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CONDITIONAL LIMIT THEOREMS FOR REGULATED
FRACTIONAL BROWNIAN MOTION
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We consider a stationary fluid queue with fractional Brownian motion
input. Conditional on the workload at time zero being greater than a large
value b, we provide the limiting distribution for the amount of time that the
workload process spends above level b over the busy cycle straddling the
origin, as b → ∞. Our results can be interpreted as showing that long delays
occur in large clumps of size of order b2−1/H . The conditional limit result
involves a finer scaling of the queueing process than fluid analysis, thereby
departing from previous related literature.

1. Introduction. In the past ten years, there has been great interest in ana-
lyzing the performance of queues when the incoming traffic exhibits long-range
dependence and self-similarity. This trend was motivated by measurements and
statistical analysis of traffic in communication networks: after the initial findings
of Leland et al. [23] in Ethernet traffic, numerous studies have shown that long-
range dependent traffic is ubiquitous in high-speed communication networks, and
have offered partial explanations for the origin of this phenomenon (see e.g., Crov-
ella and Bestavros [7]).

One model that has received significant attention is that of a fluid queue that re-
ceives fractional Brownian motion (fBM) input—the so-called fractional Brown-
ian storage (Norros [30]). As a traffic model, fBM is attractive because it is a
stylized model (i.e., a low parameter tractable model) that is widely believed to
be representative of long-range dependent, light-tailed (LRD-LT) traffic; see e.g.,
Norros [31] and Erramilli, Narayan and Willinger [11]. The tractability comes
from the Gaussian self-similar characteristics of fBM, while its ability to approxi-
mate LRD-LT traffic is supported by various limit theorems, the majority of which
consider superpositions of on-off fluid sources with heavy-tailed connection length
distributions; see Konstantopoulos and Lin [19], Willinger et al. [39], Taqqu, Will-
inger and Sherman [35], Heath, Resnick and Samorodnitsky [14], Mikosch et al.
[27] and Whitt [37, 38]. (Possible explanations for the origin of heavy-tailed distri-
butions in communication networks are given by Fiorini, Sheahan and Lipsky [12]
and Jelenkovic and Tan [17].) In this paper, we focus on an infinite-buffer fluid
queue fed by fBM input.
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We are interested in the “local” behavior of the queue in the neighborhood of a
“typical” time at which a customer (packet) experiences a long delay. We would
like to answer questions like the following: What is the conditional behavior of
the traffic at such times? How many customers (packets) will experience large de-
lays before congestion dissipates? This last question, about the size of the typical
clump of long-delayed packets, provides a complement to the commonly used per-
formance measure given by the steady-state probability of a packet experiencing
long delays: the latter does not distinguish between having an occasional group of
10 packets suffering a long delay after an interval of 107 packets served, versus
having a group of 104 close-by packets with long delays, out of every 1010 served.
These situations can lead to drastically different “Quality of Service” (QoS) for
some delay-sensitive applications (like audio traffic). The issue of clumpiness is
also critical to the QoS in the finite-buffer counterpart of this model: applications
like video traffic are robust with respect to the loss of isolated packets, but very
sensitive to the loss of a large clump of nearby packets. Note that under first-come–
first-served discipline, a customer (packet) experiencing a large delay is equivalent
to the workload exceeding a large threshold. Hence, we state our results below by
conditioning on a large exceedance for the workload process.

There are several results in the literature which are relevant to our work. Ap-
proximations for the steady-state exceedance probability for a queue fed by fBM
were developed in a number of incremental steps: first a bound by Norros [30], then
logarithmic-asymptotics by Duffield and O’Connell [9], sharper bounds by Mas-
soulie and Simonian [26] and finally Narayan [28] obtained the exact asymptotics.
The latter can also be obtained as a special case of a result by Hüsler and Piterbarg
[15], who present exact asymptotics for the tail of the all-time maximum for a class
of Gaussian processes with negative drift (note the steady-state workload is equal
in distribution to the all-time maximum of negative drift fBM). The asymptotic be-
havior of the maximum workload over [0, t] as t → ∞ was derived by Zeevi and
Glynn [40]. The conditional path (in fluid scale) that leads to a long busy-period
was studied by Norros [32] and Mandjes, Mannersalo and Norros [24]. O’Connell
and Procissi [34] and Chang, Yao and Zajic [4–6] give the conditional path (in fluid
scale) that leads to an exceedance of a large level b. The typical fluid path turns
out to be nonlinear; this is in contrast with the case of traffic that is short-range
dependent and light-tailed (SRD-LT), where paths to a high exceedance are linear
in great generality. More important for our purposes here, the typical fluid path to
an exceedance of level b (with b large) is tangent at b, and does not spend any time
above b. It follows that fluid analysis does not yield sufficient information about
the distribution of the clump of packets that experience long delays; even the scal-
ing behavior of the clump size is lost: the fluid limit only shows that the number of
long-delayed packets must be of smaller order than b itself. Hence, to address this
problem, we need to look at the workload process on a finer time and space scale.
This is one aspect in which our work departs from most of the existing analyses
for the fBM-driven queue.
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In the next section, we study a stationary version of the workload process, con-
ditional on the workload at time 0 being greater than b. We derive a conditional
limit result for the deviations of the workload from level b, under appropriate scal-
ing, as b → ∞. The relevant scaling consists in speeding up time by a factor of
b2−1/H and compressing space by a factor of b2H−1, where H is the Hurst para-
meter (self-similarity index) of the fBM input. The limiting process is a fractional
Brownian motion with symmetric negative polynomial drift (namely −κ|t |2H ),
and started at a random level which is exponentially distributed; see Theorem 1.
The result is proved under the assumption that 1/2 < H < 0.78; we believe the
same result holds for all 1/2 < H < 1, but our proof technique does not cover all
this range. (Recall fBM has LRD increments for 1/2 < H < 1 and SRD incre-
ments for 0 < H < 1/2.) To the best of our knowledge, this is the first conditional
limit result for the fBM-driven queue that uses a finer-than-fluid scale. The highly
non-Markovian structure of fBM (i.e., the process becomes Markov only when its
entire history is incorporated into the state) makes this computation particularly
challenging.

The conditional behavior described above is very different from the one ob-
served in the case of SRD-LT traffic. Near the origin, the drift of the limiting
process is close to zero; that is, conditional on a packet experiencing a large delay,
the traffic’s most natural tendency is not to restore itself immediately to its equilib-
rium behavior (as is the case with SRD-LT traffic). Thus, many other packets are
likely to also experience large delays. This suggests one will observe big clumps.
We formalize this by deriving the conditional limit law for the total sojourn above
level b during the busy-cycle straddling the origin (which is a proxy for the size of
the clump of packets experiencing long delays). Consistent with the above scaling,
the clump size scales up as b2−1/H as b → ∞; see Corollary 2. Note that if one
compares two fBM traffic sources, the one with higher Hurst parameter will ex-
hibit asymptotically larger clump sizes, independent of the other parameters. Thus,
in the words of Neidhardt and Wang [29], for this performance measure “Hurst is
always naughty.”

We believe the qualitative structure of the conditional limit theory derived here
is likely to be inherited by LRD-LT traffic in general. We also believe that the
scaling behavior and qualitative structure is representative of queues fed by LRD-
LT traffic.

As mentioned earlier, in the finite-buffer counterpart of the model considered
here clumpiness (of the loss process in this case) is also an important issue. There is
a long tradition of approximating finite-buffer loss models by infinite-buffer mod-
els and associated exceedance computations. In particular, the exceedance proba-
bilities results mentioned above are used to make buffer-size recommendations. In
a companion paper, we consider a Brownian queue (i.e., the workload is modeled
as regulated Brownian motion) and a GI/GI/1 with heavy-tails, and show that the
qualitative structure of loss clumps is the same as that of the exceedance clumps.
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It is reasonable to expect a similar relation to be true here, suggesting that the loss
clumps scale polynomially in the buffer size b in the finite-buffer model.

From a traffic modeling standpoint, this paper contributes one building block
towards the goal of developing a quantifiable measure of burstiness (which is of
interest to the Internet traffic modeling community). Our view is that clumpiness
of the loss process and burstiness of the incoming traffic are closely related; this
paper’s results therefore make rigorous the intuition that LRD-LT traffic is more
bursty than SRD-LT traffic. In future work, we attempt related computations for
stylized SRD-HT (short-range dependent, heavy-tailed) and LRD-HT (long-range
dependent, heavy-tailed) traffic. These traffic types are also of interest in the net-
work traffic modeling context: there is both empirical evidence and theoretical
developments suggesting that stable-motions or fractional stable-motions can ap-
proximate high-speed network traffic in situations in which the arguments in favor
of Gaussian models like fBM fail to apply—see, for example, Konstantopoulos
and Lin [20, 21], Mikosch et al. [27], Tsoukatos and Makowski [36], and Laskin
et al. [22].

2. Model and main results. We consider a single-server fluid queue, that re-
ceives fractional Brownian motion as input.

Let Z = (Z(t) : − ∞ < t < ∞) be standard fractional Brownian motion (fBM)
with Hurst parameter (self-similarity index) H . That is, Z is a mean-zero Gaussian
process with stationary increments and continuous sample paths, started at Z(0) =
0 and with covariance structure given by

EZ(t)Z(s) = (|t |2H + |s|2H − |t − s|2H)/2.

The traffic process or arrival process to the queue, A = (A(t) : t ∈ R), is mod-
eled as fBM with drift,

A(t) � λt + θZ(t),

t ∈ R. Here λ corresponds to the mean rate of the traffic, and for t > s, A(t) −
A(s) represents the cumulative incoming traffic over the interval (s, t]. Let c > λ

denote the service rate, so that the so called netput process (or free process) is
X = (X(t) : t ∈ R) given by

X(t) � A(t) − ct = −μt + θZ(t),

where μ � c − λ > 0. The workload (or buffer content) process W = (W(t) :
t ∈ R) is then obtained by applying the regulator mapping to X, which in this case
translates to

W(t) � X(t) − inf
s≤t

X(s),

t ∈ R. Thus constructed, W(t) represents the total amount of work present in the
system at time t (the virtual waiting time), and corresponds to stationary regulated
fBM. Note that W satisfies the relation

W(t) = X(t) − X(s) + W(s) ∨
(
X(s) − inf

s≤u≤t
X(u)

)
, t > s.
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We are interested in studying the “local” behavior of the workload process
around a “typical” exceedance of level b. For this purpose, we define the process
Yb given by

Yb(t) � b−2H+1(
W(tb2−1/H ) − b

)
,

t ∈ R. Note that this is indeed a description of the local behavior near the origin:
conditional on {W(0) > b}, the length of the busy-cycle straddling the origin scales
up linearly in b, while the speed-up factor in Y b is b2−1/H . Hence, for any fixed
t > 0, as b increases the path (Y b(s) : − t ≤ s ≤ t) represents an ever smaller
fraction of the busy-cycle straddling the origin.

Our main result gives the limiting law of Yb conditional on W(0) > b, as b →
∞.

THEOREM 1. If 1/2 < H < (
√

17 − 1)/4 then(
Yb|W(0) > b

) �⇒ Y as b → ∞,(1)

in C(−∞,∞) with the topology of uniform convergence on compact sets, where

Y(t) = Y(0) − κ1|t |2H + θZ(t), t ∈ R, Y(0) ⊥⊥ Z, Y(0)
D= 1

κ2
Exp(1), κ1 =

1
2(1−H)

(
μ(1−H)

H
)2H , and κ2 = μ2H (1−H)2H−1

θ2H 2H .

As mentioned above, we believe the result is likely to hold for all 1/2 < H < 1,
but a portion of the argument in the proof only works for 1/2 < H < (

√
17−1)/4;

see Step 12 in the proof of Theorem 1.
It is interesting to compare the case H > 1/2 with the case H = 1/2, i.e., with

the result for the Brownian queue. There the limiting law is that of a Brownian
motion with symmetric negative linear drift. Here, it is fractional Brownian mo-
tion with symmetric negative polynomial drift. The results are, to some degree, in
agreement, since the conditional limiting law for the Brownian queue corresponds
exactly to replacing formally H = 1/2 in Theorem 1. Qualitatively, however, there
are significant differences. First, in the Brownian case the limiting law is obtained
without the need to scale time and space. Also, in the Brownian case the drift is
equal to −μ|t |. In particular, the traffic process on [0,∞) obeys its usual (uncon-
ditional) law. In contrast, the polynomial drift −κ1|t |2H obtained in the LRD case
has a derivative equal to zero at the origin. This, together with the scaling in place,
indicates that from time 0 onwards, and for a period of order b2−1/H , the traffic
intensity will be close to 1. Thus, the traffic process does not revert immediately
to its unconditioned dynamics (as in the Brownian case), but rather the traffic load
remains higher than average, putting the queue in heavy-traffic, for a significant
period.

The fact that the limiting process Y has symmetric drift is also interesting, and
perhaps somewhat surprising, since the typical path to level b in fluid scale is not
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symmetric: the buildup from 0 to level b is slower than the “draining” back to 0;
see Chang, Yao and Zajic [5].

Next, we examine the effect on the size of the clump of long-delayed packets.
The busy-cycle straddling the origin is (τL, τR), where

τR = inf{t ≥ 0 :W(t) = 0},
τL = sup{t ≤ 0 :W(t) = 0}.

Let V b denote the total sojourn above level b over (τL, τR), i.e.,

V b �
∫ τR

τL

1(b,∞)(W(t)) dt.

Its conditional limit distribution is given in the next result.

COROLLARY 2. If 1/2 < H < (
√

17 − 1)/4, then

(
b−2+1/H V b|W(0) > b

) �⇒ V �
∫ ∞
−∞

1(0,∞)(Y (t)) dt as b → ∞,

where Y is as in (1).

PROOF. Fix a > 0 and let ϕa :C(−∞,∞) → R be given by ϕa(y) =∫ a
−a 1(0,∞)(y(t)) dt . Put Ga = {y ∈ C(−∞,∞) : limt→∞ y(t) = limt→−∞ y(t) =

−∞,Leb({t ∈ (−a, a) :y(t) = 0}) = 0}, where Leb denotes Lebesgue mea-
sure. Note ϕa(yb) → ϕa(y) whenever yb converges to y ∈ Ga uniformly on
compact sets and P(Y ∈ Ga) = 1; it then follows from Theorem 1 and the
continuous mapping theorem that (ϕa(Y

b)|W(0) > b) �⇒ ϕa(Y ) as b → ∞.
Since ϕa(Y ) ↗ V a.s. as a ↗ ∞, it follows that lima→∞ limb→∞ P(ϕa(Y

b) >

x|W(0) > b) = P(V > x), x ∈ R. On the other hand, |P(ϕa(Y
b) > x|W(0) >

b) − P(b−2+1/H V b > x|W(0) > b)| ≤ P(F(a, b)|W(0) > b), where F(a, b) =
{∃a < t < τR :Yb(t) > 0} ∪ {∃τL < t < −a :Yb(t) > 0} ∪ {|τL| < ab2−1/H } ∪
{τR < ab2−1/H }. But lima→∞ limb→∞ P(F(a, b)|W(0) > b) = 0, whence the re-
sult follows. �

We see that the total sojourn above level b scales as b2−1/H . In the Brownian
case, H = 1/2, the unscaled total sojourn above b has a conditional limiting distri-
bution. Hence, in a queue fed by fBM traffic with H > 1/2, larger delays tend to
occur in larger clumps, whereas in the Brownian case the distribution of the typical
exceedance clump of a given level is roughly independent of the magnitude of the
said level.

It is interesting to note that the random variable V plays a role in the prefactor of
some asymptotic tail probabilities (EV −1 being a variant of Pickands’ constant),
and also in other conditional limit results for sojourns above a high level of sto-
chastic processes: For example, it appears in Theorems 3.3.1 and 5.5.1 of Berman
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[3], which deal, respectively, with high sojourns of stationary Gaussian processes
and stationary diffusions over a finite interval; in both results, the probability that
the (scaled) sojourn above b is larger than x converges to E(1/Ṽ ; Ṽ > x), where
Ṽ represents, like V above, the total sojourn above zero of a Gaussian process
with symmetric negative polynomial drift, started off at an exponentially distrib-
uted offset. (Those results are, however, quite different from that in Corollary 2:
the workload process W is neither Gaussian nor a diffusion, we cannot restrict it to
a finite time interval, the limiting distribution of the scaled sojourn is directly the
distribution of V rather than a transformation of it, and in the case of W the sojourn
above b scales up with b, whereas in Berman’s results it scales down with b.)

An important tool in the proof of Theorem 1 is the following result, which states
that if a negative-drift fBM is conditioned on hitting level b, the hitting time of b

will be “very near” its most likely value, t∗ = bH
μ(1−H)

.

THEOREM 3. Let Tb � inf{t ≥ 0 :X(t) ≥ b}. For all r > 0 and ε > 0,

P(|Tb − t∗|/bH+r > ε|Tb < ∞) −→ 0

as b → ∞.

For the proof, we refer the reader to Lemma 7 in Dieker [8], who proves a more
general result; Theorem 3 corresponds to the particular case of fBM and (in his
notation) δ(u) = O(uH+r ).

Note that Theorem 3 is a refinement on the fluid behavior of Tb obtained from
large-deviations analysis, namely that (|Tb − t∗|/b|Tb < ∞) −→ 0 in probability
as b → ∞. It turns out that the fluid scale result is too coarse for our purposes.
A further refinement can be found in Hüsler and Piterbarg [16], Theorem 1, who
show that ((Tb − t∗)/bH |Tb < ∞) converges weakly to a Gaussian random vari-
able.

3. Proofs. Before proceeding with the proof of Theorem 1, we recall the no-
tion of asymptotically equivalent events. We say that two collections of events
(Eb

1 :b ≥ 0) and (Eb
2 :b ≥ 0) are asymptotically equivalent if

P(Eb
1�Eb

2 ) = o(P(Eb
1 ))

as b → ∞. In the proof, we will use the following well-known fact.

LEMMA 1 (Asmussen and Klüppelberg [2], Lemma 2.4(a)). If (Eb
1 :b ≥ 0)

and (Eb
2 :b ≥ 0) are asymptotically equivalent, then

‖P(·|Eb
1) − P(·|Eb

2)‖ → 0

as b → ∞, where ‖ · ‖ denotes total variation distance.
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Throughout this section, we use the following notation: for any process Z and
σ -fields F and G , we denote ZF (t) = E(Z(t)|F ), ZF (t) = Z(t) − ZF (t), and
ZF

G (t) = ZF (t) − E(ZF (t)|G). The complexity of the argument requires a signif-
icant amount of additional notation, which is introduced at the points when first
needed; a notation summary table is included at the end for ease of reference.

PROOF OF THEOREM 1. To find the conditional limit law of Yb given
{W(0) > b}, we study separately its intercept with the ordinate axis and its de-
viations from its value at the origin; that is, we study the random variable Y b(0) =
b−2H+1(W(0) − b)—the scaled “overshoot” of W over level b at time 0—and the
process Ŷ b = (Ŷ b(t) : t ∈ R) given by

Ŷ b(t) � b−2H+1X(b2−1/H t).

(Note Ŷ b(t) = Yb(t) − Yb(0) for t ∈ (τL, τR).) We find the conditional limit laws
of Ŷ b and Yb(0) separately, and then show that they are asymptotically indepen-
dent as b → ∞.

Observe that {W(0) > b} = {T b < ∞}, where T b � inf{t ≥ 0 :X(−t) < −b}.
The event {T b < ∞} depends on the whole history of X over (−∞,0], and the law
of Yb conditioned on such an event is hard to analyze. However, by Lemma 1, to
prove that (Y b|T b < ∞) �⇒ Y it is enough to show that (Y b|A(b)) �⇒ Y , where
A(b) is some appropriately chosen asymptotically equivalent event for which the
conditional law is more tractable.

To begin with, one can restrict attention to the history of X over a finite interval.
Put tL � t∗ − bH+r and tR � t∗ + bH+r , for some small r > 0 (specified later). By
Theorem 3, it follows that the event

A0(b) � {∃s ∈ [−tR,−tL] :X(s) = −b}
is asymptotically equivalent to {T b < ∞}. The asymptotically equivalent event
A(b) that we construct is a subset of A0(b), and encompasses the intuition that,
given {T b < ∞}, X will attain values close to −b in a neighborhood of −t∗.

If one formally considers the law of Ŷ b conditioned on X(−t∗) = −b, then it
is an easy exercise to verify that the conditional mean and covariance functions of
this Gaussian process converge to those of the desired limit process Ŷ as b → ∞,
where

Ŷ (t) = −κ1|t |2H + θZ(t).

The first several steps in the proof show that this is still true when conditioning on
H � σ((X(s) : − tR ≤ s ≤ −tL)), as long as X remains close enough to −b and
satisfies some regularity conditions; making precise how close and the requisite
regularity conditions will lead to the appropriate definition of A(b).
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The remainder of the argument is broken into “steps.” A high-level overview can
be obtained by reading the first portion of each, with the statement of the respective
intermediate results, while skipping the details that follow. It is because of condi-
tions imposed in Step 11 that the proof needs the assumption H < (

√
17 − 1)/4;

the intermediate results presented in the other steps are valid for 1/2 < H < 1;
see discussion in Step 12.

Step 1. The conditional mean given the “endpoint” X(−tL). Define the event

A1(b) � {X(−tL) ∈ [−b,−b + bγ ]},
Ã1(b) = A0(b) ∩ A1(b), and K � σ(X(−tL)). In this step we show that if

0 < γ < H + r and 0 < r < (1 − H)2/H,(2)

then, given M > 0, there exists ε1 > 0 such that, for all large enough b,

IÃ1(b)

∣∣E(Ŷ b(s)|K) + κ1|t |2H
∣∣ ≤ b−ε1IÃ1(b),

s ∈ (−M,M).
To prove this, put t̃L = b−2+1/H tL and note that

E(Ŷ b(s)|K)

= b−2H+1
{(

X(−tL) − μtL
)cov(Z(−tL),Z(sb2−1/H ))

varZ(−tL)
− μb2−1/H s

}

= b−2H+1
{

1

2

(
X(−tL) − μtL

)(|s/t̃L|2H + 1 − (1 + s/t̃L)2H ) − μb2−1/H s

}

= b−2H+1

2
(−b − μt∗)|s/t̃L|2H

+ b−2H+1
{
(−b − μt∗)

2

(
1 − (1 + s/t̃L)2H ) − μ

s

t̃L
t∗

(3)

+ μ
s

t̃L
(t∗ − tL) + 1

2
[X(−tL) + b + μ(t∗ − tL)]

× (|s/t̃L|2H + 1 − (1 + s/t̃L)2H )}

= −κ1|s|2H (t∗/tL)2H − b2(1−H)

2(1 − H)

(
1 − (1 + s/t̃L)2H + 2Hs/t̃L

)

+ μ
s

t̃L
b1−H+r + b1−2H

2
[X(−tL) + b + μbH+r ]

× (|s/t̃L|2H + 1 − (1 + s/t̃L)2H )
.
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Since |X(−tL) + b| ≤ bγ < bH+r on Ã1(b), it follows that, on Ã1(b),∣∣E(Ŷ b(s)|K) + κ1|s|2H
∣∣

≤ κ1|s|2H [(1 + bH+r/tL)2H − 1] + b2(1−H)

2(1 − H)
|1 − (1 + s/t̃L)2H + 2Hs/t̃L|

+ b1−H+r

2
· |s|

t̃L

[
2μ + (1 + μ)

∣∣∣∣ |s/t̃L|2H + 1 − (1 + s/t̃L)2H

s/t̃L

∣∣∣∣
]

∼ κ1|s|2H · 2HbH+r

tL
+ b2(1−H)

2(1 − H)
H(2H − 1)(s/t̃L)2

+ b1−H+r

2
· |s|

t̃L
[2μ + 2H(1 + μ)]

= O
(
br+H−1 + b−2(1−H)2/H + b−(1−H)2/H+r) = o(b−ε1)

for any 0 < ε1 < (1 − H)2/H − r .
Step 2. Conditional mean given both endpoints. Define

G � σ(X(−tL),X(−tR)),

A2(b) = {|ZK(−tR)| ≤ bη3},
where η3 > 0 is a constant (specified later), and Ã2(b) = A0(b) ∩ A1(b) ∩ A2(b).
In this step, we show that if

η3 < H 2 + (1 − H)2(1 + H)/H + r(2H − 1)(4)

then, given M > 0, there exists ε2 > 0 such that, for all large enough b,

IÃ2(b)

∣∣E(Ŷ b(s)|G) − E(Ŷ b(s)|K)
∣∣ ≤ IÃ2(b)b

−ε2,

s ∈ (−M,M).
To verify this, put D = 2bH+r and observe that, on A2(b),∣∣E(Ŷ b(s)|G) − E(Ŷ b(s)|K)

∣∣
= θb−2H+1

varZ(−tL)varZ(−tR) − cov(Z(−tL),Z(−tR))2 · |ZK(−tR)|

× |varZ(−tL) cov(Z(sb2−1/H ),Z(−tR))

− cov(Z(−tL),Z(sb2−1/H )) cov(Z(−tL),Z(−tR))|

≤ θb−2H+1bη3

4(1 + D/tL)2H − (1 + (1 + D/tL)2H − (D/tL)2H )2

×
∣∣∣∣2

(∣∣∣∣ s

t̃L

∣∣∣∣2H

+
(

1 + D

tL

)2H

−
(

1 + D

tL
+ s

t̃L

)2H )
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−
(∣∣∣∣ s

t̃L

∣∣∣∣2H

+ 1 −
(

1 + s

t̃L

)2H )(
1 +

(
1 + D

tL

)2H

−
(

D

tL

)2H )∣∣∣∣
∼ θbη3−2H+1

4(D/tL)2H
· 4H(H − 1) · s

t̃L
· D

tL

= O
(
bη3−H 2−(1−H)2(1+H)/H−r(2H−1))

= o(b−ε2)

as b → ∞, for any 0 < ε2 < H 2 + (1 − H)2(1 + H)/H + r(2H − 1) − η3.
Step 3. Conditional mean given H. Here, we show that the conditional mean of

Ŷ b given H is close to its conditional mean given G , as long as the values of Z

over the interval [−tR,−tL] remain close enough to their conditional expectation
given G .

To be specific, define

A3(b) = {|ZG (−tL − s)| ≤ max(sHbδ, sH−η1),0 ≤ s ≤ bH+r},
A4(b) = {|ZG (−tR + s)| ≤ max(sHbδ, sH−η1),0 ≤ s ≤ bH+r},

where η1 > 0 and δ > 0 will be specified later, and put

A(b) = A0(b) ∩ A1(b) ∩ A2(b) ∩ A3(b) ∩ A4(b).

In this step, we show that if

δ < (1 − H)2(1 + H)/H − (1 − H)(r + η1) + rη1,(5)

then, given M > 0, there exists ε3 > 0 such that, for all large enough b,

IA(b)

∣∣E(Ŷ b(s)|H) − E(Ŷ b(s)|G)
∣∣ ≤ IA(b)b

−ε3,(6)

s ∈ (−M,M).
(Note the term sH−η1 within the maximum controls the deviations of Z from its

conditional expectation given G in the immediate neighborhood of the endpoints
−tR and −tL; the term sHbδ controls the deviations of Z from its conditional
expectation given G away from the endpoints.)

To prove (6), we find a representation of the LHS in which the differences
Z(−tL − s) − E(Z(−tL − s)|G) appear explicitly, in order to use the regularity
conditions contained in A3(b) and A4(b). For this purpose, it is convenient to
define the process Z̃ by Z̃(u) � Z(−tL + u) − Z(−tL), u ∈ R. Note Z̃ is stan-
dard fBM, and that in terms of Z̃, H = σ(Z̃(tL), (Z̃(u) : − D ≤ u ≤ 0)) and
G = σ(Z̃(tL), Z̃(−D)), where D = 2bH+r as before. Also,

Ŷ b(u) = θb−2H+1[Z̃(tL + b2−1/H u) − Z̃(tL) − (μ/θ)b2−1/Hu].
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Put J � σ((Z̃(u) : − D ≤ u ≤ 0)). Then, for fixed s, t ∈ (−M,M), and b large
enough that tL > b2−1/H M , we have the representation⎛

⎝ Z̃(tL)

Z̃(tL + b2−1/H s)

Z̃(tL + b2−1/H t)

⎞
⎠ =

⎛
⎝ Z̃J (tL)

Z̃J (tL + b2−1/H s)

Z̃J (tL + b2−1/H t)

⎞
⎠

(7)

+
⎡
⎣

⎛
⎝a11 0 0

a21 a22 0
a31 a32 a33

⎞
⎠

⎤
⎦

⎛
⎝W1

W2
W3

⎞
⎠ ,

where (W1,W2,W3) is i.i.d. standard Gaussian, W1 ⊥⊥ J , (W2,W3) ⊥⊥ H and the
(deterministic) constants (aij ) are as needed to match the covariances on both
sides.

Hence,

Ŷ b(s) = θb−2H+1[
Z̃J (tL + b2−1/H s) − Z̃J (tL)

+ (a21/a11 − 1)
(
Z̃(tL) − Z̃J (tL)

)
(8)

+ a22W2 − (μ/θ)b2−1/H s
]
,

and it follows that

E(Ŷ b(s)|H) − E(Ŷ b(s)|G)
(9)

= θb−2H+1[Z̃J
G (tL + b2−1/H s) − Z̃J

G (tL) − (a21/a11 − 1)Z̃J
G (tL)].

Gripenberg and Norros [13] show that, for u ≥ 0, the conditional expectation
Z̃J (u) can be expressed as

Z̃J (u) =
∫ 0

−D
g(D,u, v) dZ̃(v),

where g(D,u,−v) � CH(D − v)−H+1/2v−H+1/2 ∫ u
0

wH−1/2(w+D)H−1/2

w+v
dw for

0 ≤ v ≤ D and CH = sin(π(H − 1/2))/π . Here, the integral against fBM can be
defined both as an L2 limit or as an almost sure limit by approximating g(D,u, ·)
by a sequence of simple functions; for a discussion of integration against fBM see
for example Duncan, Hu and Pasik-Duncan [10]. Moreover, a similar argument to
that in Norros, Valkeila and Virtamo [33], Lemma 2.2, shows that an “integration
by parts” formula holds, namely

Z̃J (u) = −
∫ 0

−D
g′(D,u, v)

[
Z̃(v) + v

D
Z̃(−D)

]
dv

− Z̃(−D)

D

∫ 0

−D
g(D,u, v) dv

� lim
ε↘0

{
−

∫ −ε

−D+ε
g′(D,u, v)

[
Z̃(v) + v

D
Z̃(−D)

]
dv(10)
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− Z̃(−D)

D

∫ −ε

−D+ε
g(D,u, v) dv + g(D,u,−ε)Z̃(−ε)

− g(D,u,−D + ε)[Z̃(−D + ε) − Z̃(−D)]

− ε
Z̃(−D)

D
[g(D,u,−ε) + g(D,u,−D + ε)]

}
,

where g′(D,u,−v) � ∂g(D,u,−v)/∂v and the limit is a.s. well defined by
the Hölder continuity of fBM paths (cf. Norros, Valkeila and Virtamo [33],
Lemma 2.2). Similarly, using a sequence of simple functions to approximate
g(D,u, ·) one can show that E(Z̃J (u)|G) has a representation given by the RHS
of (10) with Z̃(·) replaced by Z̃G (·). It then follows that

Z̃J
G (u) =

∫ 0

−D
g′(D,u, v)Z̃G (v) dv � lim

ε↘0

∫ −ε

−D+ε
g′(D,u, v)Z̃G (v) dv.

We use this representation of Z̃J
G (u) to show that, if (5) holds, then on A(b)

the RHS in (9) is bounded by O(b−ε3), for some ε3 > 0. The details are given in
Lemma 2.

Step 4. Convergence of the covariance function. If r < (1 − H)2/H , then given
t, s ∈ R, there exists ε0 > 0 such that, for all large enough b,∣∣ cov(Ŷ b(t), Ŷ b(s)|H) − (θ2/2)(|t |2H + |s|2H − |t − s|2H)

∣∣ ≤ b−ε0 .

This is proved as Lemma 3 below, using the representation (7).
Step 5. Convergence of finite-dimensional distributions of (Ŷ b|A(b)). Note that

A(b) ∈ H, and that (Ŷ b|H) is a Gaussian process. The convergence of the condi-
tional mean and covariance functions from previous steps, together with an appli-
cation of the Cramér–Wold device allow us to conclude that

(Ŷ b|A(b))
f.d.d.−→ Ŷ ,

where

Ŷ (t) = −κ1|t |2H + θZ(t),

t ∈ R, and
f.d.d.−→ denotes convergence of finite-dimensional distributions.

Step 6. Tightness of (Ŷ b|A(b)). We now show that {(Ŷ b|A(b)) :b > 0} is tight.
We do so by showing that, given M > 0, there exists CM > 0 such that, for all
large enough b,

IA(b)E
((

Ŷ b(v) − Ŷ b(u)
)2|H

) ≤ IA(b)CM |u − v|2H(11)

for all u, v ∈ [−M,M], which implies

E
((

Ŷ b(v) − Ŷ b(u)
)2|A(b)

) = EIA(b)E((Ŷ b(v) − Ŷ b(u))2|H)

P(A(b))
≤ CM |u − v|2H ,
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which in turn is a sufficient condition for tightness with respect to the topology of
uniform convergence on compact sets; see e.g., Karatzas and Shreve [18], page 64.

To verify (11), note that

E
((

Ŷ b(v) − Ŷ b(u)
)2|H

) = [E(Ŷ b(v)|H) − E(Ŷ b(u)|H)]2

+ var
(
Ŷ b(v) − Ŷ b(u)|H

)
.

But, conditional on H, (Ŷ b(v) − Ŷ b(u)) is Gaussian, and its conditional variance
is bounded above by its (unconditional) variance, so that

var
(
Ŷ b(v) − Ŷ b(u)|H

) ≤ θ2|u − v|2H .

Also, in Lemma 4, we use the representations (8) and (10) to show that the function
u �→ E(Ŷ b(u)|H) is differentiable and that there exists a constant C̃M such that,
on A(b), ∣∣∣∣∂E(Ŷ b(u)|H)

∂u

∣∣∣∣ ≤ C̃M,

u ∈ [−M,M]. In particular, on A(b)∣∣E(Ŷ b(v)|H) − E(Ŷ b(u)|H)
∣∣ ≤ C̃M |u − v|

for u, v ∈ [−M,M]. Putting CM � C̃2
M +4M2 + θ2, (11), and hence, the tightness

of {(Ŷ b|A(b)) :b > 0}, follows.
Step 7. Limit law of Ŷ b. Given the tightness of {(Ŷ b|A(b)) :b > 0}, and the

convergence of its finite-dimensional distributions, it follows that

(Ŷ b|A(b)) �⇒ Ŷ ,

where �⇒ denotes weak convergence in C(−∞,∞) (with the topology of uni-
form convergence on compact sets).

We postpone to Step 11 the proof that A(b) is asymptotically equivalent to
{W(0) > b}. Assuming this for the moment, it follows by Lemma 1 that

(Ŷ b|W(0) > b) �⇒ Ŷ .(12)

Step 8. Limit law of Yb(0). We now show that

(
Yb(0)|W(0) > b

) �⇒ Y(0)
D= 1

κ2
Exp(1).

The proof uses the exact asymptotic for the tail of W(0) as given by Hüsler and
Piterbarg [15], Corollary 2:

P(T b < ∞) ∼ Kb(1−H)2/H (
1 − �(κ3b

1−H )
)
,(13)

where K is a constant (which they provide explicitly, in terms of Pickands’ con-
stant), κ3 = √

κ2/(1 − H) and �(·) is the c.d.f. of a standard Gaussian random
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variable. Since (1−�(x)) ∼ φ(x)/x as x → ∞, where φ(x) = exp(−x2/2)/
√

2π

is the standard Gaussian density, we obtain

P(T b < ∞) ∼ (K/κ3)b
−(1−H)(2−1/H) exp

(−(κ2
3/2)b2(1−H)).

Hence,

lim
b→∞ P

(
Yb(0) > x|W(0) > b

)

= lim
b→∞

P(T b+xb2H−1
< ∞)

P(T b < ∞)

= lim
b→∞

(
b

b + xb2H−1

)(1−H)(2−1/H)

× exp
(
−κ2

3 [(b + xb2H−1)2(1−H) − b2(1−H)]
2

)

= exp
(
−(κ2

3/2) lim
b→∞

[
(b + xb2H−1)2(1−H) − b2(1−H)])

= exp
(−(κ2

3/2) · 2(1 − H)x
)

= exp(−κ2x).

Step 9. Asymptotic independence of Yb(0) and Ŷ b. We now show that Yb(0)

and Ŷ b are asymptotically independent, in the sense that

P
(
Ŷ b ∈ ·, Y b(0) > x|W(0) > b

) −→ P(Ŷ ∈ ·) · P
(
(1/κ2)Exp(1) > x

)
as b → ∞.

To verify this, note

P
(
Ŷ b ∈ ·, Y b(0) > x|W(0) > b

)
= P

(
Ŷ b ∈ ·,W(0) > b + xb2H−1)

/P
(
W(0) > b

)
= P

(
Ŷ b ∈ ·|W(0) > b + xb2H−1)

P
(
W(0) > b + xb2H−1)

/P
(
W(0) > b

)
= P

(
Ŷ b ∈ ·|W(0) > b̃

)
P
(
Yb(0) > x|W(0) > b

)
,

where b̃ = b + xb2H−1. But we have shown above that

P
(
Yb(0) > x|W(0) > b

) → P
(
Y(0) > x

)
.

Hence, it is enough to show that P(Ŷ b ∈ ·|W(0) > b̃) → P(Ŷ ∈ ·). Observe that
Ŷ b = Ub̃ where

Ub̃(t) =
(

b

b + xb2H−1

)2H−1

Ŷ b̃(β(t, b̃)),
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β(t, b̃) � t · (η(b̃)/b̃)2−1/H and η is the inverse function of b �→ b + xb2H−1.
Note that (i) β(·, b̃) converges to t �→ t uniformly on compacts sets as b̃ → ∞,
(ii) ( b

b+xb2H−1 )2H−1 ↗ 1 as b̃ → ∞, (iii) b̃ → ∞ ⇐⇒ b → ∞, and (iv)

{(Ŷ b̃|W(0) > b) : b̃ > b0} is tight (because of (12)). From (i)–(iv), it follows that
for arbitrary ε > 0,

P
(
ρ(Ub̃, Ŷ b̃) > ε|W(0) > b

) −→ 0

as b → ∞, where ρ is the usual metric on C(−∞,∞). Since (Ŷ b̃|W(0) > b̃) �⇒ Ŷ

as b → ∞, it then follows that (Ub̃|W(0) > b̃) �⇒ Ŷ as b → ∞, i.e.,(
Ŷ b|W(0) > b̃

) �⇒ Ŷ ,

as desired.
Step 10. Limit law of Yb. It follows from the previous three steps that(

(Y b(0), Ŷ b)|W(0) > b
) �⇒ (Y (0), Ŷ )

in R × C(−∞,∞), where Y(0)
D= (1/κ2)Exp(1), Y(0) ⊥⊥ Z. Since Y b(t) =

Yb(0) + Ŷ b(t), t ∈ (τL, τR), and since −τL, τR �⇒ ∞ as b → ∞, Theorem 1
then follows by the continuous mapping principle.

It only remains to be verified that A(b) and {W(0) > b} are asymptotically
equivalent, as we claimed in Step 7 above. We verify this in the next step.

Step 11. Asymptotic equivalence of A(b) and {T b < ∞}. We need to show that
P{A(b)�{T b < ∞}} = o(P{T b < ∞}). By Theorem 3,

P({T b < ∞} \ A0) = o
(
P(T b < ∞)

)
,

so it is enough to show that

P
(
A0(b) \ A(b)

) = o
(
P(T b < ∞)

)
.

In what follows (and for the rest of the paper) we frequently write A0, . . . ,A4,
omitting the explicit dependence on b. Note that

A0 \ A(b) ⊂ (A0 ∩ AC
1 ) ∪ (A1 ∩ AC

2 ) ∪ (A1 ∩ AC
3 ) ∪ (A1 ∩ AC

4 )

⊂ A5 ∪ (A0 ∩ A6) ∪ (A1 ∩ AC
2 ) ∪ (A1 ∩ AC

3 ) ∪ (A1 ∩ AC
4 ),

where A5 � {X(−tL) < −b} and A6 � {X(−tL) > −b + bγ }. Thus,

P
(
A0 \ A(b)

) ≤ P(A5) + P(A0 ∩ A6) + P(A1 ∩ AC
2 )

(14)
+ P(A1 ∩ AC

3 ) + P(A1 ∩ AC
4 ).

We show that all the terms on the RHS in (14) are o(P(T b < ∞)) as b → ∞,
as long as the parameters γ , r , η1, η3 and δ are chosen appropriately. We list
the required conditions on the parameters below; the details of the arguments are
relegated to Lemma 5.
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That P(A5) = o(P(T b < ∞)) follows from Theorem 3.
The proof that P(A0 ∩ A6) = o(P(T b < ∞)) makes repeated use of Borell’s

inequality (Lemma 7) and requires that

γ > H + r − (H − 1/2)(1 − H − r).(15)

The proof that P(A1 ∩ AC
2 ) = o(P(T b < ∞)) uses the additional condition

η3 > H 2 + rH + (1 − H + r)/2.(16)

The proof that P(A1 ∩AC
3 ) and P(A1 ∩AC

4 ) are o(P(T b < ∞)) relies on Borell’s
inequality and the Hölder continuity of fractional Brownian paths, and uses the
condition

δ > (1 − H + r)/2.(17)

Step 12. Final remarks. If 1/2 < H < (
√

17 − 1)/4, then the parameters
r, γ, η3, δ and η1 in the definition of A(b) can be chosen so as to satisfy (2), (4),
(5), (15)–(17).

It is because of conditions (16) and (17) that the proof does not work for all
1/2 < H < 1: these conditions, when combined with (4) and (5), require that (1 −
H)/2 < (1 −H)2(1 +H)/H , which in turn requires H < (

√
17 − 1)/4. The need

for (16) and (17) may be a consequence of the style of proof rather than necessary
conditions. If one is able to prove that P(A1 ∩ AC

3 ) and P(A2 ∩ AC
3 ) are o(P(T b <

∞)) without imposing (16) and (17), then the proof of Theorem 1 would work for
all H ∈ (1/2,1). �

LEMMA 2. Fix s > 0. If δ satisfies (5), then there exists ε3 > 0 such that

IA(b)

∣∣E(Ŷ b(s)|H) − E(Ŷ b(s)|G)
∣∣ ≤ IA(b)b

−ε3(18)

for all large enough b.

PROOF. We analyze separately each of the terms on the RHS of equation (9).
Using that g′(D,u, v) = g′(D/u,1, v/u)/u (which is straightforward to verify),
we note that on A(b),

|Z̃J
G (tL)| =

∣∣∣∣
∫ D

0
g′(D, tL,−v)Z̃G (−v) dv

∣∣∣∣
≤

∫ D/tL

0
|g′(D/tL,1,−x)Z̃G (−xtL)|dx

≤ bδtL
H

[∫ D/2tL

0
|g′(D/tL,1,−x)|xH−η1 dx

+
∫ D/tL

D/2tL

|g′(D/tL,1,−x)|(D/tL − x)H−η1 dx

]
,
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where the last step follows since, on A(b), |Z̃G (−v)| ≤ max(vH bδ, vH−η1) for
0 ≤ v ≤ D/2 and |Z̃G (−v)| ≤ max((D − v)Hbδ, (D − v)H−η1) for D/2 ≤ v ≤ D.
Since

g′(D,u,−v) = −(H − 1/2)g(D,u,−v)[v−1 − (D − v)−1]

− CHv−H+1/2(D − v)−H+1/2
∫ u

0

yH−1/2(y + D)H−1/2

(y + v)2 dy,

it follows that

|Z̃J
G (tL)|

≤ bδtL
HCH

×
{∫ D/2tL

0
x1/2−η1

(
D

tL
− x

)−H+1/2

×
∫ 1

0

yH−1/2(y + D/tL)H−1/2

(y + x)2 dy dx

+
∫ D/tL

D/2tL

x−H+1/2
(

D

tL
− x

)1/2−η1

×
∫ 1

0

yH−1/2(y + D/tL)H−1/2

(y + x)2 dy dx

+
(
H − 1

2

)∫ D/2tL

0
x1/2−η1

(
D

tL
− x

)−H+1/2

×
[
x−1 +

(
D

tL
− x

)−1]
h1

(
D

tL
, x

)
dx

+
(
H − 1

2

)∫ D/tL

D/2tL

x−H+1/2
(

D

tL
− x

)1/2−η1

×
[
x−1 +

(
D

tL
− x

)−1]
h1

(
D

tL
, x

)
dx

}
,

where

h1(D/tL, x) �
∫ 1

0

yH−1/2(y + D/tL)H−1/2

y + x
dy ≤ 4/(2H − 1).

Note also that∫ 1

0

yH−1/2(y + D/tL)H−1/2

(y + x)2 dy ≤ 4xH−3/2(D/tL)H−1/2,
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so that

|Z̃J
G (tL)| ≤ 4bδtL

HCH

×
{
(D/tL)H−1/2

∫ D/2tL

0
xH−1−η1(D/tL − x)−H+1/2 dx

+ (D/tL)H−1/2
∫ D/tL

D/2tL

x−1(D/tL − x)1/2−η1 dx

+
∫ D/2tL

0
x1/2−η1(D/tL − x)−H+1/2[x−1 + (D/tL − x)−1]dx(19)

+
∫ D/tL

D/2tL

x−H+1/2(D/tL − x)1/2−η1[x−1 + (D/tL − x)−1]dx

}
.

≤ 4bδtL
HCH · 15(D/tL)1−H−η1

≤ c1b
δ+H−(1−H−r)(1−H−η1)

for an appropriate constant c1.
Similarly, on A(b),

|Z̃J
G (tL) − Z̃J

G (tL − b2−1/H s)|

=
∣∣∣∣
∫ D

0
[g′(D, tL,−v) − g′(D, tL − b2−1/H s,−v)]Z̃G (−v)dv

∣∣∣∣
≤

∫ D/tL

0
|[g′(D/tL,1,−x) − g′(D/tL,1 − s/t̃L,−x)]Z̃G (−xtL)|dx

≤ bδtL
H

[∫ D/2tL

0
|g′(D/tL,1,−x) − g′(D/tL,1 − s/t̃L,−x)|xH−η1 dx

+
∫ D/tL

D/2tL

|g′(D/tL,1,−x)

− g′(D/tL,1 − s/t̃L,−x)|(D/tL − x)H−η1 dx

]
,

where t̃L � b−2+1/H tL. Rewriting,

|Z̃J
G (tL) − Z̃J

G (tL − b2−1/H s)|
≤ bδtL

HCH(H − 1/2)

×
{

2

2H − 1

∫ D/2tL

0
x1/2−η1

(
D

tL
− x

)−H+1/2

×
∫ 1∨(1−s/t̃L)

1∧(1−s/t̃L)

yH−1/2(y + D/tL)H−1/2

(y + x)2 dy dx
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+ 2

2H − 1

∫ D/tL

D/2tL

x−H+1/2
(

D

tL
− x

)1/2−η1

×
∫ 1∨(1−s/t̃L)

1∧(1−s/t̃L)

yH−1/2(y + D/tL)H−1/2

(y + x)2 dy dx

+
∫ D/2tL

0
x1/2−η1

(
D

tL
− x

)−H+1/2

×
[
x−1 +

(
D

tL
− x

)−1]
h2(D/tL, s/tL, x) dx

+
∫ D/tL

D/2tL

x−H+1/2
(

D

tL
− x

)1/2−η1

×
[
x−1 +

(
D

tL
− x

)−1]
h2(D/tL, s/tL, x) dx

}
,

where

h2(D/tL, s/tL, x) �
∫ 1∨(1−s/t̃L)

1∧(1−s/t̃L)

yH−1/2(y + D/tL)H−1/2

y + x
dy ≤ 2|s|/t̃L.

Since also ∫ 1∨(1−s/t̃L)

1∧(1−s/t̃L)

yH−1/2(y + D/tL)H−1/2

(y + x)2 dy ≤ 2|s|/t̃L,

it follows that

|Z̃J
G (tL) − Z̃J

G (tL − b2−1/H s)|
≤ 2st̃−1

L bδtL
HCH

×
{∫ D/2tL

0
x1/2−η1(D/tL − x)−H+1/2 dx

+
∫ D/tL

D/2tL

x−H+1/2(D/tL − x)1/2−η1 dx

(20)

+
∫ D/2tL

0
x1/2−η1(D/tL − x)−H+1/2[x−1 + (D/tL − x)−1]dx

+
∫ D/tL

D/2tL

x−H+1/2(D/tL − x)1/2−η1[x−1 + (D/tL − x)−1]dx

}

≤ 2st̃−1
L bδtL

HCH(D/tL)1−H−η1

≤ c2b
δ+H−(1−H+r)(1−H−η1)−(1/H−1)

for an appropriate constant c2 and all large enough b.
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To analyze the factor (a21/a11 − 1) in the first term on the RHS in (9), note that

a21

a11
= EZ̃(tL)Z̃(tL + b2−1/H s) − EZ̃J (tL)Z̃J (tL + b2−1/H s)

EZ̃(tL)2 − EZ̃J (tL)2
.

The covariance EZ̃J (a)Z̃J (a + x) satisfies,

EZ̃J (a)Z̃J (a + x) = a2Hf (D/a,0, x)

for |x| < a, where

f (d,w,x) � H

∫ d

0
g(d,1 + w,−u)[(1 + w + x + u)2H−1 − u2H−1]du

(see Mannersalo [25]). It follows that(
a21

a11
− 1

)
= v(s/t̃L) − 1 + f (D/tL,0,0) − f (D/tL,0, s/t̃L)

1 − f (D/tL,0,0)
,

where v(x) � 1
2(1 + (1 + x)2H − |x|2H), |x| < 1. Note that (v(x) − 1)/x → H as

x → 0 and it can be easily shown that f (D/tL,0,0)−f (D/tL,0, s/t̃L) = o(s/t̃L)

as b → ∞, whence there exists a constant c3 such that∣∣∣∣a21

a11
− 1

∣∣∣∣ ≤ c3|s|b−(1/H−1).(21)

We can then use the above bounds (19)–(21) on the RHS of (9) to conclude that
there exists c4 such that, on A(b),∣∣E(Ŷ b(s)|H) − E(Ŷ b(s)|G)

∣∣ ≤ c4b
−2H+1bδ+H−(1−H+r)(1−H−η1)−(1/H−1)

= o(b−ε3 ),

where 0 < ε3 < (1 − H)2(1 + H)/H − δ − (1 − H)(r + η1) + rη1 > 0. �

LEMMA 3. Fix s, t > 0. If r < (1 − H)2/H then there exists ε2 > 0 such that∣∣ cov(Ŷ b(t), Ŷ b(s)|H) − (θ2/2)(|t |2H + |s|2H − |t − s|2H)
∣∣ ≤ b−ε2

for all large enough b.

PROOF. Note from (7) that

cov(Ŷ b(s), Ŷ b(t)|H)

= b2(1−2H)θ2a32a22

= b2(1−2H)θ2EZ̃(tL + b2−1/H s)Z̃(tL + b2−1/H t)

− b2(1−2H)θ2EZ̃J (tL + b2−1/H s)Z̃J (tL + b2−1/H t)

− b2(1−2H)θ2 · (EZ̃(tL)Z̃(tL + b2−1/H s) − EZ̃J (tL)Z̃J (tL + b2−1/H s))

var Z̃(tL) − var Z̃J (tL)
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× (
EZ̃(tL)Z̃(tL + b2−1/H t) − EZ̃J (tL)Z̃J (tL + b2−1/H t)

)
= θ2 t̃ 2H

L

2

(
(1 + s/t̃L)2H + (1 + t/t̃L)2H − (|t − s|/t̃L)2H )

− θ2f
(
D/tL, s/t̃L, (t − s)/t̃L

)
− θ2 t̃ 2H

L

[
(v(s/t̃L) − f (D/tL,0, s/t̃L))(v(t/t̃L) − f (D/tL,0, t/t̃L))

1 − f (D/tL,0,0)

]
,

where v(·) and f (·, ·, ·) are as above. Straightforward algebraic manipulations then
give

[cov(Ŷ b(s), Ŷ b(t)|H) − cov(Ŷ (s), Ŷ (t))]θ−2 t̃−2H
L

(
1 − f (D/tL,0,0)

)
= 1 − f (D/tL,0,0)

2

×
[(

1 + s

t̃L

)2H

−
∣∣∣∣ s

t̃L

∣∣∣∣2H

+ (1 + t/t̃L)2H − |t/t̃L|2H − 2f

(
D

tL
,

s

t̃L
, (t − s)/t̃L

)]

−
[
v

(
s

t̃L

)
− f

(
D

tL
,0,

s

t̃L

)]
·
[
v(t/t̃L) − f

(
D

tL
,0, t/t̃L

)]

= (
1 − f (D/tL,0,0)

)[
f (D/tL,0, t/t̃L) + f

(
D/tL,0,

s

t̃L

)

− f (D/tL,0,0) − f

(
D/tL,

s

t̃L
, (t − s)/t̃L

)]

−
[
f

(
D/tL,0,

s

t̃L

)
− f (D/tL,0,0)

]
[f (D/tL,0, t/t̃L) − f (D/tL,0,0)]

+
(
v

(
s

t̃L

)
− 1

)
[f (D/tL,0, t/t̃L) − f (D/tL,0,0)]

+ (
v(t/t̃L) − 1

)[
f

(
D/tL,0,

s

t̃L

)
− f (D/tL,0,0)

]

−
(
v

(
s

t̃L

)
− 1

)(
v(t/t̃L) − 1

)
,

and the last four terms can be shown to be O(b−2(1/H−1)) = O(t̃−2
L ) as b → ∞,

so that

[cov(Ŷ b(s), Ŷ b(t)|H) − cov(Ŷ (s), Ŷ (t))]θ−2 t̃−2H
L

= f (D/tL,0, t/t̃L) + f (D/tL,0, s/t̃L) − f (D/tL,0,0)

− f
(
D/tL, s/t̃L, (t − s)/t̃L

) + O(t̃−2
L )
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= H

∫ D/tL

0
{g(D/tL,1,−u)[(1 + u + t/t̃L)2H−1

+ (1 + u + s/t̃L)2H−1]
− g(D/tL,1,−u)[(1 + u)2H−1 + u2H−1]
− g(D/tL,1 + s/t̃L,−u)[(1 + u + t/t̃L)2H−1 − u2H−1]}du

+ O(t̃−2
L )

= H

∫ D/tL

0
{g(D/tL,1,−u)[(1 + u + s/t̃L)2H−1 − (1 + u)2H−1]

− (1 + u + t/t̃L)2H−1

× [g(D/tL,1 + s/t̃L,−u) − g(D/tL,1,−u)]}du

+ O(t̃−1
L Dt−1

L ),

where the last step follows because

∣∣∣∣
∫ D/tL

0
u2H−1[g(D/tL,1,−u) − g(D/tL,1 + s/t̃L,−u)]du

∣∣∣∣
= CH

∫ D/tL

0
uH−1/2(D/tL − u)−H+1/2

×
∫ 1∨(1+s/t̃L)

1∧(1+s/t̃L)

yH−1/2(y + D/tL)H−1/2

y + u
dy du

≤ 2|s/t̃L|
∫ D/tL

0
uH−1/2(D/tL − u)−H+1/2 du

= 2|s/t̃L|(D/tL)

∫ 1

0
vH−1/2(1 − v)−H+1/2 dv

= O(t̃−1
L Dt−1

L )

as b → ∞. Put

h(d, x,u) �
∫ 1+x

0

yH−1/2(y + d)H−1/2

y + u
dy,

and note that there exist constants c6 and c7 such that, for all small enough d and
all 0 < u, |x| < d ,

|(1 + u + x)2H−1 − (1 + u)2H−1 − (2H − 1)(1 + u)2H−2x| ≤ c6x
2,

|h(d, x,u) − h(d,0, u) − x(1 + d)H−1/2(1 + u)−1| ≤ c7x
2.
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It follows that, for all large enough b,∣∣ cov(Ŷ b(s), Ŷ b(t)|H) − cov(Ŷ (s), Ŷ (t))
∣∣θ−2 t̃−2H

L

= H

∫ D/tL

0
u−H+1/2

(
D

tL
− u

)−H+1/2

×
∣∣∣∣[(1 + u + s/t̃L)2H−1 − (1 + u)2H−1]h

(
D

tL
,0, u

)

− (1 + u + t/t̃L)2H−1

× [h(D/tL, s/t̃L,−u) − h(D/tL,0,−u)]
∣∣∣∣du

+ O(t̃−1
L Dt−1

L ),

= H

∫ D/tL

0
u−H+1/2(D/tL − u)−H+1/2

× |(2H − 1)(1 + u)2H−2h(D/tL,0, u)(s/t̃L)

− (1 + u + t/t̃L)2H−1(1 + D/tL)H−1/2(1 + u)−1(s/t̃L)|du

+ O
(
(s/t̃L)2(D/tL)2(1−H)) + O(t̃−1

L Dt−1
L ).

But there exist constants c8, c9 such that, for all small enough d and all 0 < u,

|y| < d ,

(1 + d)H−1/2 − 1 ≤ c8d and |(1 + u + y)2H−1 − (1 + u)2H−1| ≤ c9|y|,
so that, for all large enough b,∣∣ cov(Ŷ b(s), Ŷ b(t)|H) − cov(Ŷ (s), Ŷ (t))

∣∣θ−2 t̃−2H
L

≤ H(s/t̃L)

∫ D/tL

0
u−H+1/2

(
D

tL
− u

)−H+1/2

(1 + u)2H−2

×
∣∣∣∣(2H − 1)h

(
D

tL
,0, u

)
− 1

∣∣∣∣du

+ O
(
(s/t̃L)(D/tL)3−2H ) + O

(
(s/t̃L)2(D/tL)2(1−H)) + O(t̃−1

L Dt−1
L ).

But, for all small enough d > 0, |(2H − 1)h(d,0, u)− 1| ≤ 5(1 −H)−1d2H−1, so
that for an appropriate constant c10 and all large enough b,∣∣ cov(Ŷ b(s), Ŷ b(t)|H) − cov(Ŷ (s), Ŷ (t))

∣∣θ−2 t̃−2H
L

≤ c10(s/t̃L)

(
D

tL

)2H−1 ∫ D/tL

0
u−H+1/2

(
D

tL
− u

)−H+1/2

(1 + u)2H−2 du

+ O(t̃−1
L Dt−1

L )
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= c10(s/t̃L)(D/tL)2H−1O
(
(D/tL)2(1−H)) + O(t̃−1

L Dt−1
L )

= O
(
t̃−1
L (D/tL)

)
,

and we conclude that∣∣ cov(Ŷ b(s), Ŷ b(t)|H) − cov(Ŷ (s), Ŷ (t))
∣∣ = O

(
t̃2H−1
L (D/tL)

)
= O

(
b−(1−H)2/H+r)

= o(b−ε2)

for any 0 < ε2 < −(1 − H)2/H + r . �

LEMMA 4. Assume (5) and (4) hold. Given M > 0, for all large enough b

the function u �→ E(Ŷ b(u)|H) is differentiable on [−M,M] and there exists a
constant C̃M such that, on A(b),∣∣∣∣∂E(Ŷ b(u)|H)

∂u

∣∣∣∣ ≤ C̃M,(22)

u ∈ [−M,M].

PROOF. Recall that, with f and v as in the proof of Lemma 3,

E(Ŷ b(u)|H) = b1−2H f (D/tL,0, u/t̃L) − v(u/t̃L)

1 − f (D/tL,0,0)
Z̃J

G (tL)

+ b1−2H Z̃J
G (tL + b2−1/H u)(23)

+ [E(Ŷ b(u)|G) − E(Ŷ b(u)|K)] + E(Ŷ b(u)|K).

The first term on the RHS in (23) is differentiable (as a function of u), and

∂

∂u

(
b−2H+1 f (D/tL,0, u/t̃L) − v(u/t̃L)

1 − f (D/tL,0,0)
Z̃J

G (tL)

)

=
[
(∂f/∂x3)(D/tL,0, u/t̃L) − v′(u/t̃L)

1 − f (D/tL,0,0)

]
[b1−2H Z̃J

G (tL)t̃−1
L ].

Here, the first factor on the RHS is bounded over [−M,M] for large enough b,
while the second factor does not depend on u and is o(1) as b → ∞, as can be
seen from (19) in the proof of Lemma 2. Hence, there exists a constant C̃M1 such
that, on A(b),∣∣∣∣ ∂

∂u

(
b−2H+1 v(u/t̃L) − f (D/tL,0, u/t̃L)

1 − f (D/tL,0,0)
Z̃J

G (tL)

)∣∣∣∣ ≤ C̃M1,

u ∈ [−M,M].
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For the second term on the RHS in (23), the integral representation used in the
proof of Lemma 2 can be used to obtain

b1−2H ∂

∂u
Z̃J

G (tL + b2−1/H u)

= b1−2H CH

tL

∫ D/tL

0
x1/2−H

(
D

tL
− x

)1/2−H

× (1 + u/t̃L)H−1/2(1 + D/tL + u/t̃L)H−1/2

(1 + x + u/t̃L)

×
[
H − 1/2

x
− H − 1/2

D/tL − x
− 1

1 + x + u/t̃L

]
Z̃G (xt̃L) dx.

Using that, on A(b), |Z̃G (−w)| ≤ max(wH bδ,wH−η1) for 0 ≤ w ≤ D/2 and
|Z̃G (−w)| ≤ max((D − w)Hbδ, (D − w)H−η1) for D/2 ≤ w ≤ D, one can con-
clude that the RHS on the above equation is bounded, so that there exists C̃M2 such
that, on A(b),

b1−2H

∣∣∣∣ ∂

∂u
Z̃J

G (tL − b2−1/H u)

∣∣∣∣ ≤ C̃M2,

u ∈ [−M,M].
For the third term on the RHS in (23), recall

E(Ŷ b(u)|G) − E(Ŷ b(u)|K)

= θb1−2H · ZK(−tR)

4(1 + D/tL)2H − (1 + (1 + D/tL)2H − (D/tL)2H)2

×
[
2
∣∣∣∣ u

t̃L

∣∣∣∣2H

+ 2
(

1 + D

tL

)2H

− 2
(

1 + D

tL
+ u

t̃L

)2H

−
(∣∣∣∣ u

t̃L

∣∣∣∣2H

+ 1 −
(

1 + u

t̃L

)2H )(
1 +

(
1 + D

tL

)2H

−
(

D

tL

)2H )]
,

whence∣∣∣∣ ∂

∂u

(
E(Ŷ b(u)|G) − E(Ŷ b(u)|K)

)∣∣∣∣
= 2Ht̃−1

L θb1−2H

∣∣∣∣ ZK(−tR)

4(1 + D/tL)2H − (1 + (1 + D/tL)2H − (D/tL)2H )2

∣∣∣∣
×

∣∣∣∣2 sign(u)

∣∣∣∣ u

t̃L

∣∣∣∣2H−1

− 2
(

1 + D

tL
+ u

t̃L

)2H−1

−
(

1 +
(

1 + D

tL

)2H

−
(

D

tL

)2H )
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×
(

sign(u)

∣∣∣∣ u

t̃L

∣∣∣∣2H−1

−
(

1 + u

t̃L

)2H−1)∣∣∣∣
≤ (1 + M2H−1)O(b−ε2),

where the term O(b−ε2) does not depend on u, and ε2 is as in Step 2. Hence, there
exists a constant C̃M3 such that, on A(b),∣∣∣∣ ∂

∂u

(
E(Ŷ b(u)|G) − E(Ŷ b(u)|K)

)∣∣∣∣ ≤ C̃M3,

u ∈ [−M,M].
For the last term on the RHS in (23), one can differentiate the expression for

E(Ŷ b(u)|K) given in (3) (with u in place of s) to obtain

∂

∂u
E(Ŷ b(u)|K) = −2Hκ1|u|2H−1sign(u)(t∗/tL)2H

+ Hb2(1−H)

(1 − H)t̃L

(
1 − (1 + u/t̃L)2H−1) + μt̃−1

L b1−H+r

+ Hb1−2H t̃−1
L [X(−tL) + b + μbH+r ]

× (|u/t̃L|2H−1sign(u) − (1 + u/t̃L)2H−1)
,

and since |X(−tL)+b| ≤ bγ < bH+r on A(b), we conclude there exists a constant
C̃M4 such that, on A(b), ∣∣∣∣ ∂

∂u
E(Ŷ b(u)|K)

∣∣∣∣ ≤ C̃M4,

u ∈ [−M,M]. Taking C̃M = C̃M1 + C̃M2 + C̃M3 + C̃M4, the result follows. �

LEMMA 5. If γ , η1, r and δ satisfy (15)–(17), then

P
{
A(b)�{T b < ∞}} = o(P{T b < ∞}).

PROOF. We show that all the terms on the RHS in (14) are o(P(T b < ∞)) as
b → ∞.

For the first term, note P(A5) ≤ P(T b < tL) = o(P(T b < ∞)) by Theorem 3.
For the second term, choose any ε such that 0 < ε < (2H − 1)(1 − H − r)/8,

and put ν1 � 1 − H + H 2 + rH + ε. Note that

P
(
A0 ∩ {X(−tL) > −b + bν1}) ≤ P

(
sup

0≤s≤2bH+r

Z(−tL) − Z(−tL − s) > bν1/θ
)
,

and it then follows from Borell’s inequality (Lemma 7 below) that there exist con-
stants c1 and c2 such that

P
(
A0 ∩ {X(−tL) > −b + bν1}) ≤ c1 exp

(−c2b
2ν1/b2H(H+r)) = o

(
P(T b < ∞)

)
,
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where the last follows since 2ν1 − 2H(r + H) > 2(1 − H) and

P(T b < ∞) ∼ q(b) exp
(−(

κ2/
(
2(1 − H)

))
b2(1−H)),

where q(·) is a ratio of polynomials, by a result of Hüsler and Piterbarg [15],
Corollary 2.

Let ν1 and ε be as above, and for k ≥ 1 put

νk+1 = (
H + r − (2H − 1)(1 − H − r)

)
/2 + (

νk ∨ (H + r)
)
/2 + ε.

Observe that ν1 > r + H , and it follows from Lemma 6 that

P
(
A0 ∩ {X(−tL) > −b + bν2}) = o

(
P(T b < ∞)

)
as b → ∞. Noting that νk is nonincreasing in k, an inductive application of
Lemma 6 shows that whenever νk > H + r , then

P
(
A0 ∩ {X(−tL) > −b + bνk+1}) = o

(
P(T b < ∞)

)
.

Also, note that if k ≥ 2 and νk > H + r , then

νk − νk+1 = (νk−1 − νk)/2.

It then follows by an inductive argument that, if νk > H + r , then

νk+1 = H + r − (2H − 1)(1 − H − r) + 2−kH(1 − H − r) + 2(1 − 2−k+1)ε.

Let k∗ � inf{k :νk ≤ H + r} and note 1 < k∗ < ∞. Also, note that νk∗ ≥ H + r −
(2H − 1)(1 −H − r)/2. Then, putting ν∗ � νk∗+1 = H + r − (H − 1/2)(1 −H −
r) + ε, it follows by Lemma 6 that

P
(
A0 ∩ {X(−tL) > −b + bν∗}) = o

(
P(T b < ∞)

)
.

If γ satisfies (15) and ε is small enough, then ν∗ < γ , so that the second term on
the RHS in (14) satisfies

P(A0 ∩ A6) = P
(
A0 ∩ {X(−tL) > −b + bγ })

≤ P
(
A0 ∩ {X(−tL) > −b + bν∗}) = o

(
P(T b < ∞)

)
.

For the third term on the RHS in (14), note that

P(A1 ∩ AC
2 )

= EIA1P
(|ZK(−tR)| > bη3 |K

)
≤ P

(
X(−tL) < −b + bγ ) · P

(
2HbH(H+r)|N(0,1)| > bη3

)
But it follows from the Hüsler–Piterbarg asymptotic (13) and equation (26) in the
Proof of Lemma 6 that

P
(
X(−tL) < −b + bγ ) = P(T b < ∞)q(b) exp

(
b2(1−H)O(b−1+H+r )

)
,
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while

P
(
2HbH(H+r)|N(0,1)| > bη3

) = O
(
b−η3+H(H+r) exp

(−b2(η3−H 2−rH)/22H−1))
in view of (16), it then follows that P(A1 ∩ AC

2 ) = o(P(T b < ∞)).
To deal with the fourth term on the RHS in (14), put N � �bη6�, h �

b−2(1−H)/η1 , and � � (t∗ − tL − h)/N , where η6 > 0. Note that

P(A1 ∩ AC
3 ) ≤

N∑
n=0

P(A1 ∩ En) +
N∑

n=0

P(A1 ∩ Bn)

(24)

+
∞∑

n=1

P(A1 ∩ Cn) +
∞∑

n=2

P(A1 ∩ Dn),

where

En � {|ZG (−tL − h − n�)| > (1/2)bδ(h + n�)H },
Bn �

{
sup

0≤s≤�

|ZG (−tL − h − n�) − ZG (−tL − h − n� − s)| > (1/2)bδhH
}
,

Cn � {|ZG (−tL − h/n2)| > (1/2)(h/n2)H−η1},
Dn �

{
sup

hn−2≤s≤h(n−1)−2
|ZG (−tL − s) − ZG (−tL − h/n2)| > (1/2)(h/n2)H−η1

}
.

Note

P(A1 ∩ En)

= EIA1E(IEn |G)

≤ EIA1P
(
(h + n�)H |N(0,1)| > (1/2)(h + n�)Hbδ)(25)

≤ P
(
X(−tL) < −b + bγ )

O
(
b−δ exp(−b2δ/8)

)
= P(T b < ∞)q(b) exp

(
b2(1−H)O(b−1+H+r )

)
O

(
b−δ exp(−b2δ/8)

)
,

where q(b) is a ratio of polynomials and the last step follows from the Hüsler–
Piterbarg asymptotic (13) and equation (26) in the Proof of Lemma 6. Since δ >

(1 − H + r)/2, it follows that there exists a constant c3 > 0 independent of n such
that

P(A1 ∩ En) ≤ P(T b < ∞)q(b)b−δO
(
exp

(
O(b1−H+r ) − b2δ/8

))
,

≤ P(T b < ∞) exp(−c3b
2δ).

Hence,

N∑
n=0

P(A1 ∩ En) ≤ P(T b < ∞)2bη6 exp(−c3b
2δ) = o

(
P(T b < ∞)

)
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as b → ∞.
Next, note that on A1,

|ZG (−tL − h − n� + s) − ZG (−tL − h − n�)| ≤ c4�

for some constant c4 > 0, all 0 ≤ s ≤ � and all 0 ≤ n ≤ N . Thus, provided η6 is
large enough so that �H = o(bδhH ) as b → ∞, it follows that for large enough b

P(A1 ∩ Bn)

≤ P
(

sup
0≤s≤�

|ZG (−tL − h − n� − s) − ZG (−tL − h − n�)| > (1/4)bδhH
)

≤ c5 exp(−c6b
2δh2H�−2H ),

for appropriate positive constants c5 and c6, by Borell’s inequality. Hence, by
choosing η6 large enough we can ensure

P(A1 ∩ Bn) ≤ exp
(−b4(1−H)),

and it then follows that
N∑

n=0

P(A1 ∩ Bn) ≤ 2bη6 exp
(−b4(1−H)) = o

(
P(T b < ∞)

)
as b → ∞.

A similar argument as the one used to analyze P(A1 ∩En) shows that there exist
positive constants c1, c2, c3 such that

P(A1 ∩ Cn) ≤ c1 exp(−c2h
−2η1) exp(−c3n

4η1).

Also, a similar argument as the one used to analyze P(A1 ∩ Bn) shows that there
exist positive constants c4, c5, c6 such that

P(A1 ∩ Dn) ≤ c4 exp(−c5h
−2η1) exp(−c6n

4η1).

It then follows that the last two summations in (24) are of order O(exp(−(c2 ∧
c5)h

−2η1)) = o(P(Tb < ∞)), so that P(A1 ∩ AC
3 ) = o(P(T b < ∞)) as b → ∞.

The proof that P(A1 ∩ AC
4 ) = o(P(T b < ∞)) uses the same type of argument, and

is omitted for brevity.
Hence, all terms on the RHS in (14) are o(P(T b < ∞)), what had to be shown.

�

LEMMA 6. Let r be the small number chosen in the definition of A0. If 1 > ν >

H + r − (2H − 1)(1 − H − r)/2 and P(A0 ∩ {X(−tL) > −b + bν}) = o(P(T b <

∞)), then for any ν̃ > (H + r − (2H − 1)(1 − H − r))/2 + (ν ∨ (H + r))/2 it
also holds that

P
(
A0(b) ∩ {X(−tL) > −b + bν̃}) = o

(
P(T b < ∞)

)
as b → ∞.
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PROOF. Observe that

P
(
A0(b) ∩ {X(−tL) > −b + bν̃})

= P
(
A0(b) ∩ {X(−tL) ∈ [−b + bν̃,−b + bν]}) + o

(
P(T b < ∞)

)
= E

[
I
(
X(−tL) ∈ [−b + bν̃, b − bν]) · P(A0(b)|K)

] + o
(
P(T b < ∞)

)
.

But on {X(−tL) ∈ [−b + bν̃,−b + bν]}, E(X(−tL) − X(−tL − s)|K) = o(1) as
b → ∞. In particular, for all large enough b,

I
(
X(−tL) ∈ [−b + bν̃,−b + bν]) · IA0(b)

≤ I
(

sup
0≤s≤2bH+r

−ZK(−tL − s) > bν̃/(2θ)
)
.

By Borell’s inequality, we can find positive constants c1 and c2 such that

P
(

sup
0≤s≤2bH+r

−ZK(−tL − s) > bν̃/(2θ)
∣∣K

)
≤ c1 exp

(−c2b
2ν̃/b2H(H+r))

on {X(tL) ∈ [−b + bν̃,−b + bν]}. It then follows that

P
(
A0(b) ∩ {X(−tL) > −b + bν̃})

≤ P
(
X(−tL) < −b + bν) · c1 exp

(−c2b
2ν̃−2H(H+r)) + o

(
P(T b < ∞)

)
.

But

P
(
X(−tL) < −b + bν)

(26)

∼ θ(1 − H)b−1 exp
{
− κ2

2(1 − H)
b2(1−H)(1 − h(b)

)}
,

where

h(b) � 1 − (1 − (μ/(1 − H))bH+r−1 − bν−1/(1 − H))2

(1 − (μ(1 − H)/H)bH+r−1)2H
= O

(
b−1+ν∨(H+r))

as b → ∞. Hence, with q(·) a ratio of polynomials,

P
(
A0(b) ∩ {X(−tL) > −b + bν̃})

≤ P(T b < ∞)

{
q(b) exp

(
κ2h(b)

2(1 − H)
b2(1−H)

)
exp

(−c2b
2ν̃−2H(H+r)) + o(1)

}

≤ P(T b < ∞)
{
q(b) exp

(
O

(
b1−2H+ν∨(H+r)) − c2b

2ν̃−2H(H+r)) + o(1)
}

= o
(
P(T b < ∞)

)
as b → ∞, since 1 − 2H + ν ∨ (H + r) < 2ν̃ − 2H(H + r). �
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TABLE 1

tL = t∗ − bH+r ; tR = t∗ + bH+r ; t̃L = b−2+1/H tL; D = 2bH+r

Ŷ b(t) = b−2H+1X(b2−1/H t)

Z̃(t) = Z(−tL + t) − Z(−tL)

K = σ(Z(−tL)) = σ(Z̃(tL))

G = σ(Z(−tL),Z(−tR)) = σ(Z̃(tL), Z̃(−D))

H = σ(Z(s) : − tR < s < −tL) = σ(Z̃(tL), (Z̃(s) : − D < s < 0))

J = σ(Z̃(s) : − D < s < 0)

A0(b) = {∃s ∈ [−tR,−tL] :X(s) = −b}
A1(b) = {X(−tL) ∈ [−b,−b + bγ ]}
A2(b) = {|ZK(−tR)| ≤ bη3}
A3(b) = {|ZG (−tL − s)| ≤ max(sH bδ, sH−η1),0 ≤ s ≤ bH+r }
A4(b) = {|ZG (−tR + s)| ≤ max(sH bδ, sH−η1),0 ≤ s ≤ bH+r }
A(b) = A0(b) ∩ A1(b) ∩ A2(b) ∩ A3(b) ∩ A4(b)

The following result is known as Borell’s inequality in the literature; see Adler
[1], Theorem 2.1. We quote it here since we use it at many points in the proofs of
Theorems 1 and 3.

LEMMA 7 (Borell’s inequality). Let {V (t) : t ∈ T } be a centered Gaussian
process with sample paths bounded a.s. Let V M = supt∈T V (t). Then EV M < ∞
and for all λ > 0

P(|V M − EV M | > λ) ≤ 2e−(1/2)λ2/σ 2
T ,

where σ 2
T = supt∈T varV (t). As an immediate consequence, for λ > EV M ,

P(V M > λ) ≤ 2e−(1/2)(λ−EV M)2/σ 2
T .

In particular, if Z is standard fBM and C � E sup0≤s≤1 Z(s), then for λ > tHC

P
(

sup
s∈[0,t]

Z(s) > λ
)

≤ 2e−(1/2)(λ−tH C)2/t2H

.

Table 1 summarizes selected notation which is used repeatedly at different
points of the argument.
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