breast cancer 
mortality are not known, we did not calibrate to breast cancer mor-
tality in the model building process. We regard a reasonable differ-
ence between the predicted and observed mortality rates as a 
measure of the effect of other factors that we did not incorporate in 
our model because of the lack of informative data.  

  M ODEL  C OMPONENTS  

  Figure 1  identifi es the underlying components of our simula-
tion model and the input(s) to each component. 

  Population Component 

 Our population component specifi es the birth cohorts underly-
ing the U.S. breast cancer trends from 1975 to 2000. To reproduce 
the outcomes of women aged 30 – 84 years in each calendar year 
from 1975 to 2000, we generated a sample of U.S. women born 
between 1887 and 1970. Each birth cohort consists of 2 million 
women, which we found to be a large enough number to reduce 
the sampling variability of the Monte Carlo method. Even though 
factors such as population immigration and emigration are likely 
to vary the relative sizes of the birth cohorts in the real world, the 
size of each birth cohort is kept constant in our simulation model 
because the incidence and mortality trends are reported as age-
adjusted rates. Each simulated woman is assigned a birth date and 
an age at death from other causes. Given the year of birth, the date 
is uniformly distributed within the year. Similarly, given integer 
age at death of other causes, actual age is simulated uniformly 
within the year. Death from breast cancer and other causes are 
assumed to be independent. This component relies on a CISNET 
base case input, which specifi es the other-cause death rate, by 
birth cohort, based on the Berkeley Mortality Database  ( 4 ) .  

  Breast Cancer Incidence Component 

 Our breast cancer incidence component determines whether 
or not an individual from a particular birth cohort would become 

  Fig. 2.      A ) Natural history of breast cancer modeled in a patient whose tumor 
is screen detected.  B ) Natural history of breast cancer modeled in a patient 
whose tumor is clinically detected between two screening examinations.  Arrows  
represent screening events.    

  Table 1.       Pseudocode of Monte Carlo simulation algorithm developed to predict U.S. breast cancer incidence and mortality rates from 1975 to 2000  

  For birth cohorts 1887 to 1970 
 For individuals 1 to 2   000   000 
   Step 1: Generate date of birth (see Population Component) 
     Step 2: Generate age at other-cause death given birth cohort (see Population Component) 
     Step 3: Generate age at clinical detection (see Breast Cancer Incidence Component) 
     Step 4: Generate tumor volume doubling time (see Natural History Component). 
     Step 5: Generate tumor size at clinical detection given the tumor volume doubling time (see Natural History Component) 
     Step 6: Generate tumor size at the onset of regional and distant stage (see Natural History Component) 
     Step 7: Compute stage of the tumor at clinical detection 
     Step 8: Generate age at breast cancer death following clinical detection given age and stage at clinical detection (see Breast Cancer Survival Component) 
     Step 9: Generate the ages undergoing screening given birth cohort (see Screening Component) 
     Step 10: Generate the tumor size detection threshold of mammography (see Screening Component) 
     Step 11: Compute age, tumor size and stage at screen detection (see Screening Component) 
     Step 12: Generate type of adjuvant therapy (see Breast Cancer Treatment Component) 
     Step 13: Generate age at breast cancer death following screen detection given age and stage at breast cancer death (see Breast Cancer Survival) 
     Step 14: Compute age of death as the minimum between age of breast cancer death and age of other cause of death
Repeat for next individual
Repeat for next birth cohort  
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clinically detected with invasive breast cancer in the absence of 
the screening and other-cause mortality. The breast cancer patient 
is assigned the age that her fi rst primary invasive tumor clinically 
surfaces. 

 This component relies on a CISNET base case input com-
monly referred to as the  “ secular trend in breast cancer inci-
dence, ”  which was estimated from the historic Connecticut 
Tumor Registry (CTR) and Surveillance, Epidemiology, and End 
Results (SEER)  ( 5 ) . The base case input estimates incidence rate 
of the fi rst primary breast cancer (invasive and in situ) in the ab-
sence of screening for annual birth cohorts starting 1891 by sin-
gle year of age, for ages 25 – 84 years. The base case incidence is 
assumed to be zero for women younger than 25 years and older 
than 84 years. 

 We treat the base case incidence as the hazard rate of the fi rst 
cancer and apply it to our estimated cancer-free population. For 
each birth cohort we interpret the given incidence per 100   000 
women ( h a  )as the hazard rate for age  a . To reduce the computa-
tional time for multiple runs, we generate and sample from a 
 distribution function of the clinical detection age ( A BC  ) at symp-
tomatic detection of the fi rst invasive breast cancer for each birth 
cohort as follows:

PðABC � aÞ ¼ 1�
Ya
i¼25

ð1� hi=100 000Þ

where the age  a  is an integer. Because this is a discrete distribu-
tion function of the woman’s age at the fi rst symptomatic detec-
tion, we generate the exact age by assuming a uniform distribution 
within a year. The same calculation is made for all the birth 
 cohorts. 

 Because the base case input provides the estimated trend for 
the sum of clinically detected in situ and invasive cases, we mod-
ifi ed it to estimate the incidence for clinically detected invasive 
disease only. We adjusted it by removing an estimated proportion 
of ductal carcinoma in situ (DCIS) cases as a function of age 
from Surveillance, Epidemiology, and End Results (SEER) 
1975 – 1979 data. The same correction factor was applied to all 
birth cohorts. It is possible that temporal and/or birth cohort vari-
ations affect this relationship, but we do not have informative 
data to produce such estimates. If we are underestimating the 
proportion of DCIS, we are overestimating the incidence and 
mortality of invasive breast cancer, and vice versa. 

 Further, the CISNET base case input on breast cancer secular 
trend exist may be overestimating the true hazard of the fi rst pri-
mary, particularly in the older age groups. The base case inci-
dence was approximated as the observed count of  “ new cancers ”  
divided by the size of the midyear population based on data from 
the CTR and SEER, whereas the true incidence is defi ned as the 
count of  “ fi rst cancers ”  divided by the size of the cancer-free 
population  ( 6 ) . This approximation is made because SEER does 
not include the size of the cancer-free population. It would pro-
duce the true  incidence if women are equally at risk for breast 
cancer regardless of their history of breast cancer. However, the 
risk of breast cancer probably increases with a prior history of 
primaries as evidenced by the Gail model  ( 7 ) ; hence, the approx-
imation biases toward a larger number of fi rst primaries and a 
possibly a larger breast cancer  mortality. Its exact effect on breast 
cancer mortality is not obvious without taking into account the 
differences in the stage distribution and survival of a fi rst primary 
and subsequent primaries.  

  Natural History Component 

 Our natural history component specifi es the size of a breast 
cancer patient’s fi rst primary invasive breast tumor and its SEER 
historic stage from the moment the tumor is invasive and 2 mm 
in diameter to the moment it clinically surfaces. It also specifi es 
the mechanism under which the fi rst primary invasive tumor 
clinically surfaces. (By  “ clinically surfaces ”  we refer to the event 
due to a patient experiencing physical symptoms associated with 
breast cancer.) In this section, we describe the parameterization 
of the natural history model and parameter estimation. 
  Tumor size and stage during preclinical period.  The tumor is 
assumed to be spherical and grow exponentially during its pre-
clinical period. We defi ne the preclinical period from the moment 
the tumor is invasive and 2 mm in diameter to the moment it 
clinically surfaces. The volume of the tumor at time  t  is expressed 
as  V(t) = c 0   exp (t/R),  where the inverse growth rate  R  [which is 
the doubling time divided by  ln( 2 ) ] has gamma distribution with 
rate  α  and shape  β , as suggested by others  ( 8 ) . 

 We assumed that the disease starts in the local stage and pro-
gresses to regional and distant stages as the primary tumor in-
creases in size  ( 9 ) . We defi ne the onset of the regional stage as the 
point at which nodal involvement fi rst becomes detectable by 
methods commonly used in clinical practice. Similarly, we defi ne 
the onset of the distant stage as the point at which distant disease 
fi rst becomes detectable by techniques commonly used in clinical 
practice. If the tumor is clinically detected before the onset of the 
regional or distant disease, it is staged as local disease. If the tumor 
is clinically detected after regional transition but before distant 
transition, it is staged as regional disease. If the tumor is clinically 
detected after the distant transition, it is staged as  distant disease. 

 The hazard of the time to onset of observable regional disease 
is analytically modeled as 

PðTN 2 ½t; t þ dtÞjTN � tÞ ¼ ðg0 þ g1VðtÞÞdt þ oðdtÞ
 This event is modeled as two processes: the hazard of the fi rst 

process is constant over time; the hazard of the second process is 
proportional to the volume of the tumor at time  t, V(t)  and there-
fore increases as the tumor grows in volume. 

Similarly, the hazard of the time to onset of observable distant 
metastasis ( T M  ), measured from the onset of the observable re-
gional disease, is

PðTM 2 ½t; t þ dtÞjTM � t; TN ¼ tN Þ

¼ ðx0 þ x1V ðtÞÞdt þ oðdtÞ; t � tN

0; t < tN
:

�

 We do not include a temporal trend in the onset of regional and 
distant disease due to the lack of informative data; yet, it is possible 
that technology advancements have caused a stage migration  ( 10 ) . 

 Clinical detection function.  The hazard of the time to clini-
cal detection ( T D  ) is assumed to be proportional to the tumor 
volume,

PðTD 2 ½t; t þ dtÞjTD � tÞ ¼ cV ðtÞÞdt þ oðdtÞ
 This clinical detection function was considered previously for 

breast cancer  ( 8 ) . 
  Estimation of parameters in natural history model.  Our 

natural history model has seven parameters:  α ,  β ,  η  0 ,  η  1 ,  ω  0 ,  ω  1  
and  γ . Maximum likelihood estimates for these parameters are 
based on SEER data of the tumor size and stage of invasive 
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 cancers that were clinically detected in the absence of screening. 
Only SEER breast cancer cases detected between 1975 and 1981, 
which represents a period of no to little screening, were consid-
ered, and of these only the fi rst primary tumor in a woman with 
multiple  primaries was selected. Because we do not directly 
incorporate data that contain temporal information (such as the 
patient’s age), the rate parameter estimates are dimensionless. 
We scale them by the mean tumor volume doubling time  ( 9 ) . 
Estimates under the  condition  α  =  β  [or similarly, a mean tumor 
volume doubling time of  ln( 2 )  years] are presented in  Table 2 , 
stratifi ed by age groups (20 – 39 years old, 40 – 49 years old, 50 – 69 
years old, 70 – 84 years old). 

 The mean tumor volume doubling time is estimated simulta-
neously with the median tumor size detection function of screen-
ing mammography, as discussed later. 

  Assumptions about DCIS.  DCIS is not included in our natu-
ral history model because there is little known about its progres-
sion. Some forms of in situ (in particular, high-grade DCIS) have 
been suggested to progress to invasive disease  ( 11 ) , but what pro-
portion progresses and how quickly it progresses are not known. 
For this reason, our model is limited to disease that would have 
been clinically detected as invasive. By not including clinically 
detected in situ disease, we are implicitly assuming that DCIS 
does not substantially contribute to breast cancer mortality. We 
are also not considering disease that would have been clinically 
detected as invasive but is screen detected as in-situ. In our 
model, such cases of screen-detected DCIS are most likely cap-
tured as localized, small invasive tumor and as such would have 
a similar prognostic outcome to screen detected DCIS.  

  Screening Mammography Component 

 Our screening component specifi es the screening dissemina-
tion and screen detection. With the screening component added, 
we have a means to estimate the mean tumor growth rate that was 
specifi ed in our natural history model earlier. 

  Screening dissemination module.  We use the CISNET base 
case input for mammography dissemination, which describes an 
increasing uptake of screening mammography for women aged 
40 years and older. This input generates the ages at which an 
individual undergoes screening, given her birth cohort  ( 12 ) . We 
truncate the screening schedule at the age of clinical detection or 
death of other causes, whichever occurs fi rst. 

  Screen detection mechanism.  Each simulated woman who 
receives at least one screening examination is assigned a  randomly 
generated mammographic detection threshold. The mammogra-
phy detection threshold is defi ned as smallest tumor diameter de-

tectable on screening mammography. Tumors below this diameter 
are missed and tumors above are classifi ed as screen detected if 
they have not clinically surfaced before the time of the screening 
examination. Because the tumor size increases between screen-
ing examinations, the probability of screen detection increases. 
Once a patient is screen detected, her age, tumor size, and SEER 
historic stage at detection are recorded. A patient is classifi ed as 
an  “ interval case ”  if her tumor is clinically detected between two 
scheduled screening examinations, as illustrated in  Fig. 2, B.  

The distribution for the mammography threshold was mod-
eled by assuming that the hazard function for  “ screen detectabil-
ity ” , i.e., the transition from a non – screen detectable tumor to a 
screen-detectable tumor, is proportional to the cross-sectional 
area of the tumor, which is in turn proportional to the tumor vol-
ume raised to the two-thirds power, i.e.,

PðVTH 2 ½v; vþ dvÞjVTH � vÞ ¼ kv
2=3

dvþ oðdvÞ
 In terms of the tumor diameter, the resulting cdf is  F TH (d) = 

1  −   exp ( − 0.6(  π  /6)  5/3    λ  d 5 ).  In our simulations, the distribution was 
truncated at diameter  d  = 2mm, so that a tumor with diameter less 
than 2 mm would not be screen detected. 

 Our mammography detection function has the advantage that 
it is fully specifi ed by one unobservable parameter but has the 
disadvantage that it produces a narrow distribution for the tumor 
size detection threshold. A wider distribution is more plausible; 
however, it would require an additional unobservable parameter 
that could not be identifi ed from the available data. 

  Joint estimation of median detection threshold and the 
mean growth rate.  We estimate two unobservable parameters, 
namely, the median tumor size detection threshold of mammogra-
phy and mean growth rate simultaneously, by calibrating to the 
SEER incidence trends and data from the Breast Cancer Surveil-
lance Consortium (BCSC), using a two-step procedure. In the 
fi rst step, each of 5-year age-specifi c SEER incidence curves are 
smoothed with respect to the year of diagnosis by using natural 
splines (SPLUS 6.1) in terms of the number of new cancers di-
vided by the midyear population. Using our simulation program, 
we estimated incidence as a number of fi rst cancers divided by the 
midyear population minus the prevalence. Sum of squared differ-
ence between age-specifi c smoothed SEER incidence and simu-
lated incidence was used as a goodness-of-fi t measure, assuming 
the same weight for each age group and each calendar year. This 
measure was computed over the two-dimensional parameter grid 
with increments of 0.05 year for the mean doubling time and 
0.05 cm for the median threshold. The mean doubling time was 
varied between 0.2 year and 1.1 year and median detection thresh-
old was varied between 6 mm to 12 mm. Various combinations of 
the parameters produced similar goodness-of-fi t measures. In the 
 second step, for each fi xed threshold we selected the best mean 
doubling time. Using thus created  “ pairs, ”  we selected the one 
that fi ts better the median size at detection for screen-detected 
cases in BCSC 1994 – 2000 data of cancers screen detected within 
3 years of the previous screening mammogram for women aged 
50 – 69 years. The resulting estimates currently used are 0.75 year 
for the mean tumor volume doubling time and 1.0 cm for the 
median threshold of screening mammography.  

  Adjuvant Treatment Component 

 Our adjuvant treatment component identifi es the use of adju-
vant treatment and the corresponding survival benefi t. 

  Table 2.       Logarithms of the natural history model parameters, stratifi ed by 
age groups*  

Log

  Age group, y 

20 – 39 40 – 49 50 – 69 70 – 84

ln( α  =  β )  − 0.0974  − 0.129  − 0.0226 0.0777
ln( γ )  − 9.82  − 9.71  − 9.74  − 9.82
ln( η  0 )  − 4.07  − 4.09  − 3.76  − 4.0
ln( η  1 )  − 10.11  − 9.96  − 9.91  − 10.13
ln( ω  0 )  − 6.12  − 5.98  − 4.69  − 4.31
ln( ω  1 )  − 12.26  − 11.98  − 11.54  − 11.46

*Estimates obtained for  α  =  β  or, equivalently, a mean tumor volume doubling 
time of ln(2) years.
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  Treatment dissemination.  Each breast cancer patient is as-
signed adjuvant treatment (tamoxifen, multiagent chemotherapy, 
both, neither) depending on the patient’s age, tumor size, stage, 
estrogen receptor (ER) status, and year at detection, as specifi ed 
by the NCI treatment dissemination base case input  ( 13 ) . 

 Tamoxifen dissemination targets ER-positive tumors in more 
recent years. Because ER status was not part of the natural his-
tory model, we assume that ER status does not vary over the pre-
clinical course of the disease and does not affect the probability 
of screen detection. The probability that an individual breast can-
cer patient has an ER-positive tumor was based on the proportion 
of women with ER-positive disease in the SEER data 1990 – 1994: 
The proportion is 62%, 75%, and 83% for women younger than 
50, 50 – 69, and 70 years or older at detection, respectively. 

  Treatment effi cacy.  We assume proportional benefi ts due to 
adjuvant treatment using published hazard ratios  ( 14  –  16 ) . For che-
motherapy, the hazard ratio for the breast cancer – specifi c survival 
depends on the age at detection: 0.72 for women aged less than 
40 years, 0.73 for women aged 40 – 49 years, 0.84 for women aged 
50 – 59 years, and 0.91 for women aged 60 years and older. For 
tamoxifen, the benefi t is assigned only to patients with ER-positive 
tumor and depends on the number of years that the treatment is 
assigned (2 years versus 5 years). The associated hazard ratios 
used are 2 years of tamoxifen and 0.69 for 5 years of tamoxifen. 
These hazard ratios were modifi ed by 10% to convert the reported 
overall survival effect due to tamoxifen to a breast cancer –  specifi c 
survival effect. If a woman receives both chemotherapy and 
tamoxifen, the product of hazard ratios is applied.  

  Survival/Mortality Component 

 Our survival component specifi es a patient’s breast cancer 
survival time from the moment her fi rst primary invasive tumor 
is detected. Breast cancer survival depends on the patient’s age, 
tumor size, and SEER historic stage at detection, as well as the 
mode of detection and use of adjuvant therapy. 

  Baseline breast cancer survival.  Breast cancer survival curves 
for patients detected in the absence of screening and  adjuvant 
therapy are a CISNET base case input, referred to as baseline 
breast cancer survival curves. These are Kaplan – Meier estimates 
obtained from SEER data for female breast cancer patients who 
were detected between 1975 and 1979 and for whom breast can-
cer was their fi rst primary tumor. Because 1975 – 1979 is associ-
ated with minimal levels of screening and adjuvant therapy, the 
baseline survival curves are assumed to capture only the effects of 
primary breast cancer treatment, namely, surgery with the possi-
bility of radiation. The curves are stratifi ed by age at detection (i.
e., 30 – 39 years old, 40 – 49 years old, 50 – 59 years old, 60 – 69 years 
old, 70 – 84 years old) and SEER historic stage (i.e., local, regional, 
distant); local and regional stages curves are further stratifi ed 
by tumor size (i.e., <2 cm, 2 – 5 cm, and  ≥ 5 cm). The tail of the 
Kaplan – Meier curve is assumed to represent a cure fraction. 

  Breast cancer survival post – screen detection without adju-
vant therapy.  The breast cancer survival curve post – screen  detection 
is taken to be the maximum of two curves: 1) the baseline survival 
curve that corresponds to the age, size, and stage at screen detection 
and 2) the baseline survival curve that corresponds to the age, size, 
and stage at clinical detection. Both survival curves are initiated 
at the corresponding age of detection, and the probability of sur-
vival for clinical detection is set at 100% during the lead time. This 
approach rules out the possibility of death during the lead time. 

 The assignment of breast cancer survival post – screen detec-
tion is arbitrary. Lower breast cancer mortality rates would be 
obtained by using the baseline breast cancer survival curve that 
corresponds to the screen-detected tumor characteristics initiated 
at the age of clinical detection. Higher breast cancer mortality 
rates would be obtained by using the baseline breast cancer sur-
vival curve that corresponds to the screen-detected tumor charac-
teristics initiated at the age of screen detection, because it would 
allow for death in the lead time. In a sensitivity analysis, we 
found that these two extremes do not produce outcomes that 
 deviate substantially from the decision rule that we applied. 

  Breast cancer survival following adjuvant therapy with 
and without screening.  We assume a proportional hazard reduc-
tion in breast cancer mortality due to adjuvant treatment (see 
 “ Treatment effi cacy ” ). In the absence of screening, the hazard 
ratio is applied to the base case baseline breast cancer curves. In 
the presence of screening, the hazard ratio is applied to the result-
ing breast cancer survival curve obtained in  “ Breast cancer sur-
vival post – screen detection without adjuvant therapy. ”    

  M ODEL  V ERIFICATION  

 Three approaches were taken to demonstrate that our simula-
tion model produces known or expected outcomes. First, we 
verifi ed that the base case input distributions were correctly re-
produced by our simulation, in particular, the distribution of time 
to death from breast cancer not subject to death from other causes; 
the distribution of time to death from other causes; the age-
 specifi c breast cancer incidence by birth cohort; the distribution 
of the time to fi rst mammogram; the proportion of women receiv-
ing 1, 2, 3, 4, 5, 6, and 7 or more mammograms from 1994 to 
2000; and the treatment dissemination profi le. We also verifi ed 
that the model-specifi c input distributions were correctly repro-
duced by our simulation, in particular, the distribution of clini-
cally detected tumor sizes, the tumor size at nodal and distant 
involvement, and the growth rate distribution. 

 Second, we ran a series of hypothetical, diagnostic tests and 
verifi ed that our simulation produces reasonable responses. We 
considered the following scenarios: a breast cancer risk of zero, 
no screening, 100% annual screening for women aged 40 – 79 
years, low median detection threshold of mammography (2 mm), 
large median detection threshold of mammography (5 cm); low 
mean tumor volume doubling time (1 month); high mean tumor 
volume doubling time (18 months), and a fl at secular trend. 

 Third, we performed internal validation tests and verifi ed that 
our simulation produces reasonable responses. We analyzed the 
growth rate and tumor size distributions of screen-detected and 
interval cases to confi rm that screen-detected cancers are more 
likely to be smaller and slower growing than interval cancers.  

  M ODEL  V ALIDATION  

 We evaluate our simulation model based on how well it predicts 
the observed U.S. breast cancer mortality rates from 1975 to 2000. 

  Comparison of Predicted and Observed U.S. Breast 
Cancer Mortality 

  Figure 3, B  compares the predicted and actual age-adjusted 
breast cancer mortality rates from 1975 to 2000. The general 
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shape of the predicted mortality curve is similar to the observed 
curve from 1975 to 1995. The predicted mortality trend has a 
dominant downward trend in mortality starting approximately in 
1990. However, two discrepancies exist between the modeled 
and actual curves: First, the predicted mortality rates are higher 
than the actual rates by approximately two breast cancer deaths 
per 100   000 women (or a 4% increase); second, the predicted 
mortality curve levels off starting in 1995 but the actual mortality 
curve shows a continued decrease. To some extent, these discrep-
ancies were anticipated. The mortality is higher than expected 
because the incidence for the fi rst primary may be too high (see 
 “ Breast Cancer Incidence Component ” ). The predicted trends are 
relatively fl atter from 1995 to 2000 because there is little to no 
temporal variation in the base case inputs just before and during 
this period. Also, as expected, we fi nd that both of these discrep-
ancies are larger among women aged more than 60 years at death. 
The differences, if any, are minor among the younger women, for 
whom the incidence of breast cancer is relatively low.      

  Sensitivity Analysis 

 We performed sensitivity analyses to evaluate the infl uence of 
modeling assumptions on the absolute level and shape of the pre-
dicted U.S. breast cancer mortality rate. 

  Varying the secular trend in breast cancer incidence.  The 
absolute level of the predicted breast cancer mortality rate is 
higher than the observed level because we may be overestimating 

the true hazard of fi rst cancer, as discussed in  “ Breast Cancer 
Incidence Component. ”  We adjust the number of new fi rst cancer 
patients as follows: 1) we determine if a patient has been diag-
nosed previously given her age and stage, from data from the 
CTR from 1975 – 1979; 2) if yes, then we return her to the healthy 
population. Although this adjustment may underestimate inci-
dence of fi rst cancer, we fi nd that it does not change the shape of 
the predicted mortality trend but rather brings the absolute level 
closer to the observed level, as shown in  Fig. 4, A.       

  Allowing a fraction of screen-detected invasive tumors to 
be reclassifi ed as screen-detected DCIS.  Because we did not 
account for the possibility that some invasive tumors could have 
been screen detected as DCIS, we may have overestimated breast 
cancer mortality. Here we assume that a fraction of tumors screen 
detected in local stage and below 1 cm would be in situ disease 
with no risk of death from breast cancer. This assumption was 
done by recalibrating the remaining invasive cases to incidence 
and keeping mammography threshold fi xed at 1 cm (as described 
in  “ Joint estimation of median detection threshold and the mean 
growth rate. ” ). As the percentage of in situ disease varied from 
5%, 10%, 20%, and 50%, the mortality reduction in the year 
2000 varied from 0.2%, 1.1%, 1.4%, and 3.1%, respectively. 
Even if 100% of localized tumors less than 1 cm were screen 
detected as in situ disease, breast cancer mortality in 2000 would 
decrease by only 6%, which is not large enough to explain the 
unaccounted for decline in mortality after 1995. 

  Adding a temporal trend to baseline survival.  The CISNET 
base case input for age- and stage-specifi c breast cancer survival 
following primary surgery did not include a temporal trend. To 
evaluate the impact of such a trend, we considered a stepwise 
change in the baseline survival by forcing a 20% improvement 
in a specifi c calendar year. The results from a stepwise change in 
years 1985, 1990, and 1995 are shown in  Fig. 4, B.  The change 
in mortality was immediate. Because even a gradual improve-
ment in baseline survival could substantially alter the shape of 
the predicted mortality curve before the year 1995, we do not to 
consider it to be the major cause for the discrepancy. 

  Adding a temporal trend to mammography detection.  We 
did not incorporate a temporal variation in the detection func-
tion of screening mammography due to the lack of informative 
data. To evaluate the impact of such a trend, we introduced a 
stepwise change in the median tumor size detection threshold of 
mammography by reducing it from 1.0 cm to 0.5 cm at a speci-
fi ed calendar year. The results from a step  wise change in the 
years 1985, 1990, and 1995 are shown in  Fig. 4, C.  A noticeable 
change in breast cancer mortality begins approximately 3 years 
after the stepwise change. Despite the signifi cant improvement 
in the detection threshold, the reduction in mortality is not large 
enough to account for a mortality decline after the year 1995. 
We suspected that the small change in mortality may be due to 
binning the base case breast cancer survival curves, with the 
single, best prognostic curve associated with all localized tu-
mors less than 2 cm. When we separated survival curves for 
localized tumors less than 1 cm and between 1 cm and 2 cm, we 
still did not fi nd a large effect on breast cancer mortality. We 
conclude that an improvement in the tumor size detection 
 function of mammography would not substantially affect our 
results. 

  Adding a temporal trend to treatment effi cacy.  The  CISNET 
base case input for effi cacy of adjuvant therapy did not include 
a temporal trend due to the lack of supporting data. However, a 

  Fig. 3.      A ) Breast cancer incidence rate, Surveillance, Epidemiology, and End 
Re    sults (SEER) data ( solid curve ) versus simulation model ( dashed curve ), age 
adjusted to the 2000 U.S. standard population. Ductal carcinoma in situ cases are 
not included.  B ) Breast cancer mortality rate, National Center for Health Statistics 
data ( solid curve ) versus simulation model ( dashed curve ), age adjusted to the 
2000 U.S. standard population.    
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variation in effi cacy is plausible given increasing variety of che-
motherapeutic regimens over time. To evaluate the impact of 
such a variation, the effi cacy in adjuvant treatment was assigned 
a stepwise change by improving the effi cacy by 2 standard devia-
tions (SD) based on published meta-analysis  ( 15 , 16 )  in a speci-
fi ed calendar year. The results following a stepwise change in 
1985, 1990, and 1995 are shown in  Fig. 4, D.  A decrease in breast 
cancer mortality was immediately observed after an improve-
ment in treatment effi cacy. Because the dissemination of adju-
vant therapy increases over time, we found that a linear change in 
treatment effi cacy, ranging from  – 2 SD in 1976 to +2 SD in 2000, 
improves the model’s fi t in the later years with  out substantially 
affecting the fi t in the earlier years, as shown in  Fig. 4, E.  The 
lack of temporal change in treatment effi cacy could explain the 
unpredicted decline after 1995.  

  Discussion on our Model Fit to Observed U.S. Breast 
Cancer Mortality 

 Our model reproduces the shape of the breast cancer mortal-
ity rates from 1975 to 1995. The fl attening of our predicted 
breast cancer mortality rate from 1995 to 2001 that does not 
agree with the observed decline. We suspect that the lack of tem-

poral variation in many of the base case inputs is the major cause 
of this discrepancy. After performing sensitivity analyses, we 
concluded that temporal variation in adjuvant treatment effi cacy 
is probably the major reason for the  discrepancy between the 
modeled vand observed mortality after 1995. However, it is 
 possible that  multiple temporal variations can be included si-
multaneously in a manner that improves the fi t to breast cancer 
mortality. 

 Although it was tempting to add temporal variations to the 
base case inputs and estimate additional model parameters by 
calibrating to breast cancer mortality trends, we did not do so 
for several reasons. First, calibration to mortality would have 
compromised our only means for evaluating our model’s per-
formance. Second, it is not clear which temporal variations to 
add and how to best parameterize them; too many parameters 
would overparameterize our model. Third, calibration to mortal-
ity would force dependences among the model components, 
thereby increasing the risk of propagating potential errors due to 
misspecifi cation in individual model components. Fourth, cali-
bration would have made our model less transparent, as changes 
to the inputs could not be easily mapped to changes in the output. 
Fifth, calibration to mortality would have forced us to  hypothesize 
that our model explains all the factors underlying the mortality 

  Fig. 4.     A ) Breast cancer mortality rate based 
on National Center for Health Statistics data 
(NCHS) ( solid black curve ), the simulation 
model ( solid gray curve ), and the simulation 
model with the incidence modifi ed ( dashed 
gray curve ).  B ) Breast cancer mortality rate 
when a stepwise change in baseline breast 
cancer survival occurs in 1985 ( curve A ), 
1990 ( curve B ), and 1995 ( curve C ).  C ) 
Breast cancer mortality rate when a stepwise 
change in the mammography tumor size 
detection threshold occurs 1985 ( curve A ), 
1990 ( curve B ), and 1995 ( curve C ).  D ) 
Breast cancer mortality rate when a stepwise 
change in treatment effi cacy occurs in 1985 
( curve A ), 1990 ( curve B ), and 1995 ( curve 
C ).  E ) Breast cancer mortality rate following 
a linear temporal change in treatment effi cacy 
( curve A ), from –2 standard deviations (SD) 
in 1976 to +2 SD in 2000. Breast cancer 
mortality rate based on NCHS data ( solid 
curve ) and the simulation model using base 
case inputs ( solid gray curve ) are included 
in each fi gure. All rates are age adjusted to 
the 2000 U.S. standard population. 
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trends. Finally, calibration would have forced us to modify the 
CISNET base case inputs and thereby make our model not di-
rectly comparable to other CISNET models. 

 Even though we did not include DCIS in our base case analy-
sis, we produced a reasonable match to breast cancer mortality. 
If screen-detected DCIS has had a dominant impact on breast 
cancer mortality, then we should have generated a much worse 
prediction of breast cancer mortality since DCIS accounts for a 
substantial fraction of incident breast cancer in the presence of 
screening. Breast cancer that would have been clinically detected 
as invasive disease in the absence of screening but is detected as 
DCIS in the presence of screening is probably being represented 
in our model as small, localized tumors with comparable progno-
sis. However, this fi nding does not imply that screen detecting 
disease as DCIS instead of small, localized disease is not clini-
cally relevant. A more in-depth analysis needs to consider the 
complex detection characteristics of mammography for in situ 
versus invasive cancer.   

  CISNET B ASE  C ASE  R ESULT  

 We now turn our attention to the CISNET base case question: 
 “ What are the contributions of screening and treatment to mor-
tality reduction? ”   Fig. 5  illustrates our predicted age-adjusted 
breast cancer mortality trends from 1975 to 2000 under the fol-
lowing four scenarios: 1) in the absence of screening and adju-
vant therapy, 2) in the presence of screening only, 3) in the 
presence of adjuvant therapy only, and 4) in the presence of both 
screening and adjuvant therapy. In the absence of screening and 
treatment, we predict a steady increase in age-adjusted breast 
cancer mortality due to the secular trend in incidence. Compared 
with the predicted mortality rate in the absence of screening and 
adjuvant therapy in the year 2000, the mortality rate in the pres-
ence of both screening and adjuvant therapy is reduced by a total 
of 29.9%, which is broken down as follows: 16.9% due to screen-
ing, 6.9% due to chemotherapy, and 8.9% due to adjuvant  therapy. 
The estimated relative contributions of screening and adjuvant 
therapy to the mortality reduction were similar in magnitude: 

53% due to screening versus 47% due to adjuvant therapy. A 
closer match to the absolute level of the breast cancer mortality 
rate would not affect these results. However, because our model 
does not match the declining rate of breast cancer mortality after 
1995, we may be underestimating the effect of screening and 
treatment. On the basis of sensitivity analyses, we fi nd that our 
result is robust for the benefi t of screening mammography but 
may be underestimating the benefi t of adjuvant therapy.      

  C ONCLUSION  

 Our simulation model predicts the shape of the U.S. breast 
cancer mortality rates from 1975 to 1995 closely but predicts a 
leveling of the rates after 1995 instead of a decline as observed. 
Our model also predicts a slightly higher breast cancer mortality 
rate than observed. Through sensitivity analysis, we found that 
the higher predicted mortality rate may be the result of overesti-
mating the rate of fi rst cancer. The leveling off of breast cancer 
mortality predicted after 1995 is most likely due to a lack of tem-
poral variations in many of the model inputs. However, without 
informative data, it is not clear which among many possible 
 modifi cations to our model would be most appropriate to yield a 
closer fi t to the observed breast cancer mortality trends. The 
 discrepancy between the predicted and observed mortality rates 
can be considered an estimate of the magnitude of the effect from 
factors that were not explicitly modeled. 

 We predict that the contribution of screening and adjuvant 
therapy were roughly equal in magnitude. Our fi ndings are inde-
pendent of the screening mammography trial data and thereby 
provide  alternative evidence of the mortality reduction due to 
screening. Because our predicted mortality after 1995 is greater 
than  observed, we may be underestimating the benefi t of screen-
ing and adjuvant therapy. Through sensitivity analysis, we found 
that our results for screening are robust and that the unpredicted 
mortality decline after 1995 is most likely due to temporal trends 
in the effi cacy of adjuvant  therapy that were not included in 
the base case input due to data limitations. Our model can be eas-
ily updated as new data becomes available to better inform the 
inputs.   
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