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The time-average estimator is typically biased in the context of steady-state simulation, and its

bias is of order 1/t, where t represents simulated time. Several “low-bias” estimators have been

developed that have a lower order bias, and, to first-order, the same variance of the time-average.

We argue that this kind of first-order comparison is insufficient, and that a second-order asymptotic

expansion of the mean square error (MSE) of the estimators is needed. We provide such an expan-

sion for the time-average estimator in both the Markov and regenerative settings. Additionally, we

provide a full bias expansion and a second-order MSE expansion for the Meketon–Heidelberger

low-bias estimator, and show that its MSE can be asymptotically higher or lower than that of

the time-average depending on the problem. The situation is different in the context of parallel

steady-state simulation, where a reduction in bias that leaves the first-order variance unaffected

is arguably an improvement in performance.
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1. INTRODUCTION

Let X = (X (t) : t ≥ 0) be a real-valued stochastic process, in which X (t)
represents the output of a simulation at (simulated) time t. Suppose that X
has a steady-state, in the sense that there exists a (deterministic) constant α

such that

1

t

∫ t

0

X (s)ds =⇒ α (1)

as t → ∞, where =⇒ denotes weak convergence. The quantity α is known as
the steady-state mean of X (also known as the “time-average limit” of X ), and
the problem of computing α via simulation is called the steady-state simulation
problem.

The law of large numbers (LLN) limit theorem (1) asserts that the time-
average

α(t) � 1

t

∫ t

0

X (s)ds

is a consistent simulation-based estimator for α. One of the principal challenges
in steady-state simulation is dealing with the fact that α(t) is typically a biased
estimator of α. This bias is induced by initial transient effects associated with
the initialization of X at time t = 0 using a distribution that is atypical of
steady-state behavior (e.g., initializing a queue in the empty state).

In great generality, it can be shown that there exists a constant b for which

E α(t) = α + b
t

+ o(1/t) (2)

as t → ∞, where o(1/t) represents a function for which t o(1/t) → 0 as t → ∞;
see, for example, Proposition 2.1 below. An estimator α̃(t) is therefore said to be
a “low-bias estimator” if

E α̃(t) = α + o(1/t) (3)

as t → ∞. Such low-bias estimators are believed to enjoy superior small-sample
performance relative to the time-average α(t) (for small to moderate values of
t).

Of course, the performance of an estimator depends on more than its bias. For
example, var α̃(t) plays a key role in the large-sample behavior of the estimator.
As a consequence, comparing the variance of α̃(t) to that of α(t) must clearly
enter into any theoretical analysis of a low-bias estimator’s performance. It is
known, in great generality, that

var α(t) = σ 2

t
+ o(1/t)

as t → ∞; the quantity σ 2 is called the time-average variance constant. Hence,
if it can be established that

var α̃(t) = σ 2

t
+ o(1/t)

as t → ∞, it follows that α̃(t) (in the presence of (2) and (3)) has better bias
behavior than does α(t), with no asymptotic degradation of variance. On this
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On the Theoretical Comparison of Low-Bias Steady-State Estimators • 3

basis, and provided the cost of producing both estimators is the same, one might
conclude one’s theoretical comparison of α̃(t) to α(t) by asserting α̃(t)’s superior-
ity. This type of reasoning has implicitly appeared in several theoretical treat-
ments of low-bias estimators. A key contribution of this article is to show that
this analysis may be oversimplified: the question of theoretical comparison is
more nuanced.

When the cost of producing two estimators is the same, a natural measure
of an estimator’s efficiency is its mean square error (MSE). But, under the
bias and variance expansions above, the MSE of α̃ is the same as that of α up
to order 1/t, so that an efficiency criterion based on “first order” asymptotics
will declare them equivalent; for example, α and α̃ typically have the same
asymptotic efficiency in the framework of Glynn and Whitt [1992]. This suggests
that comparing two such estimators may require a second order asymptotic
analysis. We shall show in this paper that the variance of the time average
typically enjoys a second order variance expansion of the form

var α(t) = σ 2

t
+ ν

t2
+ o(1/t2),

whereas

var α̃(t) = σ 2

t
+ κ

t2
+ o(1/t2).

Hence, it follows that

MSE (α(t)) = σ 2

t
+ ν + b2

t2
+ o(1/t2),

whereas

MSE (̃α(t)) = σ 2

t
+ κ

t2
+ o(1/t2).

Thus, a low-bias estimator has asymptotically smaller mean square error
than the time-average estimator if and only if κ < ν + b2. Hence, any compre-
hensive theoretical analysis of a low-bias estimator must necessarily include
a development of its second order variance expansion. To build an appropri-
ate theoretical framework for such comparisons, we compute the second order
variance and MSE expansions for the most widely used steady-state estimator,
namely the time-average. We provide expressions for the constants arising in
the second-order expansion in both the Markov process setting and the regener-
ative setting. The Markov process expressions involve solutions to an equation
known as Poisson’s equation, whereas the regenerative expressions involve mo-
ments of certain random variables defined in terms of regenerative cycles. To
assess how an alternative estimator performs against the time-average, one can
then develop its MSE expansion, and compare it against the expressions given
here. To illustrate our theory, we perform such a comparison for the Meketon–
Heidelberger estimator (a widely studied low-bias estimator). Our theory shows
that the Meketon–Heidelberger estimator neither dominates nor is dominated
by the time-average estimator, in the sense of mean square error. Thus, no
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4 • H. P. Awad and P. W. Glynn

universal recommendation can be reached with regard to use of the Meketon–
Heidelberger estimator vis-à-vis the time average in the single replications
context. While we do not attempt here to perform similar comparisons for the
various other low-bias estimators present in the literature, we find no a priori
reason to believe that any of them would be universally superior to the time
average; see the discussion at the end of Section 4.

In contrast with the above, a first order variance expansion may suffice if the
estimator is to be used in a multiple replications/parallel simulation setting.
In the parallel simulation setting, use of the Meketon–Heidelberger estimator
(and other low-bias estimators) can be advantageous from a completion time
viewpoint. We discuss this issue in Section 5.

The key contributions of this article are:

(1) A theoretical framework for estimator comparison.

(2) Second-order variance and MSE expansions for the time-average in both
the Markov and regenerative settings; see Theorem 2.8 and Theorem 3.1.

(3) A second-order asymptotic analysis for the Meketon–Heidelberger estima-
tor and its closely related variant (involving averaging over the first N(t)
cycles); see Theorems 4.1, 4.2 and 4.5.

(4) Analysis in the multiple replication/parallel simulation setting; see
Section 5.

2. ASYMPTOTIC EXPRESSIONS FOR THE TIME-AVERAGE ESTIMATOR IN
THE MARKOV SETTING

As noted in the Introduction, the most fundamental of all steady-state estima-
tors is the time-average estimator. We therefore focus, in the next two sections,
on providing expressions for the bias, variance, and mean square error of this
estimator. Our particular emphasis, in this section, will be on deriving the ap-
propriate expressions in the Markov process setting. As has been argued else-
where (see, e.g., Glynn [1989] and Henderson and Glynn [2001]), the typical
discrete-event simulation can be viewed as a Markov process (by appending
suitable supplementary variables to the state descriptor). Consequently, the
Markov assumption can be viewed as holding quite generally from an applica-
tions standpoint.

We start by obtaining a bias expansion for α(t) that holds without any Markov
hypothesis whatsoever.

PROPOSITION 2.1. Suppose that X = (X (t) : t ≥ 0) satisfies E X (t) = α +
o(t−p) as t → ∞, where p > 1. If supt≥0 E |X (t)| < ∞, then

E α(t) = α + b
t

+ o(t−p)

as t → ∞, where b = ∫ ∞
0

[E X (t)−α]dt. More generally, if
∫ ∞

0
|E X (t)−α|dt < ∞,

then

E α(t) = α + b
t

+ o(t−1)

as t → ∞.
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PROOF. For the first part, note that because supt≥0 E |X (t)| < ∞, Fubini’s
theorem applies, yielding

t(E α(t) − α) = E

∫ t

0

[X (s) − α]ds

=
∫ t

0

E [X (s) − α]ds.

But ∫ t

0

E [X (s) − α]ds = b −
∫ ∞

t
E [X (s) − α]ds

= b + o(t1−p)

as t → ∞, proving the result. The proof of the second part is identical, except
that

∫ ∞
t E [X (s) − α]ds is only known to be o(1) as t → ∞.

Many Markov processes converge to their steady-state exponentially fast;
see for example, Brémaud [1999, Theorem 4.2.6], Stroock [2005, Section 5.3],
Meyn and Tweedie [1993, Chapter 15] and Down et al. [1995] for sufficient
conditions in various settings. In that case, E X (t) = α + o(t−p) as t → ∞, for
every p ≥ 1. Proposition 2.1 therefore implies that in any bias expansion of the
form

E α(t) = α +
l∑

j=1

bj t− j + o(t−l )

as t → ∞, all the high-order bias coefficients must therefore vanish (i.e., 0 =
b2 = b3 = · · ·).

We now show that the variance of a typical stationary process exhibits a
similar expansion.

PROPOSITION 2.2. Suppose that X = (X (t) : t ≥ 0) is a square-integrable
stationary process for which cov (X (0), X (t)) = o(t−p) as t → ∞, where p > 2.
Then,

var α(t) = σ 2

t
+ ν

t2
+ o(t−p)

as t → ∞, where

σ 2 = 2

∫ ∞

0

cov (X (0), X (t))dt,

ν = −2

∫ ∞

0

t cov (X (0), X (t))dt.

PROOF. Observe that

t2var α(t) = 2

∫ t

0

∫ t

s
cov (X (s), X (u)) du ds

= 2

∫ t

0

∫ t

s
cov (X (0), X (u − s))du ds
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6 • H. P. Awad and P. W. Glynn

= 2

∫ t

0

∫ t−s

0

cov (X (0), X (r))dr ds

= 2

∫ t

0

(t − r)cov (X (0), X (r))dr

= t
[
σ 2 − 2

∫ ∞

t
cov (X (0), X (r))dr

]
+

[
ν + 2

∫ ∞

t
r cov (X (0), X (r))dr

]
= t

[
σ 2 + o(t1−p)

]
+

[
ν + o(t2−p)

]
as t → ∞.

Thus, the second order term νt−2 appears in the expansion of the variance
of α(t) even in the setting of a stationary stochastic process (in which no initial
transient exists). As for the bias expansion, note that if cov (X (0), X (t)) = o(t−p)
as t → ∞ for each p ≥ 2 (as would typically occur for a Markov process with
exponentially rapid “mixing”), any variance expansion of the form

var α(t) = σ 2

t
+

�∑
j=1

ν j t−1− j + o(t−1−�)

as t → ∞ must satisfy 0 = ν2 = ν3 = · · ·.
To explore the form of these expressions in the presence of an initial tran-

sient, we next derive their form in the Markov process setting. We assume that
the output process X = (X (t) : t ≥ 0) can be represented as a real-valued func-
tional of a Markov process i.e. X (t) = f (W (t)), where W = (W (t) : t ≥ 0) is an
S-valued (continuous-time) Markov process and f : S → R is the performance
measure of interest.

We wish to provide a sufficient condition for the validity of our asymptotic
expression that can be verified directly in terms of the “building blocks” of the
stochastic model being simulated. As is standard in the recurrence literature
for Markov processes, we state the condition in terms of a Lyapunov crite-
rion. In continuous time, the criterion is expressed in terms of the infinitesimal
transition structure of the process, as specified through the so-called “extended
generator”.1

We follow Meyn and Kontoyiannis [2003] in defining the generator as follows:

Definition 2.3. We say that ψ : S → R is in the domain of the extended
generator of W if there exists a function ϕ : S → R such that for x ∈ S and
t ≥ 0,

Ex

∣∣∣∣∫ t

0

ϕ(W (s))ds
∣∣∣∣ < ∞

1Readers unfamiliar with the theory of Markov processes in general state spaces may want, on

first reading, to restrict attention to the continuous time Markov chain (CTMC) case; this can be

done by skipping directly to Proposition 2.5, which can be used as a surrogate for hypothesis A1,

and interpreting Ã in Theorem 2.8 as the rate matrix of the CTMC.
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(where E x(·) � E (·|W (0) = x)) and

ψ(W (t)) −
∫ t

0

ϕ(W (s))ds

is a martingale (adapted to W ), conditional on W (0) = x. In this case, we write
ϕ = Ãψ and call Ã the extended generator of W .

See Breiman [1968] for a discussion of martingales. To make the above defi-
nition more concrete, consider the case in which W is a continuous-time Markov
chain (CTMC).

PROPOSITION 2.4. Suppose that W is a CTMC living on discrete state space
S and having rate matrix A = (A(x, y) : x, y ∈ S). Assume that there exists
Ṽ : S → [1, ∞) such that

||A||Ṽ � sup
x∈S

∑
y

|A(x, y)|Ṽ ( y)/Ṽ (x)

< ∞.

Then W is nonexplosive and the domain of the extended generator Ã includes
{ψ : ||ψ ||Ṽ < ∞}, where ||ψ ||Ṽ � sup{|ψ(x)|/Ṽ (x) : x ∈ S}. Furthermore, Ã = A
when restricted to such functions.

PROOF. Note that

|A(x, x)| ≤
∑

y

|A(x, y)| Ṽ ( y)

Ṽ (x)
≤ ||A||Ṽ ,

so A is a uniformizable rate matrix. As a consequence, W is nonexplosive (see,
e.g., Resnick [1992]). Furthermore, the transition probabilities for such rate
matrices can be represented as

P (W (t) = y |W (0) = x) =
∞∑

n=0

tn

n!
An(x, y).

Hence,

E x |ψ(W (t))| ≤
∞∑

n=0

tn

n!

∑
y

|An(x, y)| |ψ( y)|

=
∞∑

n=0

tn

n!

∑
y

|An(x, y)| Ṽ ( y)

Ṽ (x)

|ψ( y)|
Ṽ ( y)

Ṽ (x)

≤
∞∑

n=0

tn

n!
||An||Ṽ ||ψ ||Ṽ Ṽ (x).

But ||A||Ṽ is a matrix (operator) norm, so ||An||Ṽ ≤ (||A||Ṽ )n. It follows that

E x |ψ(W (t))| ≤ Ṽ (x)||ψ ||Ṽ exp(t||A||Ṽ ).

Similarly,

E x |Aψ(W (t))| ≤ Ṽ (x)||A||Ṽ ||ψ ||Ṽ exp(t||A||Ṽ ).
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So,

ψ(W (t)) −
∫ t

0

(Aψ)(W (s))ds

is integrable for all t ≥ 0. It follows that

ψ(W (t)) −
∫ t

0

(Aψ)(W (s))ds

is not only a local martingale (see, e.g., Rogers and Williams [1994]) but is
actually a martingale, proving the result.

Returning to the general Markov process setting, we assume (for technical
reasons) that S is a complete separable metric space (so that discrete state
spaces and open and closed subsets of R

d are special cases), and that W has
right-continuous paths with left limits. The key role played by the following
hypothesis in Markov process theory is described in detail by Down et al. [1995].

A1. Suppose that W is a nonexplosive Markov process for which there exists
a nonempty subset K ⊆ S, a probability distribution φ on S, positive con-
stants λ, β, b, and c and V : S → [1, ∞) in the domain of the extended
generator Ã such that

(ÃV )(x) ≤ −βV (x) + cI (x ∈ K )

for x ∈ S (where I (· ∈ K ) is the indicator function of the set K ),

P (W (b) ∈ · |W (0) = x) ≥ λφ(·)
for x ∈ K , and

P (W (h) ∈ K |W (0) = x) > 0

for h ≥ b and x ∈ K .

(An introductory discussion of Foster–Lyapunov criteria for discrete-time
Markov chains on discrete state spaces, and its connection to martingale theory
for Markov randon walks, can be found in Brémaud [1999]; most of the ideas
carry over to the continuous time, general state space case, albeit with more
technicalities.)

In order to render the assumption more concrete from an applications stand-
point, we specialize the hypothesis to the CTMC setting.

PROPOSITION 2.5. Suppose that W is a CTMC living on discrete state space
S and having irreducible rate matrix A = (A(x, y) : x, y ∈ S). Assume that A
is uniformizable (i.e., infx∈S A(x, x) > −∞) and that there exists a finite subset
K ⊆ S, positive constants β, and c, and V : S → [1, ∞) for which

(AV )(x) ≤ −βV (x) + cI (x ∈ K )

for x ∈ S. Then W, β, c, and V satisfy A1.

The hypothesis A1 guarantees that W is a Markov process that converges to
its steady-state exponentially rapidly.
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PROPOSITION 2.6. Suppose that W satisfies A1 and that there exists a positive
constant a for which | f (x)| ≤ aV (x) for x ∈ S. Then, W has a unique stationary
distribution π and there exists r > 0 such that

E x f (W (t)) =
∫

S
π (dx) f (x) + o(exp (−rt))

as t → ∞.

For the proof, see Down et al. [1995]. To get a sense of how this result can be
applied, we consider the M/M/1 queue.

Example 2.7. Suppose that W is the queue-length process in an M/M/1
queue model with arrival rate λ and service rate μ for which 0 < λ < μ. For
0 < θ < log(μ/λ), put V (x) = exp(θx). Then, W satisfies A1 with K = {0}, and
V as given. So, for each k ≥ 1, there exists r > 0 such that

E x W (t)k =
∞∑

�=0

�k(1 − ρ)ρ� + o(exp (−rt))

as t → ∞, where ρ � λ/μ.

We are now ready to state our main theorem of this section. Let W ∗ = (W ∗(t) :
t ≥ 0) be a stationary version of W , put fc(x) = f (x) − ∫

S π (d x) f (x) and set

u(x) �
∫ ∞

0

E x fc(W (t))dt,

v(x) �
∫ ∞

0

E xu(W (t))dt,

σ 2 � 2E fc(W ∗(0))u(W ∗(0)),

w(x) �
∫ ∞

0

(E x fc(W (t))u(W (t)) − σ 2/2)dt.

THEOREM 2.8. Suppose that W satisfies A1 and that there exists a > 0 such
that | f (x)| ≤ aV (x)1/2 for x ∈ S. Then, there exists a unique stationary distri-
bution π . Furthermore,

(a) ∫ ∞

0

|E x fc(W (t))|dt < ∞ ,∫ ∞

0

|E xu(W (t))|dt < ∞ ,

E | fc(W ∗(0))u(W ∗(0))| < ∞ ,∫ ∞

0

|E x fc(W (t))u(W (t)) − σ 2/2|dt < ∞ .

(b) Each of the functions u, v and w lies in the domain of the extended generator
Ã of W, and

Ãu = − fc,
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10 • H. P. Awad and P. W. Glynn

Ãv = −u,

Ãw = −( fcu − σ 2/2).

(c) There exists r > 0 such that

E xα(t) = α + 1

t
u(x) + o(exp (−rt)),

var [α(t)|W (0) = x] = σ 2

t
+ ν

t2
+ 1

t2
(−u2(x) + 2w(x)) + o(exp (−rt)),

E x(α(t) − α)2 = σ 2

t
+ ν

t2
+ 2

t2
w(x) + o(exp (−rt))

as t → ∞, where ν = −2E fc(W ∗(0))v(W ∗(0)).
(d) In addition,

σ 2 = 2

∫ ∞

0

E fc(W ∗(0)) fc(W ∗(t))dt,

ν = −2

∫ ∞

0

tE fc(W ∗(0)) fc(W ∗(t))dt.

This result extends to nonstationary Markov processes the theory devel-
oped earlier in this section in the stationary process setting. The constant ν

appears in the mean square expansion in both the Markov and stationary set-
tings; the impact of the initial transient manifests itself in the w(x) and u(x)
coefficients.

3. ASYMPTOTIC EXPRESSIONS FOR THE TIME-AVERAGE ESTIMATOR IN
THE REGENERATIVE SETTING

In this section, we develop expressions for the bias, variance, and mean square
error of the time-average estimator in the regenerative setting. In the context
of steady-state simulation, the regenerative assumption holds in significant
generality (see, e.g., Glynn [1994]). In particular, discrete-event simulations
typically possess a regenerative structure [Glynn 1989]—although this struc-
ture can only be exploited in practice within the smaller class of processes for
which the regeneration epochs can be (easily) identified from the simulation
output (see Henderson and Glynn [2001, 2003] for a discussion).

Suppose X = (X (t) : t ≥ 0) is a real-valued nondelayed classically regen-
erative process, with regeneration times T (0) = 0 < T (1) < T (2) < . . .. Let
(τi : i ≥ 1) be the cycle lengths, τi � T (i) − T (i − 1), and N = (

N (t) : t ≥ 0
)

the
associated counting process, N (t) = sup{i : T (i) ≤ t}.

If E τ1 < ∞ and E
∫ τ1

0
|X (s)|ds < ∞, then X has a steady state, and

α(t) = 1

t

∫ t

0

X (s)ds −→ α = λE

∫ τ1

0

X (s)ds < ∞,

where λ � 1/E τ1.
For technical reasons, we assume the cycle length distribution is spread-

out, that is, that there exists m > 0 and a nonnegative function g satisfying
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g > 0 and P (τ1 + τ2 + · · · + τm ∈ A) ≥ ∫

A g (see, e.g., Thorisson [2000, p. 98]).
In particular, any distribution that has a density is spread out.

To state the main result of this section, it is convenient to introduce some
notation. Put X c(t) � X (t) − α, t ≥ 0, and let

β(t) �
∫ t

0

X c(s)ds, Zi �
∫ T (i)

T (i−1)

X c(s)ds and Z i �
∫ T (i)

T (i−1)

|X c(s)|ds,

i ≥ 1.

THEOREM 3.1. Assume τ1 spread out, E τ
p+2

1 < ∞, E Z 2
1 < ∞ and E τ

p+2
1 Z

2

1 <

∞, where p > 0. Then

E α(t) = α + γ

t
+ o

(
t−(p+2)

)
,

var α(t) = σ 2

t
+ η − γ 2

t2
+ o

(
t−(p+2)

)
,

E (α(t) − α)2 = σ 2

t
+ η

t2
+ o

(
t−(p+2)

)
, (4)

where σ 2 � λE Z 2
1 , γ � λE [

∫ τ1

0
β(s)ds−Z1τ1] and η = (λ2/2)E Z 2

1E τ 2
1 −λE Z 2

1τ1+
2λ2(E Z1τ1)2 + λE

∫ τ1

0
β2(s)ds − 2λ2E Z1τ1E

∫ τ1

0
β(s)ds.

For many regenerative processes of interest τ1 and Z 1 have finite exponen-
tial moments, that is, E exp(θ (τ1 + Z 1)) < ∞ for some θ > 0. In that case,
Theorem 3.1 holds for all p > 2, so any bias expansion for α(t) of the form

E α(t) = α +
k∑

�=1

γ�t−� + o(t−k)

satisfies 0 = γ2 = γ3 = · · · (just as was seen in Section 2 for Markov processes
that converge to steady state exponentially fast). Similarly, in the presence
of exponential moments, the variance and MSE expansions for α(t) have zero
coefficients for all terms except those in t−1 and t−2.

4. MEAN-SQUARE ERROR ANALYSIS OF THE MEKETON–HEIDELBERGER
ESTIMATOR

In this section, we turn our attention to the low-bias estimator introduced by
Meketon and Heidelberger [1982] for regenerative steady-state simulation. The
setup and notation are the same as in Section 3. The Meketon–Heidelberger
estimator, αMH (t), is defined as the time average after completing the cycle in
progress at time t,

αMH (t) � 1

T (N (t) + 1)

∫ T (N (t)+1)

0

X (s)ds.

It was shown by Meketon and Heidelberger [1982] that αMH (t) satisfies

E αMH (t) = α + o(1/t).

Our first result extends this to a full asymptotic expansion in powers of 1/t.
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12 • H. P. Awad and P. W. Glynn

THEOREM 4.1. Assume τ1 is spread out, E τ
p+q

1 < ∞ and E Z 2
1τ

p+q−1
1 < ∞

for some integer p ≥ 1 and real q > 4. Then

E αMH (t) = α +
p∑

k=1

(−1)k āk

tk+1
+ o

(
t−(p+1)

)
,

where āk �
(
λE Z1τ

k+1
1 − λ2E Z1τ1 E τ k+1

1

)
/(k + 1).

In previous sections, we saw that the time-average estimator has a bias
expansion in powers of 1/t in which typically only the coefficient of 1/t is non-
zero. In contrast, in Theorem 4.1 the coefficient of 1/t is zero, but all those of
higher-order terms are generally non-zero.

We point out that the āk ’s can be estimated from the simulation output. In
principle, one can use such estimates together with Theorem 4.1 to further
reduce the bias of αMH (t), which is potentially useful in the context of parallel
simulation (see Section 5), but we do not pursue this here.

Our next result provides second-order variance and MSE expansions for
αMH (t).

THEOREM 4.2. Assume τ1 is spread out, E Z 2
1 τ

p
1 < ∞ and E τ

p
1 < ∞, for some

p > 5. Then

var αMH (t) = σ 2

t
+ κ

t2
+ o(t−2), and

E (αMH (t) − α)2 = σ 2

t
+ κ

t2
+ o(t−2),

where σ 2 = λE Z 2
1 and κ = −λ2E Z 2

1E τ 2
1 /.2.

The o(t−2) term in these asymptotic expansions is typically of order t−3, even
if τ1 has moments of all order. This is in contrast with the variance and MSE
expansions for the time-average obtained in Sections 2 and 3, where the o(t−2)
term typically decays faster than any power (under appropriate mixing or mo-
ment conditions).

It follows from Theorems 4.2 and 3.1 that the coefficient of 1/t2 in the MSE
expansion for αMH (t) is smaller than the corresponding coefficient in the MSE
expansion for α(t) if and only if the following condition holds:

E Z 2
1E τ 2

1 > −E τ1E

∫ τ1

0

(
β(s)2 − Z 2

1

)
ds − 2E Z1τ1E

∫ τ1

0

(Z1 − β(s))ds. (5)

Thus, if (5) holds, then αMH (t) has smaller mean squared error than α(t) for
all large enough t, and the opposite is true if the inequality is reversed.

Next we provide an example for which the inequality in (5) can hold in either
direction, depending on the distribution of the cycle length τ1. Hence, neither
of αMH (t) and α(t) performs universally better than the other.

Example 4.3. Let V = (Vi : i ≥ 1) be an i.i.d. sequence of random variables
such that E V 2

1 < ∞ and E V1 = 0. Suppose that E |τ1|7 < ∞ and that V is
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independent of τ = (τi : i ≥ 1). For i ≥ 1 and 0 ≤ s < τi, let X (T (i − 1) + s) = Vi.
Then Zi = Vi τi and β(s) = sV1, 0 ≤ s ≤ τ1, and it is easy to verify that (5) holds
if and only if

E τ 2
1

E τ1

>
2

3
· E τ 3

1

E τ 2
1

. (6)

By choosing the distribution of τ1 appropriately, one can make the above in-
equality hold in either direction. To illustrate, suppose τ1 can take only two
values, a and b, with probabilities 1 − ε and ε respectively. If a = 1, b > 2 and
ε = 1/2, then (6) holds, whereas if a = 1, b = 3 n and ε = 1/n3, then for large
enough n the opposite inequality holds.

Another simple example is (Zi : i ≥ 1) independent of the cycle lengths.
In this case, the MSE of αM H (t) is asymptotically smaller than that of
α(t):

Example 4.4. Let V = (Vi : i ≥ 1) be an i.i.d. sequence of random variables
such that 0 < E V 2

1 < ∞ and E V1 = 0. Assume that E |τ1|5 < ∞ and that
V is independent of τ = (τi : i ≥ 1). Suppose Zi = Vi for i ≥ 1 (e.g., set
X (T (i − 1) + s) = Vi/τi for 0 ≤ s < τi). Then, Zi = Vi, and it is easy to verify
that (5) is equivalent to

E V 2
1 E τ 2

1 > E V 2
1 (E τ1)2 − E τ1 E

∫ τ1

0

β(s)2 ds

which holds as long as var (τ1) > 0.

In general, there appears to be no obvious easily verifiable sufficient condi-
tion guaranteeing (5). In principle, all the terms in (5) can be estimated via
simulation (as they involve expectations of cycle-type random variables), and
this may provide a practical way to choose between αMH (t) and α(t) in some
situations: for example, if one is simulating a parametric model and wants to
estimate the steady-state for many different values of the parameters, then
it may be worthwhile to perform one simulation run to estimate the terms in
(5), and thus gain insight on whether (5) holds for the class of models con-
sidered. In most situations, however, the simulationist will have no simple a
priori guarantee as to whether MSE will be reduced by using αMH (t) relative
to the time average. This suggests that, to the extent that one wishes to make
a theoretical argument for practical use of an estimator such as αMH (t) in the
single replication context, such an argument is likely to rest upon a theoret-
ical criterion/analysis other than MSE . The fact that (5) appears difficult to
interpret at a practical level further suggests that the argument for practical
use of such estimators in the single replication setting is likely to hinge more
upon a large-scale empirical comparison of the performance of such estimators
across many test problems representative of real examples. Empirical work in
this spirit has been performed by Hsieh et al. [2004].

Note that computing αMH (t) requires simulating X to the end of the cycle in
progress at time t. This cycle can be (much) longer than a typical cycle, due to
length-biasing effects. A natural alternative is to average only over the cycles
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14 • H. P. Awad and P. W. Glynn

completed by time t, which is in fact a commonly used variant of the above
estimator, and that we denote αCC (t):

αCC (t) �
∫ T (N (t))

0
X (s)ds

T (N (t))
.

Our next result provides asymptotic expansions for the bias, variance and
MSE for this estimator.

THEOREM 4.5. Assume τ1 is spread out, E Z 2
1τ

p
1 < ∞ and E τ

p+2
1 < ∞, for

some p > 4. Also, assume that τ1 is bounded away from zero, that is, there exists
ε0 > 0 such that P (τ1 > ε0) = 1. Then

E αCC (t) = α + ζ

t
+ o(t−1),

var αCC (t) = σ 2

t
+ ξ

t2
+ o(t−2),

E (αCC (t) − α)2 = σ 2

t
+ ξ + ζ 2

t2
+ o(t−2),

where σ 2 = λE Z 2
1 , ζ = −λE Z1τ1 and ξ = 3λ2E Z 2

1E τ 2
1 /2 − λE Z 2

1τ1 +
λ2(E Z1τ1)2.

The proof is similar to that of Theorem 4.2, and is omitted for brevity. There
is only one minor additional complication, related to the fact that in computing
αCC (t) one is dividing by T (N (t)), which can take arbitrarily small values; the
assumption that τ1 be bounded below is added to deal with this issue without
introducing additional difficulty in the argument. Note that this assumption
is immediately satisfied by discrete time regenerative processes, like discrete
time Markov chains.

Theorem 4.5 can be used to compare the MSE of αCC (t) to that of αMH (t) or
α(t). The same scenarios described in Examples 4.3 and 4.4 can be used to show
that its MSE can be asymptotically larger or smaller than that of the previ-
ous estimators; it does not perform universally better or worse than either of
them.

Various other low-bias estimators have been proposed in the context of re-
generative steady-state simulation. Iglehart [1975] provides an early empirical
study of four estimators that are known to be low-bias; his work is set, how-
ever, in a different time scale (the process is simulated for a fixed number of
cycles, rather than up to a fixed simulated time). The estimators he consid-
ers are the Fieller estimator [Fieller 1940], Beale estimator [Beale 1962], Tin
estimator [Tin 1965] and jackknife estimator [Quenouille 1956; Durbin 1959].
He concludes recommending the jackknife estimator. In the time scale of fixed
simulated time (as we have been using here), a jackknife estimator takes the
form

αJ (t) �
{

α(t), N (t) ≤ 1;

N (t)
∑N (t)

i=1 Yi∑N (t)
i=1 τi

− N (t)−1
N (t)

∑N (t)
i=1

∑
j �=i Yi∑
j �=i τi

, N (t) ≥ 2,
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where Yi = ∫ T (i)
T (i−1)

X (s)ds; see Glynn and Heidelberger [1992b]. A version of
the Tin estimator in the time scale of simulated time is given by

α2(t) �
{

α(t), N (t) = 0;

α(t) + 1
t2

[∑N (t)
i=1 Yiτi − α(t)

∑N (t)
i=1 τ 2

i

]
, N (t) ≥ 1;

see Glynn and Heidelberger [1990, Theorem 8 and subsequent discussion]. A
low-bias estimator inspired on the bias expansion of the time average was in-
troduced by Glynn [1994], and is given by

α3(t) �
{

α(t), N (t) = 0;

α(t) + 1
t2

∑N (t)
i=1

(∫ τi

0
sX (T (i − i) + s)ds − α(t)τ 2

i /2
)

, N (t) ≥ 1.

To compare these (and other) estimators against the time-average and each
other, one can develop second order MSE expansions, as done here for αMH .
While we do not perform such expansions here, we find no a priori reason to
believe any one of them would be universally superior to the others. This belief
based on the one hand on our earlier conclusion that αMH is not universally
better than the time average, and also on the findings of Hsieh et al. [2004]:
they provide an empirical comparison of αMH (t), αJ (t), α2(t) and α3(t) against
α(t) and other benchmarks, and find that αMH (t) performs as well as the best of
the others (though they recommend α2(t) for computer time considerations).

5. ASYMPTOTIC ANALYSIS IN THE MULTIPLE REPLICATE SETTING

Throughout the previous sections, we have argued that a first-order variance
analysis is not sufficient to assess whether a low-bias estimator is preferable to
the time-average (or, more generally, to compare two such estimators). So far, we
have always assumed a “single-run” approach. Here, we show that the situation
changes drastically in the multiple replicate/parallel steady-state simulation
setting.

In the context of multiple replications, the variance will be reduced by av-
eraging the estimates from many runs, so that the bias plays a critical role
in improving the quality of the (aggregate) estimator—see Heidelberger [1988]
and Glynn and Heidelberger [1990, 1992a].

To be specific, suppose Z = (Z (t) : t ≥ 0) is an S-valued stochastic process
that has a steady-state, in the sense that

Z (t) =⇒ α

as t → ∞, for some constant α, which we are interested in estimating. We
assume the availability of a (single run) estimator α1(t, Z ) that satisfies the
following conditions:

H1 (CLT) : t1/2(α1(t, Z ) − α) =⇒ σ N (0, 1), where σ > 0,

H2 : (t(α1(t, Z ) − α)2 : t ≥ 0) is uniformly integrable (U.I.),
H3 : E α1(t, Z ) = α + O(t−p) , p ≥ 1.

Sometimes, we will replace H3 by the stronger version H4:

H4 : E α1(t, Z ) = α + b/t p + o(t−p) , p ≥ 1, b �= 0.
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16 • H. P. Awad and P. W. Glynn

If {Z i : i ≥ 1} are i.i.d. replicates of Z , one can construct a multiple repli-
cations estimator, αA(t), by averaging the estimates of k(t) independent runs,
that is, setting

αA(t) = 1

k(t)

k(t)∑
i=1

α1(m(t), Z i),

where m(t) � t/k(t).
For αA(t) to be consistent, it is necessary that the length of each run, m(t),

increases fast enough compared to k(t). When α1(t, Z ) is the time-average, and
under assumptions that ensure that H1, H2 and H3 hold with p = 1, it is known
that it is necessary that m(t)/k(t) → ∞ as t → ∞ [Glynn 1987; Glynn and
Heidelberger 1991]. In contrast, if p > 1, it is enough that m(t)2p−1/k(t) → ∞,
as our next result shows.

THEOREM 5.1

(i) Assume H1, H2, H3. If m(t)2p−1/k(t) → ∞ and k(t) → ∞ as t → ∞, then

t1/2(αA(t) − α) =⇒ σ N (0, 1) as t → ∞.

(ii) Assume H1, H2, H4. If m(t)2p−1/k(t) → 0 as t → ∞ then

t1/2
∣∣αA(t) − α

∣∣ =⇒ ∞ as t → ∞.

(iii) Assume H1, H2, H4. If m(t)2p−1/k(t) → c > 0 as t → ∞ then

t1/2
(
αA(t) − α

) =⇒ σ N (0, 1) + b/c1/2 as t → ∞.

(iv) Assume H1, H2, H3. If m(t) ∼ t
1

2p g (t) as t → ∞, where g (t) ↗ ∞ and
g (t) = o(t1− 1

2p ) as t → ∞, then

MSE αA(t) = σ 2

t
+ o(t−1) as t → ∞.

The proof uses the same arguments as that in Theorem 3 of Glynn [1987].
For the sake of completeness, we include it in Section 6.

Note that as long as m(t)2p−1/k(t) → ∞, αA(t) satisfies the same CLT as
α1(t, Z ) (the single-run estimator), and which doesn’t depend on p. If we are
interested in the quality of the estimator as a function of the total computational
effort, t, then to first order, there is no advantage in using a low-bias estimator
(i.e., one that satisfies H1–H3 with the same σ but greater p), and no first-order
advantage in using a multiple replication scheme instead of a single run. The
estimator comparison would then require a second-order analysis, as discussed
in previous sections.

However, if one takes advantage of (massive) parallel processing capability,
running each replicate of Z in a different processor, then there is a clear benefit
in terms of completion time in using a multiple replications scheme, and there
are also significant additional gains from using a low-bias estimator. Indeed,
for αA(t) to have the same first-order MSE of the single-run estimator, m(t)
(which we identify with the completion time) needs to increase only slightly
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faster than t
1

2p . Moreover, if α′
1(t, Z ) satisfies H1–H3 with the same σ but a

greater p, then the resulting estimator α′
A(t) will yet again have the same first-

order MSE , but would require the completion time to increase at a smaller rate;
this can be viewed as a first-order efficiency improvement, provided completion
time (rather than total computational effort) is what one cares about. In the
framework of Glynn and Whitt [1992], if the cost of interest is the completion
time and the loss function is quadratic, then, in the parallel simulation context,
a low-bias estimator produces a multiple replications estimator which is more
asymptotically efficient than the multiple replications estimator obtained with
the time average, which in turn is more asymptotically efficient than the single
run estimator.

6. PROOFS OF KEY RESULTS

PROOF (PROPOSITION 2.5). Note that∑
y

|A(x, y)|V ( y)

V (x)
= −A(x, x) +

∑
y �=x

A(x, y)
V ( y)

V (x)

= −2A(x, x) +
∑

y

A(x, y)
V ( y)

V (x)
.

Hence, for x ∈ K c, ∑
y

|A(x, y)|V ( y)

V (x)
≤ −2A(x, x) − β

whereas for x ∈ K , ∑
y

|A(x, y)|V ( y)

V (x)
≤ −2A(x, x) + c.

So,

||A||V ≤ 2 sup
x∈S

−A(x, x) + c.

Proposition 2.4 implies that W is nonexplosive and that V is in the do-
main of the extended generator. Also, the irreducibility ensures that P (W (t) =
y |W (0) = x) > 0 for x, y ∈ S and t > 0. Setting φ( y) = I ( y = z) for some z ∈ S
completes the proof.

PROOF (THEOREM 2.8). Theorem 5.1, part (d), of Down et al. [1995] establishes
the existence of a petite set K̃ for (W (n) : n ≥ 0), β < 1, and c̃ > 0 for which

E x V (W (1)) ≤ βV (x) + c̃I (x ∈ K̃ ).

We next apply Lemma 15.2.9 of Meyn and Tweedie [1993], thereby obtaining

the existence of a petite set ˜̃K , β̃ < 1, and ˜̃c for which

E x V 1/2(W (1)) ≤ β̃V 1/2(x) +˜̃cI (x ∈ ˜̃K ).
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18 • H. P. Awad and P. W. Glynn

Theorem 15.0.1 of Meyn and Tweedie [1993] proves that there exists r1 and R
positive such that

sup{|E x gc(W (n))| : |g (·)| ≤ V 1/2(·)} ≤ R exp (−r1n)V (x)1/2, (7)

where gc(·) = g (·) − E g (W ∗(0)).
Hence,

|E x fc(W (n))| ≤ aR exp (−r1n)V (x)1/2.

We now wish to prove that there exists ã > 0 for which

|E x fc(W (t))| ≤ ã exp (−r1t)V (x)1/2. (8)

Note that for 0 ≤ t ≤ 1,

E x fc(W (n + t)) = E x g̃ (W (n)),

where

g̃ (x) = E x fc(W (t)).

But

|E x fc(W (t))| ≤ |E f (W ∗(0))| + E x f (W (t))

≤ |E f (W ∗(0))| + aE x V 1/2(W (t))

≤ |E f (W ∗(0))| + a
√

E x V (W (t)).

Because V is in the domain of the extended generator Ã,

E x V (W (t)) = V (x) + E x

∫ t

0

(AV )(W (s))ds

≤ V (x) + cE x

∫ t

0

I (W (s) ∈ K )ds

≤ V (x) + ct

≤ V (x) + c

for 0 ≤ t ≤ 1. Hence

| g̃ (x)| ≤ |E f (W ∗(0))|V (x)1/2 + a
√

1 + cV (x)1/2.

Put g (x) = g̃ (x)(|E f (W ∗(0))| + a
√

1 + c)−1, so that |g (·)| ≤ V 1/2(·). It follows
from (7) that

|E x fc(W (t))| ≤ exp (r1)(|E f (W ∗(0))| + a
√

1 + c)R exp (−r1t)V (x)1/2

for t ≥ 0, proving (8).
Consequently,

|u(x)| ≤ ã
r1

V (x)1/2.

Applying the same argument as for fc to u, we find that

|E xu(W (t))| ≤ ˜̃a exp (−r1t)V (x)1/2, (9)
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so that

|v(x)| ≤
˜̃a
r1

V (x)1/2.

Thus, | fc(x)u(x)| ≤ a(̃a/r1)V (x). We now apply Theorem 5.2 of Down et al.
[1995] to conclude that there exists r2 such that

E x[ fc(W (t))u(W (t)) − σ 2/2] = o(exp (−r2t))

as t → ∞, and hence∫ ∞

0

|E x fc(W (t))u(W (t)) − σ 2/2|dt < ∞.

Also, because | fc(W ∗(t))u(W ∗(t))| ≤ a(̃a/r1)V (W ∗(t)), it follows from the same
result that fc(W ∗(t))u(W ∗(t)) is integrable. This proves that all the quantities
of part (a) are finite and well defined.

As for (b), observe that

E xu(W (t)) =
∫ ∞

t
E x fc(W (s))ds

= u(x) −
∫ t

0

E x fc(W (s))ds,

proving the martingale property for

u(W (t)) +
∫ t

0

fc(W (s))ds.

This shows that u is in the domain of Ã with Ãu = − fc. The arguments for
v and w are identical.

For (c), note that

tE x(α(t) − α) = E x

∫ t

0

fc(W (s))ds

= u(x) − E xu(W (t))

= u(x) + o(exp (−r1t/2))

as t → ∞. On the other hand,

t2E x(α(t) − α)2 = 2

∫ t

0

∫ t

s
E x fc(W (s)) fc(W (u))du ds

= 2

∫ t

0

E x fc(W (s))[u(W (s)) − u(W (t))]ds

= σ 2t + 2(w(x) − E xw(X (t))) − 2

∫ t

0

E x fc(W (s))u(W (t))ds

= σ 2t + 2w(x) + o(exp (−r2t)) − 2

∫ t

0

E x fc(W (s))u(W (t))ds.

To deal with this last term, we first split the integral into two pieces:
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0

E x fc(W (s))u(W (t))ds

=
∫ t/2

0

E x fc(W (s))u(W (t))ds +
∫ t

t/2

E x fc(W (s))u(W (t))ds

It follows from (9) that

|E x fc(W (s))u(W (t))|
≤ ˜̃ae−r1(t−s)E x | fc(W (s))V (W (s))1/2|
≤ a˜̃ae−r1(t−s)E x V (W (s)).

Consequently,∣∣∣∣∣
∫ t/2

0

E x fc(W (s))u(W (t))ds

∣∣∣∣∣ ≤ exp (−r1t/2)a˜̃a(t/2) sup
r≥0

E x V (W (r)).

For the other term, observe that

E x fc(W (s))u(W (t)) = E x g̃ (W (s)),

where

g̃ (x) = fc(x)E xu(W (t − s)).

Because

| g̃ (x)| ≤ a˜̃a exp (−r1(t − s))V (x) ≤ a˜̃aV (x),

Theorem 5.2 of Down et al. [1995] proves that there exists a > 0 for which

sup
t/2≤s≤t

|E x fc(W (s))u(W (t)) − E fc(W ∗(0))u(W ∗(t − s))| ≤ a exp (−r2t/2)V (x).

Hence,∫ t

t/2

E x fc(W (s))u(W (t))ds = o(exp (−r2t/4)) +
∫ t

t/2

E fc(W ∗(0))u(W ∗(t − s))ds

= o(exp (−r2t/4)) +
∫ t/2

0

E fc(W ∗(0))u(W ∗(s))ds

= o(exp (−r2t/4)) + E fc(W ∗(0))v(W ∗(0))

+ o(exp (−r1t/4)),

completing the proof of c.).
The identity for σ 2 is obvious. For ν, note that

E fc(W ∗(0))v(W ∗(0)) =
∫ ∞

0

E fc(W ∗(0))u(W ∗(t))dt

=
∫ ∞

0

E fc(W ∗(0))

∫ ∞

t
fc(W ∗(s))ds dt

=
∫ ∞

0

∫ s

0

dt E fc(W ∗(0)) fc(W ∗(s))ds,

proving the result.
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PROOF (THEOREM 3.1). We denote F (x) = P (τ1 ≤ x) and U (t) �
∑∞

k=0 F ∗k(t)
(the renewal kernel), where F ∗k denotes the k-fold convolution of F , that is,
F ∗k+1(t) = (F ∗k ∗ F )(t) �

∫ t
−∞ F ∗k(t − s)F (ds), and F ∗0(t) = I (t ≥ 0).

For the bias expansion, let h(t) � tE (α(t) − α) = E β(t). Note that h satisfies
the renewal equation

h(t) = q(t) + (F ∗ h)(t),

t ≥ 0, where

q(t) � E (β(t) − Z1 ; τ1 > t).

Note that

|q(t)| ≤ t−(p+2)E
(
Z 1τ

p+2
1 ; τ1 > t

)
= o

(
t−(p+2)

)
,

since E (Z 1τ
p+2

1 ; τ1 > t) → 0 by dominated convergence. Also, |h(t)| ≤
E

∑(N (t)+1)
j=1 Z j = E (N (t) + 1)E Z < ∞, so h is bounded in compact sets,

whence h(t) = (U ∗ q)(t). It then follows from Theorem 4.2(ii) in Nummelin
and Tuominen [1983] that

h(t) = λ

∫ ∞

0

q(s)ds + o
(
t−(p+1)

)
= γ + o

(
t−(p+1)

)
. (10)

Dividing by t gives the desired bias expansion.
For the MSE expansion, let g (t) � t2 E (α(t) − α)2. Note that

g (t) = E (β(t)2; τ1 > t) + E

[
Z 2

1 + 2 Z1

∫ t

T (1)

X c(s)ds

+
(∫ t

T (1)

X c(s)ds
)2

; τ1 ≤ t

]
= E (β(t)2; τ1 > t) + E Z 2

1 − E
(
Z 2

1; τ1 > t
) + 2E (Z1h(t − τ1); τ1 ≤ t)

+ (F ∗ g )(t),

so g satisfies the renewal equation

g = E Z 2
1 + v + F ∗ g ,

where

v(t) � E
(
β(t)2 − Z 2

1; τ1 > t
) + 2E (Z1h(t − τ1); τ1 ≤ t) .

Note

E
(
β(t)2 − Z 2

1; τ1 > t
) ≤ 2t−(p+2)E

(
Z 1 τ

(p+2)
1 ; τ1 > t

)
= o

(
t−(p+2)

)
,
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and

2E (Z1h(t − τ1); τ1 ≤ t) = 2γ E (Z1; τ1 ≤ t) + 2E (Z1[h(t − τ1) − γ ]; τ1 ≤ t)

= −2γ E (Z1; τ1 > t) + 2E (Z1[h(t − τ1) − γ ];

0 ≤ τ1 ≤ t/2)

+ 2E (Z1[h(t − τ1) − γ ]; t/2 ≤ τ1 ≤ t)

= o
(
t−(p+2)

) + o
(
(t/2)−(p+1)

) + o
(
(t/2)−(p+2)

)
= o

(
t−(p+1)

)
,

so that v(t) = o(t−(p+1)). Since g and v are bounded on compact sets, g is given
by

g (t) = (
U ∗ (

E Z 2
1 + v

))
(t),

and it follows from Lemma 6.1 below that

g (t) = λ t E
(
Z 2

1

) + λ2E Z 2
1 E τ 2

1 /2 + λ

∫ ∞

0

v(s)ds + o(t−p). (11)

Note that∫ ∞

0

v(s)ds

=
∫ ∞

0

E
(
β(s)2 − Z 2

1 ; τ1 > s
)
ds + 2

∫ ∞

0

E (Z1h(s − τ1) ; τ1 ≤ s)ds

= E

∫ τ1

0

(
β(s)2 − Z 2

1

)
ds + 2γ

∫ ∞

0

E Z1 I (τ1 ≤ s) ds + 2

∫ ∞

0

E Z1[h(s − τ1) − γ ]

× I (τ1 ≤ s) ds

= E

∫ τ1

0

(
β(s)2 − Z 2

1

) − 2γ

∫ ∞

0

E Z1 I (τ1 > s) ds + 2E Z1

∫ ∞

0

[h(s) − γ ] ds

= E

∫ τ1

0

(
β(s)2 − Z 2

1

) − 2γ E (Z1τ1) .

The application of Fubini’s theorem in the second step above is justified since
E

∫ ∞
0

| Z1[h(s − τ1) − γ ]I (τ1 ≤ s) |ds ≤ E |Z1|
∫ ∞

0
| h(s) − γ |ds < ∞ in light of

(10).
Substituting into (11) gives the desired MSE expansion. The variance ex-

pansion follows immediately from the bias and MSE expansions.

LEMMA 6.1. Suppose that b : [0, ∞) −→ R is bounded and there exists b̄
such that |b(t) − b̄| = o(t−(p+1)) for some p > 0. Assume also that E τ

p+2
1 < ∞.

Then

(U ∗ b) (2t) = 2λ b̄ t + λ2b̄E τ 2
1 /2 + λ

∫ ∞

0

[b(s) − b̄]dt + o(t−p).

PROOF

(U ∗ b) (2t)

=
∫ t

0

b(2t − s)dU (s) +
∫ 2t

t
b(2t − s)dU(s)
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= b̄U (t) + λ

∫ 2t

t
b(2t − s)ds +

∫ 2t

t
b(2t − s)dU(s) − λ

∫ 2t

t
b(2t − s)ds

+
∫ t

0

[b(2t − s) − b̄]dU(s)

= b̄U (t) + λ

∫ t

0

b(s)ds +
∫ 2t

t
b(2t − s)dU(s) − λ

∫ 2t

t
b(2t − s)ds

+
∫ t

0

[b(2t − s) − b̄]dU(s)

= 2 b̄λt + λ2b̄E τ 2
1 /2 + λ

∫ ∞

0

[b(s) − b̄]ds

λ

∫ ∞

t
[b(s) − b̄]ds + b̄

(
U (t) − λt − λ2E τ 2

1 /2
)

+
[∫ 2t

t
b(2t − s)dU(s) − λ

∫ 2t

t
b(2t − s)ds

]
+

∫ t

0

[b(2t − s) − b̄]dU(s) .

It is enough to show that the last four terms on the right-hand side are o(t−p).
For the first term,∣∣∣∣λ ∫ ∞

t
[b(s) − b̄]ds

∣∣∣∣ ≤ λ

∫ ∞

t
|b(s) − b̄| = o(t−p)

since |b(s) − b̄| = o(t
−(p+1)) by assumption.

For the second term, it is a standard result in renewal theory that U (t) −
λt −→ λ2E τ 2

1 /2 as t → ∞ (see, e.g., Karlin and Taylor [1975, p. 195]). That the
rate of convergence is such that∣∣(U (t) − λt − λ2E τ 2

1 /2
)∣∣ = o(t−p) (12)

follows from the renewal equation satisfied by t �→ (U (t) − λt), the assumption

that Eτ
p+2

1 < ∞, and Theorem 4.2 (ii) in Nummelin and Tuominen [1983].
For the third term,∣∣∣∣∣

∫ 2t

t
b(2t − s)dU(s) − λ

∫ 2t

t
b(2t − s)ds

∣∣∣∣∣ ≤ ‖b‖ sup
A∈B([0, ∞))

∣∣∣∣∫
t+A

U (ds) −
∫

t+A
λ ds

∣∣∣∣
= o(t−p),

where B([0, ∞)) denotes the Borel sets in [0, ∞) and the last follows from the
assumption that E τ

p+2
1 < ∞ and the argument in Thorisson [2000, p. 421].

Finally, for the last term, it follows from the assumption that |b(t) − b̄| =
o(t−(p+1)) that∣∣∣∣∫ t

0

[b(2t − s) − b̄]dU(s)

∣∣∣∣ ≤
∫ t

0

|b(2t − s) − b̄|dU(s)

≤ o(t−(p+1))U (t) = o
(
t−p)U (t)

t
= o(t−p)O(1) .
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PROOF (THEOREM 4.1). Let R(t) � T (N (t) + 1) − t denote the residual life at
time t. Note that

αMH (t) − α =
∑N (t)+1

i=1 Zi

T (N (t) + 1)
=

1
t

∑N (t)+1
i=1 Zi

1 + R(t)/t
.

Put

ε(t) � t p+1

[
αMH (t) − α −

(
1

t

N (t)+1∑
i=1

Zi

)
p∑

k=0

(−1)k R(t)k

tk

]
.

A Taylor expansion of x �→ 1/(1 + x) shows that, for x > 0,∣∣∣∣∣ 1

1 + x
−

p∑
k=0

(−1)kxk

∣∣∣∣∣ ≤ x p+1 ,

and applying this with x = R(t)/t, we conclude

|ε(t)| ≤ R(t)p+1

∣∣∣∣∣1

t

N (t)+1∑
i=1

Zi

∣∣∣∣∣ ≤ 1√
t

R(t)p+1

⎛⎝1 + 1

t

(
N (t)+1∑

i=1

Zi

)2
⎞⎠ .

Hence,

E |ε(t)| ≤ t−1/2E R(t)p+1 + t−3/2E R(t)p+1

(
N (t)+1∑

i=1

Zi

)2

.

Note that E R(t)p+1 → λE τ
p+2

1 /(p + 2) < ∞. Also, we show below that

E R(t)p+1

(
N (t)+1∑

i=1

Zi

)2

= O(t). (13)

Assuming this for the moment, it follows that

E |ε(t)| = O(t−1/2) −→ 0

as t → ∞, and hence

E ε(t) −→ 0

as t → ∞, which implies

E αMH (t) − α =
p∑

k=0

(−1)k

tk+1
E

[
R(t)k

N (t)+1∑
i=1

Zi

]
+ o

(
t−(p+1)

)
.

Note that for k = 0, E [R(t)k ∑N (t)+1
i=1 Zi] = 0 by Wald’s first moment identity.

Hence, it is enough to show that for 1 ≤ k ≤ p

ak(t) = āk + o
(
t−(p−k)

)
, (14)

where ak(t) � E (R(t)k ∑N (t)+1
i=1 Zi). Note ak satisfies the renewal equation

ak(t) = b(t) + (F ∗ ak) (t) ,
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where

b(t) = E (Z1 R(t)k).

Since both ak and b are bounded on compact intervals, it follows that ak is given
by

ak(t) = (U ∗ b)(t) ,

t ≥ 0. We next show that b(t) = o(t−(p+q−k−1)). For this, let rk(t) � E R(t)k and
r̄k � limt→∞ rk(t) = λE τ k+1

1 /(k + 1). Observe that

b(t) = E (Z1 (τ1 − t)k ; τ1 > t) + E (Z1 rk(t − τ1) ; τ1 ≤ t)

= E (Z1(τ1 − t)k ; τ1 > t) − r̄kE (Z1; τ1 > t)

+ E (Z1[rk(t − τ1) − r̄k]; τ1 ≤ t). (15)

The first term on the right-hand side satisfies

|E (Z1(τ1 − t)k ; τ1 > t)| ≤ t−(p+q−k−1)E
(|Z1|τ p+q−1

1 ; τ1 > t
) = o

(
t−(p+q−k−1)

)
by dominated convergence. The same argument applied to the second term
gives ∣∣E (Z1; τ1 > t)

∣∣ = o(t−(p+q−1)).

To deal with the third term on the right-hand side in (15), note that, from the
renewal equation satisfied by rk(t) it follows that rk(t) = (U ∗v)(t), where v(t) =
E ((τ1 − t)k ; τ1 > t). Note |v(t)| = o(t−(p+q−k)), so it follows from Theorem 4.2(ii)
in Nummelin and Tuominen [1983] that |rk(t) − r̄k| = o(t−(p+q−k−1)). Hence,

|E (Z1[rk(t − τ1) − r̄k]; τ1 ≤ t)|
≤ sup

s≥t/2

|rk(s) − r̄k| · E |Z1| + sup
s≥0

|rk(s) − r̄k| · E (|Z1|; τ1 > t/2)

= o
(
t−(p+q−k−1)

)
E |Z1| + o

(
t−(p+q−1)

) = o
(
t−(p+q−k−1)

)
. (16)

Thus, all three terms on the right-hand side in (15) are o(t−(p+q−k−1)) and hence
so is b(t). We can use again Theorem 4.2(ii) in Nummelin and Tuominen [1983]
to conclude that

ak(t) = λ

∫ ∞

0

b(s)ds + o
(
t−(p+q−k−2)

)
as t → ∞. Hence, to prove (14), it is enough to verify∫ ∞

0

b(s)ds = 1

λ
āk .

Indeed, from (15),∫ ∞

0

b(t)dt =
∫ ∞

0

{E [Z1(τ1 − t)k I (t < τ1)] − r̄k E [Z1 I (τ1 > t)]

+ E [Z1 [rk(t − τ1) − r̄k] I (τ1 ≤ t)]}dt.
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Note that E
∫ ∞

0
|Z1(τ1 − t)k I (t < τ1)dt| = E |Z1|τ k+1

1 (k + 1)−1 < ∞, E
∫ ∞

0

|Z1 I (τ1 > t)|dt = E |Z1|τ1 < ∞ and E
∫ ∞

0
|Z1 [rk(t − τ1) − r̄k] I (τ1 ≤ t)|dt =

E |Z1|
∫ ∞

0
|rk(s) − r̄k|ds < ∞, so Fubini’s theorem applies and we can write∫ ∞

0

b(t)dt = E

[
Z1

∫ ∞

0

(τ1 − t)k I (t < τ1)dt
]

− r̄k E

[
Z1

∫ ∞

0

I (τ1 > t)dt
]

+ E

[
Z1

∫ ∞

0

[rk(t − τ1) − r̄k] I (τ1 ≤ t)dt
]

= (k + 1)−1E Z1τ
k+1
1 − r̄k E Z1τ1 + E (Z1)

∫ ∞

0

[rk(s) − r̄k]ds

= (k + 1)−1E Z1τ
k+1
1 − r̄k E Z1τ1

= 1

λ
āk .

The proof of the theorem is complete if we justify our earlier claim in (13).
For this purpose, let

gk(t) � E R(t)k

(
N (t)+1∑

i=1

Zi

)2

,

k ≥ 1. (The added generality is due to g1 and g2 playing a role later in the
proof of Theorem 4.2.)

Note that

gk(t) = E
(
R(t)k Z 2

1

) + 2E [Z1 ak(t − τ1) ; τ1 ≤ t] + (F ∗ gk)(t) ,

= v + F ∗ gk ,

where v(t) = E R(t)k Z 2
1 + 2E [Z1 ak(t −τ1) ; τ1 ≤ t]. Since gk and v are bounded

on compact intervals, gk(t) = (U ∗ v)(t). We can rewrite v as

v(t) = E
(
Z 2

1(τ1 − t)k ; τ1 > t
) + E

(
Z 2

1rk(t − τ1); τ1 ≤ t
)

+ 2E [Z1(ak(t − τ1) − āk ; τ1 ≤ t] − 2ākE [Z1; τ1 > t]

= r̄kE Z 2
1 − r̄kE

(
Z 2

1; τ1 > t
) + E

(
Z 2

1(τ1 − t)k ; τ1 > t
)

− 2ākE [Z1; τ1 > t] + E
(
Z 2

1(rk(t − τ1) − r̄k); τ1 ≤ t
)

+ 2E [Z1(ak(t − τ1) − āk); τ1 ≤ t].

Observe that the second, third, and fourth terms on the right-hand side are
o(t−(p+q−k−1)) (by dominated convergence). The same argument that led to (16)
shows that the fifth term on the right-hand side is o(t−(p+q−k−1)), and a similar
argument with ak(t) in the role of rk(t) shows that the last term is o(t−(p+q−k−2)),
(using that ak(t) − āk = o(t−(p+q−k−2)), which we obtained above). Thus, v(t) =
r̄kE Z 2

1 + o(t−(p+q−k−2)), and it follows from Lemma 6.1 that for 1 ≤ k ≤ p + 1

gk(t) = t λr̄kE Z 2
1 + O(1) , (17)

proving (13) and completing the proof.

Remark 6.2. It is interesting to note that in computing
∫ ∞

0
b(t)dt above,

a careless (and incorrect) exchange in the order of integration yields a wrong
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answer: ∫ ∞

0

b(t)dt =
∫ ∞

0

E (Z1 R(t)k)dt �=
∞∑

i=1

E

[
Z1

∫ T (i)

T (i−1)

R(t)kdt

]

=
∞∑

i=1

E Z1τ
k+1
i (k + 1)−1

= E Z1τ
k+1
1 (k + 1)−1.

(The second term in āk/λ is missing from the right-hand side.)

PROOF (THEOREM 4.2). The argument is similar to the one in the proof of The-
orem 4.1. Start by noting that

(αMH (t) − α)2 =
( ∑N (t)+1

i=1 Zi

T (N (t) + 1)

)2

=
(

1
t

∑N (t)+1
i=1 Zi

)2

(
1 + R(t)/t

)2
.

Put

δ(t) � t2

⎡⎣(αMH (t) − α)2 − 1

t2

(
N (t)+1∑

i=1

Zi

)2 (
1 − 2

t
R(t)

)⎤⎦ . (18)

A Taylor expansion of x �→ 1/(1 + x) shows that, for x > 0∣∣∣∣ 1

(1 + x)2
− (1 − 2x)

∣∣∣∣ ≤ 3x2 ,

and applying this in (18) with x = R(t)/t, we conclude

|δ(t)| ≤ 3

t2
R(t)2

(
N (t)+1∑

i=1

Zi

)2

and hence,

E |δ(t)| ≤ 3

t2
E R(t)2

(
N (t)+1∑

i=1

Zi

)2

.

It follows from (17) in the proof of Theorem 4.1 that E R(t)2(
∑N (t)+1

i=1 Zi)
2 = O(t).

Hence,

E |δ(t)| = O(t−1) −→ 0

so that

E δ(t) −→ 0

as t → ∞, which together with (18) implies

E (αMH (t) − α)2 = 1

t2
E

(
N (t)+1∑

i=1

Zi

)2

− 2

t3
E R(t)

(
N (t)+1∑

i=1

Zi

)2

+ o(t−2) .
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The first term on the right-hand side can be simplified using Wald’s second
moment identity,

E

(
N (t)+1∑

i = 1

Zi

)2

= U (t)E Z 2
1 = λtE Z 2

1 + E Z 2
1(U (t) − λt)

= λtE Z 2
1 + λ2E Z 2

1E τ 2
1 /2 + o(t−2),

where the last step is justified as in (12) above. For the second term, it follows
from (17) in the proof of Theorem 4.1 that

E R(t)

(
N (t)+1∑

i=1

Zi

)2

= t
λ2E τ 2

1 E Z 2
1

2
+ O(1) .

Hence,

E (αMH (t) − α)2 = λtE Z 2
1

t
+ λ2E Z 2

1E τ 2
1

2t2
− λ2E τ 2

1 E Z 2
1

t2
+ o(t−2)

= σ 2

t
+ κ

t2
+ o(t−2) ,

completing the proof of the MSE expansion. The variance expansion follows
immediately from the MSE expansion and Theorem 4.1.

PROOF (THEOREM 5.1). For (i), let v(t) � t E (α1(t, Z ) − α)2. Note that

t1/2(αA(t) − α) = a(t) b(t)
k(t)∑
i=1

Ui(t) + γ (t) , (19)

where a(t) � [v(m(t))]1/2, b(t) � [m(t)var (α1(m(t), Z )) / v(m(t))]1/2,
γ (t) � t1/2[E (α1(m(t), Z )) − α] and

Ui(t) = (k(t) var (α1(m(t), Z )))−1/2[α1(m(t), Z i) − E (α1(m(t), Z ))].

From H3,

γ (t) = t1/2 O(m(t)−p) = k(t)1/2 O
(
m(t)−(p−1/2)

) → 0 (20)

as t → ∞. Also, it follows from H1 and H2 that

v(t) → σ 2 (21)

as t → ∞. Note that

var (α1(m(t), Z )) = E [α1(m(t), Z ) − α]2 − [α − E (α1(m(t), Z ))]2

= v(t)/m(t) + O(m(t)−2p), (22)

whence

b(t) =
(

1 + O(m(t)−2p+1)

v(m(t))

)1/2

→ 1 as t → ∞ . (23)

Note that E Ui(t) = 0 and
∑k(t)

i=1 E U 2
i (t) = 1. Suppose, for the time being, that we

verify Lindeberg’s condition for the triangular array (Ui(t) : 1 ≤ i ≤ k(t), t ≥ 0),
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that is, that for all η > 0,

k(t)∑
i=1

E
(
U 2

i (t) ; U 2
i (t) > η

) → 0 as t → ∞ . (24)

Then, it follows from the Lindeberg–Feller central limit theorem (see, e.g.,
Durrett [1995, p. 116]) that

k(t)∑
i=1

Ui(t) =⇒ N (0, 1) ,

which together with (20), (21), (23), (19) and the converging-together lemma
give the desired result.

Hence, all we need to show is that (24) holds. Fix η > 0 and note that

k(t)∑
i=1

E
(
U 2

i (t) ; U 2
i (t) > η

) = k(t) E
(
U 2

1 (t) ; U 2
1 (t) > η

)
= E (V 2(t) ; V 2(t) > ηk(t)) , (25)

where

V 2(t) = 1

var α1(m(t), Z )
(α1(m(t), Z ) − E α1(m(t), Z ))2

≤ 2

m(t)var α1(m(t), Z )
[m(t)(α1(m(t), Z ) − α)2 + (α − E α1(m(t), Z ))2].

It follows from (22) that the factor outside the brackets is bounded. The last
relation, together with H2 and H3, implies that (V 2(t) : t ≥ 0) is U.I., whence
the right-hand side in (25) goes to zero as t → ∞, which in turn implies (24),
completing the proof.

The proof of (ii) and (iii) follows the same argument, only the behavior of γ (t)
is different.

For (iv), note var αA(t) = k(t)−1var α1(m(t), Z ), and E αA(t) = E α1(m(t), Z ) =
α + O(m(t)−p). It follows from H1, H2 and H3 that var α1(m(t), Z ) = σ 2m(t)−1 +
o(m(t)−1). Since m(t)−2p = o(t−1), the result follows.
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