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1. Introduction. Point processes serve as stochastic models of event timing in many areas. In finance,
point processes are used to describe credit defaults, arrivals of security orders, jumps in asset prices, and other
economically significant events. Affine point processes constitute a particularly tractable class of models. These
are specifications in which the arrival intensity is an affine function of an affine jump diffusion (AJD) (see Duffie
et al. [24]). The transform of an affine point process is an exponentially affine function of the driving jump
diffusion; the coefficients solve a system of ordinary differential equations (ODEs) (see Errais et al. [27]). The
components of an affine point process are self- and cross-exciting and facilitate the description of complex event
dependence structures. Due to their modeling flexibility and computational tractability, affine point processes
are widely used in finance and economics (Aït-Sahalia et al. [2], Azizpour et al. [4], Bowsher [10], Embrechts
et al. [26], and many others).

This paper analyzes the long-term asymptotics of affine point processes. We first establish a central limit
theorem (CLT), which describes the typical behavior of the process in the long run, and which leads to a
Gaussian approximation to the distribution of the process. The approximation can be evaluated quickly because
the asymptotic mean and variance can be computed analytically. We then prove a large deviations (LD) principle,
which characterizes the atypical behavior of the process, and which leads to an approximation of the tail
of the distribution. The LD principle also facilitates the construction of an importance sampling (IS) scheme
for estimating tail probabilities. We provide conditions guaranteeing the asymptotic optimality of this scheme.
Numerical results illustrate the performance of the approximations and the simulation scheme.
Our results may be useful in the many cases where the ODEs governing the transform of an affine point

process cannot be solved in closed form. To compute the distribution of the process, which is the key quantity
required to address the eventual application, the numerical solution of a system of ODEs must be embedded
within a numerical transform inversion algorithm. Such an algorithm typically uses thousands of evaluations
of the transform, and each evaluation requires the numerical solution of an ODE system. This procedure is
typically burdensome; the computational cost often renders empirical applications involving parameter estimation
problems impractical. Our analytical and Monte Carlo approximations to the distribution of an affine point
process provide a computationally efficient alternative to this procedure.1

Our work complements the literature on the LD analysis of Markov processes, which is a long-standing and
extensive field (see Kontoyiannis and Meyn [41] and references therein). The compensator of an affine point
process is a Markov additive functional of the form If �t�=

∫ t

0 f �X�s��ds, where X is an AJD. The LD analysis

1 Another approach is provided by Glasserman and Kim [38]. They develop the use of saddle point approximations as alternatives to
numerical transform inversion, focusing on AJD.
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for If �t� with an unbounded functional f is challenging since its LD behavior is fundamentally different from
that in the bounded case. In particular, if f is bounded, then If �t� behaves like a random walk with light-tailed
increments, namely, the tail probability of t−1If �t� decays exponentially as t increases. But if f is unbounded,
the same tail probability may decay subexponentially fast (see Duffy and Meyn [25] and Blanchet et al. [8]).
Our LD result provides an example in which the tail of t−1If �t� does decay exponentially fast for an unbounded
functional f .
Prior work has studied the asymptotic behavior of point processes. Cvitanić et al. [15] and Giesecke

et al. [34, 36] prove laws of large numbers, Dai Pra et al. [18], Dai Pra and Tolotti [17], Giesecke and Weber [32],
and Spiliopoulos et al. [47] develop CLTs, whereas Dai Pra et al. [18] and Spiliopoulos and Sowers [46] exam-
ine LDs. These articles examine different, nonaffine systems of indicator point processes that represent default
events in a pool of credit assets. They consider an asymptotic regime in which the number of system components
(constituent assets) tends to infinity and the time horizon remains fixed. We, in contrast, focus on a system of
nonterminating point processes with an affine structure and consider an asymptotic regime in which the time
horizon tends to infinity, but the system size remains fixed. Moreover, the approximations we obtain may be
appropriate for small systems with few components. Daley [19], Bordenave and Torrisi [9], Zhu [50, 51], and
Bacry et al. [5] study the long-term asymptotic behavior of certain Hawkes processes, some of which are special
cases of affine point processes. The intensity of a Hawkes process is a function of the path of the process only,
while the intensity of an affine point process takes a more general form.
There is also prior work on rare-event simulation for systems of indicator point processes. Bassamboo and

Jain [6] develop an asymptotically optimal IS scheme for a certain affine system with doubly stochastic structure.
The key assumption is that events occur independently of one another, given the path of an AJD factor influencing
all system components. The affine system we treat in this paper is richer: we do not require the narrowing doubly
stochastic structure, and allow for the self- and cross-excitation effects that are relevant in many application
contexts. Carmona and Crépey [12] develop an interacting particle scheme (IPS) (see Del Moral and Garnier [20])
for Markov chain systems. Further, Giesecke et al. [35] develop an IPS, Deng et al. [22] an asymptotically
optimal sequential resampling scheme, and Giesecke and Shkolnik [31] an asymptotically optimal IS algorithm
for general systems. These papers also consider a “large pool” rather than a “large horizon” regime.
The rest of the paper is organized as follows. Section 2 formulates the model and assumptions. Section 3

develops the CLT, while §4 analyzes LDs. Section 5 discusses extensions. Section 6 exploits the LD principle
to develop an IS algorithm for estimating the tail of an affine point process, and proves the optimality of the
scheme. Section 7 provides numerical results and §8 concludes. An appendix collects some proofs.

2. Problem formulation. Throughout the paper, we use the following notation:
• We take �d

+ = �v ∈�d� vi ≥ 0� i= 1� � � � � d� and �d
− = �v ∈�d� vi ≤ 0� i= 1� � � � � d�.

• A vector v ∈ �d is taken as a column vector, v� denotes the transpose, �v� denotes the Euclidean norm,
and diag�v� denotes the diagonal matrix whose diagonal elements are v.

• For a matrix A, we write A� 0 if A is symmetric positive semidefinite.
• I denotes the identity matrix, 0 denotes a zero matrix, and Id�i� denotes a matrix with all entries equal to

0 except the i-th diagonal entry, which is 1 (regardless of dimension).
• Let I� J ⊆ �1� � � � � d� be two index sets. For a vector v ∈�d and a matrix A ∈�d×d, we write vI = �vi� i ∈ I�

and AI�J = �Aij � i ∈ I� j ∈ J �.
We fix a complete probability space ������ � and a filtration �� t � t ≥ 0� satisfying the usual conditions of

right continuity and completeness (see, for example, Karatzas and Shreve [40] for details). Let W = �W�t�� t ≥ 0�
be a standard d-dimensional Brownian motion. Let X = �X�t�� t ≥ 0� be an affine jump-diffusion process in
the sense of Duffie et al. [24]. In particular, X is a Markov process in a state space � ⊆ �d satisfying the
jump-diffusion stochastic differential equation (SDE)

dX�t�=	�X�t��dt+
�X�t��dW�t�+
n∑

i=1

�i

∫

�+

zNi�dt�dz� (1)

with X�0�= x0, where the drift and volatility functions are given by

	�x�= b−�x� b ∈�d� � ∈�d×d


�x�
�x�� = a+
d∑

j=1

jxj� a ∈�d×d� j ∈�d×d� j = 1� � � � � d�
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Here, �i ∈ �d and Ni�dt�dz� is a random counting measure on �0��� × �+ with compensator measure
�i�X�t��dt�i�dz�, where �i is a probability measure on �+ and

�i�x�= �i +
d∑

j=1

�i� jxj � � ∈�n� � ∈�n×d�

Moreover, we let Zi denote a random variable drawn having distribution �i throughout the paper.
The SDE (1) has n jump components. The process defined by Ni�t�=

∫ t

0

∫ �
0 Ni�ds�dz� counts the number of

jumps of the i-th component. The arrival intensity of Ni is �i�X�. When Ni jumps, the process X exhibits a
jump of size �iZ

i. Thus the parameter �i controls the sensitivity of X to the jumps of Ni.
An affine point process L= �L1� � � � �Ln� is given by

Li�t�
�=
∫ t

0

∫

�+

zNi�ds�dz��

We are interested in the long-term asymptotic behavior of

V �t�
�=

n∑
i=1

Li�t��

Example 1. Suppose the parameters are specified as follows.
• b= �b1� � � � � bd� and �= diag��1� � � � ��d�.
• The impact parameter �i = ��i�1� � � � � �i�d� for i= 1� � � � � d.
• The volatility function 
�x�= diag�
1

√
x1� � � � �
d

√
xd�, so that a= 0 and i = 
i · Id�i� for i= 1� � � � � d.

• The intensity function �i�x�= �i +�ixi, so that �= ��1� � � � � �d� and �= diag��1� � � � � �d�.
Then X = �X1� � � � �Xd� satisfies

dXj�t�= �bj −�jXj�t��dt+
j

√
Xj�t�dWj�t�+

d∑
i=1

�i� j dLi�t�� j = 1� � � � � d�

where bj��j�
j� �i� j > 0. Moreover, the jump intensity of Li�t� is �i+�iXi�t� for some �i��i > 0. The feedback
term

∑d
i=1 �i� j dLi�t� introduces self- and cross-excitation into L. If �i� j = 0 for all i� j = 1� � � � � d, these effects

are absent.

The following assumption will be imposed throughout the paper.

Assumption 1. (I) There exist index sets I = �1� � � � �m� and J = �m+ 1� � � � � d� such that
(1) a� 0 with aI� I = 0 (hence aI� J = 0 and aJ� I = 0).
(2) i � 0 and i

I� I = i
i� iId�i� for i ∈ I; i = 0 for i ∈ J .

(3) b ∈�m
+ ×�d−m.

(4) �I�J = 0 and �I� I is a Z-matrix, i.e., �I� I has nonpositive off-diagonal elements.
(5) � ∈�n

+, � ∈�n×d
+ with �i� J = 0 for i= 1� � � � � n.

(6) �i ∈�m
+ ×�d−m for i= 1� � � � � n.

(II) i
i� i > 0 for each i= 1� � � � �m; bi > 0 for each i= 1� � � � �m; �i +

∑m
j=1 �i� j > 0 for each i= 1� � � � � n.

(III) �−
∑n

i=1 Ɛ�Z
i��i�

�
i is positive stable, where ��

i is the i-th row of �, i= 1� � � � � n.

Part (I) of Assumption 1 defines the admissible parameters of canonical affine processes, which include
virtually all the affine processes used in practice. We refer the readers to Duffie et al. [23] for an extensive
discussion on the topic and to Dai and Singleton [16] for more examples of canonical affine models. In particular,
under such an assumption on the parameters (a��b��������) of the SDE (1), the state space of a canonical
AJD X is of the form � =�m

+ ×�d−m. The first m components are of CIR type and they are the ones that truly
govern the dynamics of the jump intensities and the volatilities, whereas the remaining d−m components are
of O-U type and their jump intensities and volatilities depend on the first m components. Moreover, it is easy
to verify that the model in Example 1 indeed satisfies part (I) of Assumption 1.
Part (II) guarantees that the variance matrix of X1� � � � �Xm is nondegenerate and that each Li has a positive

jump intensity. Moreover, that each bi is positive is a very mild assumption, which is widely imposed in financial
models (see, e.g., Filipović et al. [29]). Note that one can interpret Ɛ�Zi��i as the average impact of a jump
of Li�t� on the intensity and �i as the jump frequency. Therefore part (III) states that the effect of jumps is
dominated by that of mean reversion, which is represented by �. Namely, the jumps are neither too big nor too
frequent so that X can be driven to the equilibrium by the force of mean reversion. Indeed, part (III) plays a
crucial role in proving the ergodicity of X�t�, which is essential to derive the long-term behavior of V �t� (see
Proposition 9 in the appendix).
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3. Typical behavior: CLT. Our first goal is to characterize the typical long-term behavior of V =
∑n

i=1Li.
In particular, we will prove that

t−1/2�V �t�− rt�⇒ �� �0�1� (2)

as t →�, for some constants r�� ∈ �+ to be determined later, where ⇒ denotes convergence in distribution
and � �0�1� is a Gaussian random variable with mean 0 and unit variance.
To guarantee the finiteness of the asymptotic variance �2, we will impose the following assumption in this

section.

Assumption 2. There exists � > 0 for which Ɛ�Zi�2+� <� for all i= 1� � � � � n.

To prove the CLT (2), we first construct a local martingale U of the form

U�t�
�= V �t�− rt+A��X�t�−X�0��

for some appropriately chosen r ∈ � and A ∈ �d, then derive a CLT for U�t�, and finally, show that the term
A��X�t�−X�0�� is asymptotically negligible.

3.1. Construction of local martingale. We have

U�t�=
n∑

i=1

∫ t

0

∫

�+

zNi�ds�dz�− rt+
∫ t

0
A��b−�X�s��ds+

∫ t

0
A�
�X�s��dW�s�+

n∑
i=1

∫ t

0

∫

�+

A��izNi�ds�dz��

Define the compensated random measure

Ñi�ds�dz�
�=Ni�ds�dz�−�i�X�s��ds�i�dz�=Ni�ds�dz�− ��i +��

i X�s��ds�i�dz��

It then follows that

U�t� =
n∑

i=1

∫ t

0

∫

�+

�1+A��i�zÑi�ds�dz�+
n∑

i=1

∫ t

0
��i +��

i X�s��ds
∫

�+

�1+A��i�z�i�dz�− rt

+
∫ t

0
A��b−�X�s��ds+

∫ t

0
A�
�X�s��dW�s�

= I1�t�+ I2�t�+
∫ t

0

[ n∑
i=1

�1+A��i�Ɛ�Z
i���

i −A��

]
X�s�ds+

[ n∑
i=1

�i�1+A��i�Ɛ�Z
i�+A�b− r

]
t� (3)

where I1�t�
�=
∑n

i=1

∫ t

0

∫
�+
�1+A��i�zÑi�ds�dz� and I2�t�

�=
∫ t

0 A
�
�X�s��dW�s�. Note that I1 and I2 are both

local martingales. Hence, if we choose r and A such that

n∑
i=1

�1+A��i�Ɛ�Z
i���

i −A��= 0

n∑
i=1

�i�1+A��i�Ɛ�Z
i�+A�b− r = 0�

then U is a local martingale in light of (3). Part (III) of Assumption 1 implies that the matrix �−
∑n

i=1 Ɛ�Z
i��i�

�
i

is nonsingular, so we can solve the above equations explicitly as follows:

A� =
( n∑

i=1

Ɛ�Zi���
i

)(
�−

n∑
i=1

Ɛ�Zi��i�
�
i

)−1

r = A�b+
n∑

i=1

�i Ɛ�Z
i��1+A��i��

(4)

From now on, we will fix the values of r and A as given in (4). We have established the following result.

Proposition 1. Under Assumptions 1 and 2, U is a local martingale.
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3.2. CLT for U . We will apply the local martingale CLT to U . To that end, we need to calculate the
predictable quadratic variation �U � so as to compute the asymptotic variance �2. See Protter [45] or Andersen
et al. [3] for the definition and calculation of predictable quadratic variations.
Taking A and r as in (4), it follows from (3) that

U�t�=
n∑

i=1

∫ t

0

∫

�+

�1+A��i�z Ñi�ds�dz�+
∫ t

0
A�
�X�s��dW�s��

Therefore

�U ��t� =
n∑

i=1

∫ t

0

∫

�+

�1+A��i�
2z2�i�dz��i�X�s��ds+

∫ t

0
A�
�X�s��
�X�s���Ads

=
n∑

i=1

�1+A��i�
2 Ɛ�Zi�2

∫ t

0
��i +��

i X�s��ds+
∫ t

0
A�

(
a+

d∑
j=1

jXj�s�

)
Ads

=
(
A�aA+

n∑
i=1

�iCi

)
t+

d∑
j=1

(
A�jA+

n∑
i=1

�i� jCi

)∫ t

0
Xj�s�ds� (5)

where Ci
�= �1+A��i�

2 Ɛ�Zi�2.

Proposition 2. Under Assumptions 1 and 2,

lim
t→�

�U ��t�
t

=A�aA+C��+ �A�A+C���Ɛ� X�0� �= �2 a�s�� (6)

where C ∈�n with elements Ci = �1+A��i�
2 Ɛ�Zi�2 and A�A= �A�1A� � � � �A�dA�. Moreover, Ɛ� X�0�,

where � is the stationary distribution of X, is given by (27).

Proof. This follows immediately from the strong law of large numbers for X (see Proposition 9) and (5). �
We also need the following technical result whose proof is deferred to §A.1.

Proposition 3. Under Assumptions 1 and 2, for any T > 0,

lim
j→�

Ɛ
[

sup
0≤t≤jT

j−1�U�t�−U�t−��2
]
= 0�

Proposition 4. Under Assumptions 1 and 2,

t−1/2U�t�⇒� �0��2�

as t→�, where �2 is given by (6).

Proof. This follows from Propositions 2 and 3, and the local martingale CLT (see pp. 338–340 of Ethier
and Kurtz [28]). �

3.3. CLT for V . Now, we are in a position to state our first main result. Note that the asymptotic mean and
asymptotic variance of V can be analytically calculated.

Theorem 1. Under Assumptions 1 and 2,

t−1/2�V �t�− rt�⇒� �0��2�

as t→�, where

r =A�b+
n∑

i=1

�i Ɛ�Z
i��1+A��i�

�2 =A�aA+C��+ �A�A+C���B�

A� =
( n∑

i=1

Ɛ�Zi���
i

)(
�−

n∑
i=1

Ɛ�Zi��i�
�
i

)−1

�

B=
(
�−

n∑
i=1

Ɛ�Zi��i�
�
i

)−1(
b+

n∑
i=1

�i Ɛ�Z
i��i

)
�

Ci = �1+A��i�
2 Ɛ�Zi�2� i= 1� � � � � n�
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Proof. Proposition 9 asserts that X�t� ⇒ X��� as t → �, where X��� has distribution �. Hence
t−1/2X�t�→ 0 in probability as t→�. Note that V �t�− rt = U�t�−A��X�t�−X�0��. It then follows imme-
diately from Proposition 4 that

t−1/2�V �t�− rt�⇒� �0��2�

as t→�. �

4. Atypical behavior: LDs principle. As will be illustrated in §7, the Gaussian approximation implied by
the CLT (2) is often not accurate enough for the tail of the distribution of V �t�. To obtain more accurate tail
estimates, we will characterize the atypical behavior of V �t� through a LD principle.

Note that Theorem 1 indicates that t−1V �t�→ r in probability as t →�. Consequently, ��V �t�≥ Rt�→ 0
as t→� for R> r . We will prove that under mild conditions, V �t� satisfies the following LD principle:

lim
t→�

t−1 log��V �t�≥Rt�=−��R��

where the rate function �� · � will be defined later. The Gärtner-Ellis theorem provides a mechanism for estab-
lishing such an asymptotic result. A key role is played by the limiting cumulant generating function (CGF) of
V �t�, which is given by

lim
t→�

t−1 logƐ exp��V �t��� (7)

It turns out that we need a moment condition on the jump size distribution �i that is stronger than Assump-
tion 2 to guarantee the existence of (7). More specifically, for the rest of the paper, we will assume that the
jump size distribution is light tailed, i.e., it has a finite exponential moment.

Assumption 3. sup�� ∈�� Ɛe�Z
i
<�� > 0 for each i= 1� � � � � n.

4.1. Road map. Because the analysis is technically involved, we outline here the proof of our second main
result of this paper, i.e., the LD principle for V �t�.

The two challenges in applying the Gärtner-Ellis theorem in our context is: (i) to compute the limit CGF (7)
and (ii) to establish its steepness (see, for example, Dembo and Zeitouni [21]).
To address the first challenge, we construct a martingale of the following exponential form:

M�t�=M��t�
�= exp��V �t�−�t+ u��X�t�−X�0���

for some appropriately chosen � ∈� and u ∈�d. (Note that both � and u clearly depend on the choice of �, but
we suppress this dependence when no ambiguity can arise.) In §4.2, we apply Itô’s formula, similarly as §3.1,
to derive sufficient conditions for � and u, so that M�t� be a local martingale. It turns out that � can be
expressed explicitly in terms of u, whereas u satisfies a system of nonlinear equations (13). We then follow the
idea developed in Cheridito et al. [13] to prove that M�t� is indeed a martingale with such chosen � and u.
In particular, we define a sequence of stopping times ��l� l = 1�2� � � � � such that X�t� is bounded for t < �l.
The “stopped” version of M�t� can be shown to be a martingale, and thus induces an equivalent probability
measure Ql. It is easy to see ƐM�T ����l ≥ T �=Ql��l ≥ T �, so in order that M�t� be a martingale, it suffices to
prove that X�t� is nonexplosive under both � and Ql, which can be deduced by virtue of Girsanov’s theorem
and the admissibility of the parameters.
Being a martingale, M�t� induces a probability measure Q, in which case

Ɛ exp��V �t�−�t�= ƐQ exp�−u��X�t�−X�0����

Nevertheless, the system of nonlinear equations (13) may have multiple solutions. The subtlety is to identify the
probabilistically meaningful solution u that makes ƐQ exp�−u��X�t�−X�0��� bounded, so that � is indeed the
limiting CGF, namely,

lim
t→�

t−1 logƐ exp��V �t��=��

To that end, we carefully characterize the nonlinear system (13) in §4.3. A key observation is that ���u�= �0�0�
satisfies (13) and it entails ��0�= 0, which ought to be true if � is the limiting CGF. It is then conceivable that
the desirable solution u should satisfy u�0�= 0. We treat u as an implicit function and establish its existence
in a neighborhood of the origin by analyzing the nonsingularity of an associated Jacobian matrix. The maximal
interval of existence of the desired solution u is determined by the nonsingularity of the Jacobian matrix. The
relevant matrix analysis is fairly tractable thanks to the structure of the parameters (i.e., Assumption 1).
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In §4.4, we further show that ƐQ exp�−u��X�t�−X�0���=O�1� as t →� for the properly chosen solution
u by analyzing the stochastic stability of X�t� via the Foster-Lyapunov method (see, for example, Meyn and
Tweedie [43]). By then, we will prove that � is indeed the limiting CGF for the properly chosen solution u.
The second challenge in applying the Gärtner-Ellis theorem is to show that the range of � is �0���. Indeed,

we can show that � is monotonically increasing so it suffices to show that ����→ 0 as � ↓ 0, whereas ����→�
as � ↑�. The limits turn out to be essentially determined by the behavior of the aforementioned Jacobian matrix
at its nonsingularity boundary.
With the two challenges addressed, we can safely apply the Gärtner-Ellis theorem to establish the LD principle

for V �t� in §4.5.

4.2. Construction of exponential martingale M . Let Y �t�= �V �t�−�t+u��X�t�−X�0��. Itô’s formula
implies that

M�t�= 1+
∫ t

0
M�s−�dY c�s�+ 1

2

∫ t

0
M�s−�d�Y �c�s�+

∑
0<s≤t

�M�s�−M�s−��� (8)

where Y c is the path-by-path continuous part of Y and �Y �c is the path-by-path continuous part of the quadratic
variation process �Y �. Note that

Y c�t� = −�t+
∫ t

0
u��b−�X�s��ds+

∫ t

0
u�
�X�s��dW�s�

= �u�b−��t−
∫ t

0
u��X�s�ds+

∫ t

0
u�
�X�s��dW�s�� (9)

and

�Y �c�t�=
∫ t

0
u�
�X�s��
�X�s���uds = �u�au�t+

n∑
j=1

u�ju
∫ t

0
Xj�s�ds� (10)

and letting G�t�=
∑n

i=1

∫ t

0

∫
�+

�izNi�ds�dz�,

∑
0<s≤t

�M�s�−M�s−�� =
∑

0<s≤t

M�s−��e��V �s�−V �s−��+u��G�s�−G�s−�� − 1�

=
∫ t

0

∫

�+

M�s−�
n∑

i=1

�e�z+u��iz − 1�Ni�ds�dz�

=
∫ t

0

∫

�+

M�s−�
n∑

i=1

�e��+u��i�z − 1�Ñi�ds�dz�

+
n∑

i=1

�Ɛ e��+u��i�Z
i − 1�

∫ t

0
M�s−���i +��

i X�s��ds� (11)

Plugging (9), (10), and (11) into (8) yields that

M�t� = 1+
∫ t

0
M�s−�u�
�X�s��dW�s�+

∫ t

0

∫

�d
M�s−�

n∑
i=1

�e��+u��i�z − 1�Ñi�ds�dz�

+
∫ t

0
M�s−�

[
u�b−�+ 1

2u
�au+

n∑
i=1

�i�Ɛ e
��+u��i�Z

i − 1�
]
ds

+ 1
2

n∑
j=1

u�ju
∫ t

0
M�s−�Xj�s�ds+

∫ t

0
M�s−�

[ n∑
i=1

�Ɛ e��+u��i�Z
i − 1���

i − u��

]
X�s�ds�

Therefore M is a local martingale if � ∈� and u ∈�d satisfy

u�b−�+ 1
2u

�au+
n∑

i=1

�i�Ɛ e
��+u��i�Z

i − 1�= 0� (12)

and
d∑
i=1

ui�i� j − 1
2u

�ju−
n∑

i=1

�Ɛ e��+u��i�Z
i − 1��i� j = 0� j = 1� � � � � d� (13)
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As a matter of fact, if �, u, and � satisfy the last two equations, then M is indeed a martingale. Yet, to show
this fact is by no means trivial. (Note that Novikov’s condition is difficult to verify in our setting.) We proceed
similarly as in Cheridito et al. [14], in which the authors study generic jump-diffusion processes with possible
explosions.

Proposition 5. Suppose u and � satisfy (12) and (13). Under Assumptions 1 and 3, �M�t�� t ∈ �0� T �� is
a martingale for each T > 0.

Proof. See §A.2 in the appendix. �
Remark 1. Note that (13) may have multiple solutions u for a given �. For instance, consider the simple

case, where �= 0 and � is diagonal. Then, for each j = 1� � � � �m, uj = 0 or uj = 2�j� j/
j
j� j , thereby yielding

2m multiple solutions for uI in total! See also Zhang et al. [49] for the discussion on multiple solutions (��u)
for an affine point process when the underlying AJD is one dimensional. The challenge here is not only to
address the existence of a solution to (13), but also to identify the probabilistically meaningful solution branch
that serves our purpose.

4.3. Characterization of nonlinear system (13). Note that by part (I) of Assumption 1, j = 0, �i� j = 0 for
i = 1� � � � � n, j =m+ 1� � � � � d and that �i� j = 0 for i = 1� � � � �m and j =m+ 1� � � � � d. Therefore it follows
from (13) that

d∑
i=m+1

ui�i� j = 0� j =m+ 1� � � � � d�

which, written in matrix form, is equivalent to

u�
J �J � J = 0�

where J = �m+ 1� � � � � d�. We will fix the two index sets in the rest of the paper: I = �1� � � � �m� and J =
�m+ 1� � � � � d�.

It then follows immediately from the block lower triangular form (Assumption 1) of � and Lemma 3 that
�J�J is nonsingular. Hence uJ = 0, i.e., ui = 0 for i=m+ 1� � � � � d.

Remark 2. We offer a heuristic interpretation for the fact that uJ = uJ ��� ≡ 0 for all �. Note that V �t�
behaves “similarly” as its compensator

n∑
i=1

∫ t

0
�i�X�s��ds

∫

�+

z�i�dz��

in the sense that they have the same expected value. The key observation is that the intensity functions �i�x�
are independent of XJ �t�. Hence, only Xi�t�, i = 1� � � � �m are necessary to “offset” the randomness of V �t�,
which heuristically explains why ui ≡ 0 for i=m+ 1� � � � � d.

Now that we know uJ ≡ 0, we can focus on the first m components of u, i.e., uI , and further simplify (12)
and (13). In particular, by the assumptions on the structure of  and a, (12), and (13) can be simplified to

u�
I bI −�+

n∑
i=1

�i�Ɛ e
��+u�I �i� I �Z

i − 1�= 0� (14)

and
m∑
i=1

ui�i� j − 1
2

j
j� ju

2
j −

n∑
i=1

�Ɛ e��+u�I �i� I �Z
i − 1��i� j = 0� j = 1� � � � �m� (15)

where �i� j denotes the j-th component of �i and �i� I = ��i�1� � � � � �i�m�. Obviously, �=���� is directly com-
putable from u= u��� by (14). As a result, we will focus on the system of equations (15).
We need a solution to (15) that will make �, computed from (14), is, in fact, the limiting CGF of V �t�. Hence

we expect that ��0�= 0. Note that ���uI �= �0�0� satisfies (15), and that ��0�= 0 if uI�0�= 0. Therefore it is
plausible that the appropriate solution branch uI��� to (15) ought to satisfy uI�0�= 0. To facilitate the analysis
of the Equations (15), define Fj��� v�� �×�m →� as follows:

Fj��� v�=
m∑
i=1

vi�i� j − 1
2

j
j� jv

2
j −

n∑
i=1

�Ɛ e��+v��i� I �Z
i − 1��i� j � (16)
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so that Fj���uI � equals the left-hand side (LHS) of the j-th equation of (15). Set F ��� v� =
�F1��� v�� � � � � Fm��� v��� �×�m →�m. Then,

�Fj

�vl
= �l� j −

n∑
i=1

�i� j�i� l Ɛ�Z
ie��+v��i� I �Z

i

�� 1≤ l 	= j ≤m

�Fj

�vj
= �j� j −

j
j� jvj −

n∑
i=1

�i� j�i� j Ɛ�Z
ie��+v��i� I �Z

i

��

Let 	��� v� �= ��Fj/�vl�1≤j� l≤m denote the Jacobian matrix of F regarding v. Then

	��� v�� = �I� I − diag��1
1�1v1� � � � �

m
m�mvm��−

n∑
i=1

Ɛ�Zie��+v��i� I �Z
i

��i� I�
�
i� I � (17)

Therefore 	��� v� is a Z-matrix by part (I) of Assumption 1. Further, it follows from part (III) of Assumption 1
that

	�0�0�� = �I� I −
n∑

i=1

Ɛ�Zi��i� I�
�
i� I (18)

is an M-matrix, and thus is nonsingular (see, for example, Berman and Plemmons [7]) for the definition of
M-matrices. Since F �0�0� = 0, it then follows from the Implicit Function Theorem that, for any � ∈ � in a
neighborhood of 0, there exists a unique u∗

I = u∗
I ��� in the neighborhood of the origin in �m such that u∗

I �0�= 0
and F ���u∗

I � = 0. Moreover, letting 
u∗I
denote the maximal interval of existence of u∗

I ���, including 0, the
Implicit Function Theorem implies that 
o

u∗I
= ��� �̄�, where

�̄
�=min�� ∈
u∗I

∩�+� 	���u
∗
I ���� is singular� (19)

�
�=max�� ∈
u∗I

∩�−� 	���u
∗
I ���� is singular� (20)

with the convention that min���=� and max���=−�. We have the following characterization of �̄ and �.

Proposition 6. Suppose Assumptions 1 and 3 hold. Then � =−�; moreover, �̄ =� if �= 0, and �̄ <�
otherwise.

Proof. See §A.3 in the appendix. �

4.4. Limiting CGF of V . By Proposition 5, M�t�= exp��V �t�−�t+ u��X�t�−X�0��� is a martingale if
u and � solve the Equations (14) and (15). It follows that

Ɛ exp��V �t�−�t�= ƐQ exp�−u�X�t�−X�0����

where Q is the equivalent probability measure induced by M�t�, i.e., �dQ/d���� t
=M�t�. Hence, to show that

� is the limiting CGF of V �t�, it suffices to prove that

ƐQ exp�−u��X�t�−X�0���=O�1�� (21)

As discussed in Remark 1, the subtlety lies in that there may exist multiple solutions uI��� to the Equations
(13) for a given �. We will show that u∗ as defined in §4.3 makes (21) valid, so that �∗, solved from (14), is
indeed the limiting CGF of V �t�.
To prove (21), it suffices to study the stochastic stability of X�t� under the probability measure Q∗

� , where Q
∗
�

denotes the probability measure induced by M∗
� �t�= exp��V �t�−�∗���t+ u∗�����X�t�−X�0���. It turns out

that depending on whether � is positive, we need different levels of stochastic stability of X�t� under Q∗
� . Note

that, by Lemma 5, u∗
I ��� ∈�m

+ for � ≥ 0 and u∗
I ��� ∈�m

− for � < 0. Further, note that XI�t� ∈�m
+. Hence

exp�−u∗�����X�t�−X�0���= exp�−u∗
I ���

��XI�t�−XI�0���

is bounded for all t if � ≥ 0, and unbounded if � < 0 unless u∗ ≡ 0. Consequently, X�t� being ergodic under
Q∗

� is sufficient for (21) if � ≥ 0, while exponential ergodicity is required if � < 0 (see, for example, Meyn and
Tweedie [43]). More detailed discussions will be provided in the appendix.
Let 
�∗ denote the domain of

�∗���= u∗
I ���

�bI +
n∑

i=1

�i�Ɛ e
��+u∗I ���

��i� I �Z
i − 1�� (22)
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Proposition 7. Under Assumptions 1 and 3,

ƐQ∗
� exp�−u∗�����X�t�−X�0���=O�1�

as t→� for � ∈
�∗ .

Proof. See §A.4. �

Corollary 1. Under Assumptions 1 and 3,

�∗���= lim
t→�

1
t
logƐ exp��V �t��

for � ∈
�∗ .

Proof. Since ƐQ∗
� exp�−u∗�����X�t�−X�0���=O�1� for � ∈
�∗ by Proposition 7, it follows that

e−�∗���t · Ɛ exp��V �t��= ƐQ∗
� exp�−u∗�����X�t�−X�0���=O�1��

yielding that

lim
t→�

1
t
logƐ exp��V �t��=�∗���

for � ∈
�∗ . �

4.5. LD for V . With the limiting CGF of V �t� available, we can apply the Gärtner-Ellis theorem to establish
the LD for V �t�. The key step in the derivation is to show that, for any R > 0, there exists a unique �R such
that �∗′��R�=R, or equivalently that �∗ is steep (see, for example, Dembo and Zeitouni [21]). The details are
provided in the appendix.

Theorem 2. Let r be the equilibrium mean of V �t� given in Theorem 1. Under Assumptions 1 and 3,

lim
t→�

1
t
log��V �t�≥Rt�=−��R�

for R> r , whereas

lim
t→�

1
t
log��V �t�≤Rt�=−��R�

for 0<R< r , where ��R�= �∗R−�∗��∗�, and �∗ uniquely solves �∗′��∗�=R.

Proof. See §A.5. �

5. Extensions. Theorems 1 and 2 can be extended to a more general setting. In particular, letting w ∈ �n

be a nonzero vector, define J =
∑n

i=1wiLi. We then have the following CLT and LD principle for J .

Theorem 3. Under Assumptions 1 and 2,

t−1/2�J �t�− rt�⇒� �0��2�

as t→�, where

r =A�b+
n∑

i=1

�i Ɛ�Z
i��wi +A��i�

�2 =A�aA+C��+ �A�A+C���B�

A� =
( n∑

i=1

Ɛ�Zi�wi�
�
i

)(
�−

n∑
i=1

Ɛ�Zi��i�
�
i

)−1

�

B=
(
�−

n∑
i=1

Ɛ�Zi��i�
�
i

)−1(
b+

n∑
i=1

�i Ɛ�Z
i��i

)
�

Ci = �wi +A��i�
2 Ɛ�Zi�2� i= 1� � � � � n�
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Theorem 4. Let u∗���� �→�d be the implicit function defined as the unique solution branch with u∗�0�= 0
of the system of nonlinear equations

d∑
i=1

ui�i� j − 1
2u

�ju−
n∑

i=1

�Ɛ e��wi+u��i�Z
i − 1��i� j = 0� j = 1� � � � � d�

Let ��R�= �∗R−�∗��∗�, and �∗ uniquely solves �∗′��∗�=R, where

�∗���= u∗����b+
n∑

i=1

�i�Ɛ e
��wi+u∗�����i�Z

i − 1��

Under Assumptions 1 and 3,

lim
t→�

1
t
log��J �t�≥Rt�=−��R�� for

{
r < R< 0� if w ∈�n

−�

R> r� otherwise

and

lim
t→�

1
t
log��J �t�≤Rt�=−��R�� for

{
0<R< r� if w ∈�n

+�

R< r� otherwise�

The proofs of these results are very similar to those of Theorems 1 and 2. The only noteworthy difference is
that, in proving the steepness of the function �∗, which is essential for the LD principle, one needs to characterize
the domain of the function u∗, whose form depends on the sign of w. For instance, provided that � 	= 0, 
u∗ is
unbounded below and bounded above if w ∈�n

+, consistent with Proposition 6, whereas it is bounded from both
sides if w has mixed signs, i.e., there exist wi > 0 and wj < 0 for some i and j . We omit the details.

6. Efficient simulation: Importance sampling. In some applications such as the computation of risk mea-
sures for security portfolios, one requires accurate estimates of rare-event probabilities. Monte Carlo simulation
can be used to estimate these probabilities. However, it is well known that the number of simulation trials
required to achieve a prescribed relative error is roughly inversely proportional to the probability of interest.
Hence, plain Monte Carlo (pMC) simulation is highly inefficient for estimating rare-event probabilities, essen-
tially because the variance of the estimator is too large relative to the probability of interest. We develop a
provably efficient IS scheme to address this issue when estimating the tail of J �t�. The LD analysis of §4 guides
the design of an appropriate change of measure.
Suppose we are interested in computing ��J �t� > Rt� for R ∈ �r�0� if w ∈ �n

− and R ∈ �r��� otherwise.
(The left-tail ��J �t� < Rt� can be treated in the same fashion.) The LD Theorem 4 implies that ��J �t� > Rt�
decays to 0 exponentially fast as t →�. Hence the number of pMC trials required to achieve a given relative
precision grows exponentially in t. We design an IS scheme in which the number of simulation trials grows
subexponentially in t.

Given the key role �∗ plays in the logarithmic asymptotics of Theorem 4, it is natural to consider an IS
estimator associated with the equivalent measure Q∗

�∗ induced by the martingale M∗
�∗ . More specifically, consider

the IS estimator

H�t�
�= M∗

�∗�t�
−1��J �t�≥Rt�

= exp
[
−�∗J �t�+�∗��∗�t− u∗��∗���X�t�−X�0��

]
��J �t�≥Rt�� (23)

Note that by Girsanov’s theorem, under Q∗
� , the process X satisfies the SDE (1) with parameters

�a��b��∗��∗� �∗� and measure �∗
i , where

�∗
i = �i

∫

�+

e��
∗wi+u∗��∗���i�z�i�dz��

�∗
i = �i

∫

�+

e��
∗wi+u∗��∗���i�z�i�dz��

�∗ =
(
�I� I − diag�1

1�1u
∗
1��

∗�� � � � �m
m�mu

∗
m��

∗��� 0�
�J� I � �J � J �

)
�

�∗
i �dz�=

e��
∗wi+u∗��∗���i�z�i�dz�∫

�+
e��∗wi+u∗��∗���i�y�i�dy�

�

(24)
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Theorem 5. Under Assumptions 1 and 3, the IS estimator (23) is asymptotically optimal, i.e.,

lim
t→�

logƐQ∗
�∗ H�t�2

2 logƐQ∗
�∗ H�t�

= 1� (25)

Proof. Note that

ƐQ∗
�∗ H�t�2 = ƐQ∗

�∗ exp
{
−2

[
�∗J �t�−�∗��∗�t+ u∗��∗���X�t�−X�0��

]}
��J �t�≥Rt�

≤ ƐQ∗
�∗ exp

{
−2

[
�∗Rt−�∗��∗�t+ u∗��∗���X�t�−X�0��

]}

= e−2��R�t · ƐQ∗
�∗ exp

[
−2u∗��∗���X�t�−X�0��

]
�

where ��R�= �∗ ·R−�∗��∗�. It follows that

logƐQ∗
�∗ H�t�2

logƐQ∗
�∗ H�t�

≥
−2��R�t+ logƐ exp�−2u∗��∗���X�t�−X�0���

log��L�t�≥Rt�
�

An argument similar to the one used in the proof of Proposition 7 shows that ƐQ∗
�∗ exp�−2u∗��∗���X�t� −

X�0���=O�1� as t→�. Hence

lim
t→�

logƐQ∗
�∗ H�t�2

2 logƐQ∗
�∗ H�t�

≥ 1

by Theorem 4. On the other hand, note that ƐQ∗
�∗ H�t�2 ≥ �ƐQ∗

�∗ H�t��2 by Jensen’s inequality, from which it
follows that

lim
t→�

logƐQ∗
�∗ H�t�2

2 logƐQ∗
�∗ H�t�

≤ 1�

completing the proof. �

7. Numerical experiments. This section provides numerical results for the model specification of Example 1.
The components of X = �X1� � � � �Xd� satisfy the AJD

dXj�t�= �bj −�jXj�t��dt+
j

√
Xj�t�dWj�t�+

n∑
i=1

�i dLi�t�� j = 1� � � � � d� (26)

where bj��j�
j� �i > 0. The jump intensity is �i�X�t�� = �i + �iXi�t� for some �i��i > 0. We take d = 3,
�= �2�0�2�1�2�2�, b = �6�0�6�1�6�2�, 
 = �0�5�0�6�0�7�, �= �0�2�0�3�0�4�, �= �0�0�0�, �= �1�0�1�1�1�2�,
and set �i as the exponential distribution with mean 1 for i= 1�2�3. We consider the two choices w= �1�1�1�
and w= �1�−1�1�.

7.1. Gaussian approximation. The CLT 3 implies the following Gaussian approximation:

J �t�


≈ rt+�

√
t ·� �0�1�

for large t, where


≈ denotes approximate equality in distribution. To illustrate the quality of the approximation,

we compare the distribution of �J �t�− rt�/��
√
t� with a standard normal distribution for each of several values

t > 0. The inverse Fourier transform is used to compute the distribution of �J �t� − rt�/��
√
t� (see Errais

et al. [27] for details on computing the Fourier transform and Abate and Whitt [1] for the numerical inversion).
Tables 1 and 2 report the results. Figure 1 shows the corresponding density functions. While the Gaussian
approximation performs quite well in the center of the distribution, there is significant error in the tail.

7.2. Efficient simulation. We now show the asymptotic optimality of the IS estimator (23). Its implementa-
tion is briefly discussed below. We first compute the tilting parameter �∗ by solving the set of nonlinear equations
in Theorem 4 and compute the new set of parameters (24). Then we generate samples of �X�t�� J �t�� under the
distribution Q∗

�∗ , i.e., the SDE (26) with parameters (24). To that end, we iteratively simulate the sequence of
jump times �1 < �2 < · · ·< �K with �K−1 < t ≤ �K . For each iteration, given �k−1 and X��k−1�, we simulate the
next jump time �k and identify the source of the jump, say, Lik

. Given �k and X��k−1�, it is easy to simulate
X��k−� since Xj behaves as a CIR process between jump times, i.e.,

dXj�t�= �bj −�jXj�t��dt+
j

√
Xj�t�dWj�t�� t ∈ ��k−1� �k��
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Table 1. Gaussian approximation.

l t = 1 t = 5 t = 10 t = 50 t = 100 Std. norm.

���J �t�− rt�/��
√
t� < l�

−3.0 2�036E−03 2.153E−03 2.257E−03 2.859E−03 3.101E−03 1.350E−03
−2.5 1�638E−03 1.916E−03 3.094E−03 6.069E−03 6.780E−03 6.210E−03
−2.0 1�2417E−03 8.639E−03 1.537E−02 2.218E−02 2.313E−02 2.275E−02
−1.5 1�493E−02 6.275E−02 7.081E−02 7.243E−02 7.158E−02 6.681E−02
−1.0 1�598E−01 2.155E−01 2.036E−01 1.810E−01 1.749E−01 1.587E−01
−0.5 5�263E−01 4.434E−01 4.038E−01 3.510E−01 3.387E−01 3.085E−01

���J �t�− rt�/��
√
t� > l�

0.0 8�000E−01 6.655E−01 6.157E−01 5.511E−01 5.361E−01 5.000E−01
0.5 7�112E−02 1.739E−01 2.143E−01 2.670E−01 2.793E−01 3.085E−01
1.0 2�330E−02 8.047E−02 1.051E−01 1.361E−01 1.431E−01 1.587E−01
1.5 8�015E−03 3.436E−02 4.643E−02 5.999E−02 6.264E−02 6.681E−02
2.0 3�737E−03 1.440E−02 1.936E−02 2.360E−02 2.409E−02 2.275E−02
2.5 2�821E−03 6.710E−03 8.448E−03 9.166E−03 9.024E−03 6.210E−03
3.0 2�864E−03 4.135E−03 4.636E−03 4.471E−03 4.298E−03 1.350E−03

Note. Distribution function of �J �t�− rt�/��
√
t� with w= �1�1�1�.

and the marginal distribution of the CIR process is noncentral chi-squared after proper scaling (see Glasser-
man [37]). We then simulate Xj��k� via Xj��k−�+ �ik

Zik for all j = 1� � � � � d and simulate J ��k� via J ��k�=
J ��k−1�+ wik

Zik , where Zik is drawn from the distribution �∗
ik
. In the last iteration, we simulate X�t� given

X��K−1�. We refer the reader to §5.2 of Giesecke et al. [33] for details of the above iterative simulation approach.
We estimate ��J �t� < Rt� for w= �1�1�1� and ��J �t� > Rt� for w= �1�−1�1� for different values of t > 0.

When comparing the computational costs of the pMC and the IS, we assume the confidence interval (CI) is
constructed at the 95% level, and the target relative precision is 10%, namely, the half-length of the CI should
be within 10% of the estimated value. More specifically, let p denote the probability to be estimated, v denote
the variance of the estimator, and m denote the number of samples to be generated. Then the (approximate)
95% CI is p± 1�96

√
v/n, and hence we require 1�96

√
v/n≤ 0�1p, which yields

n≥
19�62v
p2

�

We first use a relatively large sample size to estimate p and v, then estimate the necessary sample sizes to
achieve the target relative precision for both the pMC and IS estimators, and finally, estimate the CPU time

Table 2. Gaussian approximation.

l t = 1 t = 5 t = 10 t = 50 t = 100 Std. norm.

���J �t�− rt�/��
√
t� < l�

−3.0 2�400E−03 2.509E−03 2.664E−03 3.129E−03 3.292E−03 1.350E−03
−2.5 3�025E−03 4.058E−03 4.941E−03 6.709E−03 7.167E−03 6.210E−03
−2.0 8�179E−03 1.544E−02 1.862E−02 2.249E−02 2.318E−02 2.275E−02
−1.5 3�46E−02 6.226E−02 6.703E−02 6.944E−02 6.932E−02 6.681E−02
−1.0 1�390E−01 1.819E−01 1.796E−01 1.706E−01 1.677E−01 1.587E−01
−0.5 3�923E−01 3.779E−01 3.600E−01 3.329E−01 3.260E−01 3.085E−01

���J �t�− rt�/��
√
t� > l�

0.0 6�690E−01 5.969E−01 5.684E−01 5.304E−01 5.215E−01 5.000E−01
0.5 1�511E−01 2.237E−01 2.500E−01 2.835E−01 2.911E−01 3.085E−01
1.0 6�184E−02 1.085E−01 1.254E−01 1.456E−01 1.499E−01 1.587E−01
1.5 2�410E−02 4.734E−02 5.552E−02 6.385E−02 6.533E−02 6.681E−02
2.0 9�804E−03 1.956E−02 2.262E−02 2.461E−02 2.470E−02 2.275E−02
2.5 4�903E−03 8.487E−03 9.345E−03 9.220E−03 8.993E−03 6.210E−03
3.0 3�478E−03 4.641E−03 4.775E−03 4.361E−03 4.192E−03 1.350E−03

Note. Distribution function of �J �t�− rt�/��
√
t� with w= �1�−1�1�.
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Figure 1. (Color online) Central limit convergence.
For different values of t > 0, the density function of �J �t�− rt�/��

√
t� is computed via the inverse Fourier transform. The asymptotic

mean r and the asymptotic variance �2 can be calculated analytically.

used to complete the necessary sample sizes. The simulation algorithm is written in C with the random number
generator from GNU Scientific Library (GSL-1.16). It is run on a Mac computer with OS X 10.8.4, processor
3.4 GHz Intel Core i7, and memory 32 GB 1333 MHz DDR3. The numerical results are reported in Table 3 for
the case w= �1�1�1� and ��J �t� < Rt�, and Table 4 for w= �1�−1�1� and ��J �t� > Rt�.

8. Conclusions. Affine point processes have broad applications in finance, economics, and many other areas
due to their model flexibility and analytical tractability. In this paper, we have studied the long-term asymptotic
behaviors of this type of processes. In particular, we have established a CLT and an LD principle to respectively
characterize their typical and atypical behaviors. The tractable affine structure permits us to calculate the key
quantities such as the asymptotic mean, asymptotic variance, and the LDs rate function explicitly. Furthermore,
applying the LD result, we have developed an asymptotically optimal IS algorithm for simulating certain rare
events associated with the affine point process. Numerical experiments illustrated the Gaussian approximation
induced by the CLT and the efficiency of the IS estimator.

Table 3. Asymptotic optimality of the IS estimator.

t p (pMC) T (pMC) p (IS) v (IS) T (IS) VR Log ratio

1 4.340E−01 0�03993 4�372E−01 9�365E−02 0�1119 2�627E+00 0.7590
2 2.780E−01 0�12670 2�820E−01 6�834E−02 0�05929 2�963E+00 0.7550
5 8.825E−02 0�54910 9�078E−02 1�207E−02 0�19180 6�837E+00 0.8120
10 1.805E−02 3�22100 1�685E−02 5�772E−04 0�35800 2�870E+01 0.8641
20 9.289E−04 136�40000 9�097E−04 2�330E−06 0�53690 3�900E+02 0.9044
30 4.624E−05 3,892 4�565E−05 8�042E−09 0�8159 5�676E+03 0.9209
50 n/a n/a 1�651E−07 1�327E−13 1�53200 1�244E+06 0.9433
100 n/a n/a 1�469E−13 1�690E−25 3�90900 8�692E+11 0.9631
200 n/a n/a 1�738E−25 3�149E−49 9�79600 5�521E+23 0.9786
500 n/a n/a 6�968E−61 8�095E−120 43�73000 8�607E+58 0.9896
1,000 n/a n/a 7�744E−120 1�529E−237 121�90000 5�066E+117 0.9940

Notes. Estimation of ��J �t� < Rt� with w = �1�1�1� and R= 0�6r = 0�6× 18�28 = 10�97. p denotes the probability estimated via pMC
or IS; T denotes the elapsed CPU time (seconds); v denotes the estimated variance; “VR” denotes the variance reduction ratio; “log ratio”
denotes the ratio (25). Since the pMC estimator is ��J �t� < Rt�, its variance is simply p�1−p�, so we do not report it here. The CPU time is
estimated using the estimated sample size required to achieve the 10% relative precision in constructing a 95% CI. Due to the prohibitively
long CPU time, we do not run the pMC for large values of t.
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Table 4. Asymptotic optimality of the IS estimator.

t p (pMC) T (pMC) p (IS) v (IS) T (IS) VR Log ratio

1 1�80E−01 0�1501 1.806E−01 8�775E−02 0�1003 1.686E+00 0.6185
2 1�640E−01 0�3137 1.645E−01 6�414E−02 0�1794 2.143E+00 0.6634
5 1�193E−01 0�4655 1.187E−01 3�184E−02 0�3346 3.285E+00 0.7228
10 7�000E−02 0�9870 7.045E−02 1�175E−02 0�4123 5.573E+00 0.7712
20 2�427E−02 4�8390 2.583E−02 1�878E−03 0�5763 1.340E+01 0.8169
50 1�684E−03 197�5000 1.731E−03 1�171E−05 1�5090 1.476E+02 0.8749
75 2�065E−04 2,368 1.894E−04 1�647E−07 2�7780 1.150E+03 0.8996
100 n/a n/a 2.401E−05 2�989E−09 3�6590 8.033E+03 0.9144
200 n/a n/a 6.178E−09 2�723E−16 10�3600 2.269E+07 0.9446
500 n/a n/a 1.415E−19 2�289E−37 39�3400 6.182E+17 0.9710
1,000 n/a n/a 3.615E−37 2�204E−72 112�1000 1.640E+35 0.9828
2,000 n/a n/a 4.116E−72 4�120E−142 351�9000 9.990E+69 0.9902

Note. Estimation of ��J �t� > Rt� with w= �1�−1�1� and R= 1�5r = 1�5× 6�081= 9�152.

Acknowledgments. The authors would like to thank the anonymous referee for careful reading of our manuscript and
providing us with constructive comments. The research is partially supported by the Hong Kong Research Grants Council
[Direct Allocated Grant DAG12EG01].

Appendix A. Additional technical results and proofs.

A.1. Proof of Proposition 3. We first need the following two results regarding the stochastic stability of the AJD
process X.

Proposition 8. Suppose Assumption 1 holds. Suppose also that either ƐZi <� or �i = 0 for all i= 1� � � � � n. Then X
is a nonexplosive process.

Proof. See Lemma 9.2 of Duffie et al. [23]. �

Proposition 9. Under Assumptions 1 and 2, X has a unique stationary distribution �. Moreover, ��X�t� ∈ ·�→ � in
total variation as t→�. Also,

lim
t→�

1
t

∫ t

0
X�s�ds = Ɛ� X�0�=

(
�−

n∑
i=1

Ɛ�Zi��i�
�
i

)−1(
b+

n∑
i=1

�i Ɛ�Z
i��i

)
a�s� (27)

Proof. See Chapter 2 of Zhang [48]. �

We also need the following lemma, which states that the number of jumps is roughly proportional to the length of the
time interval.

Lemma 1. Let Ni�t�=
∫ t

0

∫ �
0 Ni�ds�dz�. Under Assumptions 1 and 2,

lim
j→�

j−1 ƐNi�jT �= T Ɛ� �i�X�0��

for any T > 0 and i= 1� � � � � n, where � is stationary distribution of X�t�.

Proof. Fix T > 0 and i = 1� � � � � n. It follows from Proposition 9 that ƐX�t�→ Ɛ� X�0� as t →�. Hence, for any
� > 0, there exists j0 > 0 such that

Ɛ�i�X�jT �� < Ɛ� �i�X�0��+ �

for all j > j0 since �i�x� is affine in x; in addition, Ɛ
∫ t

0 �i�X�s��ds <� for all t > 0. Moreover, X�t� is nonexplosive
by Proposition 8, and thus Ni�t� is nonexplosive, from which we conclude that Ni�t�−

∫ t

0 �i�X�s��ds is a martingale (see
Theorems T8 and T9 of Brémaud [11]). Therefore

j−1 ƐNi�jT � = j−1 Ɛ
∫ jT

0
�i�X�s��ds

= j−1
∫ jT

0
Ɛ�i�X�s��ds (by Fubini’s theorem)

≤ j−1
∫ j0T

0
Ɛ�i�X�s��ds+ j−1�Ɛ� �i�X�0��+ ���jT − j0T ��

It follows that
lim
j→�

j−1 ƐNi�jT �≤ T �Ɛ� �i�X�0��+ ���
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Likewise, we can show
lim
j→�

j−1 ƐNi�jT �≥ T �Ɛ� �i�X�0��− ���

Sending � ↓ 0 completes the proof. �

Proof of Proposition 3. It follows from (3) and (4) that

U�t�=
n∑

i=1

∫ t

0

∫

�+

�1+A��i�zÑi�ds�dz�+
∫ t

0
A�
�X�s��dW�s��

Therefore the pure jump part of U is
n∑

i=1

∫ t

0

∫

�+

�1+A��i�zNi�ds�dz��

where gi�z�
�= �1+A��i�z.

Let �Zi
l � l≥ 1� be a sequence of iid random variable’s with common distribution �i. Note that

sup
0≤t≤jT

j−1�U�t�−U�t−��2 = sup
1≤i≤n

sup
1≤l≤Ni�jT �

j−1gi�Z
i
l�

2�

Hence

�
(

sup
0≤t≤jT

j−1�U�t�− �t−��2 > x
)
= Ɛ

[
�
(
sup
1≤i≤n

sup
1≤l≤Ni�jT �

j−1gi�Z
i
l�

2 > x
∣∣∣Ni�jT �� i= 1� � � � � n

)]

≤ Ɛ

[ n∑
i=1

Ni�jT �∑
l=1

��j−1gi�Z
i
l�

2 > x
∣∣∣Ni�jT �� i= 1� � � � � n�

]

= Ɛ

[ n∑
i=1

Ni�jT �∑
l=1

��j−1gi�Z
i
l�

2 > x�

]

=
n∑

i=1

ƐNi�jT ���j
−1gi�Z

i
1�

2 > x��

It follows that, for any �> 0,

Ɛ sup
0≤t≤jT

j−1�U�t�−U�t−��2 ≤ �+
∫ �

�
�
(

sup
0≤t≤jT

j−1�U�t�−U�t−��2 > x
)
dx

≤ �+
∫ �

�

n∑
i=1

ƐNi�jT ���j
−1gi�Z

i
1�

2 > x�dx

= �+
n∑

i=1

ƐNi�jT �
∫ �

�
��gi�Z

i
1�

2 > jx�dx

≤ �+
n∑

i=1

ƐNi�jT �
∫ �

�
�jx�−�1+�/2� Ɛgi�Z

i
1�

2+� dx

= �+ 2�−1�−��/2�
n∑

i=1

j−�1+�/2� ƐNi�jT �Ɛgi�Z
i
1�

2+��

where the Markov inequality is applied in the penultimate step. Note that Ɛgi�Z
i
1�

2+� <� for i= 1� � � � � n by Assumption 2.
It then follows immediately from Proposition 1 that

lim
j→�

Ɛ sup
0≤t≤jT

j−1�U�t�−U�t−��2 ≤ ��

Now, sending � ↓ 0 concludes the proof. �

A.2. Proof of Proposition 5. Let ���u� be a solution to (13). Define �̂ ∈�n
+ and �̂ ∈�n×d

+ such that

�̂i = �i

∫

�+

e��+u��i�z�i�dz� (28)

�̂i = �i

∫

�+

e��+u��i�z�i�dz�� (29)

where ��
i and �̂�

i is the i-th row of � and �̂, respectively, for i= 1� � � � � n. Moreover, define �̂ ∈�d×d such that

�̂j = �j −ju� j = 1� � � � � n
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where �j and �̂j are the j-th column of � and �̂, respectively, for j = 1� � � � � d. Note that j = 0 and uj = 0 for j =
m+ 1� � � � � n from which it follows immediately that

�̂=

(
�I� I − diag�1

1�1u1� � � � �
m
m�mum� 0

�J� I �J � J

)
� (30)

Hence �̂I� I = �I� I − diag�1
1�1u1� � � � �

m
m�mum� has nonpositive off-diagonal elements since � has nonpositive off-diagonal

elements. Therefore we have the following proposition.

Proposition 10. Under Assumptions 1 and 3, the parameters �a��b� �̂� �̂� �̂� �� are admissible, where �̂, �̂, and �̂
are respectively defined by (28), (29), and (30).

Note that, with ���u� at hand, we can rewrite M�t� as

M�t�= 1+
∫ t

0
M�s−�u�
�X�s��dW�s�+

∫ t

0

∫

�d
+

M�s−�
n∑

i=1

�e��+u��i�z − 1�Ñi�ds�dz��

or equivalently,

dM�t�=M�t−�

[
u�
�X�t��dW�t�+

n∑
i=1

∫

�+

�e��+u��i�z − 1�Ñi�dt�dz�
]
� (31)

Hence

M�t�= exp
(∫ t

0
u�
�X�s��dW�s�− 1

2

∫ t

0
u�
�X�s��
��X�s��uds+

n∑
i=1

∫ t

0

∫

�+

��+ u��i�zNi�ds�dz�

−
n∑

i=1

∫ t

0

∫

�+

�e��+u��i�z − 1��i�dz��i�X�s��ds
)
� (32)

Proof of Proposition 5. It follows from (31) and (32) that M�t� is a positive local martingale, and thus a supermartin-
gale. Consequently, it suffices to show that ƐM�T �= 1. Consider a new set of parameters �a��b� �̂� �̂� �̂� ��, defined via
(28), (29), and (30). Moreover, let

�̂i�dz�=
e��+u��i�z�i�dz�∫

�+
e��+u��i�y�i�dy�

(33)

for i= 1� � � � � n. Set
	̂�x�= b−�x+
�x�
�x��u�

Since uJ = 0, aI� I = 0, aI� J = 0, and aJ�I = 0, it follows that


�x�
��x�u=
(
a+

n∑
j=1

xj
j

)
u=

n∑
j=1

xj
ju�

yielding that 	̂�x�= b− �̂x.
Proposition 10 indicates that the parameters �a��b� �̂� �̂� �̂� �� are admissible. Hence we may consider an AJD X̂�t� ∈

�m
+ ×�d−m satisfying

dX̂�t�= 	̂�X̂�t��dt+
�X̂�t��dW�t�+
n∑

i=1

∫

�+

�izN̂i�dt�dz�� (34)

where N̂i�dt�dz� is a counting random measure on �0��� × �d with compensator �̂i�X̂�t��dt �̂i�dz�, where �̂i�x� =
�̂i + �̂�

i x, for i= 1� � � � � n.
For each l≥ 1, we define the stopping times

�l = inf�t > 0� �X�t�� ≥ l� and �̂l = inf�t > 0� �X̂�t�� ≥ l��

Both X�t� and X̂�t� are nonexplosive by Proposition 8. Therefore these stopping times satisfy

lim
l→�

���l ≥ T �= lim
l→�

���̂l ≥ T �= 1� (35)

For each l, let X�l �t�=X�t ∧ �l� be the stopped processes associated with ��l� l≥ 1� and similarly let M�l �t�=M�t ∧ �l�.
Note that

Ɛ exp
(
1
2

∫ t∧�l

0
u�
�X�s��
��X�s��uds+

n∑
i=1

∫ t∧�l

0

∫

�+

fi�z��i�dz��i�X�s��ds
)

= Ɛ exp
(
1
2

m∑
j=1


j
j� ju

2
j

∫ t∧�l

0
Xj�s�ds+

n∑
i=1

Ɛ fi�Z
i�
∫ t∧�l

0
��i +��

i X�s��ds
)

<�

where fi�z�= e��+u��i�z���+ u��i�z− 1�+ 1 for i= 1� � � � � n since X�l �s� is bounded for s ∈ �0� �l�.
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It follows from (32) and Théorème IV.3 of Lépingle and Mémin [42] that �M�l �t�� t ∈ �0� T �� is a martingale. Hence,
for each l≥ 1, M�l �t� induces a probability measure Ql equivalent to P defined by �dQl/d���� t

=M�l �t� for t ∈ �0� T �. It
follows from Girsanov’s theorem that, for each l≥ 1,

Wl�t�=W�t�−
∫ t

0

��X�l �s��uds

is a standard d-dimensional Brownian motion under Ql. In addition, Ni�dt�dz� has compensator �̂i�X
�l �t��dt �̂i�dz� under

Ql for each i= 1� � � � � n.
Note that we can rewrite the SDE (1) for t ∈ �0� �l� as

dX�t�= 	̂�X�t��dt+
�X�t��dWl�t�+
n∑

i=1

∫

�+

�izN̂i�dt�dz�� (36)

By comparing (34) with (36), we conclude that �X�t�� t ∈ �0� �l�� under Q
l has the same distribution as �X̂�t�� t ∈ �0� �̂l��

under � . Therefore, by (35),
ƐM�l �T ����l≥T � =Ql��l ≥ T �= ���̂l ≥ T �→ 1

as l→�. Moreover, note that
ƐM�l �T ����l≥T � = ƐM�T ����l≥T � → ƐM�T �����≥T �

as l→� by the Monotone Convergence theorem, where ��
�= inf�t > 0� �X�t�� =��. The nonexplosiveness of X implies

that �� =� � -a.s. Therefore we conclude that ƐM�T �= 1. �

A.3. Proof of Proposition 6

Lemma 2. Let A be a Z-matrix, so that there exists s ∈� and a nonnegative matrix B for which A= sI−B. Then the
following three statements are equivalent:
(1) A is an M-matrix.
(2) s > ��B�, where ��B� denotes the spectral radius of B.
(3) For any vector v 	= 0, there exists a nonnegative diagonal matrix D such that v�ADv > 0.

Proof. See Berman and Plemmons [7, pp. 132–134]. �

We then have the following immediate result.

Corollary 2. Let A be an M-matrix and D be a nonnegative diagonal matrix with the same dimension. Then A+D
is an M-matrix.

Lemma 3. Under Assumption 1, �I� I is an M-matrix and � is positive stable.

Proof. Note that by part (I) of Assumption 1, �I� I is a Z-matrix and Ɛ�Zi��i� I�
�
i� I is a nonnegative matrix. Therefore

�I� I −
∑n

i=1 Ɛ�Z
i��i� I�

�
i� I is a Z-matrix as well. Moreover, note that �I�J = 0 and �i� J = 0 for all i = 1� � � � � n, where

I = �1� � � � �m� and J = �m+ 1� � � � � d�,

�−
n∑

i=1

Ɛ�Zi��i�
�
i =




�I� I −
n∑

i=1

Ɛ�Zi��i� I�
�
i� I 0

�J� I −
n∑

i=1

Ɛ�Zi��i� J �
�
i� I �J � J



�

It then follows from part (III) of Assumption 1 that both �I� I −
∑n

i=1 Ɛ�Z
i��i� I�

�
i� I and �J�J are postive stable. Therefore

�I� I −
∑n

i=1 Ɛ�Z
i��i� I�

�
i� I is an M-matrix.

On the other hand, note that there exists s > 0 and a nonnegative matrix B for which �I� I = sI − B since �I� I is a
Z-matrix. Hence we can write

�I� I −
n∑

i=1

Ɛ�Zi��i� I�
�
i� I = sI−

(
B+

n∑
i=1

Ɛ�Zi��i� I�
�
i� I

)
�

It then follows from Lemma 2 that

s > �

(
B+

n∑
i=1

Ɛ�Zi��i� I�
�
i� I

)
(37)

and thus s > ��B� since Ɛ�Zi��i� I�
�
i� I ∈ �m×m

+ for all 1 ≤ i ≤ n (see, for example, p. 491 of Horn and Johnson [39]).
Consequently, �I� I is an M-matrix by Lemma 2. Therefore

�=
(
�I� I 0
�J� I �J � J

)

is positive stable because �I� I and �J�J are positive stable. �

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

12
.1

73
.1

81
] 

on
 0

9 
N

ov
em

be
r 

20
15

, a
t 0

1:
57

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Zhang et al.: Affine Point Processes: Approximation and Efficient Simulation
Mathematics of Operations Research 40(4), pp. 797–819, © 2015 INFORMS 815

Lemma 4. Under Assumptions 1 and 3, 	���u∗
I ���� is an M-matrix if and only if � ∈ ��� �̄�, where �̄ and � are

respectively defined in (19) and (20).

Proof. Let s���=max�0�	���u∗
I ����i� i�1≤ i ≤m� and B���= s���I− 	���u∗

I ����. Since 	���u∗
I ���� is a Z-matrix

by the representation (17), it follows that B��� ∈ �m×m
+ . By the Perron-Frobenius theorem, ��B���� is an eigenvalue of

B���, where �� · � denotes the spectral radius. Therefore 	���u∗
I ����= s���I−B��� is singular if s���= ��B����. Note that

	�0�0� is an M-matrix by (18). It then follows from Lemma 2 that s�0� > ��B�0��. Furthermore, since s��� and elements of
B��� are continuous in �, we conclude that � ∈ ��� �̄� if and only if s��� > ��B����, which is true if and only if 	���u∗

I ����

is an M-matrix. �

Lemma 5. Under Assumptions 1 and 3, �u∗
I ��� ∈�m

+ for � ∈ ��� �̄�.

Proof. Note that

�u∗
I ���=−	���u∗

I ����
−1��F ���u

∗
I ����� (38)

and that

��F ��� v�
� =−

n∑
i=1

Ɛ�Zie��+v��i� I �Z
i
���

i� I ∈�m
−� (39)

It follows from Lemma 4 that, for any � ∈ ��� �̄�, 	���u∗
I ���� is an M-matrix, and thus J ���uI ����

−1 ∈�m×m
+ (see p. 137

of Berman and Plemmons [7]). Hence �u∗
I ��� ∈�m

+ for any � ∈ ��� �̄� by (38) and (39). �

Lemma 6. Under Assumptions 1 and 3, 	��� v� is an M-matrix for all ��� v� ∈�− ×�m
−.

Proof. Following the notations in the proof of Lemma 3, we have �I� I = sI−B for some s > 0 and some B ∈�m×m
+ .

Then by (17),

	��� v�� = sI−
(
B+

n∑
i=1

Ɛ�Zie��+v��i� I �Z
i
��i� I�

�
i� I

)
+ diag�−1

1�1v1� � � � �−m
m�mvm�� (40)

It follows from (37) that, for all ��� v� ∈�− ×�m
−,

s > �

(
B+

n∑
i=1

Ɛ�Zie��+v��i� I �Z
i
��i� I�

�
i� I

)

since �i� I � · � ∈�m
+ for all 1≤ i≤ n, yielding that

sI−
(
B+

n∑
i=1

Ɛ�Zie��+v��i� I �Z
i
��i� I�

�
i� I

)

is anM-matrix by Lemma 2. It further implies that 	��� v� is anM-matrix for all ��� v� ∈�−×�m
− by (40) and Corollary 2. �

Lemma 7. Under Assumptions 1 and 3, �=−�, where � is defined in (20).

Proof. Lemma 5 together with u∗
I �0�= 0 implies that u∗

I ��� ∈ �m
− for all � ∈ ���0�. Hence, by Lemma 6, there does

not exist � < 0 such that 	���u∗
I ���� is singular, yielding that �=−�. �

Lemma 8. Under Assumptions 1 and 3, �̄=� if �= 0, and �̄ <� otherwise, where �̄ is defined in (19).

Proof. If �= 0, then �uI ���≡ 0 by (38) and (39). In particular, Equations (15) can be solved trivially by u∗
I ���= 0

for all � ∈�. Hence 
u∗I
=�, where 
u∗I

is the domain of u∗
I ���, implying that �̄=�.

If � 	= 0, then by part (I) of Assumption 1, there exists j ∈ �1� � � � �m� such that �i� j > 0. Note that u∗
I ��� ∈ �m

+ for all
� ∈ �0� �̄� by Lemma 5. Therefore it follows from (15) that

m∑
k=1

u∗
k����k� j − 1

2
j
j� ju

∗
j ���

2 = �Ɛ e��+u∗I ���
��i� I �Z

i − 1��i� j ≥ �Ɛ e�Z
i − 1��i� j �

By part (I) of Assumption 1, �I� I has nonpositive off-diagonal elements. Therefore

u∗
j ����j� j − 1

2
j
j� ju

∗
j ���

2 ≥ �Ɛ e�Z
i − 1��i� j

for � ∈
u∗I
∩�+. Since 

j
j� j > 0 by part (II) of Assumption 1, the LHS of the last equality is upper bounded, and thus �

must be bounded so that Equations (15) have a solution. Therefore 
u∗I
is upper bounded, thereby �̄ <�. �

Proof of Proposition 6. It is an immediate result from Lemmas 7 and 8. �
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A.4. Proof of Proposition 7. We first discuss the case where � ≥ 0. In this case, it suffices to show that X is ergodic
under Q∗

� .

Proposition 11. Suppose that Assumptions 1 and 3 hold. Then, for any � ∈
o
u∗I
= �−�� �̄�, X has a unique stationary

distribution �Q∗
� under the probability measure Q∗

� . Moreover, Q∗
��X�t� ∈ ·�→�Q∗

� � · � in total variation as t→�.

Proof. Fix �. Let �̂, �̂, �̂I� I , and �̂i be defined as in (28), (29), (30), and (33) with u= u∗. Let Ẑi be a random variable
with distribution �̂i. Then, we can rewrite (17) as

	���u∗
I ����

� = �̂I� I −
n∑

i=1

Ɛ�Ẑi��i� I �̂
�
i� I �

which is positive stable for � ∈ �−�� �̄�. Hence

�̂−
n∑

i=1

Ɛ�Ẑi��i�̂
�
i =




�̂I� I −
n∑

i=1

Ɛ�Ẑi��i� I �̂
�
i� I 0

�J� I −
n∑

i=1

Ɛ�Ẑi��i� J �̂
�
i� I �J � J




is positive stable.
Note that Proposition 10 asserts that the parameters �a��b� �̂� �̂� �̂� �� are admissible. Moreover, it is easy to see

�̂i� · � satisfies Assumption 3. Consequently, we can apply Proposition 9 to the AJD that satisfies the SDE with parameters
�a��b� �̂� �̂� �̂� ��. Note that such an SDE is exactly the one that X satisfies under Q∗

� . Hence we conclude that X has a
unique stationary distribution �Q∗

� under Q∗
� and Q∗

��X�t� ∈ ·�→�Q∗
� � · � in total variation as t→�.

Proposition 11 asserts that X is ergodic under probability measure Q∗
� , thereby ƐQ

∗
� f �X�t��→

∫
� f �x��Q∗

� �dx� as t→�
for any bounded function f . Hence we have the following corollary.

Corollary 3. Under Assumptions 1 and 3, for � ∈
�∗ ∩�+,

ƐQ
∗
� exp�−u∗�����X�t�−X�0���=O�1�

as t→�.

Proof. It follows from Lemma 5 that u∗
I ��� ∈�m

+ for � ∈
�∗ ∩�+. Therefore

exp�−u∗����X�t��= exp
(
−

m∑
i=1

u∗
i ���Xi�t�

)
≤ 1

since Xi� · �≥ 0 for i= 1� � � � �m. Consequently, by Proposition 11, we have

ƐQ
∗
� exp�−u∗�����X�t�−X�0���→

∫

�
e−u∗�����x−x0��Q∗

� �dx� <�

as t→� for � ∈
�∗ ∩�+. �

We now discuss the case when � < 0. In this case, it suffices to show that X is exponentially ergodic under Q∗
� . To that end,

we will apply the Foster-Lyapunov method (see Meyn and Tweedie [43]) for an extensive exposition of this approach. The
key to the Foster-Lyapunov approach is to find an appropriate test function that satisfies the so-called Lyapunov inequality,
more specifically (41) in our setting.

Let �∗
� denote the infinitesimal generator of X under Q∗

� , i.e.,

�∗
�f �x�=

1
2

d∑
i� j=1

(
ai� j +

m∑
k=1

k
i� jxk

)
�2f

�xi�xj
�x�+ �b− �̂x� ·�f �x�+

n∑
i=1

��̂i + �̂i · x�
∫

�+

�f �x+�iz�− f �x���̂i�dz�

for any twice continuously differentiable function f � �d →�.

Lemma 9. Fix � < 0. Under Assumptions 1 and 3, there exist w > 0 and c ∈�d
+ with cJ = 0 such that

�∗
�g�x�≤−g�x�+w (41)

for all x ∈� =�m
+ ×�d−m, where g�x�= e�c−u∗��x.
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Proof. Noting that cJ = u∗
J = 0, g�x� is independent of xJ . Then, a direct calculation yields that

�∗
�g�x� = g�x�

[
�c− u∗���b− �̂x�+ 1

2

m∑
k=1

k
k�k�ck − u∗

k�
2xk +

n∑
i=1

��̂i + �̂�
i x�

∫

�+

�e�
�
i �c−u∗�z − 1��̂i�dz�

]

= g�x�

[
u∗��x− 1

2

m∑
k=1

k
k�ku

∗2
k xk −

n∑
i=1

��
i x · Ɛ e

��+��i u∗�Zi − c��x+ 1
2

m∑
k=1

k
k�kc

2
kxk +

n∑
i=1

��
i x · Ɛ e

��+��i c�Zi +D1

]

= g�x�
[
�F ���u∗

I �− F ��� cI ��
�xI +D1

]

= g�x�
[
−F ��� cI �

�xI +D1

]
�

where F � �×�m →�m is defined by (16) and

D1 = �c− u∗��b+
n∑

i=1

�i

∫

�+

�e��+��i c�z − e��+��i u∗�z��i�dz��

The Taylor expansion indicates that

F ��� cI �− F ���0�= 	���0��cI + o��cI��

as �cI� ↓ 0. Since 	���0� is an M-matrix by Lemma 6, it follows that there exists q ∈�m
++ such that 	���0��q ∈�m

++ (see
Berman and Plemmons [7, p. 136]). Hence we can set cI = �q for a sufficient small � > 0, so that 	���0��cI +o��cI�� ∈�m

++.
Moreover, noting that

Fj���0�=
n∑

i=1

�i� j �1− Ɛ e�Z
i
�≥ 0� j = 1� � � � �m�

we conclude that F ��� cI � ∈ �m
++ for � > 0 small enough. It follows that there exists D2 > 0 large enough such that

F ��� cI �
�xI −D1 > 1 for all x ∈ �\K, where K = �x ∈ � � 0 ≤ xi ≤ D2�1 ≤ i ≤ m�. On the other hand, obviously w

�=
supx∈K g�x��F ��� cI ��xI −D1 − 1�<�. Therefore �∗

�g�x�≤−g�x�+w for all x ∈� . �

Corollary 4. Under Assumptions 1 and 3, for � < 0,

ƐQ
∗
� exp�−u∗�����X�t�−X�0���=O�1�

as t→�.

Proof. We need the concept of the f -norm, denoted by ���f for a positive measurable function f ≥ 1 and a signed
measure � as follows:

���f
�= sup

�h�≤f

∣∣∣
∫

f �x���dx�
∣∣∣�

Proposition 11 guarantees that X has a unique stationary distribution �Q∗
� under Q∗

� . Let g�x� = exp��c − u∗��x� for
x ∈� , where c is specificed as in Lemma 9. It then follows from Lemma 9 and Theorem 6.1 of Meyn and Tweedie [43] that

∥∥�Q∗
� �X�t� ∈ · �X�0��−�Q∗

� � · �
∥∥
f1
→ 0 (42)

as t→�, where f1
�= g+ 1.

Note that c ∈�d
+ with cJ = 0 so g�x�≥ exp�−u∗�x�

�= f2�x� for all x ∈� . Hence, by the definition of the f -norm,

∥∥�Q∗
� �X�t� ∈ · �X�0��−�Q∗

� � · �
∥∥
f2
≤
∥∥�Q∗

� �X�t� ∈ · �X�0��−�Q∗
� � · �

∥∥
f1
� (43)

It follows from (42) and (43) that
∥∥�Q∗

� �X�t� ∈ · �X�0��−�Q∗
� � · �

∥∥
f2
→ 0

as t→�, and thus

ƐQ
∗
� exp

[
−u∗�����X�t�−X�0��

]
→

∫

�
e−u∗�����x−x0��Q∗

� �dx� <�

as t→�. �
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Proof of Proposition 7. It is an immediate result from Corollaries 3 and 4. �

A.5. Proof of Theorem 2. By the expression (22), the domain of �∗ can be written as


�∗ =
u∗I
∩
( ⋂

�i� �i>0�

��� Ɛ e��+u∗I ���
��i� I �Z

i
<��

)
�

Note that 
o
u∗ = �−�� �̄� by Proposition 6, where �̄ is defined by (19), and that u∗��� ∈ �d

− for � ≤ 0 by Lemma 5. Then

o

�∗ = �−�� �̃�, where
�̃= �̄∧ min

�i� �i>0�
�̂i (44)

and �̂i > 0 is such that
�̂i + u∗

I ��̂i�
��i� I = sup��� Ɛ e�Z

i
<��� (45)

Moroever, note that

�∗′���= �u∗
I ���

�bI +
n∑

i=1

�i�1+�u∗
I ���

��i� I �ƐZ
ie��+u∗I ���

��i� I �Z
i ≥ 0 (46)

since �u∗��� ∈ �d
+. Consequently, to show that �∗ is steep, it suffices to show that the range of �∗′��� is �0��� for

� ∈ �−�� �̃�.

Lemma 10. Under Assumptions 1 and 3, �∗′���→ 0 as � ↓−�.

Proof. Note that by sending � ↓−�, Equations (15) are reduced to

m∑
i=1

ui�i� j − 1
2

j
j� ju

2
j +

n∑
i=1

�i� j = 0� j = 1� � � � �m�

It can be easily shown by the Miranda existence test (see Miranda [44] or Frommer et al. [30]) that the above nonlinear
equations about u have a unique solution u= �u1� � � � �um� that lies in �m

−. Hence u∗
I ���→ u as � ↓−�. Then by (17),

lim
�↓−�

	���u∗
I ����

� → �I� I − diag�1
1�1u1� � � � �

m
m�mum���

which is nonsingular by Lemma 6. Further, note that ��F ���u
∗
I ����→ 0 as � ↓−� by (39). It then follows from (38) that

lim
�↓−�

�u∗
I ���= lim

�↓−�
	���u∗

I ����
−1��F ���u

∗
I ����= 0�

Therefore, by (46), we conclude that �∗′���→ 0 as � ↓−�. �
Lemma 11. Under Assumptions 1 and 3, �∗′���→� as � ↑ �̃.

Proof. By (44), we will discuss two cases, i.e., �̃= �̄ and �̃= �̂i for some i such that �i > 0.
Case 1. Assume �̃= �̄. First note that if �= 0, then �i > 0 by part (II) Assumption 1, and �̄=� by Lemma 8, implying

that �̂i =� for all i= 1� � � � � n. Hence we can incorporate this scenario, i.e., �= 0, into the discussion of Case 2 later.
If � 	= 0, then �̄ <� by Lemma 8. It then follows from (19), the definition of �̄ that 	��̄� u∗

I ��̄�� is singular. Hence

lim
�↑�̄

�	���u∗
I ����

−1� =��

Apparently, for all i such that �i > 0, we have �̄ < �̂i so Ɛ e��̄+u∗I ��̄�
��i� I �Z

i
<�. Hence

lim
�↑�̄

��F ���u
∗
I ����=−

n∑
i=1

Ɛ�Zie��̄+u∗I ��̄�
��i� I �Z

i
���

i� I �

which is finite. Therefore ��u∗
I ����→� as � ↑ �̄ by (38). Since bi > 0 for i= 1� � � � �m by part (II) Assumption 1, it then

immediately follows from (46) that �∗′���→� as � ↑ �̃.
Case 2. If �̃= �̂i for some i such that �i > 0, then by (46)

�∗′���≥ �i ƐZ
ie��+u∗I ���

��i� I �Z
i ≥ �i Ɛ e

��+u∗I ���
��i� I �Z

i
��Zi ≥ 1�→�

as � ↑ �̂i by (45). Hence �∗′���→� as � ↑ �̃. �
Proof of Theorem 2. Since ���� is increasing in �, it follows from Lemmas 10 and 11 that, for each R > 0, there

exists a unique �∗ ∈ �−�� �̃� such that �∗′��∗�=R. We then can apply the Gärtner-Ellis theorem to prove Theorem 2. �
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[29] Filipović D, Mayerhofer E, Schneider P (2013) Density approximations for multivariate affine jump-diffusion processes. J. Economet-

rics 176:93–111.
[30] Frommer A, Lang B, Schnurr M (2004) A comparison of the Moore and Miranda existence tests. Computing 72:349–354.
[31] Giesecke K, Shkolnik A (2014) Optimal importance sampling of default losses. Working paper.
[32] Giesecke K, Weber S (2006) Credit contagion and aggregate losses. J. Econom. Dynam. Control 30:741–767.
[33] Giesecke K, Kim B, Zhu S (2011) Monte Carlo algorithms for default timing problems. Management Sci. 57(12):2115–2129.
[34] Giesecke K, Spiliopoulos K, Sowers RB (2013) Default clustering in large portfolios: Typical events. Ann. Appl. Probab. 23(1):

348–385.
[35] Giesecke K, Kakavand H, Mousavi M, Takada H (2010) Exact and efficient simulation of correlated defaults. SIAM J. Finan. Math.

1:868–896.
[36] Giesecke K, Spiliopoulos K, Sowers RB, Sirignano JA (2015) Large portfolio asymptotics for loss from default. Math. Finance

25(1):77–114.
[37] Glasserman P (2003) Monte Carlo Methods in Financial Engineering (Springer, New York).
[38] Glasserman P, Kim K-K (2009) Saddlepoint approximation for affine jump-diffusion models. J. Econom. Dynam. Control 33:37–52.
[39] Horn RA, Johnson CR (1985) Matrix Analysis (Cambridge University Press, Cambridge, UK).
[40] Karatzas I, Shreve SE (1991) Brownian Motion and Stochastic Calculus, 2nd ed. (Springer, New York).
[41] Kontoyiannis I, Meyn SP (2003) Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Probab.

13(1):304–362.
[42] Lépingle D, Mémin J (1978) Sur l’integrabilité uniforme des martingales exponentielles. Z. Wahrsch. Verw. Gebiete 42(3):175–203.
[43] Meyn SP, Tweedie RL (1993) Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl.

Probab. 25:518–548.
[44] Miranda C (1940) Un’osservazione su un teorema di Brouwer. Bolletino Unione Mathematica Italiana 3:5–7.
[45] Protter PE (2003) Stochastic Integration and Differential Equations, 2nd ed. (Springer, Berlin).
[46] Spiliopoulos K, Sowers RB (2014) Default clustering in large pools: Large deviations. SIAM J. Finan. Math. Forthcoming.
[47] Spiliopoulos K, Sirignano JA, Giesecke K (2014) Fluctuation analysis for the loss from default. Stoch. Proc. Appl. 124(7):2322–2362.
[48] Zhang X (2011) Computing rare-event probabilities for affine models and general state space Markov processes. Doctoral dissertation,

Stanford University, Stanford, CA.
[49] Zhang X, Glynn PW, Giesecke K, Blanchet J (2009) Rare event simulation for a generalized Hawkes process. Rossetti MD, Hill RR,

Johansson B, Dunkin A, Ingalls RG, eds. Proc. 2009 Winter Simulation Conf. (IEEE, Piscataway, NJ),1291–1298.
[50] Zhu L (2013) Central limit theorem for nonlinear Hawkes processes. J. Appl. Probab. 50(3):760–771.
[51] Zhu L (2014) Process-level large deviations for nonlinear Hawkes point processes. Annales de l’Institut Henri Poincaré 50(3):845–871.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

12
.1

73
.1

81
] 

on
 0

9 
N

ov
em

be
r 

20
15

, a
t 0

1:
57

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 


	Introduction.
	Problem formulation.
	Typical behavior: CLT.
	Construction of local martingale.
	CLT for $U$.
	CLT for $V$.

	Atypical behavior: LDs principle.
	Road map.
	Construction of exponential martingale $M$.
	Characterization of nonlinear system (13).
	Limiting CGF of $V$.
	LD for $V$.

	Extensions.
	Efficient simulation: Importance sampling.
	Numerical experiments.
	Gaussian approximation.
	Efficient simulation.

	Conclusions.

