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Abstract We develop a strongly efficient rare-event simu-
lation algorithm for computing the tail of the steady-state
waiting time in a single server queue with regularly varying
service times. Our algorithm is based on a state-dependent
importance sampling strategy that is constructed so as to be
straightforward to implement. The construction of the algo-
rithm and its asymptotic optimality rely on a Lyapunov-type
inequality that is used to bound the second moment of the
estimator. The solution to the Lyapunov inequality is con-
structed using fluid heuristics. Our approach takes advan-
tage of the regenerative ratio formula for the steady-state
distribution—and does not use the first passage time repre-
sentation that is particular to the delay in the G/G/1 queue.
Hence, the strategy has the potential to be applied in more
general queueing models.
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1 Introduction

Consider a positive recurrent single-server queue under first-
in first-out (FIFO) queue discipline. We assume that the
service times are heavy-tailed random variables, in partic-
ular, regularly varying. Our interest is in the development
of an efficient rare-event simulation algorithm, based on
the use of importance sampling, for computing tail prob-
abilities associated with steady-state delays; an algorithm
is said to be (strongly) efficient if it produces an estima-
tor that has a bounded coefficient of variation uniformly
in how far out into the tail the computation is done; the
concept of strong efficiency is made precise in Defini-
tion 1. Efficient rare-event simulation algorithms for heavy-
tailed M/G/1 queues have been developed by, for example
[3–5, 12, 17]. All of these algorithms rely upon the Pollaczek-
Khintchine representation, which is a special feature of the
M/G/1 queue and allows one to reduce the problem to that
of rare-event simulation for the tail of a finite sum of posi-
tive rv’s. Consequently, these procedures are not applicable
to the G/G/1 queue. Recently, Blanchet and Glynn [6] pro-
posed the first efficient rare-event simulation algorithm for
a G/G/1 queue with heavy-tailed input (for a large class of
sub-exponential distributions). The algorithm proposed by
[6] takes advantage of the equivalence between the distrib-
ution of the steady-state delay and the law of the maximum
of a suitably defined random walk. In particular, it explicitly
uses the representation of a steady-state tail probability for
delay in terms of a level-crossing probability for the associ-
ated random walk.

This equivalent representation is unfortunately a feature
that does not generalize beyond the G/G/1 queue (for in-
stance, to multi-server queues). In addition, variate genera-
tion from the Markov transition kernel associated with the
algorithm of [6] can be challenging to implement. In this
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paper, we propose a new rare-event simulation algorithm,
based on state-dependent importance sampling, in which
the required variate generation is implemented via “mixture
sampling”. Mixture sampling means that the random vari-
ates required by the algorithm can be generated as a mix-
ture (i.e. a convex combination) of distributions, each of
which permits easy variate generation. A precise description
of the mixture distribution is given in Sects. 3 and 4; see (5).
Secondly, in contrast to [6], the algorithm proposed here is
based on the regenerative representation of the steady-state
waiting time distribution. As a result, we expect the main
ideas to be presented here will be applicable to more com-
plex queueing systems. Indeed, the methodology that we
propose here generalizes to the G/G/2 queue; see [8].

As mentioned above, our algorithm takes advantage of
the regenerative ratio formula for steady-state probabilities.
The estimator for the numerator corresponds to the number
of people who experience long delays within a busy period
and the denominator is estimated as the sample mean of the
number of customers served in a busy period. This implies,
in particular, that the overall estimator will typically be bi-
ased for any finite sample size. Our strategy is to develop a
good importance sampling algorithm to estimate the prob-
ability of observing, within a busy cycle, at least one cus-
tomer that experiences a long delay. We will later show that
this algorithm is actually strongly efficient for the steady-
state waiting time itself.

In order to establish the efficiency of our algorithm, we
use Lyapunov-type inequalities to upper bound the second
moment of the proposed estimator. The use of Lyapunov-
type inequalities to prove efficiency was introduced in [6].
However, here we use the Lyapunov bounds not only as
a proof technique but also to construct our algorithm. In-
deed, based on asymptotic approximations for the tail of
the steady-state delay, Blanchet and Glynn [6] propose a
specific form of the importance sampling distribution that
directly approximates the zero-variance change-of-measure.
Our approach here is to instead propose a parametric family
of importance samplers, based on mixtures. Then, we con-
struct the solution to the Lyapunov inequality using “fluid
heuristics” only—in other words, sharp asymptotic approx-
imations are not needed—and derive sufficient conditions
on the parameters of our family in order to satisfy the Lya-
punov bound. This Lyapunov function (i.e., the solution to
the Lyapunov inequality) provides an upper bound on the
second moment of the estimator. If one has access to a lower
bound (which typically is easy to obtain by considering sim-
ple compound events involving the heavy-tailed rvs) for the
probability of interest, a good choice of Lyapunov function
permits one to establish bounded relative variance and there-
fore asymptotic optimality—in the sense of achieving the
fastest possible rate of decay for the second moment of the
proposed estimator.

The mixture sampling idea we use here is similar to that
proposed by [12]. They use this idea as a means of effi-
ciently computing tail probabilities for heavy-tailed sums.
To prove efficiency, they propose a verification procedure
that is based on a weak convergence analysis (rather than
the approach followed here).

The rest of this paper is organized as follows. In Sect. 2,
we collect basic definitions related to computational effi-
ciency in the context of rare-event simulation. Since, as in-
dicated previously, our proposed estimator will typically be
biased, we provide a brief discussion of efficiency for bi-
ased rare-event simulation estimators. Section 3 further dis-
cusses the use of state-dependent importance sampling and
describes an approach (based on Lyapunov functions) for
verifying strong efficiency. Sections 4 and 5 discuss in de-
tail the design of our algorithm and the verification of its
efficiency. In particular, Sect. 4 constructs the algorithm that
is designed to be efficient for computing the probability of
observing a long delay in a busy period. Then, in Sect. 5, we
prove that this algorithm is also efficient for the steady-state
waiting time. An implementation of our algorithm and its
empirical performance is given in our last section, namely
Sect. 6.

2 Computing steady-state rare event probabilities

Let W = (Wn : n ≥ 0) be an S-valued Harris recurrent
Markov chain with stationary distribution π . For w ∈ S, let
Pw(·) and Ew(·) be the probability distribution and expecta-
tion operator corresponding to W , conditional on W0 = w.
We are interested in computing π(Bb), for a decreasing
sequence of sets {Bb : b > 0} such that π(Bb) −→ 0 as
b ↗ ∞.

Suppose that there exists a singleton w0 ∈ Bc
b with the

property that W returns to w0 infinitely often. Then, we have
the following ratio formula for the steady-state distribution
π(·):

π(Bb) = Ew0(
∑Tw0 −1

j=0 I (Wj ∈ Bb))

Ew0(Tw0)
, (1)

where Tw0 = inf{n ≥ 1 : Wn = w0} (see, for example [2]).
For the G/G/1 model, a particularly convenient choice for
{w0} is w0 = 0, so that regenerative cycles correspond to
busy cycles.

Since the denominator in (1) does not depend on b,
the rare-event type computation is needed only for the
numerator of the regenerative ratio formula. If we define
Tb = inf{n ≥ 1 : Wn ∈ Bb}, the event {Tb < Tw0} is a rare
event for large values of b. This observation suggests that
we estimate π(Bb) by developing a good importance sam-
pling algorithm for the event {Tb < Tw0}. Such an algorithm
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should then efficiently estimate the numerator in (1). One
should keep in mind, however, that given {Tb < Tw0} the
number of visits to Bb prior to returning to w0 could be
large and difficult to control. We shall come back to this
issue in Sect. 4 when we discuss the assumptions imposed
for the G/G/1 model that we consider here. The denomina-
tor, on the other hand, can be estimated using crude Monte
Carlo. Since the complexity to evaluate Ew0(Tw0) to a given
relative precision is independent of b, we expect (and verify
shortly) the overall efficiency of an algorithm for estimating
π(Bb) for b large using (1) to depend mainly on the quality
of the numerator’s estimator.

Let us recall the definition of efficiency in the context of
rare-event simulation.

Definition 1 An estimator Zb is said to be efficient (or
strongly efficient) for estimating zb ∈ (0,∞) if

sup
b>0

E (Zb − zb)
2

z2
b

< ∞.

In most previously studied rare-event simulation settings,
the focus has been on unbiased estimators (i.e. EZb = zb);
see, for instance [9] or [18] for more on standard notions
of efficiency in rare-event simulation. Note that Definition 1
does not require Zb to be unbiased. Efficiency means that
the number of replications required to estimate zb within a
prescribed relative accuracy is roughly insensitive to b.

The importance sampling strategy that we pursue is the
following. We will find a good importance sampler, say P̃ ,
for the event {Tb < Tw0} to compute the numerator of (1),
and crude Monte Carlo to calculate its denominator. We de-
note the likelihood ratio associated with simulating W up to
Tb ∧ Tw0 by the rv Lb. We then generate n iid copies of

Tw0−1
∑

j=0

I
(
Wj ∈ Bb

)
Lb

starting from w0 under the importance sampling distribution
P̃ with modified dynamics up to T ∧Tw0 , followed by use of
the nominal (original) dynamics (from Tb ∧ Tw0 + 1 to Tw0 )
to estimate the numerator of (1). We then run another (inde-
pendent) set of n independent iid simulations of the rv Tw0 ,
starting from w0, under W ’s nominal dynamics to estimate

the denominator. Let C
(b)

n and Dn be the sample means for
the numerator and denominator respectively (note that Dn is
independent of b) and observe that since Dn ≥ 1

E

(
C

(b)

n

Dn

− π (Bb)

)2

≤ E
(
C

(b)

n − π (Bb)Dn

)2

= Var
(
C

(b)

n − π (Bb)Dn

)

= Var
(
C

(b)

n

)
+ π (Bb)

2 Var
(
Dn

)
. (2)

The previous equation clearly indicates that if we are able
to construct an efficient estimator for the numerator in (1) (in
the traditional sense of unbiased estimators), then the esti-
mator is automatically efficient in the sense indicated in De-
finition 1 and the relative (mean squared) accuracy to which
the ratio estimator computes π(Bb) is insensitive to b. As
a consequence, we conclude that developing efficient rare-
event simulation for π(Bb) using the ratio formula (1) boils
down to developing an efficient rare-event simulation algo-
rithm for the numerator in the regenerative ratio formula.

3 State-dependent importance sampling

To compute the rare-event probability u∗
b (w) =

Pw(Tb < Tw0), we note that (u∗
b (w) : w ∈ S) solves the

equation

u∗
b (w) = Ewu∗

b (W1) �
∫

S

P (w,dy)u∗
b (y) (3)

subject to the boundary condition u∗
b (w) = 1 for w ∈ Bb and

u∗
b (w) = 0 for w ∈ w0. The conditional distribution of W ,

given the event {Tb < Tw0}, is that W ’s conditional dynam-
ics form a Markov chain with modified transition kernel

Rb (w,dy) = P (w,dy)u∗
b (y) /u∗

b (w)

for w,y /∈ w0. Given that u∗
b is unknown, one possible

means to developing a rare-event simulation algorithm is to
substitute an approximation vb for u∗

b . Since vb is not an
exact solution to (3), the normalization constant

�b (w) =
∫

S

P (w,dy) vb (y)

does not equal vb (w), and the approximating transition ker-
nel R̃b takes the form

R̃b (w,dy) = P (w,dy) vb (y) /�b (w) .

This approach to developing an importance sampler for
computing Pw0(Tb < Tw0) was recently implemented in the
G/G/1 case by [6] (using for vb (·) a classical heavy-tailed
approximation that becomes asymptotically exact as b ↗ ∞
and that is sometimes cited in the literature as the Pakes-
Veraverbeke theorem; see, for instance [13]). However, one
difficulty with this idea (that could be troublesome in higher
dimensional problems) is the need to develop an efficient al-
gorithm for simulating transitions from the kernel R̃b . The
difficulty is that the kernel R̃b is not a priori constructed in
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such a way that the path generation problem under the new
measure has an immediate solution.

An alternative is to take advantage of known problem
structure relating, in particular, to the probabilistic mecha-
nism that generates a visit to Bb prior to returning to the
regeneration state w0. Let us try to explain this idea by draw-
ing parallels between heavy-tailed situations, which are the
focus of our development, and light-tailed environments, for
which such probabilistic mechanisms are better understood.
For light-tailed queues, one knows that such paths occur
when the associated random walk is exponentially twisted
according to a twisting parameter θ (that, in principle, can
be chosen in a state-dependent way; see [11]). On the other
hand, for heavy-tailed queues, one expects that the associ-
ated random walk proceeds according to increments that are
chosen as a mixture of a big jump, which occurs say with
probability p, and a regular size jump, which happens with
probability 1−p. This intuition is standard in the rare-event
analysis of heavy-tailed systems; see for instance, the pa-
per of [1], which discusses conditional limit theorems for
the workload process of a single-server queue given the oc-
currence of a large delay. The parameter p may be state-
dependent (just as we indicated for θ in the light-tailed case).
In both the light or heavy tailed cases (or other environments
that could involve a mixture of these two cases) a paramet-
ric family of state-dependent changes-of-measures induces
a one-step transition kernel of the form Qβ = (Qβ(w,dz) :
w,z ∈ S), where Qβ (w,dz) can be represented, given a pa-
rameter vector β , as Qβ (w,dz) = q−1

b (β,w,y)P (w,dz).
The function qb (·) is the corresponding (local) likelihood
ratio, which is normalized so that Qβ (·) is a well defined
Markov kernel. The parameter β might include θ in the
light-tailed case or p in the heavy-tailed case. Transitions
under Qβ can then be simulated by exponential twisting in
the light-tailed setting or via mixture sampling in the heavy-
tailed context. As a consequence, constraining Qβ to be of
this form forces the Markov chain to be easily simulatable
under the importance sampling distribution.

This key variate generation insight is due to [10]. They
further recognized that the state-dependent choice of (β(w) :
w ∈ S) that minimizes the second moment of I (Tb <

Tw0)Lb under the importance sampler is the optimal con-
trol associated with the Hamilton-Jacobi-Bellman equation

Vb (w) = min
β

Ew[qb (β,w,W1)Vb (W1)] (4)

subject to Vb (w) = 1 on Bb . (They specifically point out this
connection in minimizing the variance for light-tailed uni-
formly ergodic Markov chains.) The value function Vb (·)
represents the lowest second moment that we can achieve
for an importance sampling scheme based on the family
(indexed by (β (w) : w ∈ S)) of corresponding transition
kernels. Since the estimators considered are unbiased, (4)

equivalently provides a minimum variance estimator among
the class of importance sampling estimators indexed by
(β (w) : w ∈ S).

Because (4) is typically difficult to solve, an alternative
is to seek a “control” β = (β (w) : w ∈ S) that is efficient
but not necessarily optimal (in the sense of (4)). To verify

efficiency, one must bound E
Qβ
w0 I (Tb < Tw0)Lb (over b).

Given a state-dependent selection (β (w) : w ∈ S) of β , this
requires bounding the second moment quantity

sb (w0)

� E
Qβ
w0

⎛

⎝I
(
Tb < Tw0

) Tb∏

j=1

qb

(
β

(
Wj−1

)
,Wj−1,Wj

)2

⎞

⎠

= Ew0

⎛

⎝I
(
Tb < Tw0

) Tb∏

j=1

qb

(
β

(
Wj−1

)
,Wj−1,Wj

)
⎞

⎠ .

Given that we are ultimately interested in the efficiency of
the waiting time sequence, we must also bound

sb,χ (w0)

� Ew0

(

I (Tb < Tw0)

×
Tb∏

j=1

qb

(
β

(
Wj−1

)
,Wj−1,Wj

)
χ

(
WTb

)
)

,

for a χ : S −→ [0,∞). The following proposition allows to
obtain the desired bound on sb,χ (·) (and, consequently, on
sb (·)).

Proposition 1 Suppose that there exists a function hb :
S −→ [0,∞) satisfying

(i) Ewqb (β (w) ,w,W1)hb (W1) I (W1 ∈ wc
0) ≤ hb (w)

for w ∈ Bc
b ;

(ii) hb (w) ≥ εχ (w) for w ∈ Bb .

Then, sb,χ (w) ≤ ε−1hb (w) for w ∈ S.

Proof Let M = (Mn : n ≥ 1) be defined via

Mn =
Tb∧n∏

j=1

qb

(
β

(
Wj−1

)
,Wj−1,Wj

)
hb

(
WTb∧n

)

× I
(
Tw0 > Tb ∧ n

)
.

Note that, because of condition (i), we have that M is a non-
negative supermartingale adapted to the filtration generated
by the chain W . Since Pw(Tw0 < ∞) = 1 for w ∈ S we have
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that

Mn →
Tb∏

j=1

qb

(
β

(
Wj−1

)
,Wj−1,Wj

)
hb

(
WTb

)
I

(
Tw0 > Tb

)

as n ↗ ∞. Fatou’s lemma and the supermartingale property
imply that

E

(
Tb∏

j=1

qb

(
β

(
Wj−1

)
,Wj−1,Wj

)
hb

(
WTb

)
I

(
Tw0 > Tb

)
)

≤ EM0 = hb (w) .

The previous inequality, combined with condition (ii), yields
the statement of the result. �

We call the function hb a Lyapunov function.
The next result shows how the previous Lyapunov bounds

immediately yield upper bounds on rare-event probabilities
for heavy-tailed models. Such upper bounds are often the
most challenging part of those types of asymptotic calcula-
tions.

Corollary 1 The Lyapunov function satisfying Proposi-
tion 1 yields an upper bound on Pw(Tb < Tw0), namely
Pw(Tb < Tw0) ≤ (hb (w)/ε)1/2.

Proof By Jensen’s inequality,

Pw

(
Tb < Tw0

)2 =
(
E

Qβ
w I

(
Tb < Tw0

)
Lb

)2

≤ E
Qβ
w I

(
Tb < Tw0

)
L2

b

= sb (w) ≤ hb (w)/ε. �

Note that the zero-variance change-of-measure for {Tb <

Tw0} is Markovian and (obviously) efficient, so that sb (w) is
then given by Pw(Tb < Tw0)

2. Since we are developing our
(hopefully) efficient change-of-measure so as to mimic the
zero-variance Markovian conditional distribution, this sug-

gests that E
Qβ
w I (Tb < Tw0)L

2
b should behave (roughly) like

Pw(Tb < Tw0)
2. In the presence of good intuition (or known

asymptotics) for the model, this recommends the choice of
Lyapunov function hb (w) = vb (w)2, where vb (w) is our
approximation to Pw(Tb < Tw0). Note that our chosen ap-
proximation will often be poor when w is close to Bb . Be-
cause Proposition 1 demands that the appropriate inequal-
ity be satisfied everywhere on Bc

b , it will often be useful to
introduce some additional parameters into vb (w)2 so as to
provide more flexibility in satisfying the Lyapunov inequal-
ity. The development of a practically implementable and the-
oretically efficient importance sampler then comes down to
choosing β and the parameters of the Lyapunov function in
such a way that the Lyapunov inequality is satisfied (and so

that vb (w) is of the order of magnitude of Pw(Tb < Tw0)).
This suggests the following general approach to building ef-
ficient importance samplers:

Step 1: Guess an appropriate parametric functional form for
hb , typically based on intuition or asymptotics available
for vb.

Step 2: Find a feasible (possibly state-dependent) choice for
β and for the parameters present in hb that jointly satisfy
the Lyapunov inequality of Proposition 1.

In the next section, we illustrate the use of the above ideas
by showing how Steps 1 and 2 lead to an efficient mixture-
based importance sampling algorithm for computing steady-
state tail probabilities for the single-server queue.

4 Mixture-based importance sampling for the G/G/1
queue

Let W = (Wn : n ≥ 0) be the waiting time sequence (ex-
clusive of service) for a single-server queue having an infi-
nite capacity waiting room under a first-in first-out (FIFO)
queue discipline. We assume that the interarrival times be-
tween successive customers form an iid sequence that is in-
dependent of the service requirements that themselves are
assumed to form an iid sequence. Accordingly, it is well
known that W satisfies the recursion

Wn+1 = (Wn + Xn+1)
+ ,

where (Xn : n ≥ 1) is iid (see, for example, [2, p. 267]). The
sequence W forms a Markov chain on the state space S =
[0,∞). We require that EX1 < 0, so that the queue is sta-
ble, and the Markov chain W is a positive recurrent Harris
chain. Let W∞ be a rv having the stationary distribution of
W . Our goal is to efficiently compute the steady-state tail
probability P(W∞ > b) when b is large and X1 is assumed
to have a continuous regularly varying density f with index
α + 1 > 0, so that

f (t) = L(t) t−(α+1)

for t > 0, where the function L(·) is assumed to be
slowly varying, i.e. L(tm)/L(t) −→ 1 as t ↗ ∞ for each
m > 0. In addition, we shall assume that Var (X) < ∞. We
shall write F (t) = P (X1 > t) for all t ∈ R, set G(x) =∫ ∞
x

F (t) dt , and let X be a generic rv having the same dis-
tribution as X1. It is worth noting that by Karamata’s theo-
rem (see [14, p. 567]), F (·) is regularly varying with index
α and G(·) is regularly varying with index α − 1. Another
property that we will frequently use is longtailedness (i.e.
for any fixed y ∈ (−∞,∞), F (t + y) ∼ F (t) as t ↗ ∞.
It is a well known fact that regularly varying functions are
long tailed; see, for instance [14]).
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Regarding the assumptions made above, the most impor-
tant assumption concerns that of regular variation. Calcu-
lations analogous to those used in this paper suggest that
a simple mixture of two components (i.e. a regular “jump”
component and a “big jump” component) may not provide a
rich enough family to contain a strongly efficient estimator
for other types of heavy-tailed increment random variables
(such as Weibull or lognormal random variables). However,
the basic techniques explained in this paper, based on pa-
rameter tuning guided by a Lyapunov inequality, still apply
provided an appropriate (parametric) family of importance
sampling distributions is selected. Turning to the remaining
assumptions, it is important to explain the reason for requir-
ing Var (X) < ∞, given that the chain W may be stable even
when the variance is infinite. Using the notation of Sect. 2,
we put Bb = [b,∞) and set w0 = {0}. As pointed out in
Sect. 2, we will build our importance sampler for the tail
probability P(W∞ > b) by constructing an efficient sampler
for {Tb < Tw0}. The difficulty that arises when Var (X) = ∞
is that the conditional overshoot over the boundary b under
the zero-variance change of measure for {Tb < Tw0} is as-
ymptotically, as b ↗ ∞, Pareto with index α if the Xk’s are
regularly varying (see [14, Appendix A]). This, in turn, leads
to an infinite variance estimator for the numerator expecta-
tion of the regenerative ratio (which is clearly undesirable).
This is a setting in which a good importance sampler for an
expectation can not be reduced to the development of a good
importance sampler for an associated rare-event probability
(and hence requires a somewhat different theory). Finally,
existence of a regularly varying density is a technical condi-
tion imposed to facilitate the handling of a Taylor expansion
((14) below) applied to our Lyapunov function. The regular
variation on the density is imposed only in order to guar-
antee that F itself is regularly varying while the existence
of a density is used to simplify an argument involving the
second derivative of the Lyapunov function (which is de-
fined directly in terms of F and hence f ). The existence of
a density could therefore be avoided (at a cost of additional
notational and definitional burden) by using a twice continu-
ously differentiable Lyapunov function having the same tail
behavior as the current Lyapunov function.

Given the heavy tails that are present here, our discussion
of Sect. 3 suggests that in order to design a good importance
sampler for P(Tb < Tw0), we should consider using mixture
distributions that will induce the large jumps associated with
the zero-variance conditional distribution of W given {Tb <

Tw0}. More precisely, we consider a change-of-measure, for
the transition kernel of W , taking the form

Qa,p (w,dy)

= p
P (w + X ∈ y + dy) I (b − w > κ)

F (a (b − w))

× I (y − w > a (b − w))

+ (1 − p)
P (w + X ∈ y + dy) I (b − w > κ)

P (−w < X ≤ a (b − w))

× I (y > 0;y − w ≤ a (b − w))

+ P (w + X ∈ y + dy) I (b − w ≤ κ)

P (−w < X)
I (y > 0) (5)

for p,a ∈ (0,1) and κ > 0. A similar mixture form was in-
troduced in [12] in the setting of tail probability computation
for sums of heavy-tailed rvs. We shall permit the mixture
probability p = p(w) to be state-dependent, but shall make
a state-independent (i.e., a constant). The parameter κ > 0
defines a boundary layer of the form {w : b − κ ≤ w ≤ b}
at which we “turn off” importance sampling and just make
sure that we do not reach w0 in the next step of the algo-
rithm (i.e., we just keep the process alive). We can think of
this boundary layer as a region where the occurrence of the
event {Tb < Tw0} is no longer rare and therefore it is unnec-
essary to induce a large jump. We require that a ∈ (0,1) to
reflect the fact that there are paths of significant probability
leading to {Tb < Tw0} that involve large jumps but take W

to a position below b.
In order to find the remaining parameters that make the

change-of-measure efficient, we need to construct a con-
venient Lyapunov function. The rest of the section is de-
voted to this construction and is organized as follows. First,
we will describe our proposed parametric family of Lya-
punov functions as well as our proposed parametric fam-
ily of changes-of-measure. We will then describe the joint
constraints on the two sets of parameters that must be sat-
isfied. These parametric families, as well as the joint con-
straints, must be obtained from a theoretical analysis of the
Lyapunov inequality associated with Proposition 1. So, we
conclude this section first with a heuristic analysis (based on
fluid ideas) that motivate the parametric forms that we use,
as well as the joint constraints that arise in satisfying the
Lyapunov inequality, followed by a rigorous analysis that
plugs the remaining theoretical holes in our heuristic devel-
opment.

The proposed family of Lyapunov functions We will take
h to be of the form h(w) = h0 (w) ∧ 1, where h0 (w) = k ·
vb (w)2 and

vb (w) =
∫ w+d

0
F (b − w + s) ds

= G(b − w) − G(b + d) .

Note that the definition of h(·) involves the parameters k,
d > 0.

The proposed family of changes-of-measure As noted ear-
lier, the change-of-measure depends on a and the mixture
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probability p (w) (which is state dependent). We propose a
precise parametric form for p (w), namely

p (w) = θ
F (a (b − w))

vb (w)
I (b − w ≥ κ)

= θ
F (a (b − w)) I (b − w ≥ κ)

G(b − w) − G(b + d)
. (6)

Given (5), we therefore have three parameters (a, θ , and κ)
that determine the change-of-measure.

Description of the constraints The various constraints on
our parameters that arise through the theoretical analysis to
be found later in this section are defined in terms of several
constants that depend directly on F (·). We start by recog-
nizing that because X1 is continuous with EX1 < 0, there
exist positive constants ε0 and κ1 such that

E(X;−κ1 < X) ≤ −ε0 < 0 (7)

and

π̃ � P (X > −κ1) < 1.

In addition, Karamata’s theorem implies that there exists
m1 < ∞ for which

sup
t≥0

F (at)

F (t)
≤ m1. (8)

The constraints C1 to C4 below involve the constants ε0, π̃

and m1 just defined. We can allow the parameter a ∈ (0,1)

to be chosen arbitrarily. Throughout the remainder of this
paper, we assume that a has been so chosen. Furthermore,
we assume that the two constants δ and δ̃ (appearing below)
have been chosen from (0,1) by the simulator. (Again, this
choice can be arbitrary.)

C1 The parameter κ > 0 must satisfy

E

(
h0 (w + X)

h0 (w)
;−w < X ≤ a (b − w)

)

≤ 1 − ∂wh0 (w)

h0 (w)
ε0 (1 − δ) . (9)

for κ1 < w ≤ b − κ .
C2 The parameters θ and κ must satisfy

θ ≤ ε0 (1 − δ) /(4m1),

k ≥ 2m1/ (θε0 (1 − δ)) .

C3 The parameters d and κ must satisfy

d ≥ (1 + δ̃)
(
ε0 (1 − δ) + 2EX+)

/ (1 − π̃) (10)

and

∂wh0 (w)

h0 (w)
= 2F (b − w)

G(b − w) − G(b + d)
≤ (1 + δ̃)

w + d
(11)

and also

E (h0 (w + X) ;−w < X ≤ a (b − w))

≤ h0 (w) π̃ + ∂wh0 (w)E
(
X+)

, (12)

for w ≤ κ1 and b sufficiently large.
C4 The parameter κ > 0 must be chosen so that h0 (w) ≥ 1

when w ≤ b − κ (for sufficiently large b).

Feasibility of the constraints Note that because h0 appears
linearly in C1 and (12) in C3, the constant κ can be cancelled
in both of these constraints. We therefore start by choosing d

to satisfy (10), followed by choosing κ so as to satisfy both
C1 and the inequalities (11) and (12) in C3 for b sufficiently
large; Lemmas 1 and 2 below establish this fact. With κ and
d so chosen, we now select θ to satisfy the first inequality in
C2, followed by choosing k to satisfy the remaining inequal-
ity of C2 and also C4. At the conclusion of this process, we
have a feasible set of parameters k, d , θ , and κ that satisfy
C1 to C4 for sufficiently large values of b (i.e., for values
of b ≥ b0 for some b0 > 0). For b ≤ b0, we use no impor-
tance sampling in our simulation estimators (since the event
{Tb < Tw0} is not rare in that case). It is only when b > b0

that we use the change-of-measure described above (with
parameters θ and κ as determined from C1 to C4).

Heuristic motivation Recall that in Sect. 3, we described
our two step procedure for building efficient importance
samplers. We follow this procedure to heuristically motivate
the form of our candidate Lyapunov function, the parametric
selection of p (w) and the nature of the constraints C1 to C4.

Step 1: Note that W tends to drift down to w0 linearly.
At each such step along the path to w0 there is an approxi-
mate probability P (X1 > b − w) of entering Bb on that step
(given current position w). This suggests the following fluid
approximation

Pw (Tb < T0) ≈
∫ −w/EX

0
F (b − w − sEX)ds.

Fluid approximations such as the previous one are standard
in the heavy-tailed literature; see, for instance [20, Chap. 2]
and references therein. The previous approximation, in turn,
suggests using a Lyapunov function such as h(·). The con-
straints on the parameters are obtained in the execution of
Step 2. Before moving on to Step 2 and in order to enhance
the intuition of the roles played by d and k, we point out that
d is introduced to deal with boundary effects close to zero
and k controls effects close to b.
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Step 2 involves testing the Lyapunov bound. For this pur-
pose, we define

J1 (w)

= E(h(w + X);X > a (b − w))F (a (b − w))

h (w)p (w)
,

J2 (w)

= E(h(w+X);−w≤X≤a(b−w))P (X∈(−w,a(b−w)))
h(w)(1−p(w))

from which it follows easily that verifying the Lyapunov in-
equality from Proposition 1 is equivalent to showing that

J1 (w) + J2 (w) ≤ 1, (13)

for w ∈ (0, b]. In the sequel, in order to simplify the nota-
tion, we will drop the dependence of w in J1 and J2. Let us
define

� � (w + X)+ − w = max (−w,X) .

It follows (since h(·) is absolutely continuous) that for all
y,w ∈ (−∞,∞) we have

h(y) − h(w) =
∫ 1

0
h′ (w + (y − w)u)du

and therefore we can write

E (h(w + X) ;−w < X ≤ a (b − w))

= h(w)P (−w < X ≤ a (b − w))

+ E (∂wh (w + U�)�;−w < X ≤ a (b − w)) ,

where U is uniformly distributed on the interval (0,1) and
independent of X. In view of the above Taylor represen-
tation with reminder, observe that the required Lyapunov
bound can be approximately written as

1 ≥ J1 + J2

≈ F (a (b − w))2

p (w)h (w)
+ P (−w < X)2

1 − p (w)

+ ∂wh (w)

h (w)

E (�;−w < X)

1 − p (w)
(14)

when b − w is large enough (making rigorous this part in-
volves showing that condition C1 can be satisfied and this
is done in Lemma 1 and Corollary 2 below). In addition, if
h(w) ≤ 1, then

F (a (b − w))2

p (w)h (w)
= F (a (b − w))2

p (w)vb (w)2 k
.

It seems natural, in order to cancel the squares in the pre-
vious expression to select p(w) according to (6). (A more

compelling way of motivating this selection of p (w) is
given in the next paragraph.) With this choice of p, (14) can
be approximated as

F (a (b − w))

θvb (w)k
+ P (−w < X)

1 − p (w)

+ 2
F (b − w)

vb (w)

E (�;−w < X)

1 − p (w)
. (15)

Given the need for this expression to satisfy the Lyapunov
bound, our objective is to show that it can be made less than
one by selecting θ and k appropriately. Of course, since we
have E (�;−w < X) < 0 when w is bounded away from
zero, it is clear that (15) can be upper bounded by one if
we select first θ sufficiently small and then k large enough
(or one can even pick k = 1/θ2 and θ sufficiently small; the
details behind the selection of parameters in (15) relates to
condition C2).

In order to provide further intuition into the choice
of p given by (6), note that conditional on {Wn = w,

Tb ∧ Tw0 > n}, the zero-variance choice for the probabil-
ity p (w) of hitting level b on transition n + 1 would be to
select it according to

Pw

(
Wn+1 > b|Tb < Tw0

) = P (X > b − w)

Pw(Tb < Tw0)
.

Of course, the right-hand side is the hazard rate at which
the rare event occurs when the current position is w. Note
that if vb (w) is a good approximation to Pw(Tb < Tw0), the
right-hand side behaves roughly like

F (b − w)

vb (w)
= ∂wvb (w)

vb (w)
= ∂w logvb (w) . (16)

But (16) is clearly consistent with (6). Hence, the form of
p (w) given by (16) and (15) can be interpreted, in the pres-
ence of a good approximation vb , as being proportional to
the hazard rate at which the rare event occurs when the cur-
rent position is w.

The previous paragraph indicates the main ideas underly-
ing the choice of algorithm parameters and Lyapunov func-
tion parameters on that part of the state space that is not
close to the boundaries at 0 and b (i.e., on a region of the
form w > κ1, b − w ≥ κ , for some constants κ1 and κ) and
under the assumption that h(w) < 1. To handle the case in
which w ≤ κ1, we again use (15) and note that

vb (w) =
∫ w+d

0
F (b − w + s) ds

≈ F (b − w)(w + d) .
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Therefore, (15) is bounded (using � ≤ X+) by a quantity
that is roughly equal to

m1

kθ (w + d)
+ P (−κ1 < X)2

(

1 + m1

w + d

)

+ 2
1

w + d
E

(
X+)

.

Recall that κ1 is selected such that π̃ = P (−κ1 < X) < 1.
One can then select d > 0 large enough in order to make the
previous quantity less or equal to 1. This approach, which is
appropriate for dealing with the part of the state space close
to the boundary at 0, is related to condition C3.

To deal with the boundary layer (i.e. the part of the com-
plement of Bb that is close to the boundary at b) note that
the Lyapunov function has been analyzed above on that part
of the state space where h(w) < 1. However, on the region
{w : h(w) = 1}, the analysis is simple. Indeed, since h ≤ 1
globally, the Lyapunov bound is automatically satisfied on
this region. This completes the second step of our heuris-
tic construction of an efficient importance sampler for this
G/G/1 problem. Constraint C4 just allows one to translate
the condition h0 (w) < 1 in terms of a clearly defined spatial
region where mixture importance sampling is not applied.

The rest of this section provides rigorous support for the
above heuristic derivation. The bound involving J1, namely

J1 ≤ F (a (b − w))2

h0 (w)p (w)
, (17)

is automatic in view of the fact that h(w) ≤ 1. Hence, the
technical details of the construction lie in the analysis of J2.

We now provide complete details for the Taylor ex-
pansion involved in the term J2 of (14). First, define
m+, m̃+, m̃′+ ∈ [1,∞) such that

sup
t≥0

F (t (1 − a))

F (t)
≤ m+, sup

t≥0

f (t)G(t)

F (t)2
≤ m̃+,

sup
t≥0,

f (t) (t + 1)

F (t)
≤ m̃′+,

and set m∗ = (m+ + m+(m̃+ ∨ m̃′+) + m̃+)EX2. The fact
that m̃+ and m̃′+ are finite follows from Karamata’s theorem
(see [14, p. 567]) and the boundedness of f (·). The quantity
m+ is finite by definition of regular variation and because
F (t) ∈ (0,1) for all t ≥ 0.

Lemma 1 For each ε̃ > 0, there exists κ > 0 such that if
b − w ≥ κ and w ≥ κ1, then

E

(
h0 (w + X)

h0 (w)
;−w < X ≤ a (b − w)

)

≤ P (X ∈ (−w,a (b − w)])

+ ∂wh0 (w)

h0 (w)
(E (�;−κ1 < X ≤ a (b − w)) + ε̃)

+
(

∂wh0 (w)

h0 (w)

)2

m∗.

Proof The absolute continuity of h0 implies that

E (h0 (w + X) ;−w < X ≤ a (b − w))

= h0 (w)P (−w < X ≤ a (b − w))

+ E (∂wh0 (w + U�)�;−w < X ≤ a (b − w)) .

Now, observe that

∂wh0 (w + U�)

∂wh0 (w)
I (X ∈ (−w,a (b − w)])

= I (X ∈ (−w,a (b − w)])

× G(b − w − U�) − G(b + d)

G(b − w) − G(b + d)

× F (b − w − U�)

F (b − w)
. (18)

Because G is also absolutely continuous, we obtain

G(b − w − U�)

= G(b − w)

+ E
(
�UF(b − w − U · Ũ · �)|U,�

)
,

where Ũ is uniformly distributed independently of U and X.
Since � ≤ X+ ≤ a (b − w), it follows that

�UE(F(b − w − U · Ũ · �)|U,�)

F (b − w)

≤ X+ F ((b − w)(1 − a))

F (b − w)
≤ m+X+.

Thus, we have that

I (X ∈ (0, a (b − w)]) G(b − w − U�) − G(b + d)

G(b − w) − G(b + d)

≤ I (X ∈ (0, a (b − w)])
(

1 + m+X
∂wh0 (w)

h0 (w)

)

.

In a similar fashion as in the previous analysis, we obtain
that

I (X ∈ (0, a (b − w)]) (F (b − w − U�))

F (b − w)

≤ I (X ∈ (0, a (b − w)])
(

1 + m̃+
∂wh0 (w)

h0 (w)
X

)

.
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As a consequence, collecting our previous inequalities and
the definition of m∗, we find that, for each ε > 0, it is possi-
ble to find κ > 0 such that if b − w ≥ κ , then

E (∂wh0 (w + U�)�;0 < X ≤ a (b − w))

≤ ∂wh0 (w)

(

E (�;0 < X ≤ a (b − w1))

+ ε + ∂wh0 (w)

h0 (w)
m∗

)

. (19)

For the case X ∈ (−w,0] , we argue as follows. First we
note (since ∂wh0 is positive)

E

(
∂wh0 (w + U�)

∂wh0 (w)
�;−w < X ≤ 0

)

≤ E

(
∂wh0 (w + U�)

∂wh0 (w)
�;−κ1 < X ≤ 0

)

≤ F (b − w + κ1)

F (b − w)
E (�;−κ1 < X ≤ 0)

≤ E (�;−κ1 < X ≤ 0)

(

1 + m′

b − w + 1

)

, (20)

where

sup
t≥0

sup
0≤r≤κ1

f (t + r) (1 + t)

F (t)
≤ m′.

The fact that m′ is finite is a consequence of Karamata’s
theorem and the fact that f (·) is bounded. It is clear then
that (20) combined with (19) yields the conclusion of the
result. �

Lemma 1 can now be used to justify constraint C1 im-
posed on d and κ .

Corollary 2 It is always possible to satisfy C1 by appropri-
ately choosing d first and then κ .

Proof First, select ε̃ = ε0δ/2 in Lemma 1. Then, in view of
the selection of κ1 and ε0, it suffices to show that d and κ

can be chosen so that

∂wh0 (w)

h0 (w)
m∗ ≤ ε0δ/2.

First, let κ > 0 such that

sup
t≥κ

F (t)

G(t)
≤ ε0δ/4.

Then, picking r2 < 1/2, and noting that for each r1 ∈ (0,1)

and d > 0, there exists b0 such that if b ≥ b0 we have

r2G(b (1 − r1)) ≥ G(b) ≥ G(b + d) .

Therefore, if w ∈ (br1, b] we have that

G(b − w) − G(b + d) ≥ (1 − r2)G(b − w) ,

which in turn implies that if b − w ≥ κ then

F (b − w)

G(b − w) − G(b + d)
≤ F (b − w)

(1 − r2)G(b − w)

≤ ε0δ

2
.

Now, we consider w ∈ [0, br1). Note that

G(b − w) − G(b + d) = E
(
F (b − w + U (w + d))

)
,

where U is a uniformly distributed random variable. There-
fore,

F (b − w)

G(b − w) − G(b + d)

= 1

w + d

F (b − w)

E(F (b − w + U (w + d)))
.

Consequently, as long as we have r1b ≥ d , we obtain

F (b − w)

E(F (b − w + U (w + d)))
≤ F (b (1 − r1))

F (b (1 + 2r1))
≤ m′

R

for some m′
R > 0 (by regular variation). It follows that we

can pick d sufficiently large so that for all b ≥ b0 and w ≤
br1

F (b − w)

G(b − w) − G(b + d)
≤ m′

R

d
≤ ε0δ/2. �

The following result verifies the Lyapunov bound on the
region w ≥ κ1 and b − w ≤ κ .

Proposition 2 Assume that b is large enough so that C1 and
C2 are satisfied by our choice of parameters. Then,

J1 + J2 ≤ 1

as long as h0 (w) ≤ 1.

Proof Corollary 2 and the fact that ∂wh0 (w)/h0 (w) ≤ p/θ

imply

J1 + J2 ≤ ∂wh0 (w)

h0 (w)

m1

θk
+ 1

1 − p (w)

− ∂wh0 (w)

h0 (w)

ε0 (1 − δ)

(1 − p (w))

≤ ∂wh (w)

h (w)

(m1

θk
+ 2m1θ − ε0 (1 − δ)

)
+ 1.
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Since ∂wh/h > 0, the selection of θ and k automatically
implies that the previous quantity is guaranteed to be less or
equal to 1. �

We now proceed to the construction of the Lyapunov
bound on the set {w ≤ κ1}. First, we show that constraint C3
can always be satisfied (simultaneously with C1 and C2).

Lemma 2 The constraints imposed by C1 to C3 can always
be jointly satisfied for b sufficiently large.

Proof First, given the constraints imposed on d > 0 we note
that constraint (11) is satisfied given a selection of d > 0
because

G(b − w) − G(b + d)

=
∫ w+d

0
F (b − w + s) ds ∼ F (b − w)(w + d)

as b ↗ ∞ uniformly over 0 ≤ w ≤ κ1. The fact that (12) is
satisfiable follows directly from Lemma 1. �

We now are ready to provide the result that summarizes
the construction of the Lyapunov bound.

Theorem 1 If b is large enough so that constraints C1 to
C3 are satisfied by our choice of parameters, we have that

J1 + J2 ≤ 1

holds whenever h0 (w) ≤ 1.

Proof Under C1 to C3, we have that

J1 + J2 ≤ ∂wh (w)

h (w)

m1

θk
+ ∂wh (w)

h (w)
2m1θπ̃ + π̃

+ 2
∂wh (w)

h (w)
E

(
X+)

. (21)

In addition, condition C3 also yields

∂wh (w)

h (w)
≤ (1 + δ̃)

w + d
, (22)

for δ̃ ∈ (0,1). Then, in this case, we obtain that (21) is
bounded by

(1 + δ̃)

w + d

(m1

θk
+ 2m1θπ̃ + 2EX+)

+ π̃ .

In turn, given the selection of θ and k specified in constraint
C2, we have that the expression in the previous display is
bounded by

(1 + δ̃)

w + d

(
ε0 (1 − δ) + 2EX+) + π̃

≤ (1 + δ̃)

d

(
ε0 (1 − δ) + 2EX+) + π̃ .

Since π̃ < 1 we conclude that if we choose

d ≥ (1 + δ̃)
(
ε0 (1 − δ) + 2EX+)

/ (1 − π̃ ) ,

then (22) yields the conclusion of the theorem. �

We close this section with the description of the algo-
rithm suggested by the previous theorem for generating a
single realization of the random variable L that enters our

numerator estimator C
(b)

n introduced in Sect. 2.

Algorithm 1
Set b≥b0 and fix a ∈ (0,1). Initialize w =0, REACH=0

and L = 1. Suppose that C1 to C4 are in force.
STEP 1

While REACH = 0
If h(w) = 1 then sample X according to the

nominal distribution.
Else set

p = θ
F (a (b − w))

G(b − w) − G(b + d)
∧ 1/2.

Sample X as follows. With probability p

generate X with law L( X|X ≥ a(b − w)), with probability
1−p sample X with law L( X|−w < X ≤ a(b−w)). Then,
update

L ←− L · [p−1F (a (b − w)) I (X > a (b − w))

+ (1 − p)−1 P (−w < X ≤ a (b − w))

×I (−w < X ≤ a (b − w))].
Endif

Update

w ←− (w + X)+ ,

If w /∈ (0, b] then REACH ←− 1
Endif

Loop
STEP 2 Set L ←− L · I (w1 > b) and RETURN L.

The following theorem summarizes the statistical effi-
ciency properties of the previous estimator. The analysis of
the total efficiency for estimating the waiting time sequence
is given in the next section.

Theorem 2 If sb (0) = E
Qa,p

0 (L2) (where E
Qa,p

0 (·) is the
probability measure induced by the importance sampling
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scheme indicated in Algorithm 1 and L is the final output
indicated in STEP 2), then

sup
b>0

sb (0)

P0(Tb < Tw0)
2

< ∞.

Proof Our previous analysis combined with Proposition 1
yields

sb (0) ≤ h(0)

(note that k was selected so that h(WTb
) = 1). On the other

hand, it follows (by choosing the first service time in the
busy cycle larger than b) that

limb−→∞
P0(Tb < Tw0)

P (X > b)
> 0.

Consequently, using Corollary 1, we obtain that there exists
δ′ > 0 such that

δ′F (b) ≤ P0(Tb < Tw0) ≤ h(0)1/2 .

Since the asymptotic relation

h(0)1/2 ∼ k1/2[G(b) − G(b + d)] ∼ k1/2F (b)d

holds as b ↗ ∞, the previous observations imply (by virtue
of regular variation) the statement of the theorem. �

5 Efficiency for the steady-state delay

We impose the same assumptions indicated in Sect. 4. Our
goal is to show that the algorithms developed in the previous
two sections provide efficient estimators for the tail of the
steady-state waiting time, namely P (W∞ > b), when b is
large.

We define

Nb =
Tw0 −1
∑

j=0

I
(
Wj > b

)

and let Nb (w) be a rv with the distribution Pw (Nb ∈ ·). Fi-
nally, we set ιb (w) = EwN2

b .
We are interested in studying the performance of the es-

timator

Zb = LbNb

(
WTb

)
I

(
Tb < Tw0

)
,

where Lb is the likelihood ratio obtained by running the im-
portance sampling algorithm described in Sect. 4, namely
Algorithm 1. The rv Nb(WTb

) is simulated under the nomi-
nal dynamics of the system (i.e., it is not required to apply
importance sampling anymore); an early reference to this
idea, in the dependability modeling setting, is Goyal et al.

[15]. Note that for the generation of Nb(WTb
), one can ap-

ply additional variance reduction techniques, such as control
variates.

We want to establish efficiency, which, as explained in
Sect. 2, involves proving

sup
b>0

E
Qa,p

0 (L2
bN

2
b (WTb

)I (Tb < Tw0))

E (Nb)
2

< ∞,

where E
Qa,p

0 (·) denotes the expectation operator induced by
the importance sampler selected in Sect. 4. Now, we have
that

E
Qa,p

0

(
L2

bN
2
b

(
WTb

)
I

(
Tb < Tw0

))

= E0

(
LbN

2
b

(
WTb

)
I

(
Tb < Tw0

))
.

Our strategy is to study

Ew

(
LbNb

(
WTb

)
I

(
Tb < Tw0

))

again using Lyapunov-type arguments.
Note that

Ew

(
LbN

2
b

(
WTb

)
I

(
Tb < Tw0

))

= Ew

(
Lb · ιb

(
WTb

)
I

(
Tb < Tw0

))
.

We will complete our program in three steps. First, we will
establish the following proposition.

Proposition 3 There exists a constant m > 0 such that

ιb
(
WTb

) ≤ m
(
WTb

)2
. (23)

Proof This follows from standard properties for stopped
random walks; see [16, p. 92]. �

This implies that

Ew

(
LbN

2
b

(
WTb

)
I

(
Tb < Tw0

))

≤ mEw

(
Lb · (WTb

)2
I

(
Tb < Tw0

))
, (24)

for some m > 0. The key issue then becomes finding a con-
venient bound for

eb (w) = Ew

(
Lb · (WTb

)2
I

(
Tb < Tw0

))
,

which is the content of the following result.

Proposition 4 Define ẽb (·) via

ẽb (w) = h(w)
(
b2I (b > w) + δw2I (b ≤ w)

)
.
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Then, we can find δ ∈ (0,1) (independent of b) such that

ẽb (w) ≥ Ew

(
Lb · (WTb

)2
I

(
Tb < Tw0

))
/δ.

Proof We will apply Proposition 1 using as our Lyapunov
function ẽb (·). The strategy proceeds using similar steps as
those followed in Sect. 4. First define

J̃1 = Ew (̃eb(w + X);X ≥ a (b − w))F (a (b − w))

ẽb (w)p (w)
,

J̃2 = E(̃eb(w+X);−w<X≤a(b−w))P (X∈(−w,a(b−w)])
ẽb(w)p(w)

.

Note that

J̃2 = b2E (h(W) ;X ≤ a (b − w))F (a (b − w))

ẽb (w)p (w)
.

So, the analysis of J̃2 is completely analogous to that of J2

in Sect. 4. We just need to analyze J̃1 on w < b. Note that

J̃1 ≤ E

(
h(w + X)

h(w)
;X ≥ a (b − w) ,w + X < b

)

× F (a (b − w))

p (w)

+ δE

(
(w + X)2

b2

∣
∣
∣
∣
∣
X ≥ (b − w)

)

× F (a (b − w))2

h(w)p (w)
.

It follows easily, using the facts that X is regularly vary-
ing and that Var (X) < ∞, that there exists a constant m ∈
(0,∞) such that for all b ≥ 1

E

(
(w + X)2

b2

∣
∣
∣
∣
∣
X ≥ (b − w)

)

≤ m.

Therefore, we obtain that if w < b

J̃1 + J̃2 ≤ J1 + J2 + δmJ1.

Given our analysis of J1 and J2 it is clear then that δ > 0
can be chosen so that

J̃1 + J̃2 ≤ 1

on w ≤ b. The result then follows by applying Proposi-
tion 1. �

Using the previous two propositions we arrive at the last
step of our program, which yields the main result of this
section, namely

Theorem 3 Assume that Var (X) < ∞. Then,

sup
b>0

E
Qa,p

0 (L2
bN

2
b (WTb

)I (Tb < Tw0))

P (W∞ > b)2
< ∞.

In addition, let M (b) be the number of variate genera-
tions required to produce a single replication of LbNb(WTb

).
Then, EM (b) ≤ η (b + 1) for some η ∈ (0,∞).

Proof Proposition 4 together with (24) imply that

E
Qa,p

0 (L2
bN

2
b (WTb

)I (Tb < Tw0)) ≤ mh(0) b2.

On the other hand, it is not difficult to develop a lower bound
that implies the existence of δ > 0 such that

P (W∞ > b) ≥ δb2P (X > b)2 ,

see, for instance [19, p. 2], where such lower bound is in fact
developed in much greater generality, assuming only that X

is long-tailed (see, for instance [14] for a detailed discussion
on different classes of heavy-tailed distributions). Alterna-
tively, instead of developing a lower bound separately, we
can invoke Pakes-Veraverbeke’s heavy-tailed exact asymp-
totic, which applies in the presence of regularly varying tails
(see, for instance [2]). We conclude that

E
Qa,p

0 (L2
bN

2
b (WTb

)I (Tb < Tw0))

P (W∞ > b)2

≤ m(G(b) − G(b + d))

δP (X > b)
.

The previous quantity is clearly bounded uniformly over
b > 0, so the conclusion of the first part of the theorem fol-
lows. A Lyapunov type argument of the style given in the

proof of Proposition 4 shows that E
Qa,p

0 Tw0 ≤ η (1 + b) for
some η > 0 (a similar argument is given in Proposition 4 of
[6]). This in turn implies that EM (b) ≤ η (b + 1). �

6 An M/G/1 example

To illustrate the implementation issues and performance
of our algorithm, we consider an M/G/1 queue. We do
this purely in order to permit comparison of our method
with competing algorithms. We recall that our algorithm is
more general and does not require Poisson arrivals. We as-
sume that the service times are Pareto distributed with index
α > 0. In particular, if V denotes a generic service time, then

P (V > t) = 1

(1 + t)α
.

Moreover, suppose that α = 5/2 so that EV = 1/ (α − 1) =
2/3 and EV 2 < ∞. The inter-arrival times follow an ex-
ponential distribution with mean 1/λ = 4/3. Consequently,
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the traffic intensity ρ = λEV is equal to 1/2. If τ is a

generic inter-arrival time independent of V , then we write

X = V −τ . The tail of X, namely F (·) = P (X > ·), is com-

puted via

F (x) = P (V > x + τ)

=
∫ ∞

0
λe−λsP (V > x + s) ds

= I (x < 0)
(
1 − eλx

)

+
∫ ∞

(−x)∨0
λe−λs 1

(s + x + 1)5/2
ds,

where

∫ ∞

y

λe−λs 1

(s + x + 1)5/2
ds

= eλ(x+1)λ5/2
[

2

3

e−λ(x+y+1)

(λ (x + y + 1))3/2

− 4

3

e−λ(x+y+1)

(λ (x + y + 1))1/2

]

+ eλ(x+1)λ5/2 4

3

∫ ∞

λ(x+y+1)

e−t

√
t
dt.

Implementation of the algorithm requires evaluation of the
integral

∫ ∞

λ(x+y+1)

e−t

√
t
dt

numerically. This integral is an incomplete Gamma func-
tion; there are many methods available to evaluate this func-
tion efficiently. In general, in the implementation of the pro-
posed algorithms, it will typically be the case that one would
need to numerically evaluate one dimensional integrals—
which, in most cases, can be evaluated to high relative ac-
curacy using routine methods.

First, we selected a = .9 (recall that a ∈ (0,1) is the pa-
rameter that dictates the fraction of the size of the jump re-
quired to reach level b, see (5)). In order to avoid the need
to numerically evaluate G(·) when implementing the algo-
rithm (which would involve integrating F (·)), we use here
the modified Lyapunov function

h(w) = (10 ((20 (b − w)) ∧ (w + 5))2 F (b − w)2) ∧ 1.

The parameters of the function (together with the selection
of p given below) have been selected following the same
techniques explained in the previous sections in order to sat-
isfy the Lyapunov bound—note that the function has the
same asymptotic behavior as the Lyapunov bound that we
studied during our theoretical analysis as b ↗ ∞. The vari-

Table 1 Simulation result
[Estimation] x = 1000 x = 105

[Std. Error] PV App.: 3.157e−05 PV App.: 3.162e−08

[Conf. Interval]

BGL 3.167e−05 3.065e−08

1.130e−06 6.610e−10

[2.946e−05, 3.388e−05] [2.935e−08, 3.194e−08]

BL 3.171e−05 3.164e−08

9.95e−08 1.01e−10

[3.151e−05, 3.190e−05] [3.162e−08, 3.166e−08]

DLW 3.171e−05 3.162e−08

9.2e−09 5.65e−12

[3.169e−05, 3.173e−05] [3.16e−08, 3.165e−08]

JS 3.143e−05 2.932e−08

1.715e−06 2.315e−09

2.801e−05, 3.486e−05] [2.469e−08, 3.40e−08]

AK 3.174e−05 3.168e−08

1.610e−07 1.599e−10

[3.142e−05, 3.206e−05] [3.137e−08, 3.199e−08]
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ate generation of each increment is given by (5), as indi-
cated in STEP 2 of Algorithm 1. However, again, the tech-
niques explained in the previous section were adapted in or-
der to obtain more convenient (in terms of implementation)
expressions for the mixture probabilities—basically this in-
volves a style of computation similar to that of Corollary 2.
In particular, in our implementation, we use the following
mixture probability p:

• When h(w) < 1, then we use

p = max

(
1

2 (w + 5)
,

5

2 (b − w + 5)
,

(
1 − F (−w)

)
/2

)

• Otherwise, h(w) = 1, do not apply importance sam-
pling. Alternatively, in this step, we can also select p =
P (X > a (b − w)).

The likelihood ratio is computed as indicated in Algo-
rithm 1. Table 1 summarizes the performance of our algo-
rithm and several other methods. The entries correspond-
ing to PV App. correspond to the Pakes-Veraverbeke heavy-
tailed approximation for subexponential increment distribu-
tion, which estates that

P (W∞ > b) ∼ 1

−EX

∫ ∞

b

P (X1 > s)ds,

as b ↗ ∞. BGL corresponds to our algorithm, BL is a vari-
ant of the algorithm proposed by [6] and which was adapted
to the M/G/1 case in [7]. AK corresponds to the algorithm
developed recently by [4] based on conditional Monte Carlo.
DLW corresponds to the methods proposed by [12], JS cor-
responds to the hazard rate twisting procedure of [17]. The
output displayed below for all the algorithms except BGL
was extracted from [7]. In each of the entries within Table 1,
the first number is the estimate and the second number is
the estimated standard deviation using 20,000 samples. An
approximate 95% confidence interval is also displayed.

It is worth discussing some of the differences in perfor-
mance observed in our experiments. As one can see, DLW’s
procedure yields a coefficient of variation that is 100 times
lower than our proposed procedure. The reason for this per-
formance is that DLW’s algorithm takes advantage of both
the representation of the tail of the delay as the tail of the
maximum of a random walk and the exponential tails (which
allows one to obtain a precise expression for the distribution
of the first-ladder height for the M/G/1 queue). These two
features, combined with regular variation, enable DLW to
solve an optimization problem that allows one to properly
select the mixture parameters in order to reduce the coeffi-
cient of variation of the estimator. AK’s and JS’s procedures
also use heavily the M/G/1 structure in the design of the

algorithm. BL’s implementation, which also takes advantage
of the representation of the tail of the maximum (although it
applies to much more general tails than just regularly vary-
ing ones), yields a coefficient of variation that is about 10
times lower than ours. BL’s performance also relies (in ad-
dition to its advantageous use of the maximum representa-
tion) on a more direct approximation to the zero-variance
change-of-measure (as explained in Sect. 3).
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