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In the planning of steady-state simulations, a central issue is the initial transient problem, in which an initial
segment of the simulation output is adversely contaminated by initialization bias. Our article makes several
contributions toward the analysis of this computational challenge. To begin, we introduce useful ways for
measuring the magnitude of the initial transient effect in the single replication setting. We then analyze the
marginal standard error rule (MSER) and prove that MSER’s deletion point is determined, as the simulation
time horizon tends to infinity, by the minimizer of a certain random walk. We use this insight, together with
fluid limit intuition associated with queueing models, to generate two nonpathological examples in which at
least one variant of MSER fails to accurately predict the duration of the initial transient. Our results suggest
that the efficacy of a deletion procedure is sensitive to the choice of performance measure, and that the set of
standard test problems on which initial transient procedures are tested should be significantly broadened.
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1. INTRODUCTION

LetY = (Y, : j = 0) be areal-valued sequence representing the output of a simulation
for which there exists a (deterministic) real-valued constant « with

o 1 n—1
Y, = - PR (D
j=0

as n — oo, where > denotes convergence in probability. The quantity « is known as
the steady-state mean of Y, and computing o accurately is the goal of a steady-state
simulation of Y.

In the typical performance simulation context, Y is initialized according to a distribu-
tion atypical of equilibrium, thereby inducing an initial transient in the simulation of Y
in which the observations collected are biased as estimators of the steady-state mean.
Since one has no a priori sense of how much bias the initial transient is generating, it
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is of great interest to develop automatic procedures for determining the duration of the
initial transient so that the initial transient (determined to be of length d, say) can be
deleted, thereby reducing the bias of the estimator that averages over the remaining
data. Naturally, one would like to choose d that strikes the best bias-variance trade-off:
truncating too little fails to sufficiently reduce initialization bias, whereas truncating
too much leads to an increase in variance. As a result, in the steady-state simulation
community, a popular criterion for measuring the quality of a steady-state estimator is
mean square error (MSE); in turn, the effectiveness of an initial transient rule is often
measured by the ability to minimize MSE.

The initial transient problem has been studied extensively in recent decades. An
early survey of the subject dates back to Wilson and Pritsker [1978]. Robinson [2002]
contains a list of truncation procedures that are popular in practice. Other works, such
as Schruben [1982] and Schruben et al. [1983], consider initialization bias detection
from a hypothesis testing perspective. In addition to estimating steady-state means,
one sometimes also wishes to deliver confidence intervals (Cls) in the presence of an
initial transient. Attempts at these constructions may be found, for example, in Lada
et al. [2006], Tafazzoli et al. [2011], and Mokashi et al. [2010]. A key strategy in these
works is the employment of von Neumann’s randomness test to batch means obtained
from nonoverlapping batches, deleting the first batch of data once von Neumann’s test
fails to reject the hypothesis of independence. Such a heuristic procedure often leads
to good computational results.

Our article is organized as follows. In Section 2, we propose various ways of measur-
ing the strength of the transient effect in a given simulation, emphasizing the difference
between what we call the “distributional initial transient” and the “functional ini-
tial transient.” In the course of this discussion, we provide a complete description
(Theorem 1) of the MSE for steady-state estimators associated with a geometrically
ergodic Markov chain, as a function of the initial distribution and the truncation point.
This result complements the MSE analysis in Pasupathy and Schmeiser [2010] and
Grassmann [2011] by exposing the second-order terms in the MSE that are influenced
by initial transient effects. We therefore expect this result to be a useful theoretical
device in future research on the initial transient problem.

Section 3 is focused on MSER and its variants. We show, through Theorem 2, that
the truncation point specified by MSER converges almost surely (a.s.) to a finite-valued
quantity as the simulation time horizon tends to infinity, and that the behavior of MSER
is (very) closely connected to that of a certain random walk. In Section 4, we argue
that fluid limits in queueing theory provide a valuable theoretical tool for generating
test problems in which the duration of the initial transient can be unambiguously
determined. We verify that MSER truncates an appropriate amount in the setting of
a G/G/1 waiting time sequence as the simulation time horizon and initial condition
simultaneously tend to infinity. However, the combination of fluid level intuition with
the random walk structure of MSER allows us to generate, in Section 5, two practically
relevant models in which at least one variant of MSER fails to find an appropriate
truncation point. A common feature of these examples is that the simulation output
results from a particular performance measure, and thus does not take into account
the full state space information of the underlying stochastic process.

In Section 6, we summarize the conclusions of our article. The Appendix contains all
proofs of theorems and propositions.

2. THE INITIAL TRANSIENT PROBLEM: PERSPECTIVES AND CHALLENGES

Analysis of the initial transient effect differs depending on whether one uses a sin-
gle long replication of Y or multiple (independent) shorter replications. In the single
replication context, the extraction of the initial transient “signal” from the surrounding
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stochastic “noise” associated with the simulation is challenging because one has only a
single sample path from which to infer the effect of the initial transient. Nevertheless, a
substantial proportion of the literature focuses on the single replication setting, largely
because the effect of the initial transient is mitigated by using a single long run (as
opposed to multiple short runs, in which the initial transient is replicated with each
run). Our work focuses only on the single replication setting; the theory for multiple
replication exhibits different behavior and will appear elsewhere.

In the rest of this article, we presume that the simulation output Y admits the
representation Y; = f(X;), where X = (X; : j > 0) is an S-valued Markov chain
(with state space S) and f : S — R is a real-valued performance measure. Indeed,
this assumption is quite natural, as a large subset of discrete-event simulations can
be modeled by Markov or generalizations of Markov chains. To see this, recall that in
a typical discrete-event simulation, the simulation program maintains a set of state
variables as well as a future event list (ordered from most imminent to least imminent).
At each event time, random variables (which, without loss of generality, can be taken
as uniformly distributed) are generated so as to determine new future events. These
are then appropriately inserted into the future event list, and the state variables are
updated in accord with the most imminent event in the list (after which this event
is removed). Thus, the simulation updating dynamics are Markovian in nature. For
example, see Glynn [1989] for a deeper discussion of the relationship between discrete-
event simulations, generalized semi-Markov processes (GSMPs), and general state
space Markov chains.

We start with a simple observation that is nevertheless (perhaps) surprising. Suppose
that we estimate the deletion time, based on a simulation of X up to time n — 1, via
a random variable d, that is a function of (X;: 0 <j <n-—1).If n is the stationary
distribution of X, then

P.(d,e-)= /n(dx)Px(cfn € ),
S

where P,(.) 2 P(-| Xy = x) and
P,() = / 7(dx) ().
S

It follows that d, = 0 a.s. under P, if and only if P.(d, = 0) for almost every x
under 7. Therefore, in this single replication setting, any initial transient deletion rule
that deletes a nonzero portion of the simulation run in the presence of the transient
induced by starting at state x will necessarily also need to delete a nonzero portion of
the simulated data when the system is started in equilibrium.

Our remaining discussion assumes that there exists a subset AC S, A > 0, x > 0,
¢ > 0, a probability measure ¢(-) concentrated on A, and a function v : S — [1, oo) for
which

(A1) (i) P.(Xje B)>xp(B), Vx € A, (measurable) BC S

(i)  Eyv(Xp) <A —xvx)+cllx € A),x €S.

Here, E.(-) 2 R | Xo = x). The function v is called a Lyapunov function. Condition (i)
guarantees that A is a so-called small set, and that X is strongly aperiodic; see Meyn
and Tweedie [2009] for these definitions. Condition (ii) implies that X is geometrically
ergodic. At a practical level, (A1) can be viewed as being a condition that covers many
steady-state simulations. For example, all stable first-order autoregressive processes
for which the noise terms admit an everywhere positive density satisfy (A1) (see p. 389
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of Meyn and Tweedie [2009]), as does the G/G/1 waiting time sequence (i.e., a random
walk on the half-line) with light-tailed input distributions (see pp. 399 and 400 of
Meyn and Tweedie [2009]). (Here, light tailed means that the distributions have
moment-generating functions that converge in a neighborhood of the origin.) Any such
Markov chain automatically has a unique stationary distribution 7. Furthermore, if

I £, = sup {M} < o0,
xes | v(x)

then f is w-integrable, and

nf

| rama;
s

see Chapter 15 of Meyn and Tweedie [2009].

For any such f, put f.(x) = f(x) — a. Then E, f.(X,,) converges to zero geometrically
fast as n — oo and Z;io |E, f.(X;)| is bounded by a multiple of v(x); see p. 363 of Meyn

and Tweedie [2009]. Letting

S
Il

1>

glx) = ZEﬂm

Jj=0
it is then easily verified that, under P, the process M = (M, : j > 0) for which

n—1
M;2gX)+ Y fX)

=0

is a martingale adapted to (¥; : j > 0) (where F; is the o-algebra generated by
Xo..... Xj, and My = g(X,)).

2.1. The Distributional Initial Transient

There are two different perspectives that one can take in assessing the initial transient.
The first is a distributional perspective, in which one seeks to identify a time d* at
which the Markov chain X is in appropriate equilibrium. The second is a functional
perspective (treated in the next section), in which one wishes to find a time d} at which
Y is in approximate equilibrium. Clearly, we should expect to find that d7 is less than

or equal to d*.
The relation

g(x) 14
ﬁg(XH ZEMX)

j =n
implies that
— 1 1
ExYn =o+ _g(x) +o0 <—>
n n
as n — oo, where o(a,) is a deterministic sequence b, for which b,/a, — 0 as n — oc.
The initialization bias is therefore determined by g(x) to order n~!. (In the simulation

literature, this quantity is sometimes known as the asymptotic bias; see p. 391 of Whitt
[2006].)
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Suppose now that we initialize X with initial distribution u so that u(.) 2 P(Xy € ).
Let

P2 f H(d)P,()
S
and
Ey)2 / W(d)Ex ().
S

Assuming that v(-) is integrable with respect to «, the dominated convergence theorem
ensures that

— 1 1
EY,=a+-E,gXy)+o <—>
n n
as n — oo and

o0
E.g(Xo) =) (E, (X)) —7f).
Jj=0
suggesting that a natural metric for assessing the distributional effect of the initial
transient associated with initialization under u is to use the quantity

B(n) £ sup Z(E,A fX)—nf)

|fl<h j=0

for some “envelope” function h. We refer to (i) as the (distributional) unconditional
initial transient effect (UNITE) measure. In fact, 8(11) can be re-expressed in terms of
the h-total variation norm on the space of measures defined on S. In particular, for any
(possibly signed) measure v on S, set

Bw) = | (PuXj €)— Pr(Xj € )
J=0 h

/ Flv(dx)
S

Ivll, = sup {
I 7ll=1

Then, clearly

As is to be expected intuitively, the measure p that minimizes the distributional
UNITE norm is u = 7. To theoretically determine the value d* discussed earlier, note
that if the transient is assumed to end at time &, then it is natural to delete the data
associated with periods 0 through % — 1. Starting data collection at time £ is effectively
equivalent to initializing the simulation with distribution 1 P*, where

(uPM() = P,(X; € ).
This suggests that one means of theoretically determining d* is to select d* = d*(¢) so
that B(uP?) < e for some prescribed error tolerance € > 0.

Remark. Set e(x) = 1 for all x € S. When h = e, it is easily seen that g(uP") is
nonincreasing in n. For other choices of A, there is no guarantee of monotonicity. This
makes using the e-total variation norm especially natural.
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Of course, if one initializes the simulation with 7, one could be “unlucky” and ran-
domly select an initial state Xj that is far from stationarity, in which case the resulting
measure of the initial transient effect is (8x,), where §, is the unit point mass probabil-
ity at x given by 6,(B) = 1 or 0 depending on whether or not x € B. Thus, an alternative
measure of the effect of the initialization with distribution u is

Bw) = / L(dx)B(,).
S

Because it averages over the effect conditional on Xy, we call A(1) the (distributional)
conditional initial transient effect (CITE) measure. In contrast to UNITE, the initial
distribution p that minimizes B(u) is 8.+, where x* is the minimizer (assumed to exist)
of B(8,) over x € S. We take the view (without proof) that any distribution u for which
B(w) is within a (modest) constant multiple of A(r) is likely to be a reasonable choice
as an initial distribution, and probably offers performance comparable to that under
initialization 7, even in the absence of truncation.

2.2. The Functional Initial Transient

Turning now to the functional perspective, suppose that f is the performance measure
underlying Y. By analogy with the preceding distributional discussion, it is natural to
let the functional UNITE measure of the initial transient effect for a given u be given
by

[e.¢]

Br(w) = | (E, f(X)) —=f)|,

J=0

and to let the functional CITE measure be determined as
Bru) = / s(dx)B(5,).
S

The theoretical value d; can then be selected as the smallest & for which g r(uPk) < €
for some given error tolerance e > 0. It is trivial to see that d} < d*.

In contrast to the distributional UNITE measure, there are no general guarantees
that 8 f(,qu) or 8 f(,qu) are monotone in k (unless one is dealing with a stochastically
monotone Markov chain and [ is suitably monotone; see Bhattacharya et al. [2010]).
From a mathematical standpoint, the distributional view of the initial transient prob-
lem is more natural, as it is better aligned with the recognition that the underlying
dynamics of the system are governed by the distribution of the Markov chain (as op-
posed to that of a single functional f). However, most of the existing literature on
the initial transient problem deals with the functional version of the initial transient
problem. This likely has to do with the relative simplicity of building initial transient
detection algorithms that focus on real-valued simulation output rather than on the
much more complex underlying state of the associated GSMP.

Remark. In recent work, Wang and Glynn [2014] compute both the functional and
distributional UNITE/CITE measures in the setting of one-dimensional reflected Brow-
nian motion (RBM) and use these computations to identify “good” starting states for
simulations of this process. Moreover, Wang and Glynn [2016] provide a rigorous char-
acterization of the ¢-mixing time of RBM. Indeed, RBM is mathematically tractable
and describes the limiting behavior of many queueing systems in heavy traffic (for
which the initial transient problem is relevant), and is therefore a natural theoretical
model for analysis.
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Remark. In many large-scale simulations, it is of interest to analyze the problem of
initialization bias for multiple performance measures {f; : [ =1, ..., L}. In particular,
one might wish to estimate the corresponding steady state means

o 2 B, fi(X0) = / i (dx)
S

for/ =1, ..., L. Given corresponding error tolerances {¢;}, a natural choice of theoreti-
cal truncation point would be the maximum of d%,7 = 1, ..., L. Alternatively, one could

adopt (as an approximation) the distributional perspective and set the “envelope func-
tion” as the maximum of the | f;|’s. This is also a potential way of identifying suitable
envelope functions in practice (other than e(x) = 1, say).

2.3. MSE: A Decomposition

In the functional setting, one popular approach to the theoretical analysis of the initial

transient starts from the MSE of the truncated estimator ?n, , given by E(?n, p— )2,
where

n—1

— A 1

Yor 2 —— Y,
=k

Under P,, set

D; & g(X;)) — E@@X))| Fj_1)
= g(Xj) — E.(g(X)) | X; 1)
= MJ - Mj_l
for j > 1, where the second equality follows from the Markov property.

THEOREM 1. Assume (A1) and suppose that || f|| 2 < co. Then

2 2
Ex(?n,k - Ol)2 = il w k77 + Exr(Xk) +0( 1 )

R + R
n n2 n? n?

n2

asn— oo for all x € S, where n*> = E, D?,

w = EﬂgQ()Q)) -2 ZEnDlg()(J)’

j=1

and

r(x) =g*x)+ Yy (E.D? — E,D?)

j=1
for all x € S. Furthermore, E,r(X,) — E,r(Xp) for all x € S as n — oc.

If the goal is to select the initial transient index &* so as to minimize E, (Y, — «)?,
then Theorem 1 asserts that one can instead choose &* so as to minimize kn? + E, r(X;)
over k (at least when n is large). Given that E,r(X;) converges to E,r(Xp) and kn?
is increasing linearly in k, this suggests that £* will typically be small (unless the
initial transient is strong). Furthermore, the exact value of 2* depends on determining
E,r(X;). Even if r(-) is known in closed form, this would be difficult. (However, see
Franklin and White [2010] for a calculation of £* when r(-) takes a specific parametric
form.) Of course, in a simulation context, r(-) would need to be estimated from the
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1:8 R. J. Wang and P. W. Glynn

simulated data, making the problem extremely challenging, particularly in view of the
fact that in a single replication context, one has only a single realization available
from which to estimate r(-). In fact, unless the Markov chain is such that x is visited
infinitely often by X, r(x) cannot be estimated consistently from a single run.
Theorem 1 also makes clear that, as for the conditional initial transient measure
discussed earlier, the use of the MSE criterion in the single run initial transient setting
has the characteristic that initializing the system in equilibrium is not the choice of
initialization that minimizes the MSE of Y ,,. In particular, the initial distribution u*
that minimizes the MSE of Y, is (at least asymptotically in n) -, where x* is the
minimizer (assumed to exist) of r(-). Again, it is reasonable to take the view that any
initial distribution u that leads to a MSE that is within a factor of 1 of that associated
with 7 is likely to be an acceptable initialization, even in the absence of truncation.

2.4. When Does the Initial Transient Matter?

One immediate implication of Theorem 1 is that when n is large (as is needed for
reasonable accuracy in most problems), the r(x) term that carries the influence of the
initial condition must be of order n in order that the r(x)/n? term be of the same
magnitude as the variance term 1%/n. This suggests that it is only when the effect of
the initial transient is large that deletion will have a substantial impact on MSE.

For a more complete argument, we consider the case in which X is an m-state re-
versible aperiodic irreducible Markov chain (with m < oo) having transition matrix
P =(P(x,y): x, y €S). In such a setting, the stationary distribution 7 is positive, and

the matrix A in which
Az, ) = [P P, y)
7(y)

is real and symmetric. Thus, A is diagonalizable with real eigenvalues A1, ..., 1, and
corresponding orthogonal column eigenvectors Ay, ..., h; (e.g., see p. 136 of Axler
[1997]). It is easy to see that Aq, ..., A, are eigenvalues of P, with corresponding
column eigenvectors wi, ..., wy,,, where
A hj(.’XJ)
wilx) = ——.
’ V)

For any two column vectors ¢1, g, consider the inner product defined by

(01, L) 2 > )51 (x)5a(x)

xeS

and note that the orthogonality of A1, ..., A, implies that (w;, w;) =0 for alli # j. It
follows that any column vector f can be expressed as

SO

P'f = Z—<(ﬁ “pru,
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Without loss of generality, one may assume that 1 = A; > |Ag| > - -+ > |A,]. (Irreducibil-
ity implies that As cannot equal 1; aperiodicity implies that the (complex) modulus of
Az cannot equal 1; e.g., see p. 376 of Cinlar [1975].) Hence,
o (Fow))
(P")x) —a = A ———"w;(x).
Z Hwj, wy) 7

Under the additional assumption that |Ag] > |A3], if f has a nonzero projection onto ws
with respect to the inner product (-, -), then

j=2

E, f(X,) ~ b(x)ry (2)
as n — oo, where
b = L2 )
(w2, wg)
and f.(x) = f(x) — nf as before. Here, we write a, ~ b, as n — oo to mean that
an
b_n -1

as n — oo. If, in addition, E, f2(Xy) > 0, then

E, fX0) fu(X)

A AT ®)

as n — oo, where

A (fe. b)
(fer fo)

Whenever Ay # 0, set © = log(1/|12]). Relation (3) asserts that for the correlation
between f(X;) and f(X;z) to be less than ¢ in equilibrium, £ must be such that it is
roughly equal to (1/7)log(|a|/e). Hence, for the simulation run to be long enough that
it involves at least [ e-uncorrelated observations, n ~ (I/7)log(ja|/¢) (where ~ means
“is approximately equal to”). Obviously, a high-accuracy simulation will require that [
be large. On the other hand, (2) asserts that for the functional UNITE measure to be
smaller than €, we must set d} to be of the order (1/7)log(|b(x)|/€) when the simulation
is initialized with u = §,. Thus, unless |b(x)| is large relative to |a|, the influence of the
initial transient (even if undeleted) tends to be small (at least for run-lengths n that
are appropriate).

a

Remark. In some simulation studies, it will be the case that although initialization
bias is small (or moderate), the duration of the initial transient is nonetheless sig-
nificant. This would occur in “slowly mixing” systems in which |1g| is close to 1 (e.g.,
a queue in heavy traffic). In such settings in which the transient is “persistent,” the
integrated bias over time (as reflected by the UNITE/CITE measures) can again be
large, as would the function r appearing in the statement of Theorem 1. Therefore, we
view a “large” initial transient both as one in which the instantaneous bias |E, f.(X,)|
is large for n small, and one in which the transient is relatively smaller, but persistent.

3. THE MSER RULE AS THE SIMULATION TIME HORIZON TENDS TO INFINITY

A particular family of truncation rules known as marginal standard error rules
(MSERs) has become popular in recent years. The literature on MSERs is fairly exten-
sive. Letting d(n) denote the amount of truncation after having collected Yy, ..., Y, 1,
the most prominent variants of MSER are listed next:
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1:10 R. J. Wang and P. W. Glynn

(1) The original MSER as proposed by White [1997]:

d(n) = argmin g,(k),
0<k<n—2

where

1 n—1 o
N — | S )
8n(k) iR 4 (Y; k)
Jj=k
(2) MSER-m, which deals with batches of simulation output (see White et al. [2000]).

In particular, it implements MSER on the series given by

n

N it .
Zj = Egym(j—l)-&—lv J=1..., L)—IJ

where m is user specified (here, |-] denotes the floor function). A typical choice is
m = 5; see Hoad and Robinson [2011] and Franklin and White [2008].

(3) MSER-m Overlapping, which is identical to MSER-m but with overlapping batches,
as suggested in Pasupathy and Schmeiser [2010].

(4) MSER-LLM, which identifies the truncation point as the first local minimizer of
gn(R).

(56) MSER-LLMZ2, which identifies the first local minimizer among local minimizers of
gn(k); see Pasupathy and Schmeiser [2010] for a discussion.

If the Y’s are discrete rv’s, then the event
Yoi1=Yni111=-=Y1}

typically has positive probability (for every fixed value of 7) so that g,(n—[) = 0, in which
case n—1 is, with positive probability, a minimizer of g, (k) as a function of 2. When this
occurs, d(n) provides no information about the duration of the initial transient. In view
of this, works such as White et al. [2000] and Hoad et al. [2010] let the arg min range
overk=0, ..., |[n/2] — 1. A truncation value of |[n/2] —1 is taken to mean that a longer
simulation time horizon is required before making any conclusions.

Set W; 2 (Y; — «)? for all j > 0. Additionally, to provide maximum algorithmic
flexibility, we modify (slightly) the definition of MSER into

cfy(n) = max argmin g,(k)
0<k<|n—nv]
for 0 < y < 1. In other words, we do not allow the argmin to occur in the final n”
observations of the simulation output. This means that, asymptotically, almost the
entire series of simulation output plays a role in the argmin (since y < 1), and the
anomalous behavior when the Y,’s are discrete is avoided (since y > 0). If we wish
to restrict to a range 0, 1, ..., [6*n], where 0 < §* < 1, then the proof of Theorem 2
actually simplifies.
Our approximation to MSER for large n depends on the following assumption:

(A2) There exist p > 4 and deterministic constants « and o2 such that

p p
1 n—1 1 n—1
c= El|l—Y -0 +|— > W, -2 .
Oisklg_1 ( n_ka:;(J o) n—k;( i —0%) )<oo

n>1

Assumption (A2) is a modest condition in practice, as illustrated by the following
proposition.
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ProposiTion 3.1. Assume condition (A1) and p > 4. If
| f(x)[?P
< 00

xes  v(x)

then (A2) holds under P, for each x € S, with
a =E, f(Xo) and o* = E.(f(Xp) — a)*.

We are now poised to state the main theorem of our article.

THEOREM 2. Suppose that the stochastic process Y satisfies (A2). If y € (4/p, 1), then

k-1
d,(n) %3 argmin E (20% — W)
k>0 .
= J=O

as n — oo, provided that the arg min is a.s. unique.

Remark. A sufficient condition for the arg min appearing on the right-hand side of
Theorem 2 to be almost surely unique is that the W;’s be continuous rv’s. Even if
the argmin is not a.s. unique, the uniform convergence established in the proof of
Theorem 2 guarantees that the a.s. limit points of (d,(n) : n > 0) will be contained in
the set of minimizers of S = (S, : £ > 0), where

k-1
Sk é 2k02 - ZWj'
Jj=0

Remark. In the proof of Theorem 2, we argue that

k-1
% )3 Wj a.s. 02
as k — oo. It thus follows that
k-1 ,
ar%zrénn ;(20 -Wj) | <o0

a.s. This guarantees that MSER does not delete more and more data as the run-length
n gets larger.

Remark: Our theorem also makes clear that one may need to assume more about Y
(i.e. a larger value of p) if one wishes to inspect more of the simulated output sequence
(i.e. a smaller value of y).

While Theorem 2 is stated only for MSER, it also extends to some of the other
variants. For example, if assumptions (A1) and (A2) hold for Y, then they also hold for
the process Z that appears in MSER-m, as well as the process Z defined by

i+m—

. 1
Z":n_z;

1
Y;
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1:12 R. J. Wang and P. W. Glynn

that can be associated with MSER-m Overlapping. Theorem 2 then asserts, for example,
that the MSER-m Overlapping deletion point converges a.s., as n — oo, to

k—1
argmin | > (2E, (Y, — E.Yo)* — (Z; — E,Y,)?
k>0 j=0

(provided that the argmin is a.s. unique). The key point of this theoretical analysis is
that it establishes that MSER is determined by the minimizer (assuming uniqueness)
of the positive drift random walk (S; : j > 0). As we shall see later, this gives us
insight into what settings will lead to failures to correctly identify the appropriate
deletion points.

Remark. The focus of our article is on the behavior of MSER (and its variants) in
asymptotic regimes for which n is large. Analyses of the small-sample regime may be
found, for example, in Mokashi et al. [2010] and pages 520 through 522 of Law [2015].
When the simulation time horizon n is relatively small, failure often occurs in one of
two noteworthy ways:

(1) MSER-5 fails to delete a significant amount of biased data;
(2) the minimizer of the usual MSER statistic exceeds |n/2]| — 1 so that the procedure
declares that further simulation is needed.

From a practical standpoint, understanding the small-sample properties of MSER is as
important as understanding its large-sample properties, especially in the early stages
of a simulation study. However, these issues lie outside the scope of our article.

As a final point, we note that computing MSER from a simulation run of length n
requires an additional number of floating point operations that is linear in n (say, an
for some constant a > 0). Thus, for a given computational budget, one has a choice:
implement MSER at a cost an or simulate a'n additional steps of the Markov chain.
It is clear, from Theorem 1, that simulating the additional steps is always a superior
solution for (very) large n. However, as argued earlier, for any given value of n, we
cannot a priori know the magnitude of the constants appearing in Theorem 1. In the
presence of an unexpectedly large transient, the constants could be such that initial
bias deletion, even at computing cost an, is a sensible strategy. Thus, the transient
needs to be large enough that deleting bias reduces (for example) the MSE enough to
“pay” for the additional computing cost of magnitude an. This is a further argument in
favor of the view that initial bias deletion, in the single replication setting, is primarily
a protective measure to deal with potentially large transients (rather than as a means
of reducing MSE in the presence of small transients).

4. THE MSER RULE AND FLUID LIMITS FOR QUEUES

Models in which queues arise occur naturally in the discrete-event simulation setting.
As such, they are useful vehicles to use as test beds for assessing the behavior of
competing initial transient deletion methods.

One of the major developments within the queueing community over the past 20 years
has been the introduction of fluid limits as a means of analyzing the stability of various
complex queueing systems, particularly in the network setting (e.g., see Dai [1996]).
Roughly speaking, for a stable queue, a fluid limit describes the behavior of the system
as it empties out from an initial condition corresponding to having a substantial amount
of work initially present in the system.

The time at which the fluid limit has drained all of the work for the system is then
roughly the time at which one would expect the system to reach equilibrium. Thus,
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queueing networks for which fluid limits have been computed provide a rich class of
models having the property that they exhibit substantial initial transients and the time
at which they reach equilibrium is approximately computable. Of course, in view of our
discussion in Section 2, focusing on the ability of deletion procedures to satisfactorily
deal with strong transients seems appropriate.

We start by rigorously proving that the waiting time sequence of the G/G/1 single-
server queue does indeed reach equilibrium at the emptying time predicted by the
fluid limit. For this model, the waiting time sequence associated with initial condition
x satisfies the recursion

Wj+1(x) = [W](x) + Vj - Xj+1]Jr

for j > 0, where V = (V; : j > 0) is the sequence of independent and identically dis-
tributed service times, x = (x; : j > 1) is the sequence of independent and identically
distributed interarrival times (independent of V), and Wy(x) = x. When EV,y < Ex,
it is well known that W,(x) = W, as n — oo for each fixed x > 0. However, we can
induce a strong transient in this model by sending x — oc.

The fluid limit associated with W(x) = (W;(x) : j > 0) starts from level x time units
(say hours) of waiting in the queue and decreases linearly (and deterministically) at

rate 271 2 E( x1 — Vo) hours per customer departing the queue, emptying when the
customer whose index is approximately Ax departs the queue (e.g., see Anantharam
[1988]). Thus, the conjecture discussed earlier, when specialized to the G/G/1 setting,
asserts that (W;(x) : j > 0) reaches equilibrium roughly at time Ax when x is large.
Proposition 4.1 makes this claim rigorous.

ProposiTioN 4.1. Suppose that EVy < Ex; < oo. Then

1, 0<t<A
P(W B - PW, eB ’ 4
s%p| (W4 (x) € B) Wy € )|_){0,t>k (4)
as x — oo.
We next proceed to show that when Y; = f(W;) with f(w) = w, MSER identifies a
truncation point that is also roughly of order Ax when x is big, verifying that for this
choice of f, MSER behaves sensibly.

ProposiTion 4.2. Suppose that EVy < Ex1 < oo, and let Vy be a light-tailed rv.
Adopting the notation of Section 3, put

1 n—1 o
gn(k, x) = Py Z;(Wj(x) — W (%))
and

cfy(n, x) = argmin g,(k, x)

0<k<|n—n|

(with y € (0, 1)). Moreover, suppose that the simulated time horizon n = n(x) is such
that

@eﬁ>k

as x — oo. Then

d, (n(x), x) 2,
X
as x — oQ.
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Table I. Exceedance Probabilities for M/M/1 Waiting
Time Sequence: n= 8,000, us =0.8, us=1,
x=100,and c=2
Opt. MSE Est. Trunc.

0.00082 538

Remark. Since V| is assumed to be light tailed, W(x) satisfies assumption (Al). In
particular, v(w) = exp(fw) satisfies (A1) for some suitably chosen 6 > 0 (e.g., see p. 400
of Meyn and Tweedie [2009]). Consequently, Proposition 3.1 implies that (A2) holds for
any function f that is polynomial in z. In particular, Proposition 3.1 applies to W(x),
and therefore Theorem 2 also applies to W(x) for any fixed x > 0.

Remark. Although the use of fluid limits for testing initial transient procedures seems
natural, we believe that the current article is the first to suggest this approach.

In the next section, we shall see that one or more variants of MSER can fail to
identify the correct deletion point, even for a transient as “simple” as that associated
with the G/G/1 queue initialized from a state x that is large. The problems arise when
one chooses performance measures other than f(w) = w.

5. NUMERICAL RESULTS: EXAMPLES IN WHICH AT LEAST ONE VARIANT OF MSER FAILS

In this section, we combine the asymptotic insights of Sections 3 and 4 to construct
two nonpathological and illustrative examples in which at least one variant of MSER
fails to appropriately identify the duration of the initial transient. In the first, all
variants of MSER fail; in the second, MSER-LLM and MSER-LLM2 fail, whereas the
other variants still perform decently. The chief reason for failure in both cases is the
observation that f (the real-valued performance measure) “masks” one or more key
characteristics of the stochastic process X containing crucial information about the
nature of the initial transient.

Our empirical investigations proceed as follows. We choose a simulation time horizon
n sufficiently large (so that the initial transient has essentially washed out by time
n— 1), and replicate 10,000 independent and identically distributed sample paths. We

denote by Yn ; the sample mean from the ith replication averaged over the observations
collected from time % to time n — 1. For each value of &, we compute

10,000
10.000 000 Z Y, )’

This gives us an estimate of the MSE if we had chosen % as the deletion point. Next, we
find the value d that minimizes the empirical MSE as a function of 2. With MSE as our
criterion, this is an estimate of the best (deterministic) truncation value for %; we denote
this MSE as “Opt. MSE” in Tables I and III. We choose to use MSE not necessarily
because we view this as the best measure of a procedure’s quality, but because it has
been commonly used in the initial transient literature.

Similarly, we look at

1 10000 o )
m Z (Yn’dm —Ol) s (5)
> i1

i=

where the truncation index d® is itself a function of the ith sample path and is computed
via a particular variant of MSER (for MSER, the parameter y is chosen to be 2/3;
a similar convention is adopted for our implementations of MSER-5 and MSER-5
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Table 1. Exceedance Probabilities for M/M/1 Waiting Time Sequence:
n=238,000, ua =08, us=1,x=100,and c=2

Est. MSE 95% CI for MSE Est. Trunc.
Zero Trunc. 0.00125 0.00125 4 0.00003 0
MSER 0.00133 0.00133 4 0.00009 3.03
MSER-LLM 0.00125 0.00125 4+ 0.00003 0
MSER-LLM2 0.00439 0.00439 + 0.00047 146
MSER-5 0.00125 0.00125 4 0.00003 0
MSER-5 Overlapping 0.00133 0.00133 4 0.00009 3.03

Overlapping). This is an estimate of the MSE
EY,  4—a)f

achieved by the particular truncation method. The natural question becomes, how
much larger is this estimated MSE compared to the estimated Opt. MSE for each of
the different examples? Obviously, as n tends to infinity, we expect the ratio to converge
to 1. However, for n that is only moderately larger than the “time to equilibrium,”
the ratio could be substantial, and no better (possibly worse) than the estimated zero
truncation MSE (i.e., when one uses the entire simulation output; see row “Zero Trunc.”
in Tables IT and IV), which we also include as a comparison point.

Remark. In Tables IT and IV, MSE estimates for the various truncation procedures
are displayed in the second column. The third column reports approximate 95% Cls
for these MSEs, based on the normal approximation (i.e., the midpoint is the sample
mean (namely, (5)) and the half-width is given by 1.96 (from the normal table) multi-
plied by the sample standard deviation (of the independent and identically distributed

observations ((?Z,)d‘(” —a)?: 1<i<10,000) divided by the square root of the number

of simulations (in this case, 10,000)). Finally, the fourth column displays the average
truncation values.

5.1. Example: G/G/1 Exceedance Probabilities

Recall that according to Theorem 2, MSER approximately truncates according to the
location of the minimizer of the random walk (S; : j > 0). Suppose that we consider the
sequence (W;(x) : j > 0) with f(w) = I(w > ¢) for some appropriately chosen value of ¢
(where I(B) denotes the indicator of a set B). Then, o = P,(Wy > ¢) and 02 = (1 — «).
If we start from a value of x much greater than ¢, then (W;(x) : j > 0) will experience
a long period of time before entering the interval [0, c], during which Y; = 1. For any
d less than this entry time, it follows that

S; = j2a(l —a)— (1 —a)?).

Thus, if we select ¢ so that 2a(1 — «) — (1 — «)? > 0 (i.e., « > 1/3), the simulation will
therefore start with a long period of time during which (S; : j > 0) increases linearly,
creating a situation where MSER and its variants will often identify 0 as the minimizer
of the random walk (and hence 0 as the deletion time). Since this type of performance
measure f arises in many practical settings, this example is a potential concern for
MSER.

For our G/G/1 example, we specialize to the case where the interarrival and service
times are exponentially distributed with rate parameters u4 and ug, respectively (so
that the queue is an M/M/1 system), in which case

P.(Wy>c)= % exp((na — nse).
S
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Fig. 1. Exceedance probabilities for M/M/1 waiting time sequence: plot of MSER objective function for a
particular sample path.

We specifically set ua = 0.8, us = 1, x = 100, and ¢ = 2 so that « > 1/3. Our fluid scale
theory suggests that the theoretically optimal truncation value should be the order of
400 (although for any finite value of x, the transient is expected to persist somewhat
longer).

For the realized sample paths in our simulation, indeed most truncation values (for
all MSER variants) were equal to 0 (which is far smaller than the estimated theoreti-
cally optimal truncation value), in agreement with the aforementioned theory inspired
by random walk insights. The few nonzero deletion points occurred near the maximum
allowable index for the argmin (in the definition of each MSER variant), leading to
nonzero estimates for the truncations. This alternative form of failure is attributed to
the fact that (potentially a significant number of) consecutive observations near the end
of the simulation output can be identically equal to 1, resulting in consecutive indices
at which the MSER objective function is identically 0. It is worth noting, however, that
all MSER-LLM and MSER-5 truncation values were equal to 0.

The results of the numerical study are not surprising, given the typical behavior of
gn(k) (MSER objective function) over 0 < £ < n — 1, a plot of which (for one particular
sample path) is given in Figure 1.

In sum, we recall from Section 4 that when initialized at a high initial condition,
the G/G/1 waiting time sequence (for p < 1) decreases linearly (in fluid scale) until
the first time it reaches state 0 and equilibrates afterward. In particular, it exemplifies
“strictly monotone emptying” as the initial transient is washed out. Due to the fact that
initial transient is so distinctly differently from steady-state behavior, MSER behaves
appropriately (whenever f(w) = w) and asymptotically truncates the theoretically
correct amount. However, when [ is chosen to be an indicator function, the attractive
monotonicity property is lost, and thus MSER fails to distinguish the initial transient
from steady-state behavior over a wide range of parameter values.

5.2. Example: A Polling System

Our first example was such that the stochastic system was both one dimensional
and stochastically monotone as the initial transient is washed out. It is natural to
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Table IlIl. Polling System with Two Stations and
Performance Measure f (wy, ws) = wy: n = 8,000,
ua = 0.8, us= 2, and x = 100 at Both Stations

Opt. MSE Est. Trunc.
0.00904 348

Table V. Polling System with Two Stations and Performance
Measure f (wy, wa) = wy: n= 8,000, uaq = 0.8, us= 2,
and x = 100 at Both Stations

Est. MSE 95% CI for MSE Est. Trunc.
Zero Trunc. 1.55 1.55 4+ 0.0151 0
MSER 0.00933 0.00933 4+ 0.00028 277
MSER-LLM 0.406 0.406 + 0.00617 96.4
MSER-LLM2 0.0365 0.0365 £ 0.00049 229
MSER-5 0.00915 0.00915 4 0.00030 308
MSER-5 Overlapping 0.00922 0.00922 4 0.00029 303

subsequently investigate how MSER (and its variants) perform on a high-dimensional
system not exhibiting any monotonicity during the course of the initial transient.

To this end, consider a polling network in which one has a single server that visits
two stations in cyclic order. Customers are arriving to each of the stations according
to independent Poisson processes (for simplicity, assume the same arrival rate ua
for each). When the server (with service rate us > 2u4) arrives at a given station,
the server serves all customers waiting at that station plus arriving customers until
the server has no remaining work (“exhaustive service” queueing discipline) at that
station. The server subsequently travels to the other station and follows the same
protocol (assuming zero traveling time and that the server will not switch again on
arriving at an empty station until it has conducted some service). An analysis of such
systems (including formulas for the steady-state expected waiting times) may be found,
for example, in Avi-Itzhak et al. [1965] and Winands et al. [2006].

Now, suppose that both stations are equipped with the same enormous initial
workload x, and suppose that we wish to estimate the steady-state waiting time
(exclusive of service) at the first station. Note that the sequence of waiting times at
station one depends on the number of customers x; and xe present in the system at
the start of the simulation; we make clear this dependence by writing W;(x;, xg) for
the waiting time of customer j to arrive at station one. The fluid limit for the waiting
time sequence (W;(x, x) : j > 0) at the first station will then involve piecewise linear
oscillatory behavior as the system empties. In particular, if d’ indexes the last customer
in station one to enter service before station one empties for the first time, then the
waiting time for customer d’ + 1 at station one will be at least as large as the time it
takes for station two to empty for the first time (which will be long because x is large).
It is therefore clear that the optimal truncation point will be far to the right of d'.

We now again utilize the insight associated with Theorem 2. In particular, we observe
that for indices j < d' and sufficiently close to d’, 202 — (Y; — «)? > 0 with high
probability. On the other hand, 2062 — (Yy,1 — «)? is almost inevitably negative. This
suggests that the random walk (S; : j > 0) will, with high probability, have a local
minimizer to the left of d’, leading to a failure of MSER-LLM.

For our empirical investigation, we choose s = 0.8, us = 2, and x = 100 at both
stations. The corresponding value of « = E, Wy is 2.5. In Table IV, we see that MSER-
LLM indeed truncates less than the desired order of magnitude due to the presence of
local minimizers in g,(k), a plot of which for a particular sample path is also provided
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Fig. 2. Polling system with two stations and performance measure f(w1, wg) = wi: plot of MSER objective
function for a particular sample path.

in Figure 2. MSER-LLM2 performs better but also fails to remove a small portion of
the initial transient (for the same reason as MSER-LLM).

As expected, MSER, MSER-5, and MSER-5 Overlapping continue to truncate an
appropriate amount, as despite the lack of monotonicity, the initial transient is still
sufficiently distinct from steady-state behavior. In sum, this example reveals that the
local versions of MSER are less reliable whenever the dynamics of the initial transient
induce local minimizers in the MSER objective function during early portions of the
simulation.

5.3. Discussion

Much more complex fluid behavior than that exhibited in the polling context can occur
in the setting of multiclass queueing networks; see Bramson [2008] for an extensive
overview. As noted earlier, these models have the nice analytical property that there is
an easily computable (and relatively unambiguous) time at which such systems reach
equilibrium (assuming our conjecture is correct). Thus, these multiclass models (and
their related transients) are excellent candidates for the testing of initial transient
deletion procedures.

6. CONCLUSION

The theoretical and computational investigation provided in this article support the
following conclusions:

(1) There are significant differences between the distributional initial transient and
functional initial transient problems. These differences are clearly “masked” when
one simulates one-dimensional Markov chains and selects the performance mea-
sure f(x) = x.

(2) Because typical discrete-event simulations usually induce high-dimensional
Markovian state spaces, with associated functions f that are not bijections, the
set of test problems used to compare deletion procedures should be broadened to
include many examples of output series Y that are not themselves Markov chains.
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(3) In the single replication setting, the implementation of an initial transient deletion
procedure is largely supported by a desire to protect oneself against the possible
existence of an unexpectedly large transient. As such, it is reasonable to test single
replication procedures against test problems in which the transient is large.

(4) When the simulation time horizon n is large, the behavior of the MSER initial tran-
sient deletion procedure (and its variants) is closely related to that of an associated
random walk process. Understanding the behavior of a truncation procedure as
n — oo can give rise to new insights regarding algorithmic performance/robustness.

(5) Queueing models, in which fluid limits have been computed, form an attractive class
of high-dimensional models, exhibiting potentially complex behavior, for which we
can reasonably conjecture the “correct” time at which equilibrium occurs.

APPENDIX: PROOFS

Proor or THEOREM 1. In view of condition (A1), we can apply Theorem 15.0.1 Equa-
tion (15.4) of Meyn and Tweedie [2009] to conclude that there exists ¢c; < ccandry > 1
such that

Y ri sup |Ea(X) - 7@l < crv() (6)
=0 lal,=1

for x € S. Note that if ||u||, < oo, then &t = u/ |lu|, satisfies |it]|, < 1. Consequently, (6)
implies that

> r B X)) — ul < cro) |lull, @)
Jj=0

whenever |u|, < oco.
We now invoke the Cauchy-Schwarz inequality to conclude that

(E"2(X)? < Ecu(Xy).
Thus, condition (Al) ensures that

E2"4(X)) < VA - u) +cl(x € A)
< (1= )22 (%) + JeI(x € A) (8)
for x € S, where we have used the fact that va + b < /a + /b for a, b > 0. In view of

(8), we can now separately apply Theorem 15.0.1 of Meyn and Tweedie [2009] with v1/2
playing the role of v, thereby yielding the existence of ro > 1 and ¢s < oo such that

> HIEuX) — 7l < covV2(0) [[ull e (9)
j=0

whenever |u| 12 < co.
Given (7), we find that if |u|, < oo, then

|Exw(X,)| < |mul +r"cqv(x) [lull, . (10)
Furthermore, if we set
Tu)x) = Y (BauX)) — wu),
j=0
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we note that (7) implies that I'u is finite valued when |u|, < oo, and

|E:(Tu)(X)| = |Y (X)) — mu)
j=n
< Y |Eau(X)) — wul.

J=n

Since r{ /r} = 1for j > n, it follows that

|E.Cu)(X,)| < ri" > r]|Eau(X)) — mul

Jj=n
ri" Zr{lExu(Xj) —nu
Jj=0
ry"erv(@) ull, . (11

IA

A

Similarly, if ||u||,12 < 0o, then
|E.(Tu)(X,)| < ry"cav()"? |[ull,ue . (12)
Because || f|l,12 < 00, it follows that
|Ex8(X)| = |Ex(Tf)(X)
< 15 "cov@) Y2 || Fll 12 - (13)
Setting n = 0 in (13), we conclude that |g|l,.2 < oco. This immediately also implies
that ||g?| < oc. The inequality (13) therefore yields the conclusion that E.g%(X;,) < oo
(and E, f?(X,) < oo) for all x € S so that the process (M, : j > 0) for which
n—1

M;=gX)+ > fu(X)

=0

is a square-integrable martingale under P,. Since E, D;D; = Ofori # j and E,g(X;)D; =
0 for all j > &,

2
n—1
E, (Z fc(XJJ)
J=k

2
E, ( > Dj+g(Xp) —g(Xn))

J=k+1

(n—kn*+ > (E.D? - E.D}) + E.g*(X,) + E:g*(X,)
J=k+1

- 2E.g(X,) Y D;—2E.gXpg(X,). (14)
J=k+1

Starting with the last term in (14), we observe that (13) with n = 0 yields the inequality
| Eg(Xp)g (X))l |Exg(X) E(g(X,)| Xl

E.|g(Xp)|| E(8(Xy| Xl

ry " Pes el g(X)lv(X)" 2 || fll o

r27<"7k)c%Exv(Xk) I f||§1/2 .

IAIA

IA
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Applying (10) with © = v (and recalling that v > 1), we conclude that there exists

c3 < oo such that
| Exg(X3)g(X,)| < ry"cgv(x).
To handle the term involving the D;’s, we set
u(x) = E,D?
= var(D;| Xp = x)
= E.g%(X) — (E.g(X))*
so that (13) yields the bound
Exgz(Xl)
SE X [ 20 -

Again, (10) implies that there exists a constant ¢4 < oo for which

lur(x)| <
<

lu1(x)] < cqv(x)

for x € S. Then,

> (E:D? - E.D}) + E.g%(X})
J=hk+1

n—1
Z (Exu1(Xj) — 7Tu1) + E.g%(Xp)
=k

E.(Tu1)(Xp) + E.g%(Xp) — E.(Tup)(X,)

Inequalities (12) and (16) then yield
| Ex(Tu)(X,)| < ry"c1c4v(x)

for x € S.
For the term involving the g(X,)D);’s, note that for j < n,
E.Dju(X,) = E.D;Ew(X,)| X;_1, X))
E.D;Eu(X,)| X;)
= B, (Xj 1),

(15)

(16)

(17)

(18)

(19)

where u/;(x) 2 E.Dg(X;) for j > 1. But results (13) and (17) together with the Cauchy-

Schwarz inequality imply that
W;(x)| = |E.D1g(X;)|
= |E.DE(g(X;)| X1)|
ry U Ve I £l vz Bel Dylu(X)?

5V ea 1 fllye  Ex D2V Ev(X:)
75 Ves | Fllye Vi o)y Exv(Xy)

-(j-1 2 9
Ty ! €y I f”vl/z E.v(Xy).

INIA

IA

Inequality (10) therefore proves that there exists a constant c¢5 < oo independent of

such that

()] < esry 7 vlx)
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for j > 1. In addition, Inequality (10), as applied to u(x) — 7u;, establishes that
|Eau(X;) — ;| < riferv(x) |u) I,
< rl_iclcg,v(x)r;j. (21)

We now observe that

> EDjgX,) = > Eu, ;(X;1)
J=k+1 J=k+1
n—k
= Y Eu(X)

=1
so that (21) yields the inequality

n—k
Z E.D;g(X,) — Znul < Zr{”*lclcg,v(x)r;l
J=k+1 =1

l
ry clc5v(x)z<:l> . (22)
p)

If r1 < ry, then the right-hand side of (22) is of order r; ", whereas if 1 > ry, then the

right-hand side is of order r,". If r; = r, then the right-hand side is of order nr;™. In
all cases, the right-hand side converges to 0 geometrically in n.

On the other hand, result (20) implies that |nu/j| <csry J7v so that
Z Tu =0 (n_12> (23)
l=n—k+1
as n — oo. Additionally, in view of (10) and (13), we see that
|Eg(X)) — mg| < r;kc1||g2||uv<x)
=ry ke1c3 ||f|| 12 V(X). (24)
Thus, results (22), (23), and (24) together imply that

n 00 1
2 _ 2 ’
E.g%(X,) — 2E.g(X;) .§k+:IDJ- = g’ -2 l} 1:7Tul +o <ﬁ>
j= =

= w+0<i) (25)
asn — oo.

Combining results (14), (15), (18), (19), and (25) yields the theorem. O

Proor orF ProprosiTiON 3.1. Let v be as in assumption (Al), and observe that Lya-
punov’s inequality implies that

E (X)) < (E((o(X)YP)P)YP
= (E.v(X)VP. (26)

Furthermore, it is easily verified that

w(z) 2 (1 +2)VP —1—zr
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is nonincreasing on [0, co) (since w'(z) < 0 for all z > 0) so that (1 +2)/? <1+ 27 for
z > 0. Using (A1) and (26) then yields

E"P(X) < (1— )o@ +el(x € AP

PN M)?’
= (1—-«)"Pv (x)<1+(1_K)v(x)

< (1= )YPl/P(x) + VP (x € A).

We now apply Theorem 15.0.1 of Meyn and Tweedie [2009] with v!/? playing the role
of v. Since || fll,u» = (|| fPII,)"/? < oo, we can apply the same argument as in the proof
of Theorem 1 to conclude that g(x) = 3" E. f.(X;) is such that

|E.g(X,)| < cers ™ Il Fllyun vV/P(x) 27

for x € S for some cg < o0 and r3 > 1. As in the proof of Theorem 1, the sequence
(M;: j > 0)is then a P, square-integrable martingale, and

p p

-1 n
1
foX)| =———E:| > Dj+gX)—gX)| . (28)
=k (n—k:> 57,
We now recall that, since the mapping y — y" is convex on [0, co) for r > 1, it is
evident that
El 4+ En\ 1 -
2- 0 < — !
( m ) ~m Z 5
Jj=1
for any nonnegative rv’s &1, ..., &,. Hence,
Ecgr+ - +&) <m 1Y BT (29)
j=1

for » > 1. It follows from (28) that

p
3o
<
(n—h?¥ (

We now apply the Burkholder-Davis-Gundy inequality (e.g., see p. 482 of DasGupta
[2011]) to assert the existence of a constant c; < oo for which

" p " p/2
> Dj| <ciE; ( > Df.) : (31)

j=k+1 Jj=k+1

-1
fe(X;5)

ZD

J=k+1

+Exlg(Xk)|p + Exlg(Xn)Ip). (30)
=k

Another application of (29) yields

p/2
1 n
D2 - _kg—l Ex DZ p/2
Rt k) (Z ) S Gopr TR L E(D))

J=k+1 J=k+1

(32)

J=k+1
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Combining results (28), (30), (31), and (32) and recalling the bound (27), it is clear
that

p
1 n—1
E, | — (X
L

is uniformly bounded in k£ < n < oo provided that sup;.( E;v(X;) < co. But this follows
from applying Theorem 15.0.1 of Meyn and Tweedie [2009] to v itself (and settingu = v
in (10)).

To prove the comparable result for

p

1 n—1
Ex T — cX'Z_ 2 P
m;(ﬂ )P —a?)

we note that ||h”||, < oo for h = 2 and apply the preceding argument for £, to h. O

Proor or THEOREM 2. We begin by observing that

1 n—1 o
gik)=——=Y (Y, —a+a—Y,,)?
(n — k)2 ]2:; !
1 2 Y —a)?

Set m = m,, = |n” |, where |x] is the greatest integer less than or equal to x. We further
put ¢ = (yp — 4)/(4p) and note that since p > 4 and y € (4/p, 1), it follows that
q € (0, 1). We next recognize that (A2) and Markov’s inequality imply that

Z P(niY,r—al >¢€) < Z € PniP(n— k) PPE

n=1 k=0 n=1 k=0

p

n—m

Zﬁ;l(YJ o)
Jn—k

CeP Z Z ndPpvp/2

n=1 k=0

o0
CeP Z nitrla—v/2)

n=1

oo
= CeP Z nopPr/4
n=1

< 00,

IA

IA

due to our choice of g and the fact that y > 4/p. It follows that for each rational value
€ > 0, the event

max |?n,k —a| >en™?
0<k<n—-m

occurs only finitely often (in n) a.s., and hence

X7 a.s.
n? max |Y,,—al >0
0<k<n—-m
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under (A2). In other words,

max |Y, ;—a| =o(n™9) (34)

0<k<n—-m

a.s. as n — oo, where o( f(n)) denotes a sequence of rv’s (8; : j > 0) such that g,/f(n) S
0 asn— oo. Slmllarly,

max =o(n 9 (35)

0<k<n-m

—O'

MH

n—

a.s.as n — oo.
Relations (33), (34), and (35) imply that, uniformly in & € {|n?/?], ..., n—m)},

- 2 ~7)) — o(n*9)
gn(k) = n—k(a +o(n™ 7)) —
_ 2 -q
p— k(a +o(n™?))
a.s. so that
guk) (6% +o(n™) < n )
g.(0)  (0Z+om ) \n—k)"
Then,

gnlk) (02—(02/4)n‘1)< 1 )
g.(0) — (024 (02/Hn9) \1—-Fk/n

1 ) 1
- (15 on) ()

for n sufficiently large so that a.s.

gn(k)

min 1
n‘l/zsklfnfm gn(O) g

for n large enough. Since g,(0) is then smaller than g,(k) for n?/?2 < k < n — m, we may
conclude that a.s.,

arg min g,(k) = arg min gn(k)
0<k<n—m

0<k<nd/2
= arg_ riul}ﬂ(gn(k) — gr(0)) (36)
for n sufficiently large.
Additionally, for £ < n?/2,
Zn(k) — 2,(0) = k)2 Z Wi—— Z W, — —(Y r—af 4= (Y —a)?. (37
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k-1
— — n Y-y
Y.r=Y,
ok (n—k) n—~k

=Y,+Y, (S) (1+0(1) =Y, (S) (1+0(1)

= k= = k
n n

s0 (34) and the fact that £ < n?/2 imply that

2
L Fop—ar=1 ((Yn—a>+’—"<?n—?k>+o<’f)) (1+@+o<’f))
n—=~k n n n n n

— 1@, —wrto0 (gj(?n — (T - ?k))
n n

_ %(Vn ) 4 O 21/2) 38)

a.s. as n — oo (where O(f(n)) denotes a sequence of rv’s (8; : j > 0) such that 8,/f(n)
remains bounded a.s. as n — 00), in view of the observations that Y, — Y, = O(1) and

Y,—a=0n1a.s. asn— oco.
We also observe that (again keeping in mind that & < n?/?)

1 n—1 1n71 k2 1”
m;wj—gj;wjz ZZW <1+ +0< ))—EZWJ-

Jj=0
2k Z’Li Wi 1A i
= o ()
Jj=0
k-1
= —(a o) = — 3 Wi+ 0 (39)
Jj=0
2ka

k-1
(=270l — = ZW,- + 0™ (40)

J=0

a.s. as n — oo.
Results (37), (38), and (39) together establish that

arg min(g,(k) — g,(0)) = argmin nz(gn(k) — 2,(0))

0<k<na/? 0<k<na/2

k-1
= argmin | 2ko?® — Z W, +o(n™7?) + O(n179) + O(nq/2))

0<k<nd/2 j=0

k-1
= argmin [ 2ko® - ) " W; +o(1))

0<k<nd/2 j=0

k>0

k-1
%% argmin [ 2ko? — Z Wj)
Jj=0

as n — oo. In view of (36), this proves the theorem. 0O
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Proor or ProposiTION 4.1. Put Z; 2 Vioi—xj,

S, 2 Zi++ 2,

and set
t(x) £ inf{j > 0: W;x) =0}
= inf{j >0: Sj < —x}.
It is well known that
@) ag, (41)
x

as x — oo (e.g., see Rahimov and Abdurakhmanov [2007]). For n < t(x), W,(x) = x +S,.
Fort < X, set ¢ = A — ¢ and note that

P(Wy (x) e B) = P(SthJ(x) €B—x, t(x) > (A —€/2)x)
+ P(W (x) € B, t(x) < (A — €/2)x)
= P(S4)(x) € B—x)
+ P(W(x) € B, t(x) < (A — €/2)x)
— P(Sjx)(x) € B—x, t(x) < (A — €/2)x),
SO
sup |P(Ws (x) € B) = P(Sjs) € B—x)| < P(z(x) < (A —€/2)x) — 0

as x — oo. But
P(Sity) > A7 He/2)x —x) — P(Wy, > A7 1(e/2)x) — 1

as x — oo, proving (4) for ¢ < .
On the other hand, for ¢ > A, let

$(n, B) = P(W,(0) € B)
and put

¢*(n) 2 sup |P(W,(0) € B) — P(W4, € B).
B

Then ¢*(n) — 0 as n — oo (e.g., see p. 326 of Meyn and Tweedie [2009]). Observe that

|[P(Wsy (x) € B) — P(Wy, € B)| < |P(Wiy(x) € B, t(x) < [tx]) — P(Wy € B)|

+ P(t(x) > |tx])

= |E¢(ltx] — t(x), B)(z(x) < [tx]) — P(Wy, € B)|

+ P(t(x) > |tx])
|E(p(|tx] — t(x), B) — P(Wy € B)I(z(x) < [tx])]
+ 2P(z(x) > |#x])
E¢*(ltx] — t(x)I(z(x) < [tx])
+ 2P(z(x) > |tx]).

IA

IA

Since P(z(x) > |tx]) — 0 and ¢*(|#x] — 7(x)) 2% 0 as x — oo, the bounded convergence
theorem proves (4) for¢ > A. O
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Proor or ProrosiTiON 4.2. Let
v(n(x), j) 2 P, (n(x), 0) < j).

Given our assumptions, Theorem 2 applies to W(0) and consequently cfy(n, 0) is a.s.
bounded as a function of n. Thus, (afy(n, 0) : n > 0) is a tight sequence of rv’s so that
v(n, j) - 1 as j — oo uniformly in n. For 8 > ¢t > A, set ¢ = ¢ — 1. Then
P(d,(n(x), x) < tx) > P(d,(n(x), x) < tx, 7(x) < (¢ — €/2)x)
> Ev(|n(x) —n(x)” | — t(x), tx — t(x)I(t(x) < (t —€/2)x). (42)

The last inequality uses the fact that if

argmin gy (k, x) < tx,
T(x)<k<|n(x)—n(x)” |

then

argmin = guu(k, x) < tx.
0<k<|n(x)—n(x)” |

It also exploits the strong Markov property at the hitting time z(x) of level 0 to express

the probability in terms of v(|n(x) — n(x)” | — t(x), tx — t(x)). Returning to (42), we
recognize that since |[n(x) — n(x)” | — t(x) — oo when 7(x) < (¢t — ¢/2)x,

v([nlx) — nx) | —tx), tx —t(x)) — 1

as x — 00, given the preceding tightness comment. Hence, the bounded convergence
theorem yields the conclusion that P(a?y(n(x), x) < tx) > 1 as x — oo, provided that
P(z(x) < (t —€/2)x) —> 1 as x — oo. But this is an immediate consequence of (41).

Next, observe that for £ = |rx] with r < A, and on the event that n(x) > t(x) (whose
probability tends to 1 as x — 00),

1 T(x)—-1

Suh, %) = sy Z (W(x) = Wy, 1))

(x)—1
! S._W 2
" (nlx) — k)2 Jg}; (x +Sj — Wi, 1)),
where
T(x)— 1

f(> S, n(x)—r(x)"(’”‘1 W,(x)
n(x) — k Z r(x)

nx)—k n(x) — t(x)’
j=t(x)

W oo, (%) =

Of course, (Wy()+(x) : j = 0) has the same distribution as (W;(0) : j > 0), so it
follows that

t(x)+m—
— ) Wi@)= EWa <0
J=t(x)

as m — oo (e.g., see pp. 427 and 428 of Meyn and Tweedie [2009]), uniformly in x. In
addition, the strong law of large numbers for (S; : j > 0) implies that for each ¢ > 0,
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as x — oo (e.g., see p. 20 of Whitt [2002]). Hence,
wr (x)—1 .
W), #(x) x 1 J
: = —(1-= o(1
x n(x)—kjg;:x Ax +o(l)

a.s. as x — oo. But the sum on the right-hand side is a Riemann sum approximation
to the integral of

A v

over [r, A], proving that

A
Wago,x®) 1 / (1 -2 to)dv
x B—rJ

a.s. as x — oo (and, in fact, the convergence is uniform in r over [0, A]). A similar
Riemann sum approximation establishes that

1 1 T)-1 o ) x2 Ty S; Ww.r(®) ’
sl —wp & O Wen = G 2 (e T

J=k

a.s 1 * 1 1 * 1 ?

5 — 1-12'u— — 1-1

«s (ﬁ_r)er ( u ﬁ—r/r( v)dv) du
as x — oo, uniformly in r € [0, A].

As a consequence, for any € > 0, g, (k, x) is a.s. of order x for £ < (A — €)x, whereas
Sno)(T(x), x) is a.s. 0(1) as x — oo. Thus, P(d}(n(x), x) > tx) — 1for each ¢t < A, proving
that

d

y(n(x), x) 2,
X

asx — oo. O
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