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Abstract. This paper studies a method for estimating the quasi-stationary distribu-
tion of various interacting particle processes has been proposed by [6, 5, 8]. This
method improved upon existing methods in eigenvector estimation by eliminating
the need for explicit transition matrix representation and multiplication. However,
this method has no firm theoretical foundation. Our paper analyzes the algorithm by
casting it as a stochastic approximation algorithm (Robbins-Monro) [12]. In doing
so, we prove its convergence and rate of convergence. Based on this insight, we also
give an example where the rate of convergence is very slow. This problem can be
alleviated by using an improved version of this algorithm that is given in this pa-
per. Numerical experiments are described that demonstrate the effectiveness of this
improved method.
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1 Introduction

The original motivation for this algorithm came from physicists’ need to estimate
the quasi-stationary distribution of the contact process [6, 5, 8] A quasi-stationary
distribution can be computed via the left principal eigenvector of the transition ma-
trix (transition rate matrix in the continuous-time setting). The method that has been
proposed by these physicists is a heuristic based on manipulation of the Kolmogorov
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forward equations. The method works in practice but has no firm proof. This paper
recognizes the algorithm as a stochastic approximation algorithm which allows us to
prove convergence and sufficient conditions for a Central Limit Theorem. We then
give an improved version with variance reduction.

This section reviews the relevant related literature on eigenvector estimations.
Sect. 2 reviews some background material to the contact process, quasi-stationary
distributions, and the basis for the original heuristic. Sect. 3 goes over the stochastic
approximation formulation and sketches the proof of convergence (the full proof
will be given in a follow-up journal paper [1]). Sect. 4 gives an improved version
of the algorithm. Sect. 5 studies the algorithm adapted for continuous-time Markov
chains. Sect. 6 goes over several important numerical experiments.

1.1 Related Literature

Power Method

The power method [9] is very simple. We iterate a sequence xn by computing

xn+1 =
xT

n A
‖ xT

n A ‖

This works for any matrix such that the principal eigenvalue has multiplicity one and
strictly largest magnitude. The problem is that for Markov chains with extremely
large state space, such as the contact process, it would not be feasible to store and
compute in such large dimensions (on the order of 2n for interacting particle sys-
tems).

The variant known as inverse method also suffers from similar problems due to
the necessity of matrix multiplication.

1.1.1 Monte Carlo Power Method

The Monte Carlo power method involves a random sampling of the values in the
matrix in such a way that a sequence converges to the principal eigenvalue. This
method works for any matrix A.

We need to define a Markov chain on the index of the matrix A: 1, . . . ,n. Call
this Markov chain {kn} where a transition from kn = α to kn+1 = β depends on the
magnitude of Aαβ in the following way

P(kn+1 = β |kn = α) =
|Aαβ |
∑β |Aαβ |
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with an arbitrary initial distribution generator h so that

P(k0 = α) =
|hα |
∑α |hα |

Then we define a random sequence of variables Wn recursively:

W0 =
hk0

pk0

Wn =Wn−1
Akn−1kn

pkn−1kn

It isn’t hard to verify that

lim
n→∞

E[Wnfkn ]

E[Wn−1fkn−1 ]
= lim

n→∞
hT An f

hT An−1 f
= λmax

for any f. This method grows according to O(Nnm), where N is the number of states
in your Markov chain, n is the step number at when you terminate E[Wn fbn ], and m
is the number of independent Monte Carlo paths that you use to construct E[Wn fbn ].
However, in the contact process case, we can reduce this to O(Knm) where K is
the number of nodes in the graph. The major drawback to this method is that it will
only give you the approximate eigenvalue. In order to get the eigenvector, a lot more
work is required especially for large matrices such as ours.

1.1.2 Other Methods

[2] is a good survey of other principal eigenvector estimation algorithms. [13] is a
very recent pre-print of a stochastic method that is related but different from our
method. The mirror descent method method of [11] is also another alternative.

2 Background and Motivation

2.1 Contact Process

A contact process is a continuous-time Markov chain (CTMC)(Xt
1, . . . ,X

t
n)∈{0,1}n,

where t ≥ 0 is the time, with an associated connected graph (V,E) such that

(i) |V |= n
(ii) Individual nodes transition from 1 to 0 at an exponential rate of 1

(iii) Individual nodes transition from 0 to 1 at rate λ r where r is the fraction of
neighbors that are in state 1

This CTMC has 2n states. The state (0,0, . . . ,0) is an absorbing state and the re-
maining states are all transient.

This CTMC will eventually reach the absorbing state but physicists are interested
in the “pseudo-equilibrium” behavior in the long time before absorption happens.
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The hindrance of large state space can be alleviated in the rare cases where a
compressed representation is possible, such as the case of a contact process on com-
plete graph. In that case, we only need to know the total number of “on” states rather
than the identities of all the “on” states.

2.2 Quasi-stationary Distribution

2.2.1 Discrete-Time Version

[3] proposed the concepts of quasi-stationary distribution and quasi-limiting distri-
bution for the discrete-time Markov chains. Assume that 0 is the absorbing state and
1, . . . ,n are absorbing, we can write the Markov transition matrix as

P =

[
1 0
α Q

]

First we define the conditional transition probabilities

dπj (n) = P(Xn = j|X0 ∼ π ,X1, . . .Xn−1 
= 0)

=
π tQn−1e j

π tQn−1e

where {ei} is the standard basis for Rn and e is the vector of all 1’s. If there is a
distribution π over the transient states such that dπ(n) is constant, then we call dπ

the quasi-stationary distribution.
Under the assumption that the substochastic matrix Q is irreducible (not neces-

sarily aperiodic), it is straightforward to see that the quasi-stationary distribution
exists and is the unique solution to principal eigenvector problem

dtQ = ρd

by the Perron-Frobenius theorem.
Assuming Q is aperiodic and the condition that if |ρ2| = |ρ3|, we require the

multiplicity of ρ2 to be no less than the multiplicity of ρ3, we have that

dπj (n)→ d j +O

(
nk |ρ2|
ρ1

)

Note that the rate of convergence depends on the ratio between the second eigen-
value and principle eigenvalue.
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2.2.2 Continuous-Time

If we think about the transition rate matrix of a CTMC under similar setup (irre-
ducibility and ergodicity), then it ([4]) can be said that

dπj (t)→ d j + o(et(ρ ′−ρ1))

where d is the principal left-eigenvector of the rate matrix corresponding to the
transient states with associated eigenvalue ρ1. I.e.

dtR = ρ1dt

where R is the rate matrix of the CTMC.

2.3 Physicist’s Heuristic

Under the setting of a continuous-time Markov chain with rate matrix R and absorb-
ing state 0 (without loss of generality, we can combine all absorbing states into one
state), if we define pi j(t) = P(Xt = j|X0 = i) and Pis(t) = 1− pi0(t) , then we have

that quasi-stationary distribution d j = limt→∞
pi j(t)
Pis(t)

. If we apply the Kolmogorov
forward equation (known to physicists as the master equation), we get that

d pi j(t)

dt
=∑

k

pikRk j (1)

and
dPis(t)

dt
=

d
dt
(1− pi0(t)) =−∑

k

pikRk0 (2)

Intuitively by the definition of d j, we have that pi j(t) ≈ d jPis(t) in the quasi-
stationary time window (t large enough). So we can apply this to the preceding
two equations and get

d j
dPis(t)

dt
=∑dkPis(t)Rk j

dPis(t)
dt

= −∑
k

dkPis(t)Rk0

Combine the two and get

d j(∑
k

dkRk0)+∑
k

dkRk j = 0
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This gives us a non-linear equation for the equilibrium condition for the quasi-
stationary distribution d. We can think of this as the stationary point of the forward
equation

d(d j)

dt
=∑

k

dkRk j + d j(∑
k

dkRk0) (3)

The first part of this equation is the standard Kolmogorov forward equation, while
the second part redeposits the probability of hitting the absorbing states onto all the
non-absorbing states according to the current distribution d j.

This suggests the following algorithm

Algorithm 1 Algorithm for estimating quasi-stationary distribution
(i) Start the Markov chain in a non-absorbing state.

(ii) Simulate the Markov chain normally.
(iii) If the Markov chain hits the absorbing state, re-sample the starting posi-

tion based on an empirical estimate of the quasi-stationary distribution up
until that point and go to step 2. That is, we sample a non-absorbing state
according to a weight proportional to the amount of time that such a state
has been visited so far throughout the whole algorithm.

(iv) The samples after a large enough time window will be drawn approxi-
mately from the quasi-stationary distribution.

For large enough time, the dynamics of the Markov chain will be governed by
(3), which means we can obtain the quasi-stationary distribution by examining the
empirical distribution after some large enough time.

3 Stochastic Approximation Analysis of the Algorithm

In this section, we will re-organize Algorithm 1 into a stochastic approximation
algorithm. This will let us rigorously prove a convergence result and Central Limit
Theorem for the algorithm.

3.1 Formal Description of the Algorithm

We will now write down a precise description of the above Algorithm 1. Let our state
space be the finite set S and T ⊂ S be the set of transient states. Let μn be a probabil-
ity measure over transient states. μn will be the cumulative empirical distribution up
until the n-th iteration. Let Q be the substochastic matrix over the transient states,
and {Xl

n}n be the lth Markov chain in the simulation, and τ l = min{k ≥ 0|Xl
k 
/∈ T}

(the hitting time of the absorbing state), we can write our algorithm as

μn+1(x) =

(
∑n

l=0 τ l
)
μn(x)+

(
∑τ

n+1−1
k=0 I(Xn+1

k = x|Xn+1
0 ∼ μn)

)

∑n+1
l=0 τ l

∀x ∈ T
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for any arbitrary initial distribution μ0.
Robbins-Monro, or stochastic approximation algorithms [12, 10], have the form

μn+1 = μn +αnY (μn)

where

∑
n
αn = ∞ ∑

n
α2

n < ∞ αn ≥ 0 αn → 0

and Y (·) is a collection of vector-valued random variables for each possible point in
the state-space. Note that over the years, the form of the Robbins-Monro algorithm
has been extended. The form here is the classical version.

Under certain conditions, which will be discussed rigorously in [1], μn converges
to root of the function g(μ) � E[Y (μ)]. We will transform μn into stochastic ap-
proximation

μn+1(x) = μn(x)+

(
1

n+ 1

)⎛
⎝∑

τ(n+1)−1
l=0

(
I(X (n+1)

l = x)− μn(x)
)

1
n+1 ∑

n+1
j=0 τ( j)

⎞
⎠

where

Y (μ) = ∑
τ−1
l=0 (I(Xl = x|X0 ∼ μ)− μ(x))

1
n+1 ∑

n+1
j=0 τ( j)

The denominator is problematic because it depends on the whole history of μn and
not just on the present state. To solve this, we artificially consider another state Tn

in the following way.
Stochastic approximation scheme for the main algorithm

Tn+1 = Tn +
1

n+ 2
(τ(n+1)−Tn)⇒ Tn =

1
n+ 1

n

∑
j=0
τ( j)

μn+1(x) = μn(x)+ (4)

(
1

n+ 1

)⎛
⎝∑

τ(n+1)−1
l=0

(
I(X (n+1)

l = x|X (n+1)
0 ∼ μn)− μn(x)

)

Tn +
τ(n+1)

n+1

⎞
⎠ (5)

we can therefore define

Yn(μn,Tn)(x) �
∑τ

(n+1)−1
l=0

(
I(X (n+1)

l = x)− μn(x)
)

Tn +
τ(n+1)

n+1

Zn(μn,Tn) � (τ(n+1)−Tn)

So now we have a stochastic approximation path (μn,Tn), where the control param-
eters are (μ ,T ), that fits into the Robbins-Monro scheme above.
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Remark 1 Please note that the iterates μn are constrained in H � {x ∈ Rn
+|∑xi =

1}, the (n-1)-dimensional simplex.

We can also define a similar algorithm for the continuous-time Markov chain by
keeping track of the amount of time a Markov chain spends in each transient state.
This is given in Sect. 5.

We can summarize the conditions for our algorithm in the following theorem
taken from Blanchet, Glynn, and Zheng (2012):

Theorem 1 Given an irreducible absorbing Markov chain over a finite state space
S of cardinality d, let

(i) Matrix Q denoting the transition rates over the non-absorbing states
(ii) Let μ0 be a probability vector over the non-absorbing states

(iii) Let T0 ∈ R+

Then there exists an unique quasi-stationary distribution μ satisfying the equations

μ tQ = λμ
μ t1 = 1

μ ≥ 0

and the Algorithm 1 converges to the point (μ , 1
1−λ ) with probability 1.

Furthermore, if λPV is the principal eigenvalue of Q and λNPV are the other
eigenvalues and they satisfy

Re

(
1

1−λNPV

)
<

1
2

(
1

1−λPV

)
∀λNPV non-principal eigenvalues

Then √
n(μn− μ)→d N(0,V )

for some matrix V .

3.2 Sketch of Proof of Convergence

Our proof in [1] rests on the use of the ODE method [10] where we are required to
examine the asymptotics of the coupled dynamical system

μ̇(t) = Eμ(t),T (t)

[
∑τ−1

l=0 (I(Xl = ·|X0 ∼ μ))− τμ(x)
T (t)

]

(Define) A � (I−Q)−1 =
1
T

[
μ t(t)A− (μ tA1)μ t(t)

]
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Ṫ (t) = Eμ [τ]−T

= μ t(t)(I−Q)−11−T(t)

where μ ∈ Rn and T ∈ R+.
In [1], we were able to show that for a given initial position in the probability

simplex, the solution to the above dynamical system exists and converges to its
stationary point which is the unique point that satisfies

μT Q = ρμT

∑μi = 1

μi ≥ 0

and ρ = 1− 1
Eμ (τ) .

By Theorem 4.2.1 from [10], we can conclude that μn converges to the quasi-
stationary distribution for all initial configurations (μ0,T0).

By Theorem 10.2.1 from [10], we conclude that a Central Limit Theorem exists
as long as the Jacobian of the ODE vector field has spectral radius less than −0.5.
This is equivalent to requiring that

Re

(
1

1−λNPV

)
<

1
2

(
1

1−λPV

)
∀λNPV non-principal eigenvalues (6)

where the λ ’s are the eigenvalues of the Q matrix.

4 Variations on the Existing Algorithm with Improved Rate
of Convergence

One interesting question to ask is what happens when the sufficient conditions for
Central Limit Theorem is not met. We will study a simple example consisting of
two states.

4.1 Counter Example to CLT

Imagine we have a Markov chain with three states {0,1,2} and transition matrix

⎡
⎣ 1 0 0
ε 1−ε

2
1−ε

2
ε 1−ε

2
1−ε

2

⎤
⎦
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Obviously the state {0} is the absorbing state. In this setup, because of symmetry,
our Algorithm 1 reduces to

(i) With probability 1−ε
2 sample either the state 1 or 2 (without knowing the previ-

ous state, this is ok by symmetry)
(ii) With probability ε , sample from either 1 or 2 according to the empirical distri-

bution up until this point.

We recognize this as a self-interacting Markov chain.
A self-interacting Markov chain [7] is a stochastic process {Xn} such that

P(Xn+1 ∈ dx|Fn) =Φ(Sn)(dx)

where Φ is a function that transforms one measure into another measure and Sn is
the empirical measure generated by {Xk}n

k=0.
Then our quasi-stationary algorithm reduces to the empirical process of a SIMC

Xn governed by

P(Xn+1 = dz|F n) =

∫
K(x,dz)dSn(dx)

where the kernel is given by

K(x,dz) = εδx(dz)+

(
1− ε

2

)
[δ1(dz)+ δ2(dz)]

The sufficient condition for CLT (6) or this problem translates to requiring ε < 0.5.
When the CLT is violated however, [7] states that over a very general class of

bounded and measurable functions f

E[(Sn( f )− S̄n( f ))2] =Θ
(

1

n2(1−ε)

)

where Sn( f ) =
∫

f (x)dSn(x), S̄n( f ) = E[Sn( f )]. Although this doesn’t technically
contradict with the existence of a

√
n-CLT, it does suggest that the scaling sequence

is n1−ε instead of
√

n.

4.2 The Parallel Algorithm

There is a variant of the algorithm that can offer significant practical benefits. Imag-
ine that at each iteration, instead of there being one run of the Markov chain until
absorption, we have M independent runs. Such that

μn+1(x) =
μn(x)

(
∑n

l=0∑
M
m=1 τ l,m

)
+∑M

m=1

[
∑τ

n+1,m−1
k=0 I(Xn+1,m

k = x|Xn+1,m
0 ∼ μn)

]

∑n+1
l=0 ∑

M
m=1 τ l,m

= μn(x)+
1

n+1

∑M
m=1

[
∑τ

n+1,m−1
k=0

(
I(Xn+1,m

k = x|Xn+1,m
0 ∼ μn)

)
− τn+1,mμn(x)

]
1

n+1 ∑
n+1
l=0 ∑

M
m=1 τ l,m
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Again we have to include an extra dimension

μn+1 = μn +
1

n+ 1

⎛
⎝∑

M
m=1

[
∑τ

n+1,m−1
k=0

(
I(Xn+1,m

k = ·|Xn+1,m
0 ∼ μn)

)
− τn+1,mμn

]

Tn +
1

n+1 ∑
M
m=1 τn+1,m

⎞
⎠

Tn+1 = Tn +
1

n+ 2

(
M

∑
m=1
τm,n+1−Tn

)
⇒ Tn =

1
n+ 1

n

∑
j=0

M

∑
m=1
τm, j

After some derivation, we obtain the dynamical system

μ̇(t) =
M

T (t)

(
μ t(I−Q)−1− (μ t(I−Q)−11)μ t)

Ṫ (t) = Mμ t(I−Q)−11−T

Very similarly, we know that

μ(t)→ μ̄

T (t)→ M

1− λ̄

If we let gμ and gT denote the dynamical system’s components, then we obtain the
Jacobian

∇μgμ =
M
T

(
(I−Q)−1− (I−Q)−11μT − 1

1− λ̄
I

)

∇T gμ = −M
T 2

(
μ t(I−Q)−1− (μ t(I−Q)−11)μ t)

∇μgT = M(I−Q)−11

∇T gT = −1

So the condition for which the Central Limit Theorem remains the same:

Re(
1

1−λNPV
)<

(
1
2

)
1

1−λPV
∀λNPV non principal eigenvalues

where λPV is the principal eigenvalue of Q and λNPV is the non-principal eigenvalue
of Q.

Although the Central Limit Theorem does not always hold, the variance of the
stochastic approximation noise is lower with bigger M. This means that if we have
enough independent Markov chain iterations across different processors, the algo-
rithm would perform better. See Section 5 for empirical performance.
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5 Continuous-Time Markov Chains

5.1 Formulation and Convergence

So far, the exposition has assumed that the Markov chain of interest is a discrete-
time process. It is straightforward to adapt our method for continuous-time pro-
cesses (such as the contact process). If we denote the transition rate matrix of the
CTMC in the following block form

T =

[
0 0
N Q

]

then we can write the algorithm as

μn+1(x) =
μn(x)

(
∑n

l=0∑
M
m=1 τ l,m

)
+∑M

m=1

[∫ τn+1,m

0 I(Xn+1,m(s) = x|Xn+1,m
0 ∼ μn)ds

]

∑n+1
l=0 ∑

M
m=1 τ l,m

= μn(x)+
1

n+1

∑M
m=1

[∫ τn+1,m

0

(
I(Xn+1,m(s) = x|Xn+1,m

0 ∼ μn)
)

ds− τn+1,mμn(x)
]

1
n+1 ∑

n+1
l=0 ∑

M
m=1 τ l,m

By a similar approach as the discrete-time case, we deduce the related dynamical
system

μ̇(t) = − M
T (t)

(
μ tQ−1− (μ t Q−11)μ t

)

Ṫ (t) = −Mμ tQ−11−T

It is straightforward to adapt the Perron-Frobenius theorem to transition rate ma-
trices such as Q by decomposing Q = A− bI where A is an irreducible matrix. We
know the existence of a principal eigenvector of positive entries μ̄ (with eigenvalue
smaller than 0) such that

μ̄ tQ = λ̄ μ̄ t

We can easily check that the stationary point, and with more work the limit point of
the dynamical system satisfies

μ̄ tQ =
1

μ̄ tQ−11
μ̄ t = μ̄ t

T̄ = −Mμ̄ tQ−11 =−M
1

λ̄

Hence we have proven that the CTMC version of the algorithm converges to the
quasi-stationary distribution.
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5.2 Rate of Convergence

The Jacobian of the dynamical system is given by

∇μgμ = −M
T

(
Q−1−Q−11μT − (μ tQ−11)I

)

∇T gμ =
M
T 2

(
μ tQ−1− (μ tQ−11)μ t)

∇μgT = −MQ−11

∇T gT = −1

When evaluated at the stationary point (μ̄ , T̄ ), we get the matrix
[
−λ̄
(

Q−1−Q−11μ̄ t − 1
λ̄ I
)
−MQ−11

0 −1

]

If λQ is any non-principal eigenvalue of Q, then the sufficient condition for CLT
becomes

2λPV > Re(λQ)

5.3 Uniformization

Because these CTMC have finite state space, we can form the associated uni-
formized Markov chain. Let Q be the transition rate matrix of the non-absorbing
states and let ν = maxi(−qii), we can form a discrete-time transition matrix

Q̃ = I+
1
ν

Q

It is straightforward to verify that any principal left-eigenvector to Q is also a princi-
pal left-eigenvector to Q̃. Hence we apply the discrete-time algorithm to this DTMC.

6 Numerical Experiments

6.1 Loopy Markov Chain

Let’s consider the loopy Markov chain given by the full stochastic matrix

⎡
⎣ 1 0 0
ε 1−ε

2
1−ε

2
ε 1−ε

2
1−ε

2

⎤
⎦
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the eigenvalues of the sub-stochastic matrix are 1− ε and 0. Hence the sufficient
condition for Central Limit Theorem to hold is requiring ε < 0.5. A series of nu-
merical experiments were performed for different values of ε where the L2 error is
plotted against time. The observation is summarized in the following table.

Table 1 This table summarizes the behavior of the loopy Markov chain for various ε

ε CLT Satisfied? Observation Figure (in appendix)

0.1 yes No difference between the performance of
different M’s.

A.1

0.4 yes (borderline) No difference between the performance of
different M’s.

A.2

0.6 no (borderline) Noticeable, but relatively medium difference
between small M and larger M. Observed critical
M=2. Anomalous large error for the M=10 run.

A.2

0.98 no Huge difference between the simulation with
small M and larger M. However, some of the
simulations with very large M begin to show
larger errors than the simulation with medium
M’s.

A.4

0 2 4 6 8 10 12 14 16

x 10
4

0

0.5

1

1.5

2

2.5
x 10

−3 CLT loopy Markov chain epsilon = 0.1

time (n)

er
ro

r

Fig. 1 This figure is the time vs. error plot of the main algorithm ran on a loopy Markov chain
with eigenvalues well within the CLT regime (ε = 0.1 < 0.5). Notice the scale of the y-axis.
The colors of the different lines represent different runs with different M’s. In this regime
which satisfies the CLT for all M, increasing M does not improve the rate of convergence.
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Fig. 2 This figure is the time vs. error plot of the main algorithm run on a loopy Markov
chain with eigenvalues just within the CLT regime (ε = 0.4 < 0.5). Just like the previous
figure, this figure shows that increasing M does not improve the rate of convergence.
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Fig. 3 The is the time vs. error plot of the main algorithm ran on a Markov chain with
eigenvalues just outside of the CLT regime (ε = 0.6 > 0.5). As you can see, there is a notice-
able difference between the M = 1 simulation and other M simulations. However, there is an
anomalous run for M = 10. It is probably due to the inherent large variance of the error.
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6.2 Contact Process on Complete Graph

6.2.1 Low Infection Rate

Here we apply the algorithm to a special case of the contact process. This is the
contact process on a complete graph. This simple case allows the process to be
only represented by the number of infected nodes. We picked 10000 nodes and an
infection rate of 0.8. The algorithm was run for 1000 iterations. See Fig. 5 for the
plot of the estimated distribution vs the true distribution.
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Fig. 4 The is the time vs. error plot of the main algorithm run on a Markov chain with
eigenvalues just outside of the CLT regime (ε = 0.98 >> 0.5). As you can see, there are huge
differences between the M = 1,5 simulation and other M simulations. However, there are
anomalous runs for M = 20,25. They are probably due to the inherent large variance of the
error.
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Fig. 5 This is the time vs. probability plot of the the continuous-time version of the algorithm
applied to the contact process on complete graph with 10000 nodes and an infection rate of
0.8.
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Fig. 6 This is the time vs. probability plot of he continuous-time version of the algorithm
applied to the contact process on complete graph with 10000 nodes and a high infection rate
of 1.5.
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6.2.2 High Infection Rate

If the infection rate is changed to 1.5, then each iteration of the algorithm would
take an extreme long time due to the time it takes to hit the absorbing state. Hence,
we uniformized the continuous-time chain to get a discrete-time transition matrix Q.
Instead of applying the algorithm to Q, we can apply the algorithm to 0.99×Q in or-
der to shorten each tour. The algorithm showed high variability on the two different
runs. See Fig. 6 for the plot of the estimated distribution vs the true distribution.

7 Discussion and Conclusion

In summary, we have given a rigorous foundation to the algorithm of [5] by rec-
ognizing it as a stochastic approximation algorithm. In doing so, we were able to
prove its law of large number and fluid limits. A slightly improved algorithm is also
proposed and this algorithm significantly improves rate of convergence for some
cases.

There also exists a class of projection-based stochastic approximation algorithms
θn+1 = Π [θn + εnYn] that can be applied to our algorithm. Namely, we can discard
the “T” dimension in our algorithm and replace the normalizing denominator by a
projection operator. Unfortunately, this algorithm works very poorly in practice.

We have tested our algorithm on countable state space processes such as the
M/M/1/∞ queue with success. Proving the convergence of this algorithm in this
setting is currently an open problem.
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