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expectations that can be characterized as positive solutions to a linear system, we show there exists an importance measure
that preserves the Markovian nature of the underlying process, and for which a zero-variance estimator can be constructed.
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1. Introduction. Importance sampling (IS) is one of the major variance reduction and efficiency improve-
ment methods used in stochastic simulation, and has enjoyed notable success in certain rare event simulation
problems. A large literature describes its value in application settings as diverse as dependability modeling (e.g.,
Goyal et al. [18], Glynn et al. [17], Shahabuddin [33], Nakayama [29], Heidelberger et al. [23]), queueing theory
(e.g., Glynn and Iglehart [16], Sadowsky [31], Heidelberger [22], Smith et al. [34]), and computational finance
(e.g., Su and Fu [35], Glasserman [14]).

The basic idea behind IS is as follows. One is interested in estimating an expectation of the form � = EZ,
where Z is a random variable defined on a probability space 4ì1F1P5. If the restriction of the probability P to
the event 8Z 6= 09 has a density relative to an alternative probability measure Q, so that

I4Z 6= 05P4d�5= L4�5Q4d�5

for some random variable L (where I4B5 denotes the indicator random variable associated with the event B),
then � can be alternatively expressed as

� =

∫

ì
Z4�5P4d�5

=

∫

ì
Z4�5L4�5Q4d�5

= EQ4ZL51

where we now subscript the expectation operator by Q to denote its dependence on the choice of Q. Hence, �
can be estimated by averaging the random variables Z1L11Z2L21 : : : 1ZnLn obtained as independently sampled
replicates of ZL, sampled under Q. The probability Q is referred to as the importance (probability) measure, or
the change of measure, and L is often called the likelihood ratio. Of course, the simulationist wants to choose
Q so that ZL has small variance (under Q).
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It has long been known that if Z is a nonnegative rv, then a zero-variance change of measure for computing
� = EZ exists. That is, there exists a unique importance measure Q� and associated likelihood ratio L� such
that P is absolutely continuous with respect to Q� on 8Z > 09, and ZL� = �, Q�–a.s. These are given by

Q�4d�5=
Z4�5P4d�5

∫

ì
Z4�′5P4d�′5

1

L�4�5=
I4Z > 05
Z4�5

∫

ì
Z4�′5P4d�′53

(1)

see, for example, Hammersley and Handscomb [20].
The zero-variance change of measure Q� cannot be literally implemented in practice, because L� and Q� both

contain the unknown quantity �. Nevertheless, (1) provides valuable theoretical guidance to the simulationist on
how to construct a “good” change of measure: it suggests that an estimator with low variance can be obtained
by using an importance measure Q that weights outcomes roughly in proportion to Z4�5P4d�5.

When the above zero-variance change of measure is specialized to the computation of probabilities, so that
Z = I4A5 for some event A, the zero-variance change of measure requires simulating from the conditional
distribution given the rare event, i.e., Q�4 · 5 = P4· � A5. Again, this insight is not applied literally. Rather,
it suggests that one will get significant variance reduction by building an importance sampler that is a good
approximation to sampling from the conditional distribution.

This insight has been successfully applied to rare-event simulation for Markov chains and processes. (We use
the term chain for discrete time and process for continuous time.) When used in the context of computing exit
probabilities for Markov chains and processes, the process retains its Markov dynamics under the zero-variance
change-of-measure Q�4 · 5 = P4· � A5; this knowledge allows the simulationist to concentrate on so-called state-
dependent (i.e., Markovian) importance sampling algorithms. Within that class, an importance sampler exhibiting
good variance reduction characteristics is obtained by using the problem structure to develop a good approxi-
mation to the exit probability function u∗ satisfying u∗ = Pu∗ (often by leveraging off large deviations results).
This approach implicitly underlies all the known efficient algorithms for computing rare-event probabilities, both
for light-tailed and heavy-tailed models; see, for example, Chang et al. [8], Glasserman et al. [15], Dupuis and
Wang [10, 11], Borkar et al. [6], and Blanchet and Glynn [3].

Our goal here is to develop a corresponding theory for computing general expectations for path functionals
of Markov chains and processes. In particular, we will study the question of when a zero-variance change of
measure exists that is Markovian. As in the rare-event computation setting, the knowledge that the zero-variance
change of measure is itself Markov suggests that in building practical importance samplers for expectations, one
can restrict the search space to Markov changes of measure. This offers two advantages in terms of algorithm
design:

• The search space is vastly reduced. Consider, for example, an expectation that involves a chain on d states
over n time steps. With no a priori structure on the appropriate importance distribution, the search space has a
dimension of order dn (that is, the number of paths). With a Markov change of measure, one needs to assign
n−1 different transition matrices to fully determine the change of measure, so the number of decision variables
is reduced to the order of nd2. Finally, as we shall see later, the particular Markov change of measure that turns
out to be zero variance is completely characterized, at each time step, by a specific function defined on the states
of the chain. The number of decision variables in developing a good approximation to the zero-variance change
of measure is therefore further reduced to the order of nd.

• Effective implementation of a good importance sampler also requires an ability to efficiently simulate
sample paths under the proposed importance distribution. This implementation is generally much easier when
the joint distribution is Markov than when simulating from an arbitrary joint distribution involving n rvs. For
example, if a discrete-event simulation is a GSMP (generalized semi-Markov process) under P, but loses the
Markov property under a change of measure, then to simulate the system dynamically it is not enough to know
the “physical state” and the state of the “clocks,” but rather one needs to keep track of the whole trajectory
of the process and compute increasingly complicated conditional laws. Similarly, when simulating a diffusion,
a Markovian change of measure will yield another diffusion, which can be simulated using simple Euler-type
schemes. In contrast, if the change of measure does not preserve the Markov dynamics, implementing an Euler
scheme may involve keeping track of the sample path to compute each increment. Moreover, if the change of
measure is not of Girsanov type (which may be the case for Q�), the resulting process may not be amenable to
simulation via the Euler method at all.
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As we discuss in §2, the class of path functionals for which the zero-variance change-of-measure Q� is Markov
is fairly restrictive, consisting only of certain product-form functionals. However, one of our main results, in §3,
shows that this class can be greatly expanded if one allows the use of filtered importance sampling estimators
(i.e., estimators in which each summand of an additive path functional is multiplied by a different likelihood
ratio, where the sequence of likelihood ratios is adapted to the Markov process; cf. Glasserman [13]): We show
that a wide class of functionals, whose expectations can be characterized as positive solutions to a linear system,
are amenable to zero-variance estimation, in the sense that a Markovian change-of-measure Q∗ exists under
which a filtered estimator has zero variance. Of course Q∗ does not coincide with Q� for those functionals for
which Q� is not Markov. In fact, it may well be that Q� is not absolutely continuous with respect to Q∗2 Q�

has the property that, when restricted to the sigma-algebra generated by the Markov process up to a finite time
and the event that the path functional of interest is nonzero, P is absolutely continuous with respect to Q�;
in contrast, Q∗ does not necessarily have this property. Another interesting point is that, in some settings, Q∗

may not be unique: more than one zero-variance Markovian change of measure and associated filtered estimator
may exist to compute the same expectation.

Our work here is the importance-sampling analog to Henderson and Glynn’s [24] work on control variates
schemes via approximating martingales. Henderson and Glynn [24] consider the use of appropriately chosen
martingales as control variates to estimate many different performance measures for a wide class of Markov
processes. In their work the martingales are defined in terms of a function u, which, if chosen as the (unknown)
solution to the linear system that characterizes the desired performance measure, then the control variate estimator
has zero variance; more realistically, u can be chosen as an approximation to the solution of the linear system in
question, to obtain a martingale control variate that presumably provides significant variance reduction. Here, we
characterize the zero-variance change-of-measure Q∗ in terms of the solution to a linear system—a linear integral
equation in the Markov chain setting and a linear partial differential equation in the diffusion setting. Knowledge
of the solution to this system would allow one to construct a zero-variance filtered IS estimator. In practical
situations, a simulationist may be able to use the problem structure to develop a good approximation to the
solution to the linear system, and use this approximation to construct an importance sampler: what L’Ecuyer
and Tuffin [27] call approximate zero-variance simulation. We expect that, in this manner, the characterization
of the zero-variance estimators we provide here may help guide the search for an importance sampler with good
variance reduction properties, as has been the case in the rare-event simulation setting discussed earlier.

Another way to construct an importance sampler that approximates Q∗ is to use the simulation output itself
to estimate the solution of the linear system involved and use these estimates to dynamically modify the change
of measure used to run the simulation; this leads to adaptive schemes, in which the change of measure gradually
converges to Q∗. Ahamed et al. [1] develop and prove convergence of such an adaptive scheme, in the finite-state
space Markov chain setting, to estimate the expectation of an additive path functional (a particular case of the
ones we consider in §3). Bolia et al. [4] also propose such an adaptive scheme to estimate the price of an
option: their setup is a time-inhomogeneous Markov chain living in �d, and the functional is a “final reward”
(a particular case of the ones we consider in §2). Adaptive schemes have also been developed and studied–
motivated by applications in particle physics: see for example Booth [5], Kollman et al. [26] (both in the finite
state-space setting), and Baggerly et al. [2] (who work with a general state space); they study the convergence
rate of their adaptive algorithms to the zero-variance measure (polynomial in Booth [5], geometric in Kollman
et al. [26], and Baggerly et al. [2]). (See also Halton [19] for earlier work related to Booth’s.) Each of the above
studies on adaptive schemes describes the zero-variance importance measure and associated filtered estimator
for estimating the expectation of some class of additive path functionals; the path functionals they study, as
well as the model frameworks with which they work, are particular cases of those covered in §3. The same is
true of L’Ecuyer and Tuffin’s [27] work, which is also closely related to ours; they present examples of good
importance samplers—to estimate various rare event probabilities—which were obtained by approximating the
solution to the linear system involved.

When implementing approximate zero-variance importance sampling, in the sense described above, the result-
ing estimator will not have zero variance, and a simulationist would like to have some type of guarantee on
its efficiency. In §6 we develop bounds on the mean-square error (MSE) of such an estimator. These bounds
are based on Lyapunov inequalities, and extend the bounds developed by Blanchet and Glynn [3] for estimators
of exit probabilities to the more general class of expectations considered here. Apart from the MSE of the
estimator, a simulationist would also be concerned with the length of the simulation run required to compute the
estimator. As we discuss below, this can be a very relevant concern in the setting considered here. For example,
if the linear system characterizing the desired expectation has multiple nonnegative solutions, and the “wrong”
(nonminimal) solution is used as the approximation to implement the approximate zero-variance sampler, then
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there is necessarily a positive probability that the estimator will need an infinite run length to be computed;
moreover, on the event that it is computed in finite time, the estimator is over biased. (See Theorem 2 and
discussion in §6.) This concern is also relevant to adaptive schemes like the ones mentioned in the previous
paragraph, because it is plausible that an adaptive scheme may converge to the wrong solution of the relevant
linear system. One important practice recommendation from our work is, therefore, that when implementing
approximate zero-variance importance sampling for expectations of the class considered here, a simulationist
should always impose a condition ensuring that the completion time is finite a.s. under the importance measure;
we discuss this issue in §6.

2. The zero-variance change of measure for Markov chains. In this section and the next, the setting
is a probability space 4ì1F1P5 supporting a Markov chain X = 4Xj 2 j ≥ 05 in state space 4S1S5, where
S is a Polish (complete, separable, metric) space and S the Borel sigma-field on S. We denote by 8Fj =

�4X01 : : : 1Xj51 j ≥ 09 the filtration generated by X, and by P the one-step transition kernel of X (under P).
For any probability measure Q in 4ì1F5 we write EQ to denote the expectation operator associated with Q,
and Qx4 · 5 = Q4· � X405 = x5. (More precisely, Qx4 · 5 = �Q4x1 ·5, where 4�1A5 7→ �Q4X04�51A5 is a regular
conditional probability given F0.) We use E and Ex to denote expectation with respect to P and Px, respectively.

As discussed in the introduction, given a nonnegative random variable Z with finite mean, there is a unique
change-of-measure Q on F such that the importance sampling estimator Z4d P/dQ5 of � = EZ has zero
variance; namely, Q� satisfying dQ�/d P = cZ, where c = 1/EZ.

In the Markov chain setting, Z will be a path functional of the form Z = f 4X01X11 : : : 5. So, dQ�/d P =

cf 4X01X11 : : : 5. Because X is Markov under P, it will be Markov under a change-of-measure Q iff dQ/d P is
of the form

∏

i qi4Xi1Xi+15. Hence, the zero-variance change-of-measure Q� will make X Markov iff Z is P–a.s.
of the form

Z = f 4X01X11 : : : 5=

�
∏

i=0

qi4Xi1Xi+151 (2)

where the infinite product has finite expectation with respect to (w.r.t.) P. (Of course, if f depends on the path
of X only up to a finite time n, then qi = 1 for i > n.)

When Z = IA for some event A, then Q� corresponds to P4· � A5. As the next three examples illustrate, the
indicator of many events of interest in applications can be expressed in product form; hence, the zero-variance
change-of-measure Q� associated with them preserves the Markov dynamics.

Example 1 (Tail Probabilities for a Hitting Time). For x ∈ S and K ⊂ S, put T 4K5= inf8j≥02 Xj ∈K9,
and suppose that we wish to compute �= Px4T 4K5 > n5, the probability that K has not been hit by time n, for
n > 0. Note that � = E I4T 4K5 > n5, and I4T 4K5 > n5 =

∏n
i=1 I4Xi 6∈ K5, so Q� = P4· � T 4K5 > n5 will induce

Markov dynamics on X. In fact, for 0 ≤m≤m+ j ≤ n,

Q�4Xm+j ∈ B �Xi2 0 ≤ i ≤m5= P̃ 4n−m1j1Xm1B51

where P̃ 4i1 j1 y1B5= Py4Xj ∈ B � T 4K5 > i5, showing X is indeed a Markov chain (with nonstationary transition
probabilities) under Q�.

Example 2 (Probability Mass Function of a Hitting Time). In the same setting as the previous exam-
ple, suppose that we wish to compute �= Px4T 4K5= n5, the probability that X first hits K at time n. Note that
�= E I4T 4k5= n5, and I4T 4k5= n5= I4Xn ∈K5

∏n−1
i=1 I4Xi 6∈K5, so X is a Markov chain under Q�4· � T 4K5=

n5. Indeed, for 0 ≤m≤m+ j ≤ n,

Q�4Xm+j ∈ B �Xi2 0 ≤ i ≤m5= P̃ 4n−m1j1Xm1B51

where P̃ 4i1 j1 y1B5= Py4Xj ∈ B � T 4K5= i5. (Note X has nonstationary transition probabilities under Q�.)

Example 3 (Distribution of Xn). Suppose that we wish to compute � = Px4Xn ∈ K5 the probability that
X is in K at time n. Note that � = E I4Xn ∈ K5 is trivially of product form, so X is a Markov chain under
Q� = P4· �Xn ∈K5. Indeed, for 0 ≤m≤m+ j ≤ n,

Q�4Xm+j ∈ B �Xi2 0 ≤ i ≤m5= P̃ 4n−m1j1Xm1B51

where P̃ 4i1 j1 y1B5= Py4Xj ∈ B �Xi ∈K5. (Again, X has nonstationary transition probabilities under Q�.)
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On the other hand, there are events of interest for which the indicator does not have product form, so the
associated zero-variance change-of-measure Q� does not preserve the Markov structure.

Example 4 (Distribution of an Additive Functional of X). For g2 S×S→�, let ân=
∑n

j=0g4Xj1Xj+15
be the associated additive functional of X. For x ∈ S, put �= Px4ân >�5, and set Q�4 · 5= Px4· � ân >�5. Note
I4ân >�5 cannot be written as a product

∏�

i=0 qi4Xi1Xi+15, so that Q� does not induce Markov dynamics on X.
In fact, for 0 ≤m≤m+ j ≤ n,

Q�4Xm+j ∈ B �Xi2 0 ≤ i ≤m5= P̃ 4n−m1j1Xm1 � − âm1B51

where P̃ 4i1 j1 y1 r1B5= Py4Xj ∈ B � âi > r5.
Here, X is not Markov under Q� because the conditional distribution of X, given its history up to m, depends

on both Xm and âm. Of course, if we append âm to Xm as a “supplementary variable,” then 4X1â5 is Markov
under Q�. We return to this issue in §3.

Moving beyond estimating probabilities, and turning to more general expectations, there are some functionals
of interest that have the required product form.

Example 5 (Expected Discounted Terminal Reward). Suppose that we wish to compute � =

Ex

∏n
i=0 �4Xj1Xj+15g4Xn5. Because this functional has the requisite product form, Q� will preserve the Markov

structure of X. We give an explicit expression for the transition kernel of X under Q� in §3.

Example 6 (Moment Generating Function of an Additive Functional of X). Consider again an
additive functional of X, ân =

∑n
j=0 h4Xj1Xj+15, and suppose one is interested in evaluating its moment gener-

ating function at the point � ∈�, i.e., computing �4�5= Ex exp4�ân5. Because this functional has the requisite
product form, the zero variance change of measure Q� will preserve the Markov structure of X. (This is, of
course, a particular case of Example 5 with g = 1 and �= eh.)

If Z is a path functional involving a hitting time T = inf8j2 Xj ∈ K9 (where K ⊂ S), so that Z =
∑�

i=0 fi4X01 : : : 1Xi5I4T = i5, then requiring Z to have the product form (2) seems, at first glance, so restric-
tive that one cannot expect Q� to preserve the Markov structure of X on any nontrivial example. However,
one should note that one only needs to simulate X up to the hitting time T , so it is enough if Q� induces
Markov dynamics on X over 801 : : : 1 T 9. Hence, one need only consider the restrictions of P and Q� to FT ,
the sigma-algebra generated by X up to the stopping time T . As before, the unique change of measure on FT

such that the importance sampling estimator Z4d P/dQ5 has zero variance is Q� satisfying dQ�/d P = cZ. For
X to be Markov under Q�, dQ�/d P must be of the form

∏T−1
i=0 qi4Xi1Xi+15. Hence, for Q� to make X Markov

on 801 : : : 1 T 9 it is necessary and sufficient that Z be P–a.s. of the form

Z = fT 4X01X11 : : : 1XT 5=

T−1
∏

i=0

qi4Xi1Xi+151

so that the product form criterion arises again in the hitting time setting.
The problems in Examples 1–6 considered functionals that depended on X up to a deterministic time n; they

all have counterparts in which the functional depends on X up to a hitting time. For the following examples, fix
K ⊂ S and let T = inf8n≥ 02 Xn ∈K9 be the first hitting time of K. Assume that Px4T <�5= 1, x ∈ S.

Example 7 (Exit Probabilities: Distribution of X at a Hitting Time T ). For D ⊂K, our goal here is
to compute �= Px4XT ∈D5. Note that I4XT ∈D5 is trivially of the form

∏T−1
i=1 qi4Xi1Xi+15. (Put qi4x1 y5= 0 for

y ∈K\D and 1 otherwise.) Hence, Q� = Px4· �XT ∈D5 makes X Markov over 801 : : : 1 T 9. In fact, on 8T >m9,

Q�4Xm+1 ∈ B �Xi2 0 ≤ i ≤m5=

∫

B
P4Xm1 dy5

u4y5

u4Xm5
1

where u4y5
4

= Py4XT ∈ D5, y ∈ S. Note X retains stationary transition probabilities under Q�. (For additional
discussion, see Glynn and Iglehart [16].)

Example 8 (Probability of Hitting K Before D). For D ⊂ S and denoting T 4D5 the first hitting time
of D, our goal here is to compute � = Px4T 4D5 > T 5, i.e., the probability of hitting K before D. Note that
I4T 4D5 > T 5 =

∏T
i=0 I4Xj 6= D5, so that Q� = Px4· � T 4D5 > T 5 makes X Markov over 801 : : : 1 T 9. In fact, on

8T >m9,

Q�4Xm+1 ∈ B �Xi2 0 ≤ i ≤m5=

∫

B
P4Xm1 dy5

u4y5

u4Xm5
1

where u4y5
4

= Py4T 4D5 > T 5, y ∈ S. Again, we see X retains stationary transition probabilities under Q�.
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Example 9 (Expected Discounted Terminal Reward at a Hitting Time). Suppose that we wish to
compute � = Ex

∏T−1
i=0 �4Xj1Xj+15g4XT 5. Because this functional has the requisite product form, Q� will pre-

serve the Markov structure of X over 801 : : : 1 T 9. We give an explicit expression for the transition kernel of X
under Q� in §3.

3. The zero variance filtered change of measure for Markov chains. In the same setting as in the previous
section, consider now a path functional Z with the additive form

Z =
∑

i

fi4X01 : : : 1Xi50

Suppose one wants to estimate �4x5 = Ex Z, for x ∈ S, using an importance measure Q satisfying P4d�5 =

LQ4d�5 on some appropriate sigma algebra. Instead of using the conventional importance sampling estimator
ZL, the additive structure gives one the ability to apply a different likelihood ratio to each of the summands,
i.e., to construct estimators of the form

W =
∑

i

fi4X01 : : : 1Xi5Li0

(Here Li = E4L � X01 : : : 1Xi5.) In the spirit of Glasserman [13] we call this a filtered importance sampling
estimator.

As we will see below, using filtered estimators extends the class of functionals whose expectation can be
computed via Markovian zero-variance importance sampling (beyond the product-form functionals discussed
in the previous section). In particular, a class of (generalized) expected cumulative discounted rewards can be
computed via a zero-variance filtered importance sampling estimator; that is, expectations of the form �4x5

4

=

Ex Z, where

Z
4

= f 4X05+

T
∑

i=1

[

f 4Xi5+ g4Xi−11Xi5
]

i
∏

j=1

�4Xj−11Xj53 (3)

here T is the first hitting time of a set K ⊂ S (i.e., T = inf8n≥ 02 Xn ∈K9), f 2 S → 601�5, �2 S×S → 401�5,
and g2 S × S → 601�5; we assume for notational ease that g4x1 ·5= 0 for x ∈K.

The expectations of product-form functionals discussed in the previous section are special cases of (3). In par-
ticular, an exit probability at a hitting time T and the expected discounted terminal reward at a hitting time
(as in Examples 7–8) are covered by (3). The finite-horizon expectations of product form functionals (as those
in Examples 1–3, 5–6) can also be put into the form (3) by appending the time to the state—see Corollary 1.
However, (3) is significantly more general, covering expectations beyond those of product form functionals,
e.g., the expected sojourn on a set D before hitting a set K, or the expected discounted cumulative reward until
hitting a set K. Also, on our next theorem we permit K = �, in which case T = �, so that the infinite horizon
expected discounted reward is also a special case of the expectation (3) (having �4x1 y5= � for some �< 1).

The Markovian change of measure and associated filtered estimator that we construct will be closely connected
with positive solutions to the linear system (4), whose existence we assume:

Assumption 1. There exists a finite nonnegative solution u to the linear integral equation

u4x5= f 4x5+

∫

S
�4x1 y56g4x1 y5+ u4y57P4x1dy51 x ∈KC1 (4)

subject (if K 6= �) to the boundary condition u4x5= f 4x5 for x ∈K.

We note that the expectation �4 · 5 given in (3) corresponds to the minimal nonnegative solution to (4), which
we denote u∗. Hence, if Ex Z <� for x ∈KC , Assumption 1 holds.

Given any nonnegative function u2 S → 601�5, we construct a change of measure based on it as follows.
Define

w4x5
4

= f 4x5+

∫

S
�4x1 y56g4x1 y5+ u4y57P4x1dy51 x ∈KC 0

(Note w = u if u is a solution to (4).) Let Q be the measure on FT under which X is a Markov chain with one
step transition kernel

M4x1dy5=











�4x1 y56g4x1 y5+ u4y57P4x1dy5

w4x5− f 4x5
1 x ∈KC1 w4x5 > f 4x51

P4x1dy51 otherwise0
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Put

W = f 4X05+

T
∑

i=1

[

f 4Xi5+ g4Xi−11Xi5
]

Li

i
∏

j=1

�4Xj−11Xj51 (5)

where Li =
∏i

j=1 l4Xi−11Xi5 and

l4x1 y5=











w4x5− f 4x5

�4x1 y56g4x1 y5+ u4y57
1 x ∈KC1 w4x5 > f 4x51 g4x1 y5+ u4y5 > 01

11 else0

In the particular case in which u= u∗, the minimal nonnegative solution to (4), we denote the above objects Q∗,
M∗ and l∗, respectively.

Our next result shows that, in great generality, W is an unbiased estimator of �4x5 under Qx. (Note the result
does not use Assumption 1: in particular, u is not necessarily a solution to (4).)

Theorem 1. Suppose u2 S →� satisfies f 4x5≤ u4x5 <� for x ∈ S, and u4x5 > f 4x5 for x ∈A, where

A=
{

x ∈KC 2 Px4Z > f 4x55 > 0
}

0

Also, assume
∫

S
u4y5�4x1 y5P4x1dy5 <� for x ∈KC . Then EQx

W = �4x5.

Proof. For i ≥ 1 and x0 ∈A, put

Ai4x05
4

=
{

4x11 : : : 1 xi52 xj ∈A1 j < i3 f 4xi5+ g4xi−11 xi5 > 0
}

0

Note that, for i ≥ 1, f 4Xi5+g4Xi−11Xi5= 0 on 84X11 : : : 1Xi52 6∈Ai4x59, both Px–a.s. and also Qx–a.s. (because
Qx � Px on Fi∧T ). Also, if x ∈ A then it must be that Px4f 4X15+ g4x1X15 > 05 > 0 or P4x1A5 > 0; in either
case,

∫

S
�4x1 y56g4x1 y5+u4y57P4x1dy5 > 0, so that w4x5 > f 4x5 for x ∈A. Hence, for i ≥ 1 and 4x01 : : : 1 xi5 ∈

A×Ai4x05,

l4xj−11 xj5=
w4xj−15− f 4xj−15

�4xj−11 xj56g4xj−11 xj5+ u4xj57
1 j ≤ i0

It follows that Px �Qx on 84X11 : : : 1Xi5 ∈Ai4x59∩Fi∧T . Thus, for fixed x ∈A and denoting x0 = x,

Ex Z = f 4x5+

�
∑

i=1

Ex6f 4Xi5+ g4Xi−157

( i
∏

j=1

�4Xj−11Xj5

)

I4T ≥ i5

= f 4x5+

�
∑

i=1

∫

KC×···×KC×S
6f 4xi5+ g4xi−157

( i
∏

j=1

�4xj−11 xj5

)

P4x1dx15 · · ·P4xi−11 dxi5

= f 4x5+

�
∑

i=1

∫

Ai4x5
6f 4xi5+ g4xi−157

( i
∏

j=1

�4xj−11 xj5

)

P4x1dx15 · · ·P4xi−11 dxi5

= f 4x5+

�
∑

i=1

∫

Ai4x5
6f 4xi5+ g4xi−157

( i
∏

j=1

�4xj−11 xj5l4xj−11 xj5

)

M4x1dx15 · · ·M4xi−11 dxi5

= EQx
W0 �

When u is a solution to (4), one can say more about the behavior of W ; and if u= u∗, then W has zero-variance
under Q∗, as our next result shows.

Theorem 2. Let u be as in Assumption 1. Then, the following hold:
(i) On 8T <�9, W = u4X05, Q-a.s.

(ii) If u= u∗, W = u∗4X05, Q
∗-a.s.

Proof. Set Y0 = u4X05, and for n≥ 1 put

Yn = f 4X05+

4T∧n5−1
∑

i=1

[

f 4Xi5+ g4Xi−11Xi5
]

Li

i
∏

j=1

�4Xj−11Xj5

+LT∧n

[

g4XT∧n−11XT∧n5+ u4XT∧n5
]

T∧n
∏

j=1

�4Xj−11Xj50
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Observe that, on 8T > n9,

Yn+1 = Yn +
{

f 4Xn5− u4Xn5+�4Xn1Xn+15l4Xn1Xn+15
[

g4Xn1Xn+15+ u4Xn+15
]}

Ln

n
∏

j=1

�4Xj−11Xj50

Note that Xn ∈KC on 8T > n9. Hence, if u4Xn5 > f 4Xn5, it immediately follows that

f 4Xn5− u4Xn5+�4Xn1Xn+15l4Xn1Xn+15
[

g
(

Xn1Xn+1 + u4Xn+1

)]

= 01 (6)

so that Yn+1 = Yn. On the other hand, if u4Xn5= f 4Xn5, then

∫

S
�4Xn1 y5

[

g4Xn1 y5+ u4y5
]

P4Xn1 dy5= 03

see (4). Since M4x1 ·5= P4x1 ·5 when u4x5= f 4x5, it follows that EQ6g4Xn1Xn+15+u4Xn+15 �Xn7= 0, implying
that g4Xn1Xn+15 + u4Xn+15 = 0 Q-a.s. on 8u4Xn5 = f 4Xn59. As a consequence, (6) also holds when u4Xn5 =

f 4Xn5. We conclude that Yn+1 = Yn whenever n < T . Since W = YT on 8T < �9 and Y0 = u4X05, we find that
W = u4X05 on 8T <�9. This proves part (i).

To prove part (ii), all that remains to be shown is that if u= u∗ then W = u4X05 also holds on 8T = �9. For
this, note that on 8T = �9,

u4X05 = f 4X05+

n−1
∑

i=1

[

f 4Xi5+ g4Xi−11Xi5
]

Li

i
∏

j=1

�4Xj−11Xj5

+Ln

[

g4Xn−11Xn5+ u4Xn5
]

n
∏

j=1

�4Xj−11Xj5

for n≥ 0. Hence,

Ln

[

g4Xn−11Xn5+ u4Xn5
]

n
∏

j=1

�4Xj−11Xj5↘ u4X05−W (7)

Q∗–a.s. as n→ � on 8T = �9. But, if u= u∗,

EQ∗
x
I4T > n5Ln

[

g4Xn−11Xn5+ u4Xn5
]

n
∏

j=1

�4Xj−11Xj5

= Ex I4T > n5
[

g4Xn−11Xn5+ u4Xn5
]

n
∏

j=1

�4Xj−11Xj5

= Ex I4T > n5
[

g4Xn−11Xn5+ f 4Xn5
]

n
∏

j=1

�4Xj−11Xj5

+ Ex

�
∑

i=n+1

[

f 4Xi5+ g4Xi−11Xi5
]

I4T > i5
i
∏

j=1

�4Xj−11Xj5

= Ex I4T > n5
T−1
∑

i=n

[

f 4Xi5+ g4Xi−11Xi5
]

i
∏

j=1

�4Xj−11Xj5

−→ 0

by the dominated convergence theorem. (Note the quantity inside the expectation is dominated by Z as in (3),
and Ex Z = �4x5= u∗4x5= u4x5 <�.) Fatou’s lemma therefore implies that

lim inf
n→�

n
∏

j=1

�4Xj−11Xj5Ln6g4Xn−11Xn5+ u4Xn57= 0 Q∗

x-a0s0

on 8T = �9. Relation (7) then proves that W = u4X05 on 8T = �9 if u= u∗. �
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Theorem 2 proves that, in significant generality, there exist Markovian importance measures and associated
zero-variance filtered estimators for expectations of the form (3), i.e., for the minimal nonnegative solution to
the linear integral equation (4). It also provides an explicit formula for the transition kernel under the importance
measure. Of course, the kernel M∗ requires knowledge of u∗ (and in particular of the expectation one is trying
to compute), whence the zero-variance estimators are not implementable in practice. But, as discussed earlier,
knowledge of the structure of the transition kernel M∗ can guide the design of good importance samplers; we
discuss this point further in §§5 and 6.

Remark 1. If Z corresponds to an infinite horizon discounted reward and the problem data is appropriately
bounded, then it is enough that the solution u to (4) be bounded (because such a bounded u must coincide
with u∗).

Remark 2 (Infinite Completion Times when u 6= u∗). Note that if u is a finite-valued nonnegative solu-
tion to (4), but u 6= u∗, then it follows from part (i) in Theorem 2 that, on 8T <�9, W is an over-biased estimator
of u∗4x5 under Qx (because u4x5 ≥ u∗4x5). Since W is unbiased (by Theorem 1), it follows that, necessarily,
Q4T = �5 > 0. That is, there is a positive probability that a simulation run will not return a value for W in
finite time. We return to this issue in §6.

Remark 3 (Nonuniqueness of Q∗). In principle one can, without loss of generality, assume that f = 0 in
(3) and (4), since these “per visit rewards” can be incorporated into the “per transition rewards”: if f > 0, one
can set it to zero by replacing g with g̃, where

g̃4x1 y5= f 4x5/�4x1 y5+ g4x1 y5+ IK4y5f 4y50

This leaves Z in (3) unchanged. Also, both formulations are equivalent in terms of the linear system (4)
they define, in the sense that if u solves it with the first formulation, then ũ = uIKC is a solution under the
second formulation. However, these two formulations define a different transition kernel M∗, and hence give
two different importance measures and associated zero-variance estimators. More generally, if f > 0, one can
replace f 1 g in (3) by f̃ 1 g̃, where f̃ 4x5= 41 − �4x55f 4x5 and g̃ as above but with �f in place of f ; changing
�4 · 5 ∈ 40115 leaves Z unchanged, but it affects the change of measure and estimator. This is illustrated in
Example 10.

Example 10. Consider a Markov chain with two states S = 80119, and transition kernel P41105 = q,
P41115 = 1 − q, and state 0 absorbing. We want to estimate the expected time until absorbtion, starting from
state 1 (i.e., the mean of a geometric4q5 rv). That is, K = 809, Z =

∑T
i=1 1, �415= 1/q and �405= 0. This can

be mapped to the representation (3) of Z in several ways:
(i) Put f 415= 11 f 405= 0, g = 0 and �= 1. This gives M∗41115= 1, M∗41105= 0 (so that T = �2 Q∗-a.s.),

l∗41115= 1 − q, and hence W =
∑�

j=041 − q5j = 1/q.
(ii) Put f = 0, � = 1 and g41115 = g41105 = 1. This gives M∗41115 = 441 − q541 + 1/q55/41/q5 =

1 − q2, M∗41105 = q2 (so that Q∗4T = �5 = 0), l∗41115 = 1/41 + q5, l∗41105 = 1/q, and hence W =
∑T−1

j=0 41/41 + q55j + 41/q541/41 + q55T−1 = 1/q0
(iii) More generally, for 0 < � ≤ 1 put f 415 = 1 − �, f 405 = 0, g41115 = g41105 = �, �= 1. This

gives M∗41115 = 441 − q54� + 1/q55/41/q − 1 +�5, M∗41105 = 4q�5/41/q − 1 +�5, l∗41115 = 41 − q + q�5/
41 + q�5, l∗41105 = 41 − q + q�5/4q�5, and hence W = 1 − � +

∑T−1
j=1 441 − q + q�5/41 + q�55j +

�441 − q + q�5/41 + q�55T−1441 − q + q�5/4q�55= 1/q.
We see that even for this extremely simple example there is a multiplicity of zero-variance filtered estimators

for EZ, each associated to a different Markovian change of measure. Although all of them have zero variance,
they differ in terms of the length of the simulation run used to compute W under Q∗: it is a geometric (q�/41/q−

1+�5) in case (iii), whereas computing W requires simulating a path of infinite length in case (i). This suggests
that, when there are alternative ways to specify the functions f and g in a problem of interest, the choice can
significantly impact the efficiency of the estimator one constructs.

Note also that Q�, the zero-variance change of measure for the conventional (nonfiltered) estimator, satisfies
Q�

14T = n5= 4n41 − q5n−1q5/41/q5= nq241−q5n−1, n≥ 1. Hence, Q�4Xn+1 = 1 �X0 = · · · =Xn = 15= 41−q5 ·
41+1/4n+ 1/q − 155. Although X is still Markov (with nonstationary dynamics) under Q�, this is only because
in this simple example the time period n itself contains all the relevant path information, including the reward
accrued up to n.
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Remark 4 (Potentially Q� 6�Q∗ and P 6�Q∗). The importance measure Q� discussed in the previous
section has the property that P is absolutely continuous with respect to Q� when restricted to 8Z > 09 and a
finite time horizon, i.e., on Fn ∩ 8Z > 09. This is not necessarily true of Q∗: Note that M∗4x1D4x55 = 0 for
D4x5= 8y2 g4x1 y5+ u4y5= 09, even if P4x1D4x55 > 0. This is not an issue with the product form functionals
discussed in the previous section, since Z = 0 on a path that includes such a transition from a state x to y ∈D4x5.
But here a path that moves from x to D4x5 may have accrued positive reward before that transition occurs,
so such a transition may have positive probability under Q� and P, and not under Q∗. This can be observed in
Example 10(i), where Q∗ assigns probability 0 to paths of finite length, even though Z > 0 on such paths.

In some problems of interest the relevant time horizon is not a hitting time, but rather a fixed finite time
horizon n. The result above extends to this situation. Suppose that

�n4x5
4

= Ex f04X05+

n
∑

i=1

[

fi4Xi5+ gi4Xi−11Xi5
]

i
∏

j=1

�j4Xj−11Xj51 (8)

where fi2 S → 601�5, gi2 S × S → 601�5 and �i2 S × S → 401�5.
It is easily verified that �n4x5= u401 x5, where u solves

u4k1x5= fk4x5+

∫

S
P4x1dy5�k+14x1 y5

[

gk+14x1 y5+ u4k+ 11 y5
]

1 (9)

for k ≥ 0, subject to the boundary condition u4n1 ·5= fn.
This can be formulated as a particular case of the problem treated in Theorem 2, by appending the time period

to the state variable; that is, by considering the Markov chain Y = 4Yj 2 j ≥ 05 in S × �, where Yj = 4Xj1 j5.
Then (8) becomes of the form (3), where “reward” is accumulated until hitting the set K = S × 8n9. We have
then the following result.

Corollary 1. Suppose that u solves (9), and satisfies 0 <u4j1 x5 <� for x ∈ S and 0 ≤ j ≤ n. Let Q∗ be
the importance measure under which X is a (time inhomogeneous) Markov chain with time i transition kernel

M∗

i 4x1dy5=















�i4x1 y5
[

gi4x1 y5+ u4i1 y5
]

P4x1dy5

u4i− 11 x5− fi−14x5
1 x ∈ S1 u4i− 11 x5 > fi−14x51

P4x1dy51 otherwise1

i ≥ 1. Put

W = f04X05+

n
∑

i=1

Li

[

fi4Xi5+ gi4Xi−11Xi5
]

i
∏

j=1

�j4Xj−11Xj51

where Li =
∏i

j=1 l
∗
j 4Xi−11Xi5 and

l∗j 4x1 y5=















u4i− 11 x5− fi−14x5

�i4x1 y5
[

gi4x1 y5+ u4i1 y5
] 1 u4i− 11 x5 > fi−14x51 gi4x1 y5+ u4i1 y5 > 01

11 else0

Then
W = u401X05 Q∗-a0s0

Remark 5. Note that the product form functionals considered in §2 are special cases of the theory that we
have just developed; in particular, the Markovian conditional distributions arising in several of the examples
discussed there, as well as the zero-variance change of measure associated with expected discounted termi-
nal rewards, can be viewed as special cases of the results developed in this section. For such product form
functionals, the change-of-measure Q∗ described in Theorem 2 coincides with Q�.

The above discussion shows that, for a wide class of Markov process expectations that can be expressed as
minimal nonnegative solutions to a linear system of the form (4), a zero-variance filtered importance sampling
estimator exists for which the associated change of measure is Markovian. Furthermore, the change of measure
induces nonstationary transition probabilities whenever the solution depends explicitly on time. Our next result
shows that a partial converse holds: if a filtered estimator of the form considered above has zero variance under
some measure that makes the underlying process Markovian, then the quantity it is estimating must be the
minimal nonnegative solution to a linear system like (4).
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Theorem 3. Let X be a Markov chain in state-space S, with one-step transition kernel M under some
probability measure Q. Let T be the hitting time of K ⊂ S, and

W = f 4X05+

T
∑

i=1

[

f 4Xi5+ g4Xi−11Xi5
]

i
∏

j=1

�4Xj−11Xj5l4Xj−11Xj51

where f 1 g ≥ 0, �> 0 and l ≥ 0 is such that
∫

S
l4x1 y5M4x1dy5≤ 11

x ∈ S. Suppose there exists u2 S →� such that W = u4x5 Qx–a.s., x ∈ S. Then, the following hold:
(i) The function u solves

u4x5= f 4x5+

∫

S

[

g4x1 y5+ u4y5
]

�4x1 y5B4x1dy51 (10)

where B4x1dy5= l4x1 y5M4x1dy51 x ∈KC , and B4x1dy5= 0, x ∈K.
(ii) The function u is given by

u4x5=

(

�
∑

j=0

B̃j f̃

)

4x51

x ∈ S, where f̃ 4x5= f 4x5+
∫

S
�4x1 y5g4x1 y5B4x1dy5 and B̃4x1dy5= �4x1 y5B4x1dy5. Hence, u is the minimal

nonnegative solution to (10).

Proof. Note that, for x ∈KC ,

u4x5 = W

= f 4x5+ l4x1X15�4x1X15g4x1X15

+ l4x1X15�4x1X15

{

f 4X15+

T
∑

j=2

6f 4Xj5+ g4Xj−11Xj57
j
∏

k=2

�4Xk−11Xk5l4Xk−11Xk5

}

= f 4x5+ l4x1X15�4x1X15g4x1X15+ l4x1X15�4x1X15u4X151

Qx–a.s. (The last follows using the assumption that W = u4y5 Qy-a.s. on the rv within the braces.) In particular,
integrating both sides,

u4x5 = f 4x5+

∫

S

[

g4x1 y5+ u4y5
]

l4x1 y5�4x1 y5M4x1dy51

= f 4x5+

∫

S

[

g4x1 y5+ u4y5
]

�4x1 y5B4x1dy51

for x ∈KC , giving (10).
Also, note that

W = f 4X05+

�
∑

j=1

I4T ≥ j56f 4Xj5+ g4Xj−11Xj57
j
∏

k=1

l4Xk−11Xk5�4Xk−11Xk51

so that

u4x05 = EQx0
W

= f 4x05+

�
∑

j=1

∫

KC×···×Kc×S
M4x01 dx15 · · ·M4xj−11 dxj56f 4xj5+ g4xj−11 xj57

j
∏

k=1

l4xk−11 xk5�4xk−11 xk5

= f 4x05+

�
∑

j=1

∫

S×···×S
B̃4x01 dx15B̃4x11 dx25 · · · B̃4xj−11 dxj56f 4xj5+ g4xj−11 xj57

=

(

�
∑

j=0

B̃j f̃

)

4x050 �
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Note the above result provides another way to justify one of the observations made in Remark 2: If one
builds the change of measure and estimator W in (5) using a solution u to (4), which is not u∗, the minimal
nonnegative solution, then the estimator cannot have zero variance.

We conclude this section by discussing how the results above can be applied to estimating steady-state
expectations, and how they extend to Markov pure-jump processes.

Remark 6 (Steady-State Expectations). When X is a discrete-time Markov chain possessing positive
recurrent regenerative structure, then the steady-state expectation of a nonnegative function f 2 S → 601�5 can
be expressed as a ratio of two expectations. Each of the two expectations can, in turn, be computed via zero-
variance filtered importance sampling. For example, if X is an irreducible positive recurrent Markov chain on
discrete state space S with stationary distribution � = 4�4x52 x ∈ S5, then

∑

x∈S

�4x5f 4x5=
Ez

∑�4z5−1
j=0 f 4Xj5

Ez�4z5
1 (11)

where �4z5 = inf8n ≥ 12 Xn = z9 is the first return time to the regeneration state z. As a consequence, steady-
state performance measures can be handled by separately appealing to Theorem 2 for both the numerator and
denominator of (11).

Remark 7 (Markov Pure Jump Processes). Let X = 4X4t52 t ≥ 05 be a pure jump Markov process (or
continuous time Markov chain (CTMC)), on discrete state space S. Assume X is nonexplosive; a sufficient condi-
tion is to require that the rate matrix A= 4A4x1 y52 x1 y ∈ S5 be uniformizable, so that inf8A4x1x52 x ∈ S9 >−�;
see, e.g., Chung [9]. Let K ⊂ S and set T = inf8t ≥ 02 X4t5 ∈ K9. Suppose one is interested incomputing an
expectation of the form

�4x5= Ex

∫ T

0
f 4X4s55 exp

(

∫ s

0
h4X4u55du

)

ds (12)

for given functions f 2 S → 601�5 and h2 S →�.
One can prove an analog to Theorem 2 for the continuous-time formulation (12): That is, there exists a change

of measure that allows one to simulate X in continuous time, preserving its Markov property, and under which
an appropriately defined filtered estimator computes �4x5 with zero variance. However, such a result is not really
needed, since the expectation (12) can be rewritten in a way that involves only a discrete-time Markov chain, as
we discuss next. (See Fox and Glynn [12] for more on this discrete time conversion and its advantages from an
efficiency standpoint.)

Let ân be the time of the n’th jump of X, with â0
4

= 0, and let J 4t5 be the number of jumps of X in the
interval 601 t7. Note that �4x5 can be computed as the expectation of the random variable

Ex

[

∫ T

0
f 4X4s55 exp

(

∫ s

0
h4X4u55du

)

ds

∣

∣

∣

∣

X4ân52 n≥ 0
]

0 (13)

The above conditional expectation is easily computable in closed form and involves only the embedded discrete-
time Markov chain 4X4ân52 n≥ 05. Also, the form of the conditional expectation is a particular case of (3) (with
g = 0 and appropriate definitions for � and f appearing there). Furthermore, as a conditional expectation, (13)
has lower variance and is therefore to be preferred computationally to the continuous-time estimand appearing
in (12).

4. The zero-variance filtered change of measure for stochastic differential equations. In this section
we study the theory of §3 in the stochastic differential equations (SDEs) setting, where X = 4X4t52 t ≥ 05 is
a diffusion in �m. In an analog to the discrete-time case, we find that a wide class of expectations that can
be represented as positive solutions to linear partial differential equations can be computed via a zero-variance
filtered importance sampling estimator under a Markovian change of measure, so that X is again a diffusion
under the importance measure.

Let B = 4B4t52 t ≥ 05 be standard Brownian motion in �d, and assume that X is a (strong) solution of the SDE

dX4t5=�4X4t55dt +�4X4t55dB4t51 (14)

where �2 �m →�m and �2 �m →�m×d satisfy, for some constant C > 0,

��4x5−�4y5� +��4x5−�4y5� ≤C�x− y�1

��4x5� +��4x5� ≤C41 + �x�51

x1 y ∈�m, so that (14) is guaranteed to have a (strongly) unique solution.
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As in §3, we first consider the (generalized) expected discounted reward up to the hitting time of a set.
Suppose K ⊂�m is closed, and let T 4

= inf8t ≥ 02 X4t5 ∈K9. An analog of (3) in this setting is

�4x5= Ex

∫ T

0
f 4X4t55�4t5dt + I4T <�5g4X4T 55�4T 51 (15)

x ∈�m, where f 2 �m → 601�5, g2 �m → 601�5,

�4t5
4

= exp
(

∫ t

0
h4X4s55ds

)

1

and h2 �m →�.
The function � can be characterized as the solution of a linear partial differential equation. More specifically,

we assume there exists a function u satisfying Assumption 2; then, under appropriate integrability conditions,
�= u.

Assumption 2. There exists a function u2 �m →� satisfying
(i) u is twice continuously differentiable;

(ii) u is a solution to

�4x5Tïxu4x5+
1
2 tr4�4x5�4x5Tïxxu4x55+h4x5u4x5= −f 4x51 x ∈KC1

u4x5= g4x51 x ∈K1
(16)

where ïxu and ïxxu denote the gradient and the Hessian of u, respectively.

We consider importance measures Q under which X evolves according to the SDE

dX4t5= �̃4X4t55dt +�4X4t55dB4t51

with B being standard Brownian motion under Q. More precisely, we consider Q of the form Q4 · 5 =
∫

S
�4dx5Qx4 · 5, where � is a distribution on �m and 8Qx2 x ∈ S9 together with X defines a Markov family; see,

e.g., Karatzas and Shreve [25, Definition 5.11]. Then, under the conditions stated below, u4x5= EQx
W , where

W =

∫ T

0
f 4X4t55�4t5L4t5dt + I4T <�5g4X4T 55�4T 5L4T 51

L4t5= exp
(

−

∫ t

0
�4X4s55 dB4s5−

1
2

∫ t

0
��4X4s55�2 ds

)

1

(17)

and �2 �m →�d satisfies
�4x5�4x5= �̃4x5−�4x50

The next result, an analog to Theorem 2, describes a Markovian zero-variance importance distribution to
compute u. Before stating the theorem we need to introduce one more assumption:

Assumption 3. There exists a function u∗ satisfying
(i) u∗ satisfies the conditions in Assumption 2;

(ii) u∗4x5 > 0 for x ∈KC and u∗4x5 <� for x ∈�m;
(iii) for any � > 0, the function x 7→ �4x5Tïxu

∗4x5/u∗4x5 is bounded on GC
� ∩ KC , where

G�
4

= 8x2 u∗4x5≤ �9;
(iv) E

∫ t

0 �
24s5��4X4s55Tïxu

∗4X4s55�2 ds <�, t > 0;
(v) Ex �4t ∧ T 5u∗4X4t ∧ T 55→ Ex I4T <�5�4T 5g4X4T 55 as t → �.

(Note that for condition (ii) to hold it is sufficient that h be bounded above and �ïxu
∗4x5� ≤ C41 + �x�5,

x ∈�m, since E
∫ t

0 �X4s5�2 ds <�; see, e.g., Øksendal [30, Theorem 5.2.1].)

Theorem 4. Let u∗ be as in Assumption 3. Then �= u∗. Furthermore, if Q∗ is the importance distribution
under which

dX4t5=�∗4X4t55dt +�4X4t55dB4t51 (18)

where

�∗4x5=�4x5+
�4x5�4x5Tïxu

∗4x5

u∗4x5
1

then
W = u∗4X4055 Q∗–a0s0
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Remark 8. Because �∗ does not necessarily satisfy Lipschitz and growth conditions like the ones imposed on
� and � , (18) is not immediately guaranteed to have a strong solution. However, letting ��

4

= inf8t ≥ 02 Xt ∈G�9
and Tn

4

= n∧T ∧ �1/n, then for each integer n (18) can be solved strongly on t < Tn (because of Assumption 3).
In this way one obtains a solution on t < T = limn→� Tn; cf. Øksendal [30, Exercise 7.14].

Proof. That � = u∗ is easily shown by applying Itô’s formula to 4�4t ∧ T 5u∗4X4t ∧ T 552 t ≥ 05 and using
optional sampling. Let �� and Tn be as in Remark 8, and put

Y 4t5=

∫ t∧T

0
f 4X4s55�4s5L4s5ds +L4t ∧ T 5�4t ∧ T 5u∗4X4t ∧ T 551

where

L4t5= exp
(

−

∫ t

0
�4X4s55dB4s5−

1
2

∫ t

0
��4X4s55�2 ds

)

and

�4x5=
�4x5Tïxu

∗4x5

u∗4x5
0

Note that Y 405= u∗4X4055 and on t < T it follows from Itô’s formula that, under Q∗,

dY 4t5 = L4t5�4t5
[

f 4X4t55+�4X4t55Tïxu
∗4X4t55+ tr

(

1
2�4X4t55�4X4t55Tïxxu

∗
)

+�4X4t55T�4X4t55Tïxu
∗4X4t55+h4X4t55u∗4X4t55−�4X4t55T�4X4t55Tïxu

∗4X4t55
]

dt

+L4t5�4t5
[

−u∗4X4t55�4X4t55+�4X4t55Tïxu
∗4X4t55

]T
dB4t50

The term in dt on the right-hand side equals zero, since u∗ satisfies (16), and the term in dB4t5 also vanishes
because of the definition of �. Thus, dY 4t5 = 0 on t < T , i.e., Y 4t ∧ T 5 = Y 405 = u∗4X4055 for t ≥ 0. Since,
on 8T < �9, Y 4t ∧ T 5 → W as t → �, we conclude that W = u∗4X4055 on 8T < �9. On the other hand, on
8T = �9,

Y 4t5= u∗4X4055

for t ≥ 0, and W =
∫ �

0 f 4X4s55�4s5L4s5ds, whence

L4t5�4t5u∗4X4t55↘ u∗4X4055−W (19)

as t → � on 8T = �9. Hence, it suffices to show that I4T = �5L4t5�4t5u∗4X4t55→ 0 Q∗–a.s. to conclude that
W = u∗4X4055 Q∗–a.s.

For this purpose note that, for each n, 4�4X4t∧Tn552 t ≥ 05 is bounded, whence 4L4t∧Tn52 t ≥ 05 is a square-
integrable martingale under Q∗. Hence, we can apply Girsanov’s formula—see, e.g., Karatzas and Shreve [25,
Section 3.5]—to conclude that, for x ∈�m,

EQ∗
x
L4t5�4t5u∗4X4t55I4Tn > t5

= Ex �4t5u
∗4X4t55I4Tn > t5

≤ Ex �4t5u
∗4X4t55I4T > t5

= Ex

[

�4t5I4T > t5EX4t5

[

∫ T

0
e
∫ s

0 h4X4r55drf 4X4s55ds + I4T <�5g4X4T 55e
∫ T

0 h4X4r55dr

]]

≤ Ex

[

�4t5I4T > t5Ex

[

∫ T

t
e
∫ s
t h4X4r55drf 4X4s55ds + I4T <�5g4X4T 55e

∫ T
t h4X4r55dr

∣

∣

∣

4X4v52 0 ≤ v ≤ t5

]]

≤ Ex I4T > t5

(

∫ T

t
�4s5f 4X4s55ds + I4T <�5g4X4T 55�4T 5

)

−→ 0

as t → �, by dominated convergence. Thus, for arbitrary �> 0, there exists t0 such that for t > t0

� > EQ∗
x
L4t5�4t5u∗4X4t55I4Tn > t5

≥ EQ∗
x
L4t5�4t5u∗4X4t55I4Tn > t5I4T = �5
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uniformly in n. Since I4Tn > t5I4T = �5 ↗ I4T = �5 as n → �, it follows that EQ∗ L4t5�4t5u∗4X4t55 ·

I4T = �5≤ � for t ≥ t0 by monotone convergence. Hence,

EQ∗ L4t5�4t5u∗4X4t55I4T = �5→ 0

as t → �. Fatou’s lemma then implies

lim inf
t→�

I4T = �5L4t5�4t5u∗4X4t55= 01

Q∗
x–a.s., which together with (19) gives

I4T = �5L4t5�4t5u∗4X4t55→ 0

Q∗–a.s., as remained to be shown. �
Next we study an expectation with a fixed time horizon (rather than a hitting time). For ease of notation, we

restrict attention to the case d = 1 (one-dimensional diffusions); no additional complications arise for d > 1.
Consider an expectation of the form

�4t1 x5= Ex exp
(

∫ t

0
h4X4s55ds

)

g4X4t55 (20)

for given functions g2 � → 611�5 and h2 � → �, with h bounded. We note that (20) is a particular case of
(15): indeed, �4t1 x5 is the expectation of the final reward when the (degenerate) diffusion X̃4s5 = 4s1X4s55
hits the set 6t1�5×�. Thus, the form of a Markovian zero-variance importance measure follows directly from
Theorem 4, provided we can verify the conditions in that theorem. For this purpose, we introduce the following
assumption:

Assumption 4. There exists a function u2 601 t7×�→� satisfying
(i) u is continuous on 601 t7×� and twice continuously differentiable on 401 t5×�;

(ii) u is a solution to

�4x5
¡

¡x
u4s1 x5+

�24x5

2
¡2

¡x2
u4s1 x5+h4x5u4s1 x5−

¡

¡s
u4s1 x5= 01

0 ≤ s ≤ t, x ∈�, subject to the boundary condition u401 x5= g4x5;
(iii) E

∫ t

0 �
24s5�24X4s5544¡/¡x5u4t − s1X4s5552ds <�;

(iv) the function x 7→ 4�4x5/u4s1 x554¡/¡x5u4s1 x5 is bounded on 601 t7×�.

(Note that for condition (iii) to hold it is sufficient that there exists C1 > 0 such that �4¡/¡x5u4s1 x5� ≤

C41 + �x�5, x ∈�, 0 ≤ s ≤ t.)
A Markovian zero-variance importance distribution is then given in the following result.

Corollary 2. Assume u4s1 x5 < �, 4s1 x5 ∈ 601 t7 × KC , and u satisfies the conditions in Assumption 4.
Then �= u. Furthermore, if Q∗ is the importance measure under which

dX4s5=�∗4s1X4s55ds +�4X4s55dB4s51 (21)

s ≤ t, where

�∗4s1 x5=�4x5+
�24x5

u4t − s1 x5

¡

¡x
u4t − s1 x51

then
W = u4t1X4055 Q∗–a0s01

where

W = exp
(

∫ t

0
h4X4u55du

)

g4X4t55L4t51

L4s5= exp
(

−

∫ s

0
�4s1 X4s55dB4u5− 41/25

∫ s

0
�24s1 X4s55du

)

1

and �4s1 x5= 4�4x5/u4t − s1 x554¡/¡x5u4t − s1 x50
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5. Examples. In the last two sections we have noted that the Markovian change-of-measure Q∗ associated
with filtered estimators of path functionals like (3) and (15) can exhibit behavior that does not arise in the context
of estimating rare-event probabilities. Notably, that the original measure may not be absolutely continuous w.r.t.
the change-of-measure (Q� 6�Q∗ or P 6�Q∗), even when restricted to paths of finite length on which the desired
path functional is positive; that there may be positive probability of nontermination, Q∗4T = �5 > 0, and that
the zero-variance estimator and associated change of measure may not be unique. In this section we illustrate
these issues with some specific expectations that arise in the context of queueing and financial applications.

Because the purpose of these examples is to illustrate properties of the change of measure associated with
zero-variance estimators, for the most part we focus on stylized problems for which the desired expectation �4x5

is known in closed form (so that there is no real need to estimate it via simulation).
As discussed in the introduction, in practical situations in which �4x5 is not known, one would use an

approximation to the solution u∗ of the linear system to construct a “good” change of measure and estimator.
There is no general rule or mechanism to obtain such an approximation: it will typically be constructed on an
ad-hoc basis, using the structure of the specific problem under study. In some cases one may use “fluid” or
“mean field” heuristics to come up with an approximation. Sometimes one can approximate the process X (using
a weak convergence result) by a simpler process for which the expectation can be computed in closed form,
and then leverage off this solution as an approximation in the original setting. For example, since a GI/G/1
single-server queue in heavy traffic can be approximated by a regulated Brownian motion (RBM), one can use
the known solutions u∗ for RBM in Examples 13–16 as approximations to the corresponding expectations for
a more general GI/G/1 queue, and construct a change of measure and estimator based on them; we illustrate
such a construction in Example 17. Occasionally one can approximate a time-dependent solution by a time-
homogeneous one: for instance, in Example 20 we consider a discrete-time Feynman-Kac-type expectation,
and approximate the time-dependent solution to the backward Equations (9) by an (easier to compute) time-
homogeneous one, to construct an importance sampling estimator that offers significant variance reduction. Some
examples in which approximate zero-variance importance sampling was used to estimate rare event probabilities
can be found, for example, in L’Ecuyer and Tuffin [27] and Blanchet and Glynn [3].

Our first six examples involve single-server queues. We start by providing the change of measure to compute
the probability of the (rare event) of experiencing very large delays during a busy cycle, both for an M/M/1
queue (Example 11) and a “Brownian queue,” i.e., a fluid queue modeled by RBM (Example 12). We then
compare these to the zero-variance change of measure used to estimate the expectation of other functionals of the
queueing process. Specifically, we focus on the expected cumulative “cost” until hitting zero (the end of a busy
cycle) for various cost functions. Such expectations can in turn be used to compute the steady-state average cost,
by taking advantage of the regenerative structure (cf. the discussion in Remark 6); hence the interest in them.

Example 11 (M/M/1 Waiting Times; Probability of Hitting b Before 0). Consider the process X =

4Xn2 n≥ 05, where Xn represents the waiting time of customer n in a single server queue. Let 4Vn2 n≥ 05 and
4�n2 n≥ 15 be two independent sequences of iid exponentially distributed random variables, with EV0 =�−1 <

�−1 = E�1. Here Vn represents the service requirement of customer n, and �n+1 the interarrival time between
customers n and n+ 1 (n≥ 0). Assuming a first-come first-served service discipline, the waiting time sequence
satisfies the well-known recursion

Xn+1 = max401Xn +Zn+151

where Zn+1
4

= Vn − �n+1, n ≥ 0. Define Tb
4

= inf8n ≥ 12 Xn ≥ b9 and T0
4

= inf8n ≥ 12 Xn = 09. For 0 ≤ x ≤ b,
let �4x5= Px4Tb < T05, the probability that a waiting time of b or more is observed before the buffer becomes
empty. This is of the form (3) with K = 809 ∪ 6b1�5 (so T = Tb ∧ T0), f 4x5 = I4x ≥ b5, g4 · 1 · 5 = 0 and
�4 · 1 · 5= 1.

It can be shown that for 0 < x < b,

�4x5= �
e4�−�5x −�

e4�−�5b −�
1

where � = �/�. Then, according to Theorem 3, there exists a zero-variance importance measure on FT that
makes X a Markov chain with one-step transition kernel M∗ given by M∗4x1 8095 = 41 − I40 < x < b55 ·
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e−�x�/4�+�5 and

M∗4x1dy5=







































��

�+�

e4�−�5y −�

e4�−�5x −�
6e�4y−x5I4x > y5+ e−�4y−x5I4y ≥ x57dy1 x1 y ∈ 401 b51

��

�+�

e4�−�5b −�2

�e4�−�5x −�2
e−�4y−x5dy1 x ∈ 401 b51 y ≥ b1

��

�+�
6e�4x−y5I4x > y5+ e−�4y−x5I4y ≥ x57dy1 x ∈ 809∪ 6b1�51 y > 00

Equivalently, under the zero-variance importance measure Q∗, the “increment” Zn+1 is conditionally independent
of 4Z01 : : : 1Zn5 given Xn and for x ∈ 401 b5, Q∗4Zn+1 ∈ dz �Xn = x1T > n5=Q∗

x4Z1 ∈ dz5, where

Q∗

x4Z1 ∈ dz5
4

=



















��

�+�
·
e4�−�5x −�e−4�−�5z

e4�−�5x −�
6e�zI4z < 05+ e−�zI4z≥ 057dz1 z ∈ 4−x1b− x51

��

�+�

e4�−�5b −�2

�e4�−�5x −�2
· e−�zdz1 z≥ b− x0

Note that if both b and x are very large, but with x small compared to b, then on 8Xn = x1T > n9 the
distribution of Zn+1 under Q∗ is very close to that of −Z1 under P. That is, when the workload is large, the
importance distribution Q∗ is close to the distribution under which interarrival times and the service requirements
are independent sequences of i.i.d. exponential random variables, but with their means exchanged (compared
with those under P). It is well known that the latter corresponds to the distribution of the Zn’s conditioned
on the random walk 4Sn = Z1 + · · · + Zn2 n ≥ 05 eventually hitting level b. The distribution Q∗ involves the
additional conditioning that Sn not hit zero before hitting b. Note that in this case Q∗ coincides with Q�, as the
functional I4Tb <T05 is of the product form discussed in §2. Also, under the importance measure the simulation
run terminates in finite time (Q∗4T <�5= 1).

For the next four examples we work with a Brownian queue. In this model the buffer content is not measured
in discrete units but is rather a continuous quantity (a fluid queue), and its evolution is described by regulated
Brownian motion (RBM). This model arises naturally as a limit of the GI/GI/1 queue in heavy traffic, and is
also interesting in its own right. Many of the performance metrics for this model are amenable to closed-form
solution, oftentimes yielding very simple formulae. Indeed, it has been argued (Salminen and Norros [32]) that
it could be used in textbooks in place of the M/M/1 model as a prototype for simple queues.

To be specific, let Z = 4Z4t52 t ≥ 05 be the so-called free process (representing total work arrived minus total
work processing capacity by time t), given by

Z4t5= −�t +�B4t51

where �1� > 0, and B is standard Brownian motion. The queueing process X is obtained by applying the
regulator mapping to Z:

X4t5=Z4t5+X405∨

(

− inf
0≤s≤t

Z4s5
)

1 t < 00

Throughout this section we denote Ty = inf8t ≥ 02 X4t5= y9 and �∗ 4

= 2�/�2.

Example 12 (Probability of Hitting b Before 0). Let �4x5
4

= Px4Tb < T05, 0 < x ≤ b, the analog of
Example 11 for the Brownian queue. This is of the form (15) with K = 809∪ 6b1�5 (so that T = Tb ∧T0), f = 0,
h= 0, and g4x5= I4x ≥ b5.

It is well known that
�4x5= 4e�

∗x
− 154e�

∗b
− 15−13

see, e.g., Harrison [21]. Then, under the zero-variance importance measure Q∗ on FT described in Theorem 4,
X has drift �∗4X4t55, where

�∗4x5=� ·
e�

∗x + 1
e�∗x − 1

1

0 < x ≤ b.
Note that if x = �b for some � ∈ 40115 and b is very large, then �∗4x5 ≈ �. It is well known that constant

positive drift �4x5 = � arises in the distribution of Brownian motion with negative drift −� conditioned on
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2.16 �

x1/�*

�

�*(x )

Figure 1. Drift as a function of workload under the zero-variance importance measure for �4x5= Px4Tb <T05.

it eventually hitting level b. Here we have the additional conditioning on not hitting zero, which makes the
drift increase unboundedly when the workload approaches zero, preventing the buffer from being emptied (see
Figure 1). More specifically,

�∗4x5∼
�2

x

as x ↘ 0, a behavior that we will observe in several subsequent examples. As in Example 11, because there
is only a “final reward” I4Tb < T05, we are computing the expectation of a product-form functional, so Q∗

coincides with Q�, and P �Q∗ when restricted to FT ∩ 8Tb < T09. Also, under the importance measure Q∗ the
simulation run terminates in finite time (Q∗4T <�5= 1).

Example 13 (Expected Time to Empty the Buffer). Let �4x5 = Ex T0, x ≥ 0. This is of the form (15)
with K = 809 (so that T = T0), f = 1, h= 0, and g = 0.

It is well known that
�4x5= x/�1

for x ≥ 0. Then, under the zero-variance importance measure Q∗ of Theorem 4, X has drift �∗4X4t55, where

�∗4x5= −�+
�2

x
I4x > 050

When the workload is small, the dynamics under Q∗ are similar to those in Example 12: under Q∗ the buffer
is prevented from becoming empty, with the drift increasing asymptotically as �2/x as x ↘ 0. However, for
moderate and large workloads the change-of-measure Q∗ obtained here differs significantly from the one used
in Example 12 to compute Px4Tb < T05: in the previous example the drift remained positive and large (close to
�) even for large workloads, so the process has a steady tendency to increase until hitting level b, at which time

x

–�

�*(X )

Figure 2. Drift as a function of workload under the zero-variance importance measure for �4x5= Ex T0.
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the process reverts abruptly to the original dynamics. In contrast, here the drift decreases smoothly to −� as
the workload increases (see Figure 2), and the importance measure tends to keep the workload fluctuating some
moderate distance away from zero, giving it a tendency to revert toward an “equilibrium” value of 2/�∗. Note
also that here Q� and P are not absolutely continuous with respect to Q∗, even when restricted to paths of finite
length s, i.e., to Fs ∩ 8T0 > 09 for some fixed s > 0: Q∗ assigns probability zero to paths that hit zero in finite
time, even though Z = T0 > 0 on such paths, so that Q� would assign positive probability to them.

As just noted, under Q∗ the process is prevented from hitting zero, so that T0 = �, Q∗–a.s. Thus, although
Q∗ allows one to construct an estimator with zero variance, computing it requires an infinite run length, which
suggests that trying to mimic Q∗ may not lead to improved efficiency (even if it does reduce the variance).
There is, however, a simple approach to construct a zero-variance estimator for this example that terminates in
finite time with probability one: adding a terminal reward when the process exits to zero. Specifically, suppose
we make g405 = r/�, for some r > 0, so that we estimate �4x5 = Ex T0 + r/� = 4x + r5/� (instead of Ex T0).
With this change, under Q∗ the process X has drift �∗4X4t55, where

�∗4x5= −�+
�2

x+ r
0

This makes the run length T0 a.s. finite under Q∗. In fact, the expected run length becomes

EQ∗
x
T0 =

x

�
+

2
��

log41 + x/r5+
2

�2�

(

1
r

−
1

x+ r

)

0

Example 14 (Expected Sojourn Over b During a Busy Cycle). Let �4x5
4

= Ex

∫ T0

0 I6b1�54X4s55ds.
This is of the form (15) with K = 809 (so T = T0), f 4x5 = I6b1�54x5, h = 0, and g = 0. Note that the strong
Markov property of X implies

�4x5= Px4Tb <T05�4b5+ I4x > b5ExTb0

For the last term, note that for x > b, Ex Tb = 4x − b5/� (cf. Example 13). In the first term, Px4Tb < T05 =

min811 4e�
∗x − 15/4e�

∗b − 159 (cf. Example 12); as for �4b5, it is known that

Eb exp
(

−�
∫ T0

0
I6b1�54X4s55ds

)

= 2
(

1 + e−�∗b
+ 41 − e−�∗b5

√

1 + 4�/4�∗�5
)−1

for � > 0; see, for example, Borodin and Salminen [7, Equation 2.2.4.1]. Hence �4b5 = 41 − e−�∗b5/4�∗�5.
It follows that

�4x5=
1

��∗

[

4�∗4x− b5+ 1 − e−�∗b5I4x > b5+ e−�∗b4e�
∗x

− 15I4x ≤ b5
]

0

Thus, under the zero-variance importance distribution of Theorem 4, X has drift �∗4X4t55 given by

�∗4x5=

{

�4e�
∗x + 15/4e�

∗x − 15 x ≤ b1

�41 + e−�∗b − �∗4x− b55/41 − e−�∗b + �∗4x− b55 x ≥ b0

Note that on 401 b5 the behavior of X under Q∗ is the same as that in Example 12. However, the importance
measure used in Example 12 would revert to the original drift −� immediately upon hitting b, whereas in this
case the drift decreases smoothly from � to −� as the workload increases from b to infinity (see Figure 3).
Under Q∗ the workload has a tendency to revert toward an “equilibrium value” of b + 1/�∗ (cf. Example 13).
Also, once again we find Q� and P are not absolutely continuous with respect to Q∗, even when restricted to
Fs ∩8Z > 09 for fixed s > 0, for the same reasons as in Example 13. Also, because there are no terminal rewards
(g405= 0), we are once again faced with a situation in which T0 = �, Q∗–a.s.; this can be addressed by adding
a terminal reward, as in Example 13.

Example 15 (Polynomial Cost). Let �4x5 4

= Ex

∫ T0

0 X4s5p ds, for some integer p ≥ 1. This is of the form
(15) with K = 809 (so T = T0), f 4x5= xp, h= 0 and g = 0.

Let u be given by

u4x5=
1

4p+ 15��∗p+1

p+1
∑

j=1

4�∗x5j4p+ 15!/j!0
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xb

–�

�

�*(x)

Figure 3. Drift as a function of workload under the zero-variance importance measure for �4x5= Ex

∫ T0
0 I6b1�54X4s55ds.

Then �4x5 = u4x5, x ≥ 0. To see this, apply Itô’s formula to u4X4t55, using that u satisfies −�u′4x5 +

4�2/25u′′4x5= −xp, and that �
∫ t

0 u
′4X4s55dB4s5 is a square-integrable martingale.

Then, under the change of measure described in Theorem 4, X has drift �∗4X4t55, where

�∗4x5=�+
2�64p+ 15! − 4�∗x5p+17
∑p+1

j=1 4�
∗x5j4p+ 15!/j!

I4x > 050

The evolution of the buffer content under the importance distribution is qualitatively similar to that found in
Examples 13 and 14 (and hence, qualitatively different from that under the change of measure used to compute
the probability Px4Tb <T05 in Example 12): under Q∗ the buffer content has a mean-reverting behavior centered
around “moderate” values. Also �∗4x5 ↘ −� as x → �, so that for large workloads the dynamics under the
importance distribution are similar to those of the original process, whereas at low workload levels �∗4x5∼ �2/x
as x → 0, preventing the buffer from ever becoming empty. Thus, Q� 6� Q∗ on Fs ∩ 8Z > 09, for the same
reasons as in the previous two examples. Also, T0 = � Q∗–a.s., but as in the previous two examples this can be
addressed by adding a terminal reward.

Example 16 (Exponential Cost). Let �4x5
4

= Ex

∫ T0

0 exp4�X4s55ds, for 0 6= � < �∗. This is of the form
(15) with T = T0, f 4x5= e�x, h= 0 and g = 0.

It can be shown that � is given by

�4x5=
e�x − 1

41 − �/�∗5��
0

Thus, under the change of measure of Theorem 4, X has drift �∗4X4t55, where

�∗4x5=�

[

−1 + 2
�e�x

�∗4e�x − 15

]

0

The behavior near the origin under the importance distribution is similar to that of the previous examples,
namely, �∗4x5 ∼ �2/x as x ↘ 0. In contrast, for � > 0, limx→� �∗4x5 > −�. Hence, the dynamics under
the importance distribution differ significantly from the original process, even for large buffer occupancies.
In particular, if � > �∗/2, then lim infx→� �∗4x5 > 0 and in this case, X4t5 → � Q∗–a.s. as t → �. Thus, the
dynamics under Q∗ in this case can differ significantly from those seen in all previous examples. Once more
we have Q� 6�Q∗ on Fs ∩ 8Z > 09, for the same reasons as in the previous three examples. Once more we are
faced with a situation in which T0 = � Q∗–a.s., but unlike the previous examples this is not just a consequence
of the behavior near the origin, but rather because of the form of the reward rate away from the origin. Adding
a terminal reward would not guarantee termination: even if one adds a terminal reward g405 > 0, it would still
be the case that Q∗4T <�5 < 1, so there would be a positive probability of nontermination.

Our next example illustrates the construction of a change of measure and filtered estimator based on an
approximation to the (unkown) desired solution u∗ to the linear system characterizing the expectation. The
estimator thus constructed would not have zero variance, but one would expect its variance to be small.
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Example 17 (GI/G/1 Queue in Heavy Traffic). Consider again the Markov chain X = 4Xn2 n≥ 05 rep-
resenting the sequence of waiting times in a single-server queue, constructed as in Example 11 but allowing the
iid sequences 4Vn2 n≥ 05 and 4�n2 n≥ 15 to have arbitrary distributions (not necessarily exponential). Without
loss of generality we assume that E�i = 1 and EVi = �. We assume � < 1 (so the queueing process is stable);
furthermore, we assume that E e�V1 <� for some � > 0. As before we define the increment Zi

4

= Vi −�i+1, and
introduce the notation �4�5

4

= E e�Z1 , F 4z5 4

= P4Z1 ≤ z5 and �2 = varZ1.
Suppose we are interested in estimating the expectation

�4x5= Ex

T0
∑

j=0

e�Xj 1

where T0 = inf8n≥ 02 Xn = 09 and 0 < � < �̄
4

= sup8�2 41−�24�55/6��4�5F 40541−��2/4241−�5557≥ 1−�90
Note this is of the form (3) with f 4x5= e�x, g = 0, �= 1 and K = 809.

We are interested in the case in which � is close to one, so the queue is in heavy traffic. It is well known that
in this setting the waiting time chain X above can be approximated by RBM. The approximation is obtained by
embedding X in a sequence 8Xr 2 r > 09, where Xr = 4Xr

n2 n≥ 05 is the waiting time chain for a GI/G/1 queue
with traffic intensity �r , satisfying 41 − �r5

√
r → �> 0 as r → �. Define the centered and scaled process X̂r

by X̂r4t5=Xr
�rt�/

√
r . It is known that X̂r converges weakly to RBM with drift −� and variance parameter �2

(in the space D of real-valued càdlàg functions on 601�5 equipped with the Skorohod J1 topology); see, e.g.,
Whitt [36, Theorem 9.3.1].

This weak convergence result suggests that one can approximate the (unknown) desired solution u∗ to (4)
by the (known) corresponding expectation for RBM. Specifically, let u∗

RBM4x1 �1�1�
25 be the solution for the

expected cumulative exponential cost until the end of a busy cycle for RBM, as described in Example 16;
that is

u∗

RBM4x1 �1�1�
25=

e�x − 1
41 − �/�∗5��

1

where �∗ = 2�/�2. Then, if the desired GI/G/1 waiting time Markov chain X has traffic intensity �, choosing
(large) r and � such that �/

√
r = 1 −� gives the following approximation:

Ex

T0
∑

j=0

e�Xj = r E
(

∫ T0/r

0
exp 4�

√
rX̂r4s55ds � X̂r405= x/

√
r

)

≈ u∗

RBM4x/
√
r1 �

√
r1 41 −�5

√
r1�25

=
e�x − 1

�41 −�541 −�2�/4241 −�555
0

Note the constant term in the numerator is a consequence of the boundary condition u∗
RBM401 �1�1�

25 = 0.
However in the discrete-time setting u∗405= 1, so we drop this term from the approximation. Hence, the RBM
limit suggests using the following approximation u to the desired solution u∗ to (4):

u4x5= c0e
�x1

x > 0, and u405 = 1, where c0
4

= 6�41 − �541 − �2�/4241 − �5557−10 This approximation u can be used to
construct the change-of-measure Q and estimator W as in (5). Under Q the increment Zn+1 is conditionally
independent of 4Z01 : : : 1Zn5 given Xn, and, for x > 0, Q4Zn+1 ∈ dz � Xn = x1T0 > n5 = Qx4Z1 ∈ dz5, which is
given by

Qx4Z1 ∈ dz5=

{

4c0/m05 exp4�4x+ z55F 4dz51 z >−x1

41/m05F 4dz51 z≤ −x1

where m0
4

= c0 exp4�x5
∫ �

−x
exp4�z5F 4dz5 + F 4−x5. Note this is (almost) an (state-dependent) exponential tilt

of the original distribution of the increment. One would expect the estimator W thus constructed to have low
variance. (We compute a bound on its variance in Example 21.)

Our next example illustrates the point raised in Remark 2: if one constructs the filtered estimator and associated
change of measure based on a solution u to the linear system that is not u∗, then it is always the case that
Q4T = �5 > 0, even if Q∗4T = �5= 0.
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Example 18 (Simple Random Walk with Exponential Cost). Let X be a regulated simple random
walk; that is, X is a DTMC in �+ with one-step transition matrix P given by P4x1 x + 15 = p < 1/2,
P4x1 4x − 15+5 = q = 1 − p and P4x1 y5 = 0 for y 6∈ 8x + 11 4x − 15+9. Let �4x5 = Ex

∑T0
j=0 �

Xj , where T0
4

=

inf8n ≥ 02 Xn ≤ 09, � is a constant satisfying 0 < � < q/p and � 6= 1. This is of the form (3) with K = 809
(so T = T0), f 4x5= �x, g = 0 and �= 1.

Let c = �/4� −p�2 − q5. For any a> 0, the function u given by

u4x5= c4�x
− 15+ a44q/p5x − 15+ 1

for x ≥ 0 and u4x5= 1 for x ≤ 0, is a solution to (4). The expectation � corresponds to the minimal nonnegative
solution u∗, which is obtained by setting a= 0 above.

If one uses the function u above to build the change-of-measure Q and associated filtered estimator W , then
the one-step transition matrix of X under Q is M given by

M4x1x+ 15 =
p6c4�x+1 − 15+ a44q/p5x+1 − 15+ 17

4c− 154�x − 15+ a44q/p5x − 15
1

M4x1x− 15 =
q6c4�x−1 − 15+ a44q/p5x−1 − 15+ 17

4c− 154�x − 15+ a44q/p5x − 15
1

for x > 0. If one uses u∗ to construct the change of measure (i.e., set a = 0), then if � < 1 one has
M4x1x− 15→ q as x → �, whereas if 1 <� < q/p then M4x1x− 15→ q/4p�2 + q5 as x → �. In particular,
Q∗

x4T0 <�5= 1 for � <
√
q/p, whereas Q∗

x4T0 <�5 < 1 if
√
q/p < � < q/p.

In contrast, if one uses another solution u to (4), u 6= u∗ to construct the change of measure (i.e., a> 0), then
M4x1x − 15 → p as x → �. In particular, Q4T0 = �5 > 0 (even for � < 1), as noted in Remark 2. Also, on
paths on which 8T < �9, the estimator returns u4x5, yielding an arbitrarily large relative error: for � < 1 one
has u∗4x5 ≤ c, whereas u4x5 → � as x → �. Also, from the discussion in §3 it follows that Qx4T < �5 ≤

u∗4x5/u4x5, which can be arbitrarily small.

Time-dependent expectations of a Markov process of the type considered in Corollaries 1 and 2 arise in
the Kolmogorov backward equations, and are of interest in many financial applications. In particular, in the
context of pricing derivatives, the value of an option can often be expressed as an expectation of the above
kind (perhaps after space augmentation, for some path-dependent derivatives). In our next example we illustrate
the form of the change of measure presented in Corollary 2 when the expectation of interest corresponds
to the price of a “plain vanilla” European call option in the well-known Black-Scholes model. Finally, in
Example 20 we consider an expected final reward in discrete time for which the solution u to the associated
linear system is unknown, and discuss one way to construct an approximation on which to base the change of
measure.

Example 19 (Black-Scholes Model). Consider the classical Black-Scholes model of a market consisting
of a bond paying deterministic interest rate r and an asset whose price process X = 4X4t52 t ≥ 05 is described
by geometric Brownian motion. We are interested in �4x1 t5, the price of a European call option on the asset
with strike price c and maturity t, when the initial price of the asset is x > 0. The price of the option can be
computed as the expectation

�4t1 x5= Ex4e
−rt4Xt − c5+51

where Ex is the expectation under the “risk-neutral” probability Px, under which

dX4t5= rX4t5dt +�X4t5dB4t50

This is of the form (20) with g4x5= 4x−c5+ and h4x5= −r . For this model, �4t1 x5 is given by the well-known
Black-Scholes formula

�4t1 x5= xê

(

log4x/c5+ rt +�2t/2

�
√
t

)

− ce−rtê

(

log4x/c5+ rt −�2t/2

�
√
t

)

1

where ê denotes the standard Gaussian cumulative distribution function.
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K

r

r + �2

s = 1

s = 0.5

s = 0.25

�*(s, x)/x

x

Figure 4. Drift divided by price as a function of price, under the zero-variance importance measure for the Black-Scholes model.
Note. The three curves differ in their time to maturity.

Under the change of measure described in Corollary 2, X has drift �∗4s1X4s55, where

�∗4s1x5=xr+

x�2ê
( log4x/c5+r4t−s5+�24t−s5/2

�
√
t−s

)

ê
( log4x/c5+r4t−s5+�24t−s5/2

�
√
t−s

)

−4c/x5e−r4t−s5ê
( log4x/c5+r4t−s5−�24t−s5/2

�
√
t−s

)

1

or, putting x = ce−r4t−s5ey ,

�∗4s1 x5= xr + x�2

ê
(y+�24t − s5/2

�
√
t − s

)

ê
(y+�24t − s5/2

�
√
t − s

)

− e−yê
(y−�24t − s5/2

�
√
t − s

)

0

Observe that for x < c, lims↗t �
∗4s1 x5/x = �, i.e., the importance measure tries to ensure that the option

is “in the money” at maturity. In this sense, the change of measure is similar to the one that we would use to
compute the probability that the option is exercised (which is a rare event if x < c and t small). However, the two
importance distributions differ significantly away from this boundary: Note that, for fixed s < t, �∗4s1 x5/x ↘

r+�2 as x ↗ � (see Figure 4). Thus, when the stock price is large, X behaves (locally) as a geometric Brownian
motion with growth rate close to r +�2. We see that, under Q∗, X has a growth rate that is always significantly
greater than r (the growth rate under the risk-neutral distribution). In contrast, the change of measure used to
estimate the probability that the option is exercised would make X have a drift very close to r when the stock
price is large.

Example 20 (Approximate Zero-Variance Simulation of Feynman-Kac-Type Expectations). Suppose
one is interested in estimating an expected final reward with state-dependent discounting, of the form

�n4x5= Ex

(

exp
(n−1
∑

j=0

h4Xj5

)

f 4Xn5

)

0

Note �n is of the form (8) where, for 0 ≤ j ≤ n − 1, fj = 0, gj+1 = 0, �j+14x1 y5 = eh4x5, and fn = f . For
simplicity, we assume X lives in discrete state space. As given by Corollary 1, a zero-variance filtered estimator
exists under the change-of-measure Q∗, which makes X evolve, at time j , according to the transition kernel

M∗

j 4x1 y5=

{

eh4x5P4x1 y5�n−j4y5/�n−j+14x5 if �n−j+14x5 > 0

P4x1 y5 if �n−j+14x5= 00
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Suppose n is large, so that finding the time-dependent solution 4u4j1 ·52 j ≤ n5 to the backward Equations (9)
is computationally expensive. For fixed j and n large, one can intuitively expect the ratio un−j4y5/un−j+14x5 to
be roughly independent of j , and this suggests using an importance measure with a time-homogeneous kernel,
based on a “large n” time-independent approximation to u. More specifically, put K4x1 y5 = eh4x5P4x1 y5, and
let �, v be the Perron-Frobenius eigenvalue and eigenvector such that

Kv = �v0

Choose the importance measure Q under which X has transition kernel M , where

M4x1y5=
K4x1 y5v4y5

�v4x5
= eh4x5

P4x1 y5v4y5

�v4x5
0

Note that

�n4x5= Ex

(

exp
(n−1
∑

j=0

h4Xj5

)

f 4Xn5

)

= EQ
x

v4X05

v4Xn5
f 4Xn5�

n0

Thus, approximating u4j1 ·5 by v4 · 5, j ≤ n, leads to an importance sampling estimator based on simulating
replicates of W = 4v4X05/v4Xn55f 4Xn5�

n under Q. Note that the variance of the naive Monte-Carlo estimator is

varP

(

exp
(n−1
∑

j=0

h4Xj5

)

f 4Xn5

)

= �̃n EQ̃x

ṽ4X05

ṽ4Xn5
f 24Xn5−�2n

(

EQx

v4X05

v4Xn5
f 4Xn5

)2

1

where �̃ and ṽ are the Perron-Frobenius eigenvalue and eigenvector of the kernel K̃ = 4e2h4x5P4x1 y52 x1 y ∈ S5,
solving

K̃ṽ = �̃ṽ1

and Q̃ is the measure under which X has transition kernel M̃4x1 y5= e2h4x544P4x1 y5ṽ4y55/4�̃ṽ4x555. In contrast,

varQW = �2n

[

EQx

(

v4X05

v4Xn5
f 4Xn5

)2

−

(

EQx

v4X05

v4Xn5
f 4Xn5

)2]

0

Thus, for large n, using the proposed importance sampling scheme provides several advantages: First, one does
not need to compute the time-dependent solutions 4u4j1 ·52 j ≤ n5, but rather solve only for the approximation v,
which is significantly less computationally intensive. Second, the scheme provides exponential (in n) variance
reduction compared to naive Monte Carlo. Additionally, one can estimate �n parametrically in n (because for
large n the estimator takes the form �n times an expectation that converges to a steady-state value). Note also
that for this problem there is no obvious rare event associated with the expectation.

6. Performance of approximate zero-variance importance sampling. As noted in previous sections, the
zero-variance importance sampling estimators and corresponding change of measure cannot be directly imple-
mented in practice, because they require knowledge of the solution to the linear system that characterizes the
desired expectation, such as (4) or (16), and hence, in particular, knowledge of the expectation one wants to
estimate. Nevertheless, the results in the previous sections can offer guidance to the simulationist on how to
construct a good importance sampler: if an approximation u to the desired solution of the linear system is
available, then one can use such an approximation to construct the change of measure and related estimator
W as in (5), that is, do approximate zero-variance importance sampling—cf. L’Ecuyer and Tuffin [27]. When
studying the performance of such an estimator, there are two aspects related to the efficiency of the estimator
on which one would like to have guarantees:

• Completion time–how long does it take to compute the estimator W ? In particular, does the algorithm
return an estimate in finite time (i.e., is it the case that Q4T <�5= 1?)?

• What is the MSE of the estimator? (It would be zero if using u∗ to construct the estimator; by how much
has it increased because of using an approximation?)
We address the first of these issues in §6.1 and the second in §§6.2 and 6.3.
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6.1. The need to enforce finite completion time. It is apparent from the discussion and examples in
previous sections that, for some problems, computing the estimators presented earlier may take an infinite amount
of (simulated) time under the importance measure Q; that is, for some problems, one has Q4T = �5 > 0. This
can happen even in situations in which P4T = �5= 0, and even when using the desired solution u∗ to build the
estimator. This problem often arises in situations in which u∗ = 0 on K; in those cases one may get around this
issue by putting the “rewards” in the transitions, as in Example 10, or adding an artificial final reward, as in
Example 13; however, this behavior can also be unrelated to the boundary condition, but rather be a consequence
of the form of the rewards within KC , as in Examples 16 and 18 (and in such case adding terminal rewards will
not guarantee finite completion time). The same issues arise when using an approximation to build the change
or measure.

Having a positive probability of an infinite completion time is, of course, undesirable in itself. But it also
brings an additional problem: if one restricts attention to 8T <�9, then the estimator may be biased.

When doing approximate zero-variance importance sampling, the approximation to u∗ that one is using may
well be (or be close to) another nonnegative solution u to (4), u 6= u∗. It follows from the analysis in §3 that,
when using such a solution u to construct Q and W , it is always the case that Q4T = �5 > 0. Moreover,
on 8T < �9, W = u4x5 ≥ u∗4x5, Qx–a.s. Hence, if running multiple replications, a positive fraction of them
will not return a solution in finite time, whereas those that do terminate will return an answer that is always
over biased.

The above point is relevant also when implementing adaptive algorithms like those in Ahamed et al. [1],
Kollman et al. [26], and Baggerly et al. [2]. Such algorithms are constructed to converge to a change of measure
that corresponds to a solution u to (4). If they converge to the wrong solution, then a biased estimator may
result.

The above discussion leads to one important policy recommendation of this study: the necessity to explicitly
check that the algorithm constructed terminates in finite time a.s. A natural way to do this is by verifying a
Lyapunov condition: find a function v ≥ 0 and �> 0 such that

∫

v4y5M4x1dy5≤ v4x5− �1

x ∈KC ; see, e.g., Meyn and Tweedie [28, Theorem 11.3.4]. When doing approximate zero-variance importance
sampling, not verifying such condition puts the simulationist at a real risk of having a nonterminating algorithm,
and of having a biased estimator when restricted to paths that terminate in finite time.

6.2. Lyapunov bounds on the variance in the DTMC setting. When doing approximate zero-variance
importance sampling, the resulting estimator W will not have zero variance; one expects it to have low variance,
but would like to have a way to assess how large its variance and MSE are. In this section we develop Lyapunov
bounds for the MSE of the estimator, in the same spirit as those developed in Blanchet and Glynn [3] for
estimators of rare-event probabilities. We work in the same setting as in §§2 and 3.

Suppose u is an approximation to u∗ satisfying the conditions in Theorem 1. Because W is an unbiased
estimator of u∗4x5, it follows that its MSE under Qx is

EQx
4W − u∗4x552

= varQx
W =m4x5− u∗24x51

where
m4x5

4

= EQx
W 20

Because only the second moment m4x5 depends on the approximation u, we focus on bounding this term.

Theorem 5. The function m is the minimal nonnegative solution to

m4x5= r4x5+

∫

S
H4x1dy5m4y51 (22)

where

H4x1dy5
4

=
w4x5− f 4x5

g4x1 y5+ u4y5
�4x1 y5P4x1dy51

for x ∈ KC , y ∈ S; H4x1dy5 = 0 for x ∈ K; and r4x5
4

= 2f 4x5u∗4x5 − f 24x5 +
∫

S
H4x1dy56g24x1 y5 +

2g4x1 y5u∗4y570 (Note r4x5= f 24x5 for x ∈K.)
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This solution can be characterized as

m=

�
∑

j=0

H jr1 (23)

where H 04x1dy5= �x4dy5, H
j4x1D5=

∫

S
H j−14x1dy5H4y1D5, for D ∈S, and 4H jr54x5=

∫

S
H j4x1dy5r4y5.

Proof. Let A1Ai4 · 5 be as in the proof of Theorem 1; the argument there shows that Px � Qx on
84X11 : : : 1Xi5 ∈Ai4x59∩Fi∧T . Let

Bi =

i
∏

k=1

�4Xk−11Xk51 Bi1 j =

j
∏

k=i+1

�4Xk−11Xk5 and Li1 j =

j
∏

k=i+1

l4Xk−11Xk50

Note

W = f 4X05+

�
∑

i=1

6f 4Xi5+ g4Xi−11Xi57BiLiI4T ≥ i51

and, because every term is nonnegative,

W 2
= f 24X05+ 2f 4X05

�
∑

i=1

[

f 4Xi5+ g4Xi−11Xi5
]

BiLiI4T ≥ i5

+

�
∑

i=1

[

f 4Xi5+ g4Xi−11Xi5
]2
B2
i L

2
i I4T ≥ i5

+ 2
�
∑

i=1

[

f 4Xi5+ g4Xi−11Xi5
]

BiLiI4T ≥ i5
∑

j>i

6f 4Xj5+ g4Xj−11Xj57BjLjI4T ≥ j50

Hence,

EQx
W 2

= f 24x5+ 2f 4x5EQx

�
∑

i=1

[

f 4Xi5+ g4Xi−11Xi5
]

BiLiI4T ≥ i5

+ EQx

�
∑

i=1

[

f 4Xi5+ g4Xi−11Xi5
]2
B2
i L

2
i I4T ≥ i5

+ 2
�
∑

i=1

EQx

{

[

f 4Xi5+ g4Xi−11Xi5
]

B2
i L

2
i I4T ≥ i5EQx

[

∑

j>i

[

f 4Xj5+ g4Xj−11Xj5
]

Bi1 jLi1 jI4T ≥ j5 �Fi

]}

= f 24x5+ 2f 4x54u∗4x5− f 4x55+ EQx

�
∑

i=1

[

f 4Xi5+ g4Xi−11Xi5
]2
B2
i L

2
i I4T ≥ i5

+ 2 EQx

�
∑

i=1

[

f 4Xi5+ g4Xi−11Xi5
]

B2
i L

2
i I4T ≥ i54u∗4Xi5− f 4Xi551

where the last follows from Theorem 1. Rearranging,

EQx
W 2

= 2f 4x5u∗4x5− f 24x5+

�
∑

i=1

EQx

[

2f 4Xi5u
∗4Xi5− f 24Xi5

]

B2
i L

2
i I4T ≥ i5

+

�
∑

i=1

EQx
6g24Xi−11Xi5+ 2g4Xi−11Xi5u

∗4Xi5
]

B2
i L

2
i I4T ≥ i5

= 2f 4x5u∗4x5− f 24x5+ EQx

�
∑

i=1

[

2f 4Xi5u
∗4Xi5− f 24Xi5

]

B2
i L

2
i I4T ≥ i5

+

�
∑

i=1

EQx
g̃4Xi−15B

2
i−1L

2
i−1I4T ≥ i5

(since 8T ≥ i9 ∈Fi−1), where

g̃4z5
4

=

∫

S

[

g24z1 y5+ 2g4z1 y5u∗4y5
]

�24z1 y5l24z1 y5M4z1dy51
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z ∈KC . Note g24z1 y5+ 2g4z1 y5u∗4y5= 0 if z 6∈A or y 6∈A14z5. Hence, g̃4z5= 0 for z 6∈A, and

g̃4z5 =

∫

A14z5

[

g24z1 y5+ 2g4z1 y5u∗4y5
]

�24z1 y5l24z1 y5M4z1dy5

=

∫

A14z5

[

g24z1 y5+ 2g4z1 y5u∗4y57�24z1 y5l4z1 y5P4z1dy5

=

∫

S

[

g24z1 y5+ 2g4z1 y5u∗4y57�24z1 y5l4z1 y5P4z1dy5

for z ∈KC . Note also that g̃4Xi5I4T > i5= g̃4Xi5I4T ≥ i5, since g̃4z5= 0 for z ∈K. It follows that

EQx
W 2

= 2f 4x5u∗4x5− f 24x5+ g̃4x5+

�
∑

i=1

EQx
62f 4Xi5u

∗4Xi5− f 24Xi5+ g̃4Xi57B
2
i L

2
i I4T ≥ i5

= r4x5+

�
∑

i=1

EQx
r4Xi5B

2
i L

2
i I4T ≥ i5

= r4x5+

�
∑

i=1

∫

KC×···×KC×S
M4x1dx15 · · ·M4dxi−11 dxi5r4xi5

i
∏

j=1

�24xj−11 xj5l
24xj−11 xj5

= r4x5+

�
∑

i=1

∫

Ai4x5
M4x1dx15 · · ·M4dxi−11 dxi5r4xi5

i
∏

j=1

�24xj−11 xj5l
24xj−11 xj5

= r4x5+

�
∑

i=1

∫

Ai4x5
P4x1dx15 · · ·P4dxi−11 dxi5r4xi5

i
∏

j=1

�24xj−11 xj5l4xj−11 xj5

= r4x5+

�
∑

i=1

∫

Ai4x5
H4x1dx15 · · ·H4dxi−11 dxi5r4xi5

= r4x5+

�
∑

i=1

∫

S×···×S
H4x1dx15 · · ·H4dxi−11 dxi5r4xi5

= r4x5+

�
∑

i=1

4H ir54x51

giving (23). Using (23), it is easy to show that m must solve (22). �

The corollary below provides Lyapunov bounds for the second moment m4x5. We need the following well-
known lemma.

Lemma 1. Let m̃2 S →�+ be defined as

m̃=

�
∑

j=0

H̃ j�1

where �2 S → 601�5 and H̃ is a kernel function such that H̃4x1 ·5 is a finite measure on 4S1S5 for x ∈ S.
Suppose there exists a finite-valued function v ≥ 0 satisfying the Lyapunov inequality

v4x5≥ �4x5+ 4H̃v54x51 (24)

x ∈ S. Then, m̃≤ v.

Proof. Because v is finite valued, it follows from (24) that H̃v is finite valued. Hence,

�≤ v− H̃v1

whence H̃�≤ H̃v ≤ v, and using induction one concludes H̃ j�≤ H̃ jv ≤ v1 so H̃ j� and H̃ jv are finite valued for
all j ≥ 0. Applying H j through the inequality above gives H̃ j�≤ H̃ jv− H̃ j+1v, and summing over j we obtain
∑n

j=0 H̃
j�≤ v− H̃n+1v ≤ v. Sending n→ � gives the desired conclusion. �
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Corollary 3. Put B4x1dy5= �4x1 y5P4x1dy5 for x ∈KC and B4x1dy5= 0 for x ∈K. Suppose there exist
finite-valued nonnegative functions v11 v22 S →� satisfying

Bv1 ≤ v1 − f̃ 1

Hv2 ≤ v2 − r̃ 1

where r̃ 4x5 = 2f 4x5v14x5 − f 24x5 +
∫

S
H4x1dy56g24x1 y5 + 2g4x1 y5v14y571 f̃ 4x5

4

= f 4x5 +
∫

S
B4x1dy5g4x1 y5,

and H is as in Theorem 5. Then, m4x5≤ v24x5, x ∈KC .

Proof. Let r and H be as in Theorem 5. It can be easily shown that u∗ =
∑�

j−0 B
j f̃ . It follows from

Lemma 1 that v1 ≥ u∗. Hence, r̃ ≥ r , and it follows from Lemma 1 and Theorem 5 that

v2 ≥

�
∑

j=0

H j r̃ ≥

�
∑

j=0

H jr =m0 �

Remark 9. If one has a good approximation u to u∗, then one would expect the resulting estimator W to
have small variance, whence its second moment would be close to u∗24x5. Thus, a natural first guess for the
Lyapunov functions v11 v2 is to set v1 = c1u and v2 = c2u

2 for constants c11 c2 > 0.

Example 21 (GI/G/1 Queue in Heavy Traffic). Consider again the waiting time chain for a GI/G/1
queue in heavy traffic discussed in Example 17, for which we want to estimate

�4x5= Ex

T0
∑

j=0

e�Xj 1

where T0 = inf8n≥ 02 Xn = 09 and 0 < � < �̄
4

= sup8�2 41−�24�55/6��4�5F 40541−��2/4241−�5557≥ 1−�90
In that example we suggested using a change-of-measure Q and filtered estimator W based on the approximation
u to u∗ given by u4x5= c0e

�x for x > 0, and u405= 1, where c0
4

= 6�41 − �541 −�2�/4241 − �5557−10 Here we
obtain a bound on the variance of the estimator W under Q.

We start with candidates for the functions v1 and v2 in Corollary 3. Let v1405= v2405= 1, and for x > 0 put
v14x5= c1u4x5 and v24x5= c2u

24x5, for some constants c11 c2 > 0 to be determined.
For x > 0

Bv14x5= c1 E4c0e
�4x+Z153 Z1 >−x5+ F 4−x5≤ c1u4x5�4�5+ F 4−x50

It follows that, for x > 0, Bv14x5≤ v14x5− e�x as long as c1 ≥ 41 + F 4−x5�4�55/c041 −�4�55. This is satisfied
for all x > 0 by setting c1 = 41 + F 4055/c041 −�4�55.

Note that, for x > 0, r̃ 4x5= e2�x42c1c0 − 15, and

w4x5− f 4x5=

∫

S
P4x1dy5u4y5= E4e�4x+Z153 Z1 >−x5+ F 4−x5≤ u4x5�4�5+ F 4−x50

Hence, for x > 0,

Hv24x5 = 4w4x5− f 4x55

[

E
(

c2u
24x+Z15

u4x+Z15
3 Z1 >−x

)

+ F 4−x5

]

≤ 4u4x5�4�5+ F 4−x554c2u4x5�4�5+ F 4−x550

It follows that Hv24x5≤ v24x5− r̃ 4x5 as long as

c2u4x56u4x541 −�24�55−�4�5F 4−x57≥ e2�x42c1c0 − 15+ u4x5�4�5F 4−x5+ F 24−x50

The above holds for all x > 0 if one sets

c2 =
2c1 +�4�5F 405− 41 − F 24055/c0

c041 −�24�55−�4�5F 405
0

Thus, with c1 and c2 as above, the functions v1 and v2 satisfy the conditions in Corollary 3, whence EQx
W 2 ≤

c2c0e
2�x0

6.3. Lyapunov bounds on the variance in the SDE setting. In this section we present Lyapunov bounds
for the variance in the SDE setting, analogous to those for Markov chains in the previous section.
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We use the same setting of §4. Suppose ũ is an approximation to u∗, the function in Assumption 3. We
consider a change of measure and corresponding estimator W as in (17), with

�4x5=
�4x5Tïxũ4x5

ũ4x5
1

so that, under Q, X has drift

�̃4x5=�4x5+
�4x5�4x5Tïxũ4x5

ũ4x5
0

Let m4x5 denote the second moment of the estimator W ,

m4x5= EQx
W 20

The following result presents a Lyapunov condition that allows one to bound m.

Theorem 6. Suppose Assumption 3 holds. Additionally, assume ũ also satisfies conditions (iii)–(v) in
Assumption 3. Suppose there exist nonnegative functions v11 v22 �

m →�+ that are twice-continuously differen-
tiable and solve

�4x5Tïxv14x5+ 1
2 tr4�4x5�4x5Tïxxv14x55+h4x5v14x5+ f 4x5≤ 01

2f 4x5v14x5+ v24x5
[

2h4x5+ ��4x5�2
]

+ïxv24x5 · 6�4x5−�4x5�4x57+ 1
2 tr4�4x5�4x5Tïxxv14x55≤ 01

x ∈KC , with boundary conditions v14x5≥ g4x5 and v24x5≥ g24x5, x ∈K. Then v24x5≥m4x5, x ∈KC .

Proof. Consider the processes V1 and V2 given by

V14t5
4

= S4t5+�4t5L4t5v14X4t551

V24t5
4

= S24t5+ 2�4t5L4t5S4t5v14X4t55+�24t5L24t5v24X4t551

where S4t5
4

=
∫ t

0 f 4X4s55�4s5L4s5ds. Using Itô’s formula and the PDE satisfied by v1 one can verify that the Itô
representation of V1 has nonpositive term in dt, whence V1 is a local supermartingale. Because V1 is nonnegative
and EQx

V1405 = v14x5 < �, it follows that 4V14t ∧ T 52 t ≥ 05 is in fact a supermartingale, and is L1 bounded.
By the martingale convergence theorem V14t∧T 5 converges Q–a.s. to a rv V 4�5 satisfying EQx

V14�5≤ v14x5.
Note that on 8T <�9

V14�5 =

∫ T

0
f 4X4s55�4s5L4s5ds +�4T 5L4T 5v14X4T 55

≥

∫ T

0
f 4X4s55�4s5L4s5ds +�4T 5L4T 5g4X4T 55

= W1

while on 8T = �9

V14�5 = lim
t→�

V14t5≥ lim
t→�

S4t5=W1

Qx–a.s. Hence,
v14x5≥ EQx

V14�5≥ EQx
W = u∗4x50

Similarly, using Itô’s formula and the PDEs satisfied by v1 and v2 one can verify that V2 is a local super-
martingale, and because V2 is also nonnegative it follows that 4V24t ∧ T 52 t ≥ 05 is in fact an L1-bounded
supermartingale under Qx. By the martingale convergence theorem V24t ∧ T 5 converges a.s. to a rv V24�5
satisfying EQx

V24�5≤ v24x5. Note that on 8T <�9

V24�5 = S24T 5+ 2�4T 5L4T 5S4T 5v14X4T 55+�4T 5L4T 5v24X4T 55

≥ S24T 5+ 2�4T 5L4T 5S4T 5g4X4T 55+�24T 5L24T 5g24X4T 55

= W 21
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while on 8T = �9

V24�5= lim
t→�

V24t5≥ lim
t→�

S24t5=W 21

Qx–a.s. Hence,

v24x5≥ EQx
V24�5≥ EQx

W 2
=m4x50 �

Remark 10. As in the discrete case, a good starting guess for v1 and v2 is v1 = c1ũ and v2 = c2ũ
2, for some

constants c11 c2, where ũ is the approximation to u∗.
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