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Abstract

This paper is concerned with the development of rigorous approximations to various expecta-

tions associated with Markov chains and processes having non-stationary transition probabilities.

Such non-stationary models arise naturally in contexts in which time-of-day effects or season-

ality effects need to be incorporated. Our approximations are valid asymptotically in regimes

in which the transition probabilities change slowly over time. Specifically, we develop approxi-

mations for the expected infinite horizon discounted reward, the expected reward to the hitting

time of a set, the expected reward associated with the state occupied by the chain at time n, and

the expected cumulative reward over an interval [0, n]. In each case, the approximation involves

a linear system of equations identical in form to that which one would need to solve to compute

the corresponding quantity for a Markov model having stationary transition probabilities. In

that sense, the theory provides an approximation no harder to compute than in the traditional

stationary context. While most of the theory is developed for finite state Markov chains, we

also provide generalizations to continuous state Markov chains, and finite state Markov jump

processes in continuous time. In the latter context, one of our approximations coincides with

the uniform acceleration asymptotic due to Massey and Whitt (1998).

Key words: non-stationary Markov chains; asymptotic approximations; slowly changing; Pois-

son’s equation; expected discounted reward; transient expectation; expected cumulative reward
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1 Introduction

The realistic modeling of many problems arising in operations research and operations management

requires explicit incorporation of time-of-day effects, day-of-week effects, or seasonality effects.

Such non-stationarities also occur in settings in which secular trends, such as a steady increase in

demand for a product, may affect the system dynamics over an operationally meaningful time scale.

Unfortunately, the development of closed-form theory for the great majority of stochastic models

requires an assumption of stationary dynamics, free of such non-stationarities. In particular, in the

Markov chain and continuous time Markov process setting, the assumption of stationary transition

probabilities gives one the ability to easily compute many performance measures as solutions to

systems of linear equations; see, for example, Asmussen (2008) and Heyman and Sobel (1982).

Specifically, the equilibrium distribution of such processes can easily be computed by solving the

linear system corresponding to the stationarity distribution.

Given this state of affairs, it would be convenient if there were a general approach to obtaining

approximations for Markov models having non-stationary transition probabilities in which the

approximations involved linear systems of equations of identical structure to that obtained in the

setting of stationary transition probabilities. For example, the approximating linear systems for

non-stationary birth-death processes should ideally be tri-diagonal, just as are the linear systems

arising in the setting of stationary birth-death processes. As far as we are aware, there is no such

general approach presently available. In this paper, we provide such a set of approximations. Our

approximations are valid precisely in the context in which one would presume that an approximation

by a model with stationary dynamics should be valid, namely a regime in which the transition

probabilities change slowly over time (or are “slowly changing”).

In this slowly changing setting, we show how various performance measures for Markov chains

X = (Xn : n ≥ 0) with non-stationary transition probabilities can be approximated by correspond-

ing calculations involving stationary transition probabilities. In Section 2, we start by illustrating

this approach in the setting of expected infinite horizon discounted reward for finite state Markov

chains. Section 3 extends this to calculations involving the expected cumulative reward to the

hitting time of a set, such as those arising in dependability modeling and actuarial risk calculation.

Section 4 is concerned with two different approximations for transient expectations of the form

Er(Xn), one involving “Taylor expanding” in terms of the transition matrix associated with the

first step over the horizon [0, n], while the second expands in terms of the last step n associated

with the horizon [0, n]. The second approach coincides, when specialized to the uniform acceler-

ation (UA) asymptotic regime, to a discrete-time version of the first term in the UA asymptotic

expansion of Massey and Whitt (1998); see also Khashinskii et al. (1996). This section also shows

how the theory extends to continuous state space discrete time uniformly ergodic Markov chains.

In Section 5, we develop an approximation for expected cumulative reward over [0, n], that takes
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into account the influence of the initial distribution. Our last theory section, Section 6, is concerned

with showing how the theory extends to Markov jump processes, and derives an approximation for

Er(X(t)), when X = (X(t) : t ≥ 0) is a finite state Markov jump process with a slowly changing

family of rate matrices (Q(t) : t ≥ 0). When specialized to the UA setting, this coincides precisely

with the UA approximation of Khashinskii et al. (1996) and Massey and Whitt (1998). However,

our derivation makes clearer that the specific time acceleration associated with the UA expansion is

not required for the approximation to be valid. Rather, the only requirement needed for the validity

of this approximation is the slow variation of order ε in the rate matrices Q(s) for value of s within

(log(1/ε))2 of t. In particular, the rate matrices can vary rapidly prior to such times s without

affecting the validity of the approximation. Section 7 concludes the paper with a brief numerical

study of these approximations. Throughout the paper, we make an effort to relate the asymptotic

theory, involving a parameter ε being sent to 0, to modeling settings in which a given Markov chain

(with no asymptotic parameter) needs to be approximated, and make specific proposals for how

the approximation can be implemented.

A distinguishing characteristic of this work is the development of an approximation theory for

generic un-structured Markov chains and processes. In the present of specific models, one can

develop model-specific approximations that can provide effective numerical and analytical approx-

imations to non-stationary versions of such models. For instance, the work done by Massey (1985)

for the non-stationary M/M/1 queue is in this spirit, as is the limit theory on non-stationary

reflected Brownian motion developed by Mandelbaum and Massey (1995). The work done by

Whitt (1991) establishes the asymptotic correctness of the pointwise stationary approximation for

Mt/Mt/s queues by assuming local stationarity. There is also a substantial literature on exact

analysis of infinite-server queues that establishes that non-stationarity does not seriously compli-

cate such models relative to the stationary case. Finally, there is a significant and growing body

of contributions on closure approximations for queues that shows promise of generating efficient

numerical algorithms for analysis of such systems; see Massey and Pender (2013), Pender (2014a,b,

2015). A recent survey of this work is provided by Whitt (2017). As noted above, the current

paper has a different focus, namely that of developing approximations for generic Markov models.

2 Approximating Expected Infinite Horizon Discounted Reward

Let X = (Xk : k ≥ 0) be a finite state S-valued Markov chain. For each x ∈ S, suppose that r(x)

is the reward obtained for spending one unit of time in state x. In this section, we are concerned

with the expected infinite horizon discounted reward defined by

κ = E
∞∑
j=0

e−αjr(Xj) (1)
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for a given (per period) discount rate α > 0. The Markov property implies the existence of a

sequence (Pk : k ≥ 1) of stochastic matrices for which

P (Xk+1 = y | X0, . . . , Xk) = Pk+1(Xk, y) a.s.

for k ≥ 0. Put µ(x) = P (X0 = x) for x ∈ S. We adopt the convention that all probability mass

functions on S are encoded as row vectors, and all real-valued functions with domain S are encoded

as column vectors. We further adopt the convention that in using the product notation
∏m
i=k Ai for a

product of square matrices Ak, · · · , Am, we always multiply them in increasing order of their indices

or time arguments, so that (for example)
∏m
i=k Ai = Ak · · ·Am and

∏m
i=k An−i = An−m · · ·An−k,

and a product over an empty set of indices equals 1. With this convention in hand, it is evident

that

κ =
∞∑
j=0

e−αjµ

(
j∏

k=1

Pk

)
r. (2)

It is well known that if X has stationary transition probabilities (so that Pk = P1 for k ≥ 1),

then κ = µν, where ν satisfies

ν = r + e−αP1ν. (3)

The only finite-valued solution of (3) is then given by ν =
∑∞

j=0 e
−αjP j1 = (I − e−αP1)

−1r; see

Kemeny and Snell (1960). Given that (3) can be solved by Gaussian elimination, ν (and hence

κ) can be computed in O(|S|3) arithmetic (or floating point) operations; see Farebrother (1988).

(Here, we use the notation O(g(|S|, θ, n, α, ε))) to denote a function that is bounded by a multiple

of g(|S|, θ, n, α, ε) and and the notation o(g(ε)) to denote a function for which o(g(ε))/g(ε)→ 0 as

ε ↓ 0.) Alternatively, one can sometimes analytically calculate the solution to (3) in closed form.

For example, such a closed form is always available for birth-death chains, because the linear system

(3) is then tri-diagonal (so that the only non-zeros entries in the coefficient matrix appear on the

diagonal, super-diagonal, and sub-diagonal).

We will now show how one can compute approximations to (2) in the non-stationary setting.

These approximations involve linear systems of equations with coefficient matrices identical to

those arising in (3). Consequently, these approximations are typically no harder to compute, either

analytically or numerically, than are the linear systems associated with the stationary case.

In preparation for stating our main result, we define the following norms on row vectors η,

column vectors f , and square matrices A:

‖η‖ =
∑
x

|η(x)|;

‖f‖ = max
x
|f(x)|;
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‖A‖ = max
x

∑
y

|A(x, y)|.

We recall that |ηf | ≤ ‖η‖ · ‖f‖, ‖ηA‖ ≤ ‖η‖ · ‖A‖, ‖Af‖ ≤ ‖A‖ · ‖f‖, and ‖A1A2‖ ≤ ‖A1‖ · ‖A2‖
for matrices A1 and A2; see, for example, Golub and Van Loan (2012). We will need the following

basic result.

Proposition 1. Suppose that ‖An‖ < 1 for some n ≥ 1. Then:

i.) ‖An‖ → 0 geometrically fast as n→∞, and
∑∞

n=0A
n = (I −A)−1;

ii.) for j ≥ 1,
∞∑
n=0

(n+ j)(n+ j − 1) · · · (n+ 1)An = j!(I −A)−j−1.

Proof. Proof of Proposition 1. Part i.) is well known; see Kemeny and Snell (1960). Part ii.) is

yielded by noting that (I −A)−j−1 = (
∑∞

n=0A
n)j+1 is a Binomial series with a negative exponent

and equals
∑∞

n=0

(
n+j
j

)
An.

Because we wish to develop asymptotic approximations, we now consider a parameterized family

of infinite horizon discounted rewards defined by

κ(ε) =

∞∑
j=0

e−αjµ

(
j∏

k=1

Pk(ε)

)
r,

where the Pk(ε)’s are stochastic matrices. We now make the following assumption about the family

(Pk(ε) : k ≥ 1).

Assumption 1. Suppose that (Pk(ε) : k ≥ 1, ε > 0) is a family of stochastic matrices for which

there exist scalars (ai1 : i ≥ 1), matrices P̃ , P̃ (1), and scalars s, δ, and p > 0 such that

i) sup1≤i≤(log(1/ε))1+δ ‖Pi(ε)− (P̃ + εai1P̃
(1))‖ = O(ε2(log(1/ε))s) as ε ↓ 0;

ii) |ai1| = O(ip) as i→∞.

Theorem 1. Suppose that Assumption 1 holds. Then, there exists w <∞ such that

κ(ε) = µ(I − e−αP̃ )−1r + εe−αµ

∞∑
k=0

ak+1,1e
−αkP̃ kP̃ (1)(I − e−αP̃ )−1r +O(ε2(log(1/ε))w) (4)

as ε ↓ 0.

We note that Assumption 1 asserts that the Pk(ε)’s are “slowly changing” over a time scale

of order (log(1/ε))1+δ (so that we require slow variation only over a small portion of the entire
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horizon). In the presence of such an assumption, Theorem 1 provides a first-order correction to the

stationary formula µ(I − e−αP̃ )−1r that reflects the non-stationary dynamics of the Markov chain.

One possible choice for (Pk(ε) : k ≥ 1, ε > 0) is one in which Pk(ε) = P (ε), where P (·) is twice

continuously differentiable in a neighborhood of 0. In this case, Assumption 1 holds with ai1 = 1,

P̃ = P (0), P̃ (1) = P (1)(0) (when P (j)(θ) is the j’th derivative of P (·) evaluated at θ), and s = 0, in

which case

κ(ε) = µ(I − e−αP̃ )−1r + εe−αµ(I − e−αP̃ )−1P̃ (1)(I − e−αP̃ )−1r +O(ε2(log(1/ε))w)

as w ↓ 0. Of course, in this setting, the Pk(ε)’s describe a Markov chain with stationary transition

probabilities, so our formula (4) is then just computing the sensitivity of κ(ε) to a perturbation in

the common one-step transition matrix.

A genuinely non-stationary example arises when Pk(ε) = P ((k − 1)ε), where P (·) is again

twice continuously differentiable in a neighborhood of the origin. (Note that Assumption 1 gov-

erns only the first (log(1/ε))1+δ) transitions, thereby corresponding to the behavior of P (·) over

[0, ε(log(1/ε))1+δ], so that only P (·)’s behavior near 0 plays a role.) In this case, ai1 = (i − 1),

P̃ = P (0), P̃ (1) = P (1)(0), and s = 2(1+ δ). In view of part ii) of Proposition 1 with j = 1, formula

(4) then takes the form

κ(ε) = µ(I − e−αP̃ )−1r + εe−2αµP̃ (I − e−αP̃ )−2P̃ (1)(I − e−αP̃ )−1r +O(ε2(log(1/ε))w) (5)

as as ε ↓ 0. Thus, with this parametrization, the infinite sum in the first-order approximation to

κ(ε) that accounts for the non-stationarity collapses to a quantity involving (I − e−αP̃ )−1. In fact,

κ(ε) = µν + εe−2αµP̃ν2 +O(ε2(log(1/ε))w)

as ε ↓ 0, where ν, ν1, and ν2 satisfy the linear systems

(I − e−αP̃ )ν = r,

(I − e−αP̃ )ν1 = P̃ (1)ν,

(I − e−αP̃ )ν2 = ν1.

As proposed earlier, the coefficient matrices are all identical and equal to the coefficient matrix

associated with computing infinite horizon discounted reward in the stationary dynamics setting

(where Pk(ε) ≡ P̃ ).

We now turn to the proof of Theorem 1. The key estimate is provided by the next result.
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Proposition 2. Under Assumption 1, there exists w > 0 such that

sup
1≤m≤(log(1/ε))1+δ

∥∥∥∥∥P1(ε) · · ·Pm(ε)−

(
P̃m + ε

m∑
i=1

ai1P̃
i−1P̃ (1)P̃m−i

)∥∥∥∥∥ = O(ε2(log(1/ε))w)

as ε ↓ 0.

Proof. Proof of Proposition 2. For ε sufficiently small, there exists d <∞ such that

‖Pi(ε)− (P̃ + εai1P̃
(1))‖ ≤ dε2(log(1/ε))s (6)

and

|ai1| ≤ d ip

for 1 ≤ i ≤ (log(1/ε))1+δ. Note that P̃ must be stochastic, as can be seen from the fact that the

Pi(ε)’s are stochastic and sending ε to 0 in (6). Recalling that ‖K‖ = 1 for a stochastic matrix and

the fact that ‖K1K2‖ ≤ ‖K1‖‖K2‖ for arbitrary matrices K1 and K2, it is evident that

fm+1 ,

∥∥∥∥∥
m+1∏
i=1

Pi(ε)−

(
P̃m+1 + ε

m+1∑
i=1

ai1P̃
i−1P̃ (1)P̃m+1−i

)∥∥∥∥∥
≤

∥∥∥∥∥
(

m∏
i=1

Pi(ε)−

(
P̃m + ε

m∑
i=1

ai1P̃
i−1P̃ (1)P̃m−i

))
P̃

∥∥∥∥∥
+

∥∥∥∥∥
m∏
i=1

Pi(ε)
(
Pm+1(ε)− (P̃ + εam+1,1P̃

(1))
)∥∥∥∥∥

+

∥∥∥∥∥
(
P̃m + ε

m∑
i=1

ai1P̃
i−1P̃ (1)P̃m−i −

m∏
i=1

Pi(ε)

)
εam+1,1P̃

(1)

∥∥∥∥∥
+

∥∥∥∥∥
(
ε

m∑
i=1

ai1P̃
i−1P̃ (1)P̃m−i

)
εam+1,1P̃

(1)

∥∥∥∥∥
≤ fm + ε2d(log(1/ε))s + εfm|am+1,1|‖P̃ (1)‖+ ε2|am+1,1|

m∑
i=1

|ai1|‖P̃ (1)‖2 (7)

for 1 ≤ m + 1 ≤ (log(1/ε))1+δ. But |am+1,1| ≤ d(m + 1)p, and
∑m

i=1 |ai1| ≤ d′(m + 1)p+1 ≤
d′(log(1/ε))(p+1)(1+δ) for some d′ <∞ when m+ 1 ≤ (log(1/ε))1+δ. So,

fm+1 ≤ fm(1 + εd(log(1/ε))p(1+δ)‖P̃ (1)‖) + ε2
[
d(log(1/ε))s + dd′(log(1/ε))p(1+δ)+(p+1)(1+δ)‖P̃ (1)‖2

]
, fmc+ d′′,

for which it follows that

fm ≤ d′′(1 + cm) ≤ 2d′′cm ≤ 2d′′c(log(1/ε))
1+δ

(8)
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for 1 ≤ m ≤ (log(1/ε))1+δ. Note that d′′ = d′′(ε) = O(ε2(log(1/ε)))w for some w > 0 as ε ↓ 0, and

1 ≤ c(ε) ≤ 1 + ε/2 for ε sufficiently small, so that

(1 + c(ε))(log(1/ε))
1+δ → 1

as ε ↓ 0. Consequently,

fm = fm(ε) = O(ε2(log(1/ε))w),

uniformly in 1 ≤ m ≤ (log(1/ε))1+δ, proving the result.

Proof. Proof of Theorem 1. Note that∥∥∥∥∥∥
∑

j>(log(1/ε))1+δ

e−αjµ

j∏
k=1

Pk(ε)r

∥∥∥∥∥∥ = O(ε2), (9)

∥∥∥∥∥∥
∑

j>(log(1/ε))1+δ

e−αjµP̃ jr

∥∥∥∥∥∥ = O(ε2), (10)

∥∥∥∥∥∥
∑

j>(log(1/ε))1+δ

e−αjµ

j∏
k=1

ak1P̃
k−1P̃ (1)P̃ j−k

∥∥∥∥∥∥ = O(ε2) (11)

as ε ↓ 0. On the other hand, Proposition 2 shows that∥∥∥∥∥∥
∑

j≤(log(1/ε))1+δ
e−αjµ

j∏
k=1

Pk(ε)r −
∑

j≤(log(1/ε))1+δ
e−αjµ

(
P̃ j + ε

j∑
k=1

ak1P̃
k−1P̃ (1)P̃ j−k

)
r

∥∥∥∥∥∥
≤

∑
j≤(log(1/ε))1+δ

e−αjO(ε2(log(1/ε))w)

= O(ε2(log(1/ε))w). (12)

as ε ↓ 0. Relations (9) through (12) imply that

κ(ε) =µ

∞∑
j=0

e−αjP̃ jr + εµ

∞∑
j=1

e−αj
j∑

k=1

ak1P̃
k−1P̃ (1)P̃ j−kr +O(ε2(log(1/ε))w) (13)

as ε ↓ 0. But the second term on the right-hand side of (13) equals

εµ

∞∑
k=1

ak1P̃
k−1P̃ (1)e−αk

∞∑
l=k

e−αlP̃ lr = εµ

∞∑
k=1

ak1P̃
k−1P̃ (1)e−αk(I − e−αP̃ )−1r,

proving the theorem.

We now discuss how the approximation can be applied in the setting of a Markov chain having
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dynamics governed by the sequence of transition matrices (Pj : j ≥ 1). If

max
1≤j≤b/α

‖Pj − P1‖ (14)

is small for some value of b that is large, then (4) suggests the approximation

µ(I − e−αP1)
−1 +

bb/αc∑
j=1

e−αj
j∑

k=1

P k−11 (Pk − P1)P
j−k
1 ,

where bxc denotes the floor of x. Of course, if

Pj − P1 = (j − 1)εP̃ (1) (15)

(as occurs when the Pj ’s are consistent with the slowly changing smooth approximation Pj = P (jε)

for some value of ε), then we have the more tractable approximation

µ(I − e−αP1)
−1r + e−2αµP1(I − e−αP1)

−2εP̃ (1)(I − e−αP1)
−1r.

Note that P̃ (1) can be approximated via any of the finite differences

εP̃ (1) ≈ Pj − P1

j − 1
(16)

associated with (15). Given the presence of the discount factor e−α, a reasonable choice for j is

likely to be something on the order of (1− e−α)−1.

There is no intrinsic difficulty in computing j’th order corrections, for any j ≥ 1. To illustrate

this point, we state the associated second-order correction.

Assumption 2. Suppose that (Pk(ε) : k ≥ 1, ε > 0) is a family of stochastic matrices for which

there exist scalars ((ai1, ai2) : i ≥ 1), matrices P̃ , P̃ (1), P̃ (2), and scalars s, δ, and p > 0 such that

i) sup1≤i≤(log(1/ε))1+δ ‖Pi(ε)− (P̃ + εai1P̃
(1) + ε2

2 ai2P̃
(2))‖ = O(ε3(log(1/ε))s) as ε ↓ 0;

ii) |aij | = O(ip) as i→∞, for j = 1, 2.

In the presence of such slowly changing transition matrices over the logarithmic time scale

(log(1/ε))1+δ, the following theorem is available.

Theorem 2. If Assumption 2 holds, then there exists w > 0 such that

κ(ε) =µ(I − e−αP̃ )−1r + εe−αµ
∞∑
k=0

ak+1,1e
−αkP̃ kP̃ (1)(I − e−αP̃ )−1r
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+
ε2

2
e−αµ

∞∑
k=0

ak+1,2e
−αkP̃ kP̃ (2)(I − e−αP̃ )−1r

+ ε2e−2αµ
∞∑
k=1

ak1P̃
k−1e−α(k−1)P̃ (1)

∞∑
l=k+1

al1P̃
l−k−1e−α(l−k−1)P̃ (1)(I − e−αP̃ )−1r

+O(ε3(log(1/ε))w) (17)

as ε ↓ 0.

We omit the proof, since it is a direct extension of the argument used to establish Theorem 1.

As in the setting of the first order correction, this formula greatly simplifies if we consider the

case where Pj(ε) = P ((j− 1)ε) for j ≥ 1, where P (·) is three times continuously differentiable at 0.

In this case ai1 = i− 1, ai2 = (i− 1)2, P̃ = P (0), P̃ (1) = P̃ (1)(0), P̃ (2) = P (2)(0), and s = 3(1 + δ).

Proposition 1 shows that the third term on the right-hand side of (17) then equals

ε2

2
e−αµ

∞∑
k=0

k2(e−αP̃ )kP̃ (2)(I − e−αP̃ )−1r

=
ε2

2
e−2αµP̃

[
2e−αP̃ (I − e−αP̃ )−3 + (I − e−αP̃ )−2

]
P̃ (2)(I − e−αP̃ )−1r.

Similarly, the fourth term equals

ε2e−2αµ

∞∑
k=1

(k − 1)(e−αP̃ )k−1P̃ (1)
∞∑

l=k+1

(l − 1)(e−αP̃ )l−k−1P̃ (1)(I − e−αP̃ )−1r

= 2ε2e−3αµP̃ (I − e−αP̃ )−3P̃ (1)(I − e−αP̃ )−1P̃ (1)(I − e−αP̃ )−1r

+ ε2e−4αµP̃ (I − e−αP̃ )−2P̃ (1)P̃ (I − e−αP̃ )−1r,

yielding the second-order approximation

µ(I − e−αP̃ )−1r + εe−2αµP̃
(
I − e−αP̃

)−2
P̃ (1)(I − e−αP̃ )−1r

+
ε2

2
e−2αµP̃

[
2e−αP̃ (I − e−αP̃ )−3 + (I − e−αP̃ )−2

]
P̃ (2)(I − e−αP̃ )−1r

+ 2ε2e−3αµP̃ (I − e−αP̃ )−3P̃ (1)(I − e−αP̃ )−1P̃ (1)(I − e−αP̃ )−1r

+ ε2e−4αµP̃ (I − e−αP̃ )−2P̃ (1)P̃ (I − e−αP̃ )−1r (18)

for κ.

As with the first order approximation, the terms εP̃ (1) and ε2P̃ (2) appearing in the approxima-

tion can be replaced by finite difference approximations, given by (16) and

ε2P̃ (2) ≈ P2j−1 − 2Pj + P1

(j − 1)2
, (19)
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yielding an implementable approximation to κ when condition (14) is in force.

3 Approximating Expected Reward Cumulated to a Hitting Time

In this section, we extend the analysis of Section 2 to expectations of the form

δ = E
T∑
j=0

r(Xj),

where T = inf{n ≥ 0 : Xn ∈ Cc} is the hitting time of a subset Cc ⊂ S. Such expectations arise in

computing expected hitting times, and computing absorption probabilities of the form P (XT = y)

(where r(y) = 1 if y ∈ Cc and 0 otherwise). These expectations are also of interest in dependability

modeling and in actuarial risk calculations.

For i ≥ 1, let Bi = (Bi(x, y) : x, y ∈ C), where Bi(x, y) = Pi(x, y) for x, y ∈ C, so that Bi is the

principal matrix of Pi corresponding to “C to C” transitions. Then,

δ =
∞∑
j=0

µ

(
j∏

k=1

Bk

)
rj+1, (20)

where rj(x) = r(x) +
∑

y∈Cc Pj(x, y)r(y) for x ∈ C.

Suppose that X has stationary transition probabilities. If (I−B1)
−1 exists, then δ = µw, where

w = (I −B1)
−1r1 and w is the unique finite-valued solution of the linear system

w = r1 +B1w. (21)

As in Section 2, our goal is to improve upon this zero’th order approximation w to δ, under the

condition that X has slowly changing transition probabilities. We adopt the framework of Section

2, and consider the function

δ(ε) =
∞∑
j=0

µ

(
j∏

k=1

Bk(ε)

)
rj+1(ε),

where Bk(ε) is the corresponding principal sub-matrix of Pk(ε) and rk(ε) = (rk(ε, x) : x ∈ C), with

rk(ε, x) = r(x) +
∑

y∈Cc Pk(ε, x, y)r(y), for k ≥ 1.

Theorem 3. Assume that there exist l ≥ 1, s > 0, δ > 0, and matrices P̃ and P̃ (1) such that:

i) sup1≤i≤(log(1/ε))1+δ ‖Pi(ε)− (P̃ + ε(i− 1)P̃ (1))‖ = O(ε2(log(1/ε))s) as ε ↓ 0;

ii) supk≥0, ε>0 ‖Bk+1(ε)Bk+2(ε) · · ·Bk+l(ε)‖ < 1.
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Then, there exists w <∞ such that

δ(ε) = (I − B̃)−1r + εµB̃(I − B̃)−2B̃(1)(I − B̃)−1r̃ + εµB̃(I − B̃)−2r̃(1) +O(ε2(log(1/ε))w)

as ε ↓ 0, where r̃(x) = r(x) +
∑

y∈Cc P̃ (x, y)r(y), r̃(1)(x) =
∑

y∈Cc P̃
(1)(x, y)r(y), B̃ = (P̃ (x, y) :

x, y ∈ C), and B̃(1) = (P̃ (1)(x, y) : x, y ∈ C).

Proof. Proof of Theorem 3. Condition ii) ensures that

‖B1(ε) · · ·Bml(ε)‖ ≤ βm,

where β , sup{‖Bk+1(ε) · · ·Bk+l(ε)‖ : k ≥ 0, ε > 0} < 1. Furthermore,

‖B̃l‖ = lim sup
ε↓0

‖B1(ε) · · ·Bl(ε)‖ ≤ β,

from which it follows that∥∥∥∥∥∥
∑

j>(log(1/ε))1+δ

µ

(
j∏

k=1

Bk(ε)

)
rj+1(ε)

∥∥∥∥∥∥ = O(ε2), (22)

∥∥∥∥∥∥
∑

j>(log(1/ε))1+δ

jµB̃j r̃

∥∥∥∥∥∥ = O(ε2), (23)

and ∥∥∥∥∥∥
∑

j>(log(1/ε))1+δ

jµB̃j r̃(1)

∥∥∥∥∥∥ = O(ε2) (24)

as ε ↓ 0.

On the other hand, condition i) (and an argument identical to that used to establish Proposition

2) guarantees that there exists v <∞ such that

sup
1≤m≤(log(1/ε))1+δ

∥∥∥∥∥B1(ε) · · ·Bm(ε)−

(
B̃m + ε

m−1∑
i=1

iB̃iB̃(1)B̃m−i−1

)∥∥∥∥∥ = O(ε2(log(1/ε))v) (25)

as ε ↓ 0. In addition, condition i) also ensures that

sup
1≤m≤(log(1/ε))1+δ

‖rm(ε)− (r̃ + ε(m− 1)r̃(1))‖ = O(ε2(log(1/ε))s) (26)
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as ε ↓ 0. Now (25) and (26) guarantee that∥∥∥∥∥∥
∑

j≤(log(1/ε))1+δ
µ

(
j∏

k=1

Bk(ε)

)
rj+1(ε)−

∑
j≤(log(1/ε))1+δ

µ

(
B̃j + ε

j−1∑
i=1

iB̃iB̃(1)B̃m−i

)
r̃

− ε
∑

j≤(log(1/ε))1+δ
µB̃jjr̃(1)

∥∥∥∥∥∥ = O(ε2(log(1/ε))w) (27)

as ε ↓ 0, where w = max(s, v + 1 + δ). Combining (27) with (22), (23), and (24), we conclude that∥∥∥∥∥∥
∞∑
j=0

µ

(
j∏

k=1

Bk(ε)

)
rj+1(ε)−

∞∑
j=0

µB̃j r̃ − ε
∞∑
j=0

j−1∑
i=1

iµB̃iB̃(1)B̃j−ir̃ − ε
∞∑
j=0

jµB̃j r̃(1)

∥∥∥∥∥∥
= O(ε2(log(1/ε))w) (28)

as ε ↓ 0. We now use Proposition 1 to simplify the sums in (28), thereby yielding the theorem.

Suppose now that Pj(ε) = P ((j − 1)ε) for j ≥ 1 and ε > 0. In this case, Theorem 3 holds when

P (·) is differentiable in a neighborhood of 0, and

sup
θ≥0
‖Bl(θ)‖ < 1,

where B(θ) is the appropriate principal sub-matrix of P (θ). In this setting, B̃ = B(0), B̃(1) =

B(1)(0), and r̃ and r̃(1) have entries given by r̃(x) = r(x) +
∑

y∈Cc P (0, x, y)r(y), r̃(1)(x) =∑
y∈Cc P

(1)(0, x, y)r(y). While Theorem 3 can be stated directly in terms of P (·), we choose to

use the hypotheses of Theorem 3 to make clear that the slow variation of the Bi’s is only required

for the first (log(1/ε))1+δ transitions.

We follow the same approach as in Section 2 to apply this approximation to models with a

given sequence (Pj : j ≥ 1) of transition matrices. Assuming that

max
1≤j≤b/(1−β)

‖Pj − P1 − (j − 1)(P2 − P1)‖

is small for b large, Theorem 3 should provide a good approximation to δ, with B̃ = B1, r̃ = r1,

εB̃(1) = (B2 − B1), and εr̃(1) having entries given by εr̃(1)(x) =
∑

y∈Cc(B2(x, y) − B1(x, y))r(y).

As in Section 2, we can also develop a second order correction for δ that reflects the “curvature”

in the sequence (Pj : j ≥ 1); we omit the details.
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4 Approximating Er(Xn)

We turn next to the question of how to approximate the transient quantity Er(Xn), when X is

a Markov chain with slowly changing transition probabilities. In particular, given the sequence

P1, P2, . . . of transition matrices, χn , Er(Xn) can be expressed as

χn = µP1P2 · · ·Pnr.

We develop two different approximations in this setting. The first is appropriate when n is small,

while the second requires that n be large. Once again, we consider a parameterized family of

transition matrices (Pi(ε) : i ≥ 1, ε > 0).

Theorem 4. Assume that n = n(ε) is such that n/ log(1/ε) → ∞ and n = o(ε−1/3) as ε ↓ 0.

Suppose that there exist matrices P̃ , P̃ (1) for which

sup
1≤i≤n

‖Pi(ε)− (P̃ + ε(i− 1)P̃ (1))‖ = O(ε2n2) (29)

as ε ↓ 0, where P̃ is aperiodic and irreducible. Then,

µ
n∏
j=1

Pj(ε)r = π̃r + εnπ̃P̃ (1)(I − P̃ + Π̃)−1r − επ̃P̃ (1)(I − P̃ + Π̃)−2r +O(ε2n3)

as ε ↓ 0, where π̃ is the row vector corresponding to the stationary distribution of P̃ , and Π̃ is the

rank one matrix with all rows identical to π̃.

Theorem 4 states that if we have slow variation of the Pi(ε)’s over [0, n], then we have an

approximation to µ
∏n
j=1 Pj(ε)r with an error of order O(ε2n3) as ε ↓ 0. Note that the error term

is of smaller order than the two asymptotic corrections of orders nε and ε when n = o(ε−1/3).

We further note that the asymptotic corrections involve the fundamental matrix (I − P̃ + Π̃)−1 =∑∞
n=0(P̃ − Π̃)n = I +

∑∞
n=1(P̃

n − Π̃); see Kemeny and Snell (1960) for a discussion of its role in

the analysis of Markov chains with stationary transition probabilities.

The hypotheses of Theorem 4 hold when Pi(ε) = P ((i − 1)ε) for i ≥ 1, where P (·) is twice

continuously differentiable in a neighborhood of 0, with P (0) aperiodic and irreducible. In our

proof, we exploit the fact that Π̃P̃ = Π̃ and that AΠ̃ = Π̃ whenever A is stochastic.

Proof. Proof of Theorem 4. We note that (29) implies that for ε sufficiently small, there exists

d <∞ such that

‖Pi(ε)− (P̃ + ε(i− 1)P̃ (1))‖ ≤ d ε2n2

for 1 ≤ i ≤ n. With fm describing the same quantity as in the proof of Proposition 2, we now
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apply inequality (7) to conclude that

fm+1 ≤ fm + d ε2n2 + εfmm‖P̃ (1)‖+ ε2m
m∑
i=1

i‖P̃ (1)‖2

≤ fm(1 + εm‖P̃ (1)‖) + d ε2n2 + ε2n3‖P̃ (1)‖2

≤ fm(1 + εn‖P̃ (1)‖) + d′′ε2n3

for 1 ≤ m+ 1 ≤ n and for some constant d′′. The proof of Proposition 2 then shows that

fm ≤ 2d′′ε2n3(1 + εn‖P̃ (1)‖)n

for 1 ≤ m ≤ n. Because n = o(ε−1/2), n log(1 + εn‖P̃ (1)‖)→ 0 as ε ↓ 0, and hence

fm = O(ε2n3)

as ε ↓ 0 and uniformly in [1, n], proving that

µ

n∏
j=1

Pj(ε)r = µP̃nr + εµ

n−1∑
i=1

iP̃ iP̃ (1)P̃n−i−1r +O(ε2n3) (30)

as ε ↓ 0. Observe, the second term equals

εµ

n−1∑
i=1

i(P̃ − Π̃)iP̃ (1)P̃n−i−1r + εµ

n−1∑
i=1

iΠ̃P̃ (1)P̃n−i−1r

= εµ
n−1∑
i=1

i(P̃ − Π̃)iP̃ (1)(P̃ − Π̃)n−i−1r + εµ
n−2∑
i=1

i(P̃ − Π̃)i−1P̃ (1)Π̃n−i−1r + ε
n−1∑
i=1

iπ̃P̃ (1)P̃n−i−1r

(31)

Next we show that P̃ (1)Π̃ = 0. Divide (29) through by ε and note that∥∥∥∥∥Pi(ε)− P̃ε
− (i− 1)P̃ (1)

∥∥∥∥∥→ 0

as ε ↓ 0, due to the fact that n = o(ε−1/2). Let e be a column vector consisting all 1’s. Note that

(Pi(ε) − P̃ )e = 0 since both matrices Pi(ε) and P̃ are stochastic. Therefore P̃ (1)e = 0, implying

P̃ (1)Π̃ = 0 (since Π̃ has identical entries in each column). It follows that the second term on the

right-hand side of (31) vanishes.

The aperiodicity of P̃ ensures that ‖(P̃ − Π̃)k‖ = ‖P̃ k− Π̃‖ → 0 geometrically fast in k. In view
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of the fact that n/ log(1/ε)→∞ as ε ↓ 0, this implies that

‖(P̃ − Π̃)
n
2 ‖ = O(εk)

as ε ↓ 0, for each k ≥ 1. Hence, µP̃nr = π̃r +O(εk) and∥∥∥∥∥µ
n−1∑
i=1

i(P̃ − Π̃)iP̃ (1)(P̃ − Π̃)n−i−1r

∥∥∥∥∥
≤ sup

j≥n
2
−1
‖(P̃ − Π̃)j‖ ·

∥∥∥∥∥∥
∑
i≤n

2

i(P̃ − Π̃)iP̃ (1)

∥∥∥∥∥∥ · ‖r‖+

∥∥∥∥∥∥
∑

n
2
≤i<n

iP̃ (1)(P̃ − Π̃)n−i−1

∥∥∥∥∥∥ · ‖r‖


=O

(
sup

j≥n
2
−1
‖(P̃ − Π̃)j‖

)
= O(εk) (32)

as ε ↓ 0, for each k ≥ 1.

Finally, the third term on the right-hand side of (31) equals

ε
n−1∑
i=1

iπ̃P̃ (1)(P̃ − Π̃)n−i−1r

= ε

n−2∑
j=0

(n− 1− j)π̃P̃ (1)(P̃ − Π̃)jr

= εnπ̃P̃ (1)(I − P̃ + Π̃)−1r +O(εk)− ε
n−2∑
j=0

(j + 1)π̃P̃ (1)(P̃ − Π̃)jr

= εnπ̃P̃ (1)(I − P̃ + Π̃)−1r − επ̃P̃ (1)(I − P̃ + Π̃)−2r +O(εk) (33)

as ε ↓ 0, for each k ≥ 1. Note, the first step uses part ii) of Proposition 1. Combining (32), (33),

(30), and the fact that the second term vanishes, yields the theorem.

We turn next to an approximation that is appropriate for larger value of n. While the first

approximation effectively “Taylor expands” in terms of P1 = P1(ε), the second “Taylor expands”

in terms of Pn = Pn(ε).

Theorem 5. Suppose that n = n(ε) is such that n/ log(1/ε)→∞ as ε ↓ 0. For a(ε)→∞ as ε ↓ 0,

let m = m(ε) = bmin(n/2, a(ε) log(1/ε))c. Assume there exist matrices P̃ , P̃ (1) for which

sup
0≤k≤m

‖Pn−k(ε)− (P̃ − εkP̃ (1))‖ = O(ε2m2)
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as ε ↓ 0, where P̃ is irreducible and aperiodic. Then,

µ
n∏
k=1

Pk(ε)r = π̃r − επ̃P̃ (1)(I − P̃ + Π̃)−2P̃ r +O(ε2m3)

as ε ↓ 0, where π̃ is the stationary distribution of P̃ and Π̃ is the rank one matrix having rows

identical to π̃.

Proof. Proof of Theorem 5. Proposition 2 implies that∥∥∥∥∥∥
∏

0≤k≤m
Pn−k(ε)−

P̃m+1 − ε
m∑
j=1

jP̃m−jP̃ (1)P̃ j

∥∥∥∥∥∥ = O(ε2m3) (34)

as ε ↓ 0. As in the proof of Theorem 4, we find that the aperiodicity and irreducibility of P̃ imply

that ‖P̃m − Π̃‖ = O(εk) as ε ↓ 0, for each k ≥ 1. Similarly,

O(εk) =

∥∥∥∥∥∥
∑

1≤j≤m/2

jP̃m−jP̃ (1)P̃ j −
∑

1≤j≤m/2

jΠ̃P̃ (1)P̃ j

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

1≤j≤m/2

jΠ̃P̃ (1)P̃ j −
∑

1≤j≤m/2

jΠ̃P̃ (1)(P̃ − Π̃)j

∥∥∥∥∥∥ (35)

as ε ↓ 0, for each k ≥ 1, and

O(εk) =

∥∥∥∥∥∥
∑

1≤j≤m/2

jΠ̃P̃ (1)(P̃ − Π̃)j −
∑
j≥1

jΠ̃P̃ (1)(P̃ − Π̃)j

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

1≤j≤m/2

jΠ̃P̃ (1)(P̃ − Π̃)j − Π̃P̃ (1)(I − P̃ + Π̃)−2P̃

∥∥∥∥∥∥ (36)

as ε ↓ 0, for each k ≥ 1, where part ii) of Proposition 1 was used in the last line. Relations (34),

(35), and (36) imply that∥∥∥∥∥∥
∏

0≤k≤m
Pn−k(ε)− Π̃ + εΠ̃P̃ (1)(I − P̃ + Π̃)−2P̃

∥∥∥∥∥∥ = O(ε2m3)

as ε ↓ 0. Because AΠ̃ = Π̃ for any stochastic matrix A, it follows that

O(ε2m3) =

∥∥∥∥∥∥
∏

m<k<n

Pn−k(ε)

 ∏
0≤k≤m

Pn−k(ε)− Π̃ + εΠ̃P̃ (1)(I − P̃ + Π̃)−2P̃

∥∥∥∥∥∥
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=

∥∥∥∥∥
n∏
k=1

Pk(ε)− Π̃ + εΠ̃P̃ (1)(I − P̃ + Π̃)−2P̃

∥∥∥∥∥ ,
proving the theorem.

We note that when n/(log(1 + ε))1+δ → ∞ as ε ↓ 0 for some δ > 0, we can always choose

m = (log(1 + ε))1+δ ensuring that our error term O(ε2m3) is of smaller order than these correction

terms of order ε.

Theorem 5 makes no assumptions whatsoever on the Pk(ε)’s for k outside a “logarithmic neigh-

borhood” of time epoch n (outside [n − a(ε) log(1/ε), n]), and n can grow arbitrarily rapidly as a

function of ε. In particular, the assumptions of Theorem 5 hold when Pn−k(ε) = P (1− kε), where

(P (θ) : −∞ < θ <∞) is such that P (·) is twice continuously differentiable in a neighborhood of 1,

with P (1) aperiodic and irreducible.

Given a family (Pj : j ≥ 1) of transition matrices, Theorem 5 suggests approximating χn via

πnr − πn
(
Pn − Pn−j

j

)
(I − Pn + Πn)−2Pnr,

for some user-defined choice of difference increment j ≥ 1, where πn is the stationary distribution

of Pn (assumed irreducible and aperiodic), and Πn is the rank one matrix having identical rows

equal to πn. We note that the first-order correction χn1 , −επnP (1)
n (I − Pn + Πn)−2Pnr can be

computed by solving the linear system

(I − Pn + Πn)hn1 = Pnr,

(I − Pn + Πn)hn2 = hn1, (37)

and setting χn1 = −πnP (1)
n hn2. The fact that the coefficient matrices for these two linear systems

are identical simplifies both numerical and closed form computation.

By pre-multiplying (37) by πn, we conclude that πnr = πnhn1 = πnhn2. So, we may re-write

(37) as

(I − Pn)hn1 = Pnr − πnre,

(I − Pn)hn2 = hn1 − πnhn1e, (38)

where e = (1, . . . , 1)> is the column vector consisting 1’s. We recognize (38) as two Poisson

equations for the Markov chain having stationary transition matrices Pj = Pn for j ≥ 1. This is a

discrete-time function analog to the first order term in the uniform acceleration (UA) asymptotic

deduced by Massey and Whitt (1998). (Their result is obtained for finite state Markov jump

processes and focuses on the probability mass function version of Poisson’s equation, where the
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unknown appears as a row vector pre-multiplying (I − Pn), rather than the function version of

Poisson’s equation.) In addition to extending the theory to discrete time, our result makes clear

that the approximation applies in much greater generality than the previous literature suggests.

In particular, this first-order refinement holds whenever n is large and ε is small, with no serious

restriction on how large n must be relative to 1/ε (other than the very mild requirement that n be

large relative to (log(1/ε))). In contrast, we note that the uniform acceleration asymptotic relies

on a time scaling of order 1/ε in its derivation. In addition, our argument makes clear that only

the transition matrices in a logarithmic neighborhood of the time n under consideration play a role

in the validity of the approximation.

We now provide a second-order refinement for χn, based on “Taylor expanding” in terms of

Pn = Pn(ε). As with the first order refinement, it corresponds to a discrete time analog to the

second order term in the uniform acceleration asymptotic expansion due to Massey and Whitt

(1998). (The proof of Theorem 6 is omitted, given the similarity to that of Theorem 5.)

Theorem 6. Suppose that n = n(ε) is such that n/(log(1/ε)) → ∞, and let m = m(ε) be defined

as in Theorem 5. Assume there exist matrices P̃ , P̃ (1), and P̃ (2) for which

sup
0≤k≤m

∥∥∥∥Pn−k(ε)− (P̃ − εkP̃ (1) +
ε2

2
k2P̃ (2)

)∥∥∥∥ = O(ε3m3)

as ε ↓ 0, with P̃ irreducible and aperiodic. Then,

µ

n∏
k=1

Pk(ε)r = π̃r − επ̃P̃ (1)(I − P̃ + Π̃)−1P̃ r + ε2π̃P̃ (1)(I − P̃ + Π̃)−2P̃ (1)(I − P̃ + Π̃)−2P̃ r

+ ε2
(

1

2
π̃P̃ (2) + π̃P̃ (1)(I − P̃ + Π̃)−1P̃ (1)

)
·
[
2(I − P̃ + Π̃)−3 − (I − P̃ + Π̃)−2

]
P̃ r

+O(ε3m4)

as ε ↓ 0, where π̃ is the stationary distribution of P̃ and Π̃ is the rank one matrix having rows

identical to π̃.

As with Theorem 5, one possible choice for m is m = (log(1/ε))1+δ for some δ > 0, in which

case the error term O(ε3m4) is of smaller order than the correction term of order ε2.

We close this section by noting that our arguments generalize (with essentially no changes to the

proofs) to continuous state space Markov chains, provided that we suitably generalize the norms

that are used. In particular, if S is a general state space, we use the definitions

‖η‖ = sup
B⊂S
|η(B)|,

‖A‖ = sup
x∈S
‖A(x, ·)‖,
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‖f‖ = sup
x∈S
|f(x)|,

for finite (signed) measures η, kernels A (so that A(x, ·) is a finite (signed) measure for each x ∈ S),

and functions f . (Strictly speaking, our supremum over B is over measurable subsets of S, and we

require that A and f be suitably measurable.)

With these definitions in hand, Theorem 5 (for example) generalizes as follows:

Theorem 7. Suppose that n/ log(1/ε) → ∞ as ε ↓ 0, and let m be defined as in Theorem 5.

Assume there exist kernels P̃ and P̃ (1) for which

sup
0≤k≤m

‖Pn−k(ε)− (P̃ − εkP̃ (1))‖ = O(ε2m2)

as ε ↓ 0, where P̃ has a stationary distribution π̃. Let Π̃ be the kernel for which Π̃(x, dy) = π̃(dy)

for each x, y ∈ S, and suppose there exists l ≥ 1 such that

‖P̃ l − Π̃‖ < 1. (39)

Then, (I − P̃ + Π̃) has an inverse on the space of bounded (measurable) functions on S, and

µ
n∏
k=1

Pk(ε)r = π̃r − επ̃P̃ (1)(I − P̃ + Π̃)−2P̃ r +O(ε2m3)

as ε ↓ 0, provided ‖r‖ <∞.

The assumption (39) on the transition kernel P̃ is identical to assuming that P̃ is aperiodic and

uniformly ergodic (or, equivalently, that P̃ is Doeblin; see Doob (1953)).

5 Approximating Cumulative Reward

In this section, we develop an approximation for

τn = E
n−1∑
j=0

r(Xj),

when X is slowly changing. Our approximation relies on the first approximation of Section 4, in

which Er(Xj) is approximated by “Taylor expanding” in terms of the P1 dynamics.

Theorem 8. Suppose that n = n(ε) → ∞, so that n/ log(1/ε) → ∞ and n = o(ε−1/4) as ε ↓ 0.

Assume that there exists δ > 0 and matrices P̃ , P̃ (1) for which

sup
1≤i≤n

‖Pi(ε)− (P̃ + ε(i− 1)P̃ (1))‖ = O(ε2n2)
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as ε ↓ 0, where P̃ is aperiodic and irreducible. Then,

n−1∑
j=0

µ

j∏
k=1

Pk(ε)r = (n− 1)π̃r + µ(I − P̃ + Π̃)−1r + εµP̃ (I − P̃ + Π̃)−2P̃ (1)(I − P̃ + Π̃)−1r

+ ε
(n− 1)(n− 2)

2
π̃P̃ (1)(I − P̃ + Π̃)−1r − ε(n− 1)π̃P̃ (1)(I − P̃ + Π̃)−2P̃ r

+ επ̃P̃ (1)(I − P̃ + Π̃)−3P̃ r + o(ε)

as ε ↓ 0, where π̃ is the stationary distribution of P̃ and Π̃ is the rank one matrix having rows

identical to π̃.

Proof. Proof of Theorem 8. As in the proof of Theorem 4, we find that the hypotheses guarantee

that

µ

j∏
i=1

Pi(ε) = µP̃ jr + εµ

j−1∑
i=1

iP̃ iP̃ (1)P̃ j−1−ir +O(ε2j3)

as ε ↓ 0, uniformly in 1 ≤ j ≤ n. Consequently,

n−1∑
j=0

µ

j∏
i=1

Pi(ε)r = µ

n−1∑
j=0

P̃ jr + εµ

n−2∑
i=1

iP̃ iP̃ (1)
n−1∑
j=i+1

P̃ j−i−1r +O(ε2n4) (40)

as ε ↓ 0. Since n/ log(1/ε)→∞ and ‖P̃n − Π̃‖ → 0 geometrically fast, it follows that

µ
n−1∑
j=0

P̃ jr = (n− 1)π̃r + µ(I − P̃ + Π̃)−1r +O(εk) (41)

as ε ↓ 0, for each k ≥ 1. The second term on the right-hand side of (40) equals

εµ
n−2∑
i=1

iP̃ (P̃ − Π̃)i−1P̃ (1)
n−2−i∑
j=0

(P̃ − Π̃)jr + εµ
n−2∑
i=1

iΠ̃P̃ (1)
n−2−i∑
j=0

(P̃ − Π̃)jr

= εµP̃ (I − P̃ + Π̃)−2P̃ (1)(I − P̃ + Π̃)−1r + ε

n−2∑
i=1

iπ̃P̃ (1)
n−2∑
j=0

(P̃ − Π̃)jr

− ε
n−2∑
j=1

n−2∑
i=n−1−j

iπ̃P̃ (1)(P̃ − Π̃)jr +O(εk)

= εµP̃ (I − P̃ + Π̃)−2P̃ (1)(I − P̃ + Π̃)−1r + ε
(n− 1)(n− 2)

2
π̃P̃ (1)(I − P̃ + Π̃)−1r

− ε

2

n−2∑
j=1

[
(2n− 3)j − j2

]
π̃P̃ (1)(P̃ − Π̃)jr +O(εk)

= εµP̃ (I − P̃ + Π̃)−2P̃ (1)(I − P̃ + Π̃)−1r + ε
(n− 1)(n− 2)

2
π̃P̃ (1)(I − P̃ + Π̃)−1r

− ε

2
(2n− 3)π̃P̃ (1)(I − P̃ + Π̃)−2P̃ r +

ε

2
π̃P̃ (1)

[
2(I − P̃ + Π̃)−3 − (I − P̃ + Π̃)−2

]
P̃ r
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O(εk)

= εµP̃ (I − P̃ + Π̃)−2P̃ (1)(I − P̃ + Π̃)−1r + ε
(n− 1)(n− 2)

2
π̃P̃ (1)(I − P̃ + Π̃)−1r

− ε(n− 1)π̃P̃ (1)(I − P̃ + Π̃)−2P̃ r + επ̃P̃ (1)(I − P̃ + Π̃)−3P̃ r +O(εk) (42)

as ε ↓ 0, for each k ≥ 1. The theorem is proved by using relations (40), (41), and (42), noting that

our assumption that n = o(ε−1/4) implies that O(ε2n4) = o(ε) as ε ↓ 0.

So, for moderate values of n (of smaller order than ε−1/4), we can approximate the expected

cumulative reward via the stationary dynamics of a Markov chain having transition matrix P1. In

particular, to obtain an approximation for a given sequence (Pi : i ≥ 1), we replace P̃ by P1 and

approximate εP̃ (1) via a finite difference as in (16).

Finally, we observe that the hypotheses of Theorem 7 hold when Pi(ε) = P ((i− 1)ε) for i ≥ 1,

with P (·) twice continuously differentiable in a neighborhood of 0, assuming that P (0) is irreducible

and aperiodic.

6 Extension to Markov Jump Processes

The theory of Sections 2 through 5 extends in a straightforward fashion to finite-state continuous-

time Markov jump processes. We illustrate this by generalizing Theorems 5 and 6 to this setting.

Let (Q(t) : t ≥ 0) be the family of rate matrices associated with the Markov process X =

(X(t) : t ≥ 0) having non-stationary transition probabilities, so that

E [f(X(t+ h))|X(u) : 0 ≤ u ≤ t] = f(X(t)) + (Q(t)f)(X(t))h+ o(h)

a.s. as h ↓ 0, for any f : S → R. Also, for 0 ≤ s ≤ t, let P (s, t) be the square matrix having

entries P (s, t;x, y) = P (X(t) = y|X(s) = x) for x, y ∈ S, where S is (as in the earlier sections of

this paper) the state space of X. Then, P (0, u+ t) = P (0, u)P (u, u+ t) for u, t ≥ 0. Also, if

λ ,
1

2
sup

u≤s≤u+t
‖Q(s)‖,

then

P (u, u+ t) =

∞∑
n=0

e−λt
(λt)n

n!

∫ t

0

∫ t

u1

· · ·
∫ t

un−1

R(t− un) · · ·R(t− u1)dun · · · du1
n!

tn

=
∞∑
n=0

e−λt
(λt)n

n!
ER(t(1− U(n)) · · ·R(t(1− U(1))),

where (U(1), . . . , U(n)) are the order statistics from an independent and identically distributed sam-
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ple of size n from a uniform distribution on [0, 1], and R(s) , λ−1(λI + Q(s)) for u ≤ s ≤ u + t.

This representation follows directly from the fact that X can be “uniformized” with respect to a

Poisson process having rate λ > 0, and the transition probabilities for X, conditional on a jump at

time s, are given by the entries of the transition matrix R(s); see Massey and Whitt (1998) for a

further discussion.

We now consider a parameterized setting in which we have a family (Q(ε; t) : t ≥ 0, ε > 0) of

rate matrices, with associated transition matrices (P (ε; s, t) : 0 ≤ s ≤ t, ε > 0).

Theorem 9. For ε > 0, let s = s(ε) = (log(1/ε))1+δ for some δ > 0. Suppose that t = t(ε) is such

that t/s→∞ as ε ↓ 0, and assume there exist matrices Q̃, Q̃(1) such that

sup
0≤u≤s

‖Q(ε; t− u)− (Q̃− εQ̃(1)u)‖ = O(ε2s2) (43)

as ε ↓ 0, where Q̃ is an irreducible rate matrix. Then,

µP (ε; 0, t)r = π̃r − επ̃Q̃(1)(Π̃− Q̃)−2r +O(ε2s3)

as ε ↓ 0, where π̃ is the stationary distribution associated with Q̃, and Π̃ is the rank one matrix

having all rows identical to π̃.

Proof. Proof of Theorem 9. Note that for some ε0 > 0, (43) ensures that

sup
0≤u≤s

‖Q(ε; t− u)‖ ≤ 1

2
‖Q̃‖+ 1 , λ̃,

uniformly in ε ∈ (0, ε0). Then, set R(ε;u) = λ̃−1(λ̃I +Q(ε;u)) for t− s ≤ u ≤ t. So,

µP (ε; 0, t)r = µP (ε; 0, t− s)P (ε; t− s, t)r

=
∞∑
n=0

e−λ̃s
(λ̃s)n

n!
µP (ε; 0, t− s)ER(ε; t− sU(n)) · · ·R(ε; t− sU(1))r

=
∑

|n
s
−λ̃|< λ̃

4

e−λ̃s
(λ̃s)n

n!
µP (ε; 0, t− s)ER(ε; t− sU(n)) · · ·R(ε; t− sU(1))r +O(εk) (44)

as ε ↓ 0, for each k ≥ 1 (since the probability that a Poisson random variable with mean λ̃s lies

more than λ̃s/4 from its mean is of the order of exp(−c(log(1/ε))1+δ) for some c > 0, using a

standard large deviations tail bound; see Dembo and Zeitouni (2010)).

Assumption (43) guarantees that

sup
0≤u≤s

‖R(ε; t− u)− (R̃− εR̃(1)u)‖ = O(ε2s2) (45)
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as ε ↓ 0, where R̃ = λ̃−1(λ̃I + Q̃) and R̃(1) = Q̃(1)/λ̃. Furthermore, the stochastic matrix R̃ is

irreducible and aperiodic (since it has positive diagonal entries because λ̃ > ‖Q̃‖/2). The bound

(8), based on (45), establishes that∥∥∥∥∥R(ε; t− su(n)) · · ·R(ε; t− su(1))−

(
R̃n − ε

n−1∑
i=0

su(i+1)R̃
n−i−1R̃(1)R̃i

)∥∥∥∥∥
≤ ε2d′′s3(1 + εc′s)n ≤ ε2d′′s3(1 + εc′s)

5
4
λ̃s

uniformly in 0 ≤ u(1) ≤ · · · ≤ u(n) ≤ 1 for some constants c′, d′′. It follows that

∥∥∥∥∥R(ε; t− su(n)) · · ·R(ε; t− su(1))−

(
R̃n − ε

n−1∑
i=0

su(i+1)R̃
n−i−1R̃(1)R̃i

)∥∥∥∥∥ = O(ε2s3)

as ε ↓ 0, uniformly in 0 ≤ u(1) ≤ · · · ≤ u(n) ≤ 1. Hence,

∥∥∥∥∥ER(ε; t− sU(n)) · · ·R(ε; t− sU(1))−

(
R̃n − ε

n−1∑
i=0

s

(
i+ 1

n+ 1

)
R̃n−i−1R̃(1)R̃i

)∥∥∥∥∥ = O(ε2s3)

as ε ↓ 0, uniformly in n ∈ [λ̃s(3/4), λ̃s(5/4)], where we have used the fact that EU(i) = i/(n+ 1) for

1 ≤ i ≤ n; see Arnold et al. (2008). We now apply the same argument as in the proof of Theorem

5 (using the fact that ‖R̃n − Π̃‖ → 0 geometrically fast) to obtain∥∥∥∥ER(ε; t− sU(n)) · · ·R(ε; t− sU(1))r −
(
π̃ − ε

n+ 1
π̃R̃(1)(I − R̃+ Π̃)−2

)
r

∥∥∥∥ = O(ε2s3) (46)

as ε ↓ 0, uniformly in n ∈ [λ̃s(3/4), λ̃s(5/4)]. Plugging (46) into (44), we conclude that

µP (ε; 0, t) =
∑

|n
s
−λ̃|< λ̃

4

e−λ̃s
(λ̃s)n

n!

[
π̃r − ε

n+ 1
π̃R̃(1)(I − R̃+ Π̃)−2r

]
+O(ε2s3)

= π̃r − ε

λ̃
π̃R̃(1)(I − R̃+ Π̃)−2r +O(ε2s3)

= π̃r − ε

λ̃2
π̃Q̃(1)(I − R̃+ Π̃)−2r +O(ε2s3)

= π̃r − επ̃Q̃(1)(λ̃Π̃− Q̃)−2r +O(ε2s3)

as ε ↓ 0.

We now consider W = Q̃(1)(λ̃Π̃ − Q̃)−2, so that W (λ̃Π̃ − Q̃)2 = Q̃(1). Since Π̃ = Q̃Π̃ = 0 and

Π̃2 = Π̃, we find that

W (λ̃2Π̃ + Q̃2) = Q̃(1). (47)
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Since Q̃(1) = λ̃R̃(1), it follows that Q̃(1)e = 0. Of course, Q̃e = 0 as well, so (47) implies that

λ̃2W Π̃e = 0,

which yields λ̃2We = 0. But λ̃ 6= 0, so we conclude that We = 0. Since Π̃ = eπ̃, (47) implies that

WQ̃2 = Q̃(1),

and hence

W (Π̃− Q̃)2 = Q̃(1).

It is well known that Π̃− Q̃ is non-singular when Q̃ is irreducible, so consequently W = Q̃(1)(Π̃−
Q̃)−2. Hence, π̃Q̃(1)(λ̃Π̃− Q̃)−2r = π̃Q̃(1)(Π̃− Q̃)−2r, proving the theorem.

As in our discrete time theory, the slow variation assumption (43) is required only in a “loga-

rithmic neighborhood” of time t. No time re-scaling is required in order that this result be valid,

nor do we need to assume that the supremum of ‖Q(ε; ·)‖ is bounded over [0, t] uniformly in ε. We

further note that (43) is valid (for example) when Q(ε;u) = Q˜ (εu) for u ≥ 0, and t(ε) = t/ε with

Q˜ (·) twice continuously differentiable in a neighborhood of t, where Q̃ = Q˜ (t) and Q̃(1) = Q˜ (1)(t).

This is precisely the “uniform acceleration” (UA) asymptotic environment considered by Massey

and Whitt (1998).

There is no intrinsic difficulty in extending to higher order approximations. As an illustration,

we state the following result (without proof) for the second order approximation.

Theorem 10. For ε > 0, let s = s(ε) = (log(1/ε))1+δ for some δ > 0. Suppose that t = t(ε) is

such that t/s→∞ as ε ↓ 0, and assume there exist matrices Q̃, Q̃(1), and Q̃(2) such that

sup
0≤u≤s

∥∥∥∥Q(ε; t− u)−
(
Q̃− εQ̃(1)u+

ε2

2
Q̃(2)u2

)∥∥∥∥ = O(ε3s3) (48)

as ε ↓ 0, where Q̃ is an irreducible rate matrix. Then,

µP (ε; 0, t)r = π̃r − επ̃Q̃(1)(Π̃− Q̃)−2r +
1

2
ε2π̃Q̃(2)(Π̃− Q̃)−3r

+ ε2π̃Q̃(1)
(

(Π̃− Q̃)−2Q̃(1)(Π̃− Q̃)−2 + 2(Π̃− Q̃)−1Q̃(1)(Π̃− Q̃)−3
)
r +O(ε3s4)

as ε ↓ 0, where π̃ is the stationary distribution associated with Q̃, and Π̃ is the rank one matrix

having all rows identical to π̃.
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7 Numerical Example

In this section, we illustrate our methodology by applying it to the problem of computing the

infinite horizon discounted reward for a Markov chain X = (Xn : n ≥ 0) having non-stationary

transition probabilities. Specifically, we consider an (s, S) inventory model in which r(x) = x and

Xk+1 =

Xk −Dk if Xk −Dk ≥ s

S if Xk −Dk < S,
(49)

for k ≥ 0. The non-stationarity arises as a consequence of time-varying demand. In particular, we

assume that the Dk’s are independent Poisson random variables in which

EDj = m+ εj

for some j ≥ 1, where m > 0 and ε ≥ 0. In our experiments, we chose m = 1 and performed

calculations at (s, S, α) ∈ {(4, 10, 0.1), (4, 10, 0.5), (4, 10, 1), (40, 100, 0.1), (40, 100, 0.5), (40, 100, 1)}.
We then studied the quality of our approximations as a function of ε.

Recall that our approximations require the derivative matrices P̃ (1) and P̃ (2). In a typical

application, the parameter ε is fixed, and these matrices need to be approximated via the finite

differences given by (16) and (19). We choose j = d(1− e−α)−1e in these formulae, and re-compute

our finite difference approximations to P̃ (1) and P̃ (2) at each value of ε. Since our finite difference

approximations are non-linear in ε, this implies that even our first-order approximation to κ(ε) is

non-linear in ε.

In the current experiment, however, we also have the ability to compute the exact derivatives

P̃ (1) and P̃ (2) via component-wise differentiation of the matrices P1(ε) at ε = 0. So, we compute

two first-order approximations for κ(ε), one based on our finite-difference approximation for P̃ (1)

(denoted “1st order FD”) and the other based on the exact derivative (denoted “1st order Exact”).

Similarly, we compute two second-order approximations for κ(ε) (denoted “2nd order FD” and “2nd

order Exact”, respectively).

Computing the exact value of κ(ε) is implemented by using (2), based on truncating the sum

over j at a suitable value n− 1. We note that the norm of the tail sum of (2) is upper bounded via

∞∑
j=n

e−αj‖r‖ = e−αn(1− e−α)−1S.

We want the contribution of the tail sum to be small relative to the magnitude of the first and second

order corrections to the stationary model in which ε = 0, so we choose n so that e−αn(1−e−α)−1S ≤
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ε6
(

ie. n =
⌈
− 1
α log

(
ε6(1−e−α)

S

)⌉ )
. We denote the value of κ(ε) obtained through this truncation

as “Truncated True.”

To test the quality of the truncation, we computed the exact derivatives κ(1)(0) and κ(2)(0) as

determined by the coefficients in ε and ε2/2 appearing in (18), and compared them to finite difference

approximations to κ(1)(0) and κ(2)(0) as obtained from the “Truncated True” approximations. The

relative errors were uniformly under 0.1% for S = 10 and were under 5% for S = 100.

Tables 1 through 6 below provide the percent relative error (i.e., 100|Approx−Truncated True|/
Truncated True %) of our approximations, as a function of ε, at each of our six combinations of

(s, S, α). The tables are consistent with what we would expect from our approximations, in the sense

that the relative error is smaller when ε is small, and typically also smaller when the second order

approximation is used as compared to the first order approximation. In addition, as the discount

rate α gets larger, the main contribution to the infinite horizon reward focuses to a greater degree

on the early transitions at which the Taylor approximation around P1 will be good. As expected,

the tables do indeed show that the relative error typically decreases with larger discount rates.

Note that there is no theoretical guarantee that using exact derivatives in our approximations

will reduce the error relative to using finite difference approximations, and we find examples in the

tables in which each dominates the other. In conclusion, it appears that this numerical investigation

validates our approximations.

Table 1: Relative Accuracy of the First and Second Order Approximations

ε Truncated True 1st Order FD 1st Order Exact 2nd Order FD 2nd Order Exact

0 64.0915 0.0000 0.0000 0.0000 0.0000
0.001 64.0170 0.0002 0.0000 0.0002 0.0000
0.004 63.7936 0.0032 0.0005 0.0035 0.0000
0.016 62.9040 0.0523 0.0090 0.0435 0.0040
0.064 59.4335 0.8079 0.1925 0.1375 0.0334
0.256 47.8842 10.8270 6.0198 34.3068 2.8580
1.024 26.9824 72.7559 145.4665 160.1515 55.6900

Parameters: α = 0.1, s = 4, S = 10

Table 2: Relative Accuracy of the First and Second Order Approximations

ε Truncated True 1st Order FD 1st Order Exact 2nd Order FD 2nd Order Exact

0 13.0039 0.0000 0.0000 0.0000 0.0000
0.001 13.0014 0.0000 0.0000 0.0000 0.0000
0.004 12.9936 0.0000 0.0001 0.0000 0.0000
0.016 12.9627 0.0006 0.0019 0.0013 0.0000
0.064 12.8415 0.0070 0.0291 0.02117 0.0035
0.256 12.3875 0.0266 0.3892 0.2323 0.1520
1.024 10.9140 0.9337 5.2123 4.5863 4.6166

Parameters: α = 0.5, s = 4, S = 10



28

Table 3: Relative Accuracy of the First and Second Order Approximations

ε Truncated True 1st Order FD 1st Order Exact 2nd Order FD 2nd Order Exact

0 5.8910 0.0000 0.0000 0.0000 0.0000
0.001 5.8906 0.0000 0.0000 0.0000 0.0000
0.004 5.8893 0.0000 0.0000 0.0000 0.0000
0.016 5.8843 0.0003 0.0005 0.0001 0.0000
0.064 5.8648 0.0057 0.0077 0.0026 0.0007
0.256 5.7904 0.0705 0.1041 0.0574 0.0320
1.024 5.5316 0.6203 1.2102 0.9747 1.0713

Parameters: α = 1.0, s = 4, S = 10

Table 4: Relative Accuracy of the First and Second Order Approximations

ε Truncated True 1st Order FD 1st Order Exact 2nd Order FD 2nd Order Exact

0 853.5824 0.0000 0.0000 0.0000 0.0000
0.001 852.8980 0.0008 0.0008 0.0000 0.0000
0.004 850.9225 0.0122 0.0124 0.0011 0.0010
0.016 843.9259 0.1637 0.1665 0.0524 0.0494
0.064 823.6448 1.6917 1.7372 1.8612 1.8027
0.256 778.7003 12.3135 13.1122 47.9461 46.7974
1.024 686.7012 62.0493 78.7922 852.3577 1008.1822

Parameters: α = 0.1, s = 40, S = 100

Table 5: Relative Accuracy of the First and Second Order Approximations

ε Truncated True 1st Order FD 1st Order Exact 2nd Order FD 2nd Order Exact

0 151.2317 0.0000 0.0000 0.0000 0.0000
0.001 151.2256 0.0000 0.0000 0.0000 0.0000
0.004 151.2075 0.0000 0.0000 0.0000 0.0000
0.016 151.1350 0.0000 0.0000 0.0000 0.0000
0.064 150.8452 0.0000 0.0000 0.0000 0.0000
0.256 149.6945 0.0059 0.0059 0.0059 0.0059
1.024 145.5617 0.3532 0.3531 0.3530 0.3531

Parameters: α = 0.5, s = 40, S = 100

Table 6: Relative Accuracy of the First and Second Order Approximations

ε Truncated True 1st Order FD 1st Order Exact 2nd Order FD 2nd Order Exact

0 58.2770 0.0000 0.0000 0.0000 0.0000
0.001 58.2764 0.0000 0.0000 0.0000 0.0000
0.004 58.2748 0.0000 0.0000 0.0000 0.0000
0.016 58.2684 0.0000 0.0000 0.0000 0.0000
0.064 58.2427 0.0000 0.0000 0.0000 0.0000
0.256 58.1398 0.0000 0.0000 0.0000 0.0000
1.024 57.7292 0.0015 0.0015 0.0016 0.0015

Parameters: α = 1.0, s = 40, S = 100
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